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ABSTRACT
This paper proposes an adaptive ∆-causality control scheme

with adaptive dead-reckoning to preserve the consistency

among players and the causality for networked games. The

proposed scheme carries out adaptive ∆-causality control

and adaptive dead-reckoning together. By simulation, we

make a performance comparison among nine schemes in-

cluding the scheme for a networked racing game. We also

investigate the in�uence of the maximum value of ∆ of the

scheme on the interactivity by subjective assessment. As a

result, we illustrate that the scheme is superior to the other

schemes in terms of the consistency among players. Also,

we show that if the maximum value of ∆ is less than about

100 ms, the in�uence of the value on the interactivity is

small.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Communications

Applications; K.8.0 [Personal Computing]: General�Games

General Terms
Algorithms, Performance, Human Factors, Experimentation,

Measurement

Keywords
Networked racing game, Consistency, Causality control, Sim-

ulation, Subjective assessment

1. INTRODUCTION
A number of papers about networked games such as net-

worked racing games and networked shooting games have
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been published [1]-[3]. However, the consistency and the

causality may be disturbed owing to the network latency in

the Internet. To solve the problem, we need to carry out

causality control, prediction control, and so on.

In [3], the authors make a performance comparison among

the ∆-causality scheme, the dead-reckoning scheme, and the

∆-causality scheme with dead-reckoning for a networked rac-

ing game. As a result, they illustrate that the consistency

among players and the causality can be maintained by the

∆-causality scheme when the network load is light. However,

when the network load is heavy, the ∆-causality scheme with

dead-reckoning is superior to the other schemes. The scheme

carries out the ∆-causality control and dead-reckoning to-

gether. Thus, there is a possibility that the combination use

of control improves the performance. Therefore, we need

to investigate the combination use of other types of control.

On the other hand, in [4], the authors demonstrate that the

consistency and the causality are improved by the adaptive

∆-causality control. In [5], where the authors do not deal

with networked games but collaborative work, they show

that the e�ciency of the work is improved by the adaptive

dead-reckoning, which can dynamically change the amount

of tra�c according to the network load. If the adaptive

dead-reckoning is applied to networked games, we expect

that the consistency can be improved.

Therefore, the combination use of adaptive ∆-causality

control and adaptive dead-reckoning can achieve the further

amelioration of the consistency among players. This is a key

idea of this paper.

In this paper, based on the above key idea, we propose

an adaptive ∆-causality control scheme with adaptive dead-

reckoning, in which the adaptive ∆-causality control is ex-

erted together with adaptive dead-reckoning, to preserve the

consistency among players and the causality in networked

games. By simulation, we make a performance comparison

among nine schemes including the proposed scheme for a

networked racing game. We also investigate the in�uence of

the maximum value of ∆ of the scheme on the interactivity

by subjective assessment.

The rest of this paper is organized as follows. Section 2
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proposes the adaptive∆-causality control scheme with adap-

tive dead-reckoning. A performance comparison is made in

Section 3, and the in�uence of the maximum value of ∆ on

the interactivity is examined in Section 4. Section 5 con-

cludes the paper.

2. ADAPTIVE ∆-CAUSALITY CONTROL
WITH ADAPTIVE DEAD-RECKONING

Here we propose an adaptive scheme which carries out the

adaptive ∆-causality control and adaptive dead-reckoning

together. In this paper, each terminal inputs the positional

information about the player's car of a networked racing

game (or the player's �ghter of a networked shooting game)

at regular intervals (every 33 ms in our experimental sys-

tem) and sends the information with its timestamp, which

denotes the generation time of the information, as a com-

puter data media unit (MU) to the other players. An MU

is the information unit for causality and dead-reckoning.

In the proposed scheme, the adaptive ∆-causality control

is exerted for conservation of causality. Under the adaptive

∆-causality control, when each terminal receives an MU,

the terminal saves the MU in the terminal's bu�er until a

time limit and then outputs it. The time limit is equal to

the generation time of the MU plus ∆ seconds (∆ ≥ 0).

If the MU is received after the time limit, it is discarded.

However, owing to discarding MUs, the positions of cars

may be output incorrectly.

We explain the dead-reckoning technique, which is used

to improve the consistency, before the explanation of the

adaptive dead-reckoning. In the technique, at each terminal

(or player), the current position of each car is predicted by

the latest two received (transmitted) MUs. Then, we com-

pare the predicted position with the actual position. If the

di�erence between the predicted position and the actual po-

sition (i.e., the prediction error) is larger than a threshold

value Tdr(> 0), the information about the actual position

is transmitted as an MU. Otherwise, any MU is not trans-

mitted. When an MU is received, we correct the position

over several times in order to correct the position gradually

until the di�erence becomes less than Tdr. In this paper, for

simplicity, we correct the position at a time.

Under the dead-reckoning, if an MU is received within

the time limit (i.e., its generation time plus ∆ seconds) of

the MU at each terminal, the MU is saved in the terminal's

bu�er until the time limit; then, we predict and correct the

position. Otherwise, the MU can be used only to predict

the position of car at the next output time.

In the proposed scheme, the threshold Tdr of the adaptive

dead-reckoning is dynamically changed according to the net-

work load. The network load is estimated from the value of

∆ in this paper. The reason is that the value of ∆ is dy-

namically changed according to the network load under the

adaptive ∆-causality control. The value of ∆ is changed so

as to satisfy the following relation: ∆L ≤ ∆ ≤ ∆H, where

∆L(> 0) and ∆H(> 0) are the minimum and maximum

values of ∆, respectively. The value of ∆ is increased by

∆I(> 0) when the number of MUs which are received con-

tinuously after their time limits reaches Na(≥ 1). On the

other hand, when Nb(≥ 1) MUs arrive continuously before

their time limits, the value of ∆ is decreased by ∆D(> 0).

The initial value of ∆ is set to ∆L. Thus, the threshold

Tdr of the adaptive dead-reckoning is changed according to

the value of ∆. We set the threshold Tdr to larger values as

the value of ∆ increases. This is because the value of ∆ is

changed according to the network load under the adaptive

∆-causality control.

3. PERFORMANCE COMPARISON
In this section, we make a performance comparison of nine

schemes including the proposed scheme by simulation when

three players play a networked racing game. ns-2 [6], which

is a network simulator, is used for simulation.

3.1 Network configuration
The con�guration of a network which is used for simula-

tion is shown in Figure 1. The network is constructed based

on the Tiers model [7], [8]. The Tiers model is a network

model which consists of three classes (i.e., WAN, MAN, and

LAN) and is similar to a real network. In Figure 1, each

of MANs 1 and 2 is connected to a WAN; furthermore, the

MAN is connected to four LANs. There are two routers in

the WAN. The number of routers constituting each MAN

is 2. Every LAN excluding LAN 5 consists of two termi-

nals with one router. LAN 5 contains one router and one

terminal.

The transfer speed of each link in the WAN, each MAN,

and each LAN is set to 5 Mbps, 10 Mbps, and 100 Mbps,

respectively. The transfer speed of a WAN-MAN link is

5 Mbps, and that of a MAN-LAN link is 10 Mbps. Moreover,

the propagation delay of a link in the WAN is set to 10 ms,

and that of a link in each MAN and that of each link in each

LAN are set to 5 ms and 1 ms, respectively. The propagation

delay of a WAN-MAN link is set to 5 ms, and that of a

MAN-LAN link is set to 2 ms.

3.2 Method of simulation
In Figure 1, we suppose that three players (players 1, 2, and 3)

play a networked racing game. Player 1 uses game termi-

nal 1 of LAN 1, player 2 uses game terminal 2 of LAN 4,

and player 3 uses game terminal 3 of LAN 8. MUs are sent

and received among the game terminals. Moreover, sender

m (Sm; 1 ≤ m ≤ 6) sends IP datagrams (load data) of 1500

bytes each to receiver m (Rm) at exponentially distributed

intervals. MUs and load data are transmitted by UDP as a

transport protocol.

Before starting the simulation, in order to generate the
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Figure 1: Con�guration of network.

computer data tra�c of the same amount in the simulation,

we stored the positions of three cars in �les every 33 ms

in our experiment; we made ten �les. Each of the three

players drove a car along a racing course (see Figure 2) for

30 seconds ten times in the case of no network latency. In the

simulation, car i (i = 1, 2, and 3) is moved according to the

stored �les at game terminal i. Game terminal i transmits

MUs each of which includes the position of car i to the other

game terminals. When the game terminal receives an MU,

it updates the position of each car by using the positional

information included in the MU.

In this paper, we handle nine schemes for a performance

comparison. The schemes are the proposed scheme, the

adaptive ∆-causality scheme with the prediction technique

and dead-reckoning (referred to as Prediction/DR+Adaptive∆)

[9], the adaptive ∆-causality scheme with the prediction

technique (Prediction+Adaptive∆) [9], the adaptive∆-causality

scheme with dead-reckoning (DR+Adaptive∆) [9], the adap-

tive ∆-causality scheme (Adaptive ∆) [3], the ∆-causality

scheme with dead-reckoning (DR+∆) [3], the ∆-causality

scheme (∆) [3], dead-reckoning (DR) [3], and a scheme which

does not carry out causality control or prediction control

(the no-control scheme: NC) [3].

In the simulation, the values of ∆ in ∆-Causality and

DR+∆, which use the∆-causality control, are set to 100 ms [2].

In the proposed scheme, Prediction/DR+Adaptive ∆, Pre-

diction+Adaptive ∆, DR+Adaptive ∆, and Adaptive ∆,

which use the adaptive ∆-causality control, parameters of

the adaptive ∆-causality control are set as follows: ∆L =

50 ms, ∆H =100 ms, ∆I = 10 ms, ∆D = 5 ms, Na = 1, and

Nb = 10. The threshold values Tdr in Prediction/DR+Adaptive∆,

DR+Adaptive ∆, DR+∆, and DR, which use the dead-

reckoning technique, are set to 0.1, where the depth of each

car is assumed to be 1. The threshold value Tdr in the

proposed scheme, which uses the adaptive dead-reckoning

technique, is set as follows:

Tdr = 0 (50 ms ≤ ∆ < 75 ms),

Tdr = 0.02 (75 ms ≤ ∆ < 100 ms),

Tdr = 0.1 (∆ = 100 ms).

Racing course

Figure 2: Image of racing course.

3.3 Simulation results
We show the inconsistency rate of positional relations as

a function of the average load in Figure 3. We also show

the mean square error of position of player's car versus the

average load in Figures 4 through 7. The inconsistency rate

of positional relations is de�ned as the ratio of the num-

ber of disagreements among the three positional relations to

the total number of comparisons. This measure is impor-

tant since the positional relations are closely related to the

outcome of a race (i.e., victory or defeat). The mean square

error of position denotes the average square of the positional

error of one player's car between two game terminals. The

average load is de�ned as the average number of interference

data bits transmitted in a second at each sender; the average

loads at all the senders are the same. In Figures 4 through

7, we assume that the depth of each car is 1. We further plot

the 95 % con�dence intervals of the performance measures

in Figures 3 through 7.

In Figure 3, the inconsistency rate of positional relations

of∆ is not plotted when the average load is less than 0.65 Mbps,

and the inconsistency rates of the proposed scheme, Predic-

tion/DR+ Adaptive ∆, and Prediction+ Adaptive ∆ are not

plotted when the average load is less than 0.60 Mbps. The

reason is that the inconsistency rates of the schemes were

zero in this area. In Figures 4 through 7, we show the mean

square error of position of car 1 between game terminals 1

and 2, that of car 1 between game terminals 2 and 3, that

of car 2 between game terminals 2 and 3, and that of car

3 between game terminals 1 and 2, respectively. The mean

square errors of ∆, Adaptive ∆, and Prediction+Adaptive ∆

are not plotted in Figure 4 since the errors were zero. For

the same reason, the mean square errors of all the schemes

excluding NC and DR are not plotted in Figure 7. The
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mean square errors of car 2 between game terminals 1 and

2, car 3 between game terminals 1 and 3, and car 3 between

game terminals 2 and 3 were almost the same as those in

Figure 4. Furthermore, the mean square error of car 1 be-

tween game terminals 1 and 3, and that of car 2 between

game terminals 1 and 3 were almost the same as those in

Figures 5 and 6, respectively.

In Figure 3, we see that the inconsistency rate of positional

relations of the proposed scheme is the second smallest when

the average load is less than around 0.65 Mbps. The incon-

sistency rate of the proposed scheme is the same as those of

Prediction/DR+Adaptive ∆, DR+Adaptive ∆, and DR+∆

when the average load is heavier than about 0.80 Mbps,

and the rate is smaller than those of the other schemes.

When the average load is between around 0.65 Mbps and

0.80 Mbps, the proposed scheme is the best.

In Figure 4, the mean square errors of Prediction/DR+Adaptive∆

and the proposed scheme tend to increase as the average

load becomes heavier. The mean square errors of Predic-

tion/DR+Adaptive∆ and the proposed scheme are the same

as those of DR+∆ and DR+Adaptive ∆ when the average

load is heavier than about 0.80 Mbps.

In Figure 5, we see that the mean square error of the

proposed scheme is the smallest or the second smallest. The

mean square error of the proposed scheme is almost the same

as those of Prediction/DR+Adaptive ∆, DR+Adaptive ∆,

and DR+∆ when the average load is larger than about

0.80 Mbps. This reason is that all the MUs are received

within their time limits.

From Figure 6, we �nd that the mean square error of the

proposed scheme is the second smallest when the average

load is less than around 0.60 Mbps; in this area, note that

the error of ∆ is zero. When the average load is heavier

than about 0.65 Mbps, the proposed scheme is the best.

In Figure 7, we observe that the mean square errors of

all the schemes are independent of the average load. This

is because MUs input at terminal 3 are transmitted in the

opposite direction to the load data.

From the above observations, we can say that the pro-

posed scheme is superior to the other schemes in terms of

the consistency among players. The reason is that the pre-

diction error is reduced by changing the threshold value Tdr

according to the network load in the proposed scheme.

4. INFLUENCE OF ∆H

When the maximum value of ∆ (i.e., ∆H) of the pro-

posed scheme increases, the interactivity may be damaged.

Therefore, we have examined the in�uence of ∆H on the

interactivity by subjective assessment.

4.1 Experimental system
We show the con�guration of the experimental system in

Figure 8. The experimental system consists of two game
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Figure 4: Mean square error of position of car 1 between
game terminals 1 and 2.

terminals (CPU: Pentium4 2.4 GHz, OS: WindowsXP Home

Edition, RAM: 512 Mbytes, Graphic board: GeForce4 MX

420) and a network emulator (NIST Net [10]). The two game

terminals are connected to NIST Net via Ethernet cables

(100BASE-T). NIST Net generates an additional delay for

each MU according to the Pareto-normal distribution [10].

Each user operates a car along a racing course in Figure 2

(see Figure 9) with a wheel type input device (Microsoft

SIDEWINDER FORCE FEEDBACK WHEEL).

4.2 Method of experiment
We have performed subjective assessment to examine the

in�uence on the interactivity by changing the value of ∆H

in the proposed scheme. The value of ∆H is selected from

among 50 ms, 75 ms, 100 ms, 125 ms, 150 ms, 175 ms, and

200 ms. The standard deviation of the additional delay from

terminal 1 to terminal 2 and that from terminal 2 to termi-

nal 1 are set to 10 ms. The average additional delay from

terminal 1 to terminal 2 and that from terminal 2 to termi-

nal 1 are chosen from among 10 ms, 100 ms, and 200 ms.

78



Average load [Mbps]

M
ea

n
 s

q
u

ar
e 

er
ro

r 
o

f 
p

o
si

ti
o

n

NC

DR
DR+
Adaptive
Prediction+Adaptive
DR+Adaptive
Prediction/DR+Adaptive
Proposed scheme

I 95% confidence interval

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

0.55 0.60 0.65 0.70 0.75 0.80 0.85

10
3

10
2

10

1

10
-1

10
-2

10
-3

10
-4

10
-5

Figure 5: Mean square error of position of car 1 between
game terminals 2 and 3.
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Figure 6: Mean square error of position of car 2 between
game terminals 2 and 3.

The subjects were asked to base their judgments in terms

of wording used to de�ne the subjective scale (see Table 1).

Each subject gave a score from 1 through 5 to each test to

obtain the mean opinion score (MOS) [11]. In each test,

each subject played the game for 30 seconds. The number

of subjects was 20. The subjects were from 22 to 24 years

old. They did not play games on a daily basis. The total

time per subject was around 20 minutes.

Table 1: Five-grade impairment scale.

Score Description

5 Imperceptible

4 Perceptible, but not annoying

3 Slightly annoying

2 Annoying

1 Very annoying

4.3 Experimental results
We show the MOS value as a function of ∆H in Figure 10,

where we also display the 95 % con�dence intervals.
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Figure 7: Mean square error of position of car 3 between
game terminals 1 and 2.
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Figure 8: Con�guration of experimental system.

Figure 10 reveals that the MOS value hardly depends on

the value of ∆H when the average additional delay is 10 ms.

This is because when average additional delay is small, the

value of ∆ hardly increases. We also see in �gure that the

MOS value slightly decreases when the average additional

delay is 100 ms and the value of ∆H exceed about 100 ms.

When the average additional delay is 200 ms and the value of

∆H exceeds about 100 ms, the MOS value starts to decrease

linearly. The reason is that the operability of car becomes

more di�cult as the value of ∆ increases.

As a result, in the networked racing game, it is thought

that the in�uence on the interactivity is small if the value of

∆H is less than about 100 ms. This result is the same that

in [12].

5. CONCLUSIONS
This paper proposed an adaptive∆-causality control scheme

with adaptive dead-reckoning for networked games. By sim-

ulation, we made a performance comparison among nine

schemes including the proposed scheme for a networked rac-

ing game. As a result, we found that the proposed scheme

is superior to the other schemes in terms of the consistency
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car

Figure 9: Displayed image at player 1.

Figure 10: MOS versus ∆H.

among players. Also, we saw that the in�uence on the in-

teractivity is small if the maximum value of ∆ (∆H) is less

than about 100 ms.

As the next step of our research, we need to investigate

the performance in the case where there exist a number of

players and in a variety of network environments by simu-

lation. We will also investigate the performance for other

networked games such as networked shooting games in the

same way as that in this paper.
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