
25

Hiding the Misprediction Penalty of a
Resource–Efficient High–Performance
Processor

AMIT GOLANDER and SHLOMO WEISS

Tel-Aviv University

Misprediction is a major obstacle for increasing speculative out-of-order processors performance.
Performance degradation depends on both the number of misprediction events and the recovery
time associated with each one of them. In recent years a few checkpoint based microarchitectures
have been proposed. In comparison with ROB-based processors, checkpoint processors are scalable
and highly resource efficient. Unfortunately, in these proposals the misprediction recovery time is
proportional to the instruction queue size.

In this paper we analyze methods to reduce the misprediction recovery time. We propose a new
register file management scheme and techniques to selectively flush the instruction queue and the
load store queue, and to isolate deeply pipelined execution units. The result is a novel checkpoint
processor with Constant misprediction RollBack time (CRB). We further present a streamlined,
cost-efficient solution, which saves complexity at the price of slightly lower performance.

Categories and Subject Descriptors: C.1 [Processor Architectures]

General Terms: Design, Performance

Additional Key Words and Phrases: Checkpoints, misprediction, out-of-order execution, rollback,
scalable architecture

ACM Reference Format:
Golander, A. and Weiss, S. 2008. Hiding the misprediction penalty of a resource–efficient high–
performance processor. ACM Trans. Architec. Code Optim. 4, 4, Article 25 (January 2008), 32 pages.
DOI = 10.1145/1328195.1328201 http://doi.acm.org/10.1145/1328195.1328201

1. INTRODUCTION

Speculative execution is a key element in modern processors. Speculating on the
direction and the target address of branch instructions [Lee and Smith 1984]
helps reduce latencies involving control dependences. Speculating on load val-
ues [Lipasti and Shen 1996; Mutlu et al. 2005], memory dependences [Moshovos

Author’s address: S. Weiss, Department of Electrical Engineering-Systems, Tel-Aviv University,
Tel-Aviv, 69978, Israel.
New Paper, Not an Extension of a Conference Paper.
Permission to make digital or hard copies part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1544-3566/2008/01-ART25 $5.00 DOI 10.1145/1328195.1328201 http://doi.acm.org/
10.1145/1328195.1328201

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1328195.1328201&domain=pdf&date_stamp=2008-01-30

25:2 • A. Golander and S. Weiss

and Sohi 1999] and execution latency is used to overcome data dependences.
Speculation has been proposed to eliminate locks in multithreaded applications
[Rajwar and Goodman 2001], and for parallelizing applications in distributed
shared-memory (DSM) multiprocessors [Zhang et al. 1999]. As a final example,
the recent research in transactional memory [Hammond et al. 2004; Chung
et al. 2006], motivated by the need to simplify parallel programming, is based
on speculative execution of application-level transactions optimistically assum-
ing [Kung and Robinson 1981] that most transactions do not interfere with each
other.

Given the interest in speculative execution and the abundance of research
on related topics, there is a need to develop methods for efficiently implement-
ing speculation at the microarchitecture level. There are two well-known ap-
proaches for recovering the processor state after speculative execution following
an incorrect guess: the reorder buffer [Smith and Pleszkun 1988] and check-
pointing [Hwu and Patt 1987]. Although the reorder buffer (ROB) is used in
most out-of-order execution microprocessors, the method does not scale well
[Cristal et al. 2003]. Motivated by this problem, recent research has proposed
ways to tolerate long memory latencies without scaling the instruction window
[Mutlu et al. 2003], and techniques to extend the ROB [Cristal et al. 2004a;
Ceze et al. 2006] or to entirely replace it by checkpointing.

Checkpoint microarchitectures are scalable [Akkary et al. 2003; Cristal et al.
2004b]. At least as important as scalability is another attribute of checkpoint
microarchitectures, high resource efficiency. Resources are saved by using a reg-
ister file substantially smaller than the register file in comparable, ROB-based
microarchitectures, and by entirely removing the reorder buffer. Resource effi-
ciency translates into reduced complexity and power, making checkpoint proces-
sors a valuable component in chip multiprocessors (CMP). Two approaches are
followed in multicore chips [Rattner 2005; Kahle 2005]: symmetric cores [Davis
et al. 2005; Spracklen and Abraham 2005; Kongetira et al. 2005] (which could
be in-order, single-issue, identical processors with short pipelines) and asym-
metric [Balakrishnan et al. 2005] cores. A chip multiprocessor with asymmetric
cores integrates two (for example) cores of different sizes and processing power.
One core could be an out-of-order superscalar machine, the other an in-order
single-issue processor. Grochowski et al. [2004] provide evidence that the best
approach to minimize the energy per instruction is a combination of asymmetric
cores and voltage/frequency scaling. Morad et al. [2005] show that asymmetric
CMPs can reduce power consumption by more than two thirds, in comparison
with CMPs that achieve the same performance level using only simple process-
ing cores. Checkpoint-based processors fit very well into the asymmetric CMP
framework, they can be used to implement powerful out-of-order processing
cores more efficiently and with fewer resources than comparable ROB-based
cores.

1.1 Objective

Checkpointing is an important technique for speculative execution and various
aspects of it have been extensively studied. Little has been done however on

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

Hiding the Misprediction Penalty • 25:3

the topic of the penalty of recovering from mispredictions when the processor
is forced to roll back to a checkpoint. The primary objective of this paper is to
present a detailed study focusing on the recovery mechanism in a ROB-free
microarchitecture. Specifically, the paper makes the following contribution:

(1) In current proposals the misprediction recovery time is proportional to the
instruction queue size. This work presents a novel mechanism that achieves
Constant RollBack time (CRB). CRB completely hides the OOO core re-
covery penalty, regardless of the instruction queue size, program flow and
behavior.

(2) It further presents a simplified implementation of CRB, which settles for
upper bounded (URB) rather than constant rollback time, but achieves al-
most the same performance.

(3) Alternatively, it presents improvements of the wakeup and select logic, de-
signed to reduce rollback time without changing the register management
scheme.

(4) It analyzes CRB and URB implementation cost and tradeoffs related to
the number of checkpoints, the front-end pipeline depth, and the branch
prediction unit. It also reports results on the impact of two key parameters,
the register file size and the memory access time.

1.2 Paper Overview

The rest of the paper is organized as follows. Section 2 describes the simulation
methodology. Section 3 depicts the microarchitecture and analyzes it. Section 4
suggests overlapping the front end and the OOO core rollback time. Further
reducing rollback time, Section 5 discusses the bounds of the register manage-
ment scheme, and Section 6 presents novel mechanisms for achieving constant
misprediction rollback time (CRB). Section 7 introduces CRB performance and
Section 8 analyzes CRB implementation tradeoffs. Section 9 describes a stream-
lined method—upper bounded rollback time (URB). Finally, related work is
surveyed in Section 10 and conclusions are drawn in Section 11.

2. EXPERIMENTAL METHODOLOGY

We have modified the sim-outorder version of SimpleScalar [Burger and Austin
1997] to implement checkpoints, variable length pipelines, and variable size
register files. The microarchitecture simulation parameters are listed in Table I.
These parameters are mostly along the line of Intel’s CPR and follow work by
[Akkary et al. 2004; Srinivasan et al. 2004]. Cache and memory latencies are
derived from [Mutlu et al. 2005b]. Some parameters are intentionally tuned for
the following reasons:

—The instruction set architecture is Alpha rather than X86. The front-end
pipeline is shorter and no uOP translation is required. The level one instruc-
tion cache is larger, as there is no trace cache.

—To better reflect a core in a multiprocessor cluster, we model a smaller reg-
ister file, and a memory which takes slightly longer to access. Performance

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

25:4 • A. Golander and S. Weiss

Table I. Microarchitecture Simulation Parameters

Branch prediction unit Tournament: 16K bimodal, 64K gshare.
BTB: 512 sets, 4-way. RAS: 32 entries.
Confidence estimator: 8K entries, 4bit JRS [Jacobsen et al. 1996].

Front end recovery Read next PC after misprediction: 2 cycles
Fetch + decode + rename: 6 cycles min. (FERollback = 2 + 6)

Resources 8-deep in-order checkpoint buffer. Processor width: 4.
128/128 register file (integer/FP). IQ: 256. LSQ: 256.
Register file and scheduler are single cycle structures.

Execution unit latencies Integer/FP: ALU: 1/2 cycles, multiplication 3/6 cycles.
Division: 20 cycles.

Caches and memory Inst.-L1: 64KB, 512 sets, 4-way, 2 cycles, 32B blocks.
Data-L1: 64KB, 512 sets, 4-way, 2 cycles, 32B blocks.
Unified-L2: 1MB, 8-way, 10 cycles, 64B blocks.
Memory latency is 600 cycles

sensitivity to these parameter is later analyzed, so it can be seen that a big-
ger register file or a closer memory would only increase our constant rollback
mechanism advantage.

—A large LSQ was chosen to hold uncommitted stores. In checkpoint-based
processors a store instruction commits only when the checkpoint it belongs
to is released. A reduced-cost implementation (SRL – Store Redo Log), using
secondary buffers without CAM and search functions, is proposed in [Gandhi
et al. 2005]. Currently our simulator does not support SRL and we do not eval-
uate its effect on the results. An indication of the effect that can be expected
is provided by [Gandhi et al. 2005], who report that SRL is within 6% of the
performance of an ideal store queue.

All the SPEC CPU2000 integer (INT) and floating point (FP) benchmarks
were used. Results were measured on a 300-million instruction interval, start-
ing after one-half a billion instructions. Each result was normalized separately
per benchmark. Unless otherwise stated, harmonic mean was used to summa-
rize performance rates.

3. ROB-FREE MICROARCHITECTURE

The microarchitecture, whose issue stage [Palacharla et al. 1997] is illustrated
in Figure 1, does not use a reorder buffer and accordingly, there is no need
for a commit pipeline stage whose function, in a ROB-based microarchitecture,
is to determine which instructions are no longer speculative. In the ROB-free
microarchitecture described in this section speculative execution is supported
by the use of checkpoints.

A checkpoint saves the state of a program at a certain point during the
execution of the program. An instruction Ik is speculative as long as there is still
a checkpoint CP, taken on Ik or on an earlier instruction Ij that precedes Ik in
the program execution order. Otherwise Ik is committed. If CPj and CPk are two
consecutive checkpoints taken on Ij and Ik respectively, and all the checkpoints
prior to CPj have been released, releasing CPj commits all the instructions Ij

. . . Ik−1. We refer to instructions Ij . . . Ik−1 as belonging to checkpoint CPj . This

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

Hiding the Misprediction Penalty • 25:5

Fig. 1. The issue stage of the microarchitecture consists of an instruction queue holding renamed
instructions, wakeup logic, and select logic. The wakeup logic flags instructions that are ready for
execution. Ready instructions that are selected for execution read operands from the register file
and proceed to the execute stage of the pipeline. The register file maintains both architectural
registers (those currently pointed by the mapping table) and additional registers in a single file.

association is maintained by a tag ChkpntTagj which identifies CPj and is part
of the state of the instruction as it flows down the pipeline.

When an instruction belonging to CPj is renamed, it increments a counter
NumInstrj . When that instruction finishes execution, if it is not a branch or
it is a correctly predicted branch, it simply decrements NumInstrj . If it is a
mispredicted branch, a recovery procedure is initiated by rolling back to CPj and
restarting execution from that point. Finally, if all the instructions belonging to
CPj have finished execution without requiring any special handling, a situation
reached when NumInstrj becomes again zero, CPj can be released. A checkpoint
is also released when the program rolls back to an earlier checkpoint.

Checkpoints are taken periodically according to a checkpointing policy. As-
suming a free checkpoint exists, the microarchitecture will take a checkpoint
at the following points in the program:

—at a branch that is predicted with a low confidence estimation level,
—at the first branch after a rollback,
—when the number of instructions after the last checkpoint exceeds a certain

threshold, and
—when the number of store instructions after the last checkpoint exceeds an-

other threshold.

A misprediction recovery example is illustrated in Figure 2. A branch mis-
prediction (shown marked) was detected while the instruction window contains
five branches and three checkpoints. The processor state is rolled back to the
closest checkpoint. Rollback is followed by reexecuting the code from the check-
point up to the mispredicted branch.

A checkpointing policy should be designed to reduce the use of resources,
checkpoints and registers, while minimizing the impact on performance. The
checkpointing policy affects the reclamation of registers—a register that was
in use at the time when a checkpoint was taken, and hence is included in the
checkpointed state, cannot be freed until the checkpoint itself is not freed. A
register is deallocated and returned to the pool of free registers when all the
following three conditions are satisfied: (1) the register has been removed from

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

25:6 • A. Golander and S. Weiss

Fig. 2. Rollback and reexecution flow.

Fig. 3. Outline of the essential functions of the microarchitecture. The diagram is not intended to
show the actual pipeline stages.

the mapping table, (2) the register is not included in any checkpointed mapping
table, and (3) the register is not needed by any instruction waiting to be issued
from the instruction queue (IQ).

A RegUnmapped flag and a RegUse counter, associated with each register,
help determine when to deallocate a register. The counter is incremented when
an instruction, which uses the register as a source operand is renamed, and is
decremented when an instruction reads the value just before it is sent to an
execution unit. The RegUse counter is also incremented when a checkpoint that
includes the register in its mapping table is taken, and is decremented when
that checkpoint is released. A register is deallocated when the RegUnmapped
flag is set and the RegUse counter is zero.

3.1 Rollback Model

Figure 3 illustrates the operation of an OOO speculative processor that is rel-
evant to this discussion. The pipeline has two logical parts: an in-order front
end (FE) and an OOO core. When the processor is rolled back to a checkpoint,
the FE refreshes the program counter (PC) and the register mapping table and

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

Hiding the Misprediction Penalty • 25:7

Fig. 4. Percentage of the OOO core rollback time. The total (100%) is the sum of FERollback and
OOORollback.

begins fetching new instructions. The OOO core drains the pipelines and the
instruction queue and brings the RegUse counters to values consistent with the
recovered processor state. Let FERollback denote the number of cycles needed to
restore the FE, free the checkpoint and supply the first instruction to the IQ.
FERollback consists of the time it takes to refresh the PC, fetch latency (assum-
ing level one instruction cache hit), followed by decode, rename and dispatch
latencies. FERollback depends primarily on the pipeline structure.

The OOO core recovery time (OOORollback) depends on the instruction mix in
the IQ and in the pipelines. The RegUse counters are the essential structure
that supports aggressive register reclamation. During rollback, these counters
are decremented according to the instructions still located in the IQ. Handling
instructions on an individual basis makes the rollback time proportional to the
number of instructions in the IQ.

3.2 Motivation

Figure 4 shows the proportion of the front end and the OOO core rollback times.
The ratio of OOORollback to the sum of FERollback and OOORollback is 60% and 63%
for the integer and floating point benchmarks respectively. Clearly OOORollback

is a substantial component of the processor’s recovery time.
Optimizing the rollback model is important as it holds a real impact on

the overall performance. Comparing the optimal method (CRB), which en-
tirely hides the OOO core recovery time (OOORollback = 0) to the naive model
(Non-overlapping), reveals an average speedup potential of 12.9% for the inte-
ger benchmarks. The measured speedup potential reflects the configuration in
Table I and will grow to an average of 17%, if for example more registers are
available and latency to memory is smaller. Finally, the measured speedup
potential reflects a processor speculating only on branch direction and target
address, and is expected to grow as other sources of speculation, such as load
value prediction are applied.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

25:8 • A. Golander and S. Weiss

Fig. 5. Overlapping model rollback scheme.

4. OVERLAPPING FE AND OOO CORE ROLLBACK TIME

Checkpoints hold the mapping table that should be refreshed, therefore the
front end can theoretically start to fetch, decode and rename before the OOO
core is done repairing. The challenge in overlapping the FE operation derives
from what happens when the newly renamed instructions should be placed
in the instruction queue. New instructions and valid instructions preceding
the checkpoint are never associated with the same checkpoint and can co-exist
in the IQ as well as in other parts of the OOO core. However this is not the
case for stale instructions. We use the simplest checkpoint management that
allocates and deallocates checkpoints in an in-order fashion, so during rollback
the same checkpoint tag associated with stale instructions in the OOO core can
be associated with new instructions in the FE. As a result we do not allow new
instructions in the OOO core before purging stale instructions.

We define two rollback models: a simple nonoverlapping model that initiates
the FE recovery after the OOO core is safe (clean from all stale instructions), and
a more advanced overlapping model that is described in more detail in Figure 5.
The idea of overlapping the FE and OOO core was implemented in Intel’s P6
microarchitecture [Shen and Lipasti 2005, p.338]. In the rest of this paper we
assume the overlapping model is the baseline for performance comparison and
present results of the non-overlapping model only for completeness.

Figure 6 shows the normalized IPC of the overlapping model relative to the
nonoverlapping model. The rightmost bar of each half of the figure is the har-
monic mean. Overlapping the FE and OOO core improves IPC by 7.7% and
2.2%, on average, for the integer and the floating-point benchmarks respec-
tively. The remainder of the paper describes two attempts to further improve
the IPC by reducing the OOO core rollback time. From this point on, results
are normalized to the overlapping model.

5. REDUCING THE ROLLBACK TIME: SPLIT QUEUE AND STALE FIRST

After rollback, all the RegUse counters must be consistent with the recovered
state of the processor. To that end, when the microarchitecture is rolled back,
all the instructions in the instruction queue are processed and the RegUse
counters of their source registers are decremented. Keeping this in mind, our

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

Hiding the Misprediction Penalty • 25:9

Fig. 6. Impact of the overlapping model.

Fig. 7. Percentage of stalls that can be eliminated/resolved by reducing the number of instructions
in the IQ and by giving priority to stale instructions. The total (100%) is the number of rollback
events in which OOORollback > FERollback.

first attempt at reducing the rollback time is based on two complementary
approaches: (1) reducing the number of instructions in the IQ, and (2) giving
priority to stale instructions. After removing the stale instructions, the OOO
core can be restarted immediately because the remaining instructions in the
IQ and new instructions fetched after recovery can be mixed in the pipelines.
Figure 7 shows that the approach introduced in this section is worth pursuing —
by careful management of the instructions in the IQ, stalls exceeding FERollback

can be entirely eliminated in over one-third of the recovery events in which
OOORollback > FERollback.

5.1 Splitting the Instruction Queue Structure

The IQ holds instructions until they are issued for execution. Instructions are
selected for execution when two requirements are met: operands are available
in the register file and there is no structural hazard. The microarchitecture’s IQ
structure, which we denote as Unified, holds all instructions until they satisfy
both requirements. On rollback, every instruction that has not read its values
from the registers has to be taken care of on an individual basis. The Unified IQ
structure is suboptimal, as it must hold any instruction that cannot be issued

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

25:10 • A. Golander and S. Weiss

Fig. 8. A Split Queue structure.

due to a structural hazard, whether its operands are available in the register
file or not.

To reduce rollback time and increase performance we introduce a Split Queue
structure (Figure 8). If an instruction has the operands and resources it needs,
it is transferred to execution, as in the Unified scheme. Otherwise, if an in-
struction cannot be issued because of a structural hazard but its operands are
available, the instruction reads its source registers and is transferred to the
Ready Queue. (A Ready Queue was proposed in a different context of simpli-
fying the issue logic [Canal and Gonzalez 2001].) Since all instructions in the
Ready Queue have decremented the RegUse counters of their source registers,
rollback time can be made proportional to the number of instructions in the IQ
structure alone.

5.2 Purging Stale Instructions First

Two types of instructions occupy the IQ:

—Valid instructions, preceding the checkpoint that the processor is recovering
to.

—Stale instructions, belonging to one of the checkpoints about to be folded. (A
checkpoint has to be folded if the mispredicting instruction belongs to it, or
it was taken afterward.)

The microarchitecture’s select logic (referred to as Equal Priority) does not give
priority to one instruction type over the other at rollback. A different logic could
select the stale instructions prior to others, because they are the bottleneck in
repairing the OOO execution core. We refer to this latter method as Stale First.

Example 1: Equal Priority and Stale First

Consider a four- wide superscalar processor in which the select logic can handle
up to four instructions during normal execution and also during rollback. On
misprediction detection (refer to Figure 9) the IQ contains 43 instructions, 22
of which are stale. An Equal Priority select logic might be ready for reexecution
after � 43

4 � cycles, creating a rollback stall of three cycles (that is, beyond the roll-
back time of the front end, which is assumed to be eight cycles). However the
same machine with a Stale First select logic will process all stale instructions in

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

Hiding the Misprediction Penalty • 25:11

Fig. 9. The logical state of the instruction queue at a misprediction detection. Instructions with
checkpoint tag six or seven are stale. Valid and stale instructions are mixed up in the OOO core.

Fig. 10. Impact of the Split Queue and Stale First select logic. (IPC is normalized relative to the
overlapping model).

� 22
4 � cycles; after these six cycles the OOO core recovery is complete. In this sce-

nario the OOO core recovery is completely hidden by the front end refresh time.

5.3 Performance of the Split Queue and Stale First Methods

Figure 10 presents the results that can be achieved by the Split Queue structure
and the Stale First select logic. Several observations can be made regarding
these results. The harmonic mean of the speedup of the integer and floating-
point programs is 2.1% and 1% respectively. About one-half of the floating point
benchmarks almost never mispredict branches (Figure 11), and, hence, are
unaffected by the rollback scheme. Most of the performance contribution is
because of splitting the instruction queue. The effectiveness of the Split Queue
is limited, however, because when a rollback is started, some old instructions
that precede the checkpoint are still in the IQ, waiting for operands.

The Split Queue and Stale First methods increase the complexity of the
scheduler. Split Queue requires it to search both the IQ and the Ready Queue,
and Stale First requires the scheduler to distinguish between stale and valid
instruction types. To get the best results achievable with the Split–Stale First
approach, we made the assumption that the increased complexity of the sched-
uler has no effect on the clock cycle. Furthermore, these results do not improve,
even if we do not limit the size of the Ready Queue and the bandwidth of the
bus that transfers instructions from the IQ to the Ready Queue. (The results
shown in Figure 10 are based on these assumptions for the Ready Queue.)
Having reached the maximum potential for the approach investigated in this

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

25:12 • A. Golander and S. Weiss

Fig. 11. Branch mispredictions per 1000 instructions.

Fig. 12. Cumulative distribution of the OOO core repair time (OOORollback). The vertical line shows
the front-end repair time, which, in this study, is fixed at eight cycles (Table I). As long as the
OOORollback does not exceed FERollback, OOORollback can be completely hidden by the overlapping
model. The overlapping method cannot hide, however, extra cycles needed by the OOO core, beyond
FERollback, as happens in more than one-half of the rollback events.

section, we make now another attempt at reducing the rollback time by trying
an entirely different direction.

6. REDUCING THE ROLLBACK TIME: CRB

Both the nonoverlapping and the overlapping models, and the enhancements
presented above, share the same weakness—their rollback time is proportional
to the instruction queue size (refer to Figure 12). Even the more aggressive
scheme, Split–Stale First, has a rollback time proportional to the number of
stale instructions waiting for operands, which could be in the order of magni-
tude of the IQ. In our second attempt at reducing the rollback time, we address
this problem directly by devising an approach that provides constant rollback
time, independent of the number of stale instructions in the instruction queue.
We refer to this method as CRB (constant rollBack time). CRB has two key
elements: (1) a novel register management scheme, and (2) a method that han-
dles the rollback of long-latency units.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

Hiding the Misprediction Penalty • 25:13

Fig. 13. Registers with per checkpoint RegUse counters.

Fig. 14. Optimized register management. Associated with each register there is a single RegUse
counter, a single ChkpntTag, and n RegUse bits, one per checkpoint.

6.1 Register Management

In the new register management scheme, illustrated in Figure 13, the RegUse
counter is replaced by multiple counters, one per checkpoint. We also change
the rules for allocating and freeing registers. Now a register is deallocated and
returned to the pool of free registers when the following three conditions are
satisfied: (1) the register has been removed from the mapping table, (2) the
register is not included in any checkpointed mapping table, and (3) all the
RegUse counters associated with the register are zero. Note that only the third
rule has changed in order to support multiple RegUse counters per register. We
further add an ability to reset all RegUse counters associated with a specific
checkpoint. With these details in place, restoring the RegUse counters of a
register to values consistent with the recovered state of the processor becomes
a matter of resetting the counters of the folded checkpoints. If the last taken
checkpoint is CPn, rolling back to CPn−i involves resetting the RegUse counters
of checkpoints CPn, CPn−1, . . . CPn−i.

Using multiple RegUse counters per register creates a costly hardware
structure. Fortunately, this logical structure can be optimized as illustrated in
Figure 14. In this optimization a single RegUse counter is used. The RegUse
counter is allocated to a single checkpoint—the one in which the register became
part of the mapping table. Other checkpoints taken while the register is still
part of the mapping table need only a single RegUse bit. Taking a checkpoint
sets the corresponding RegUse bit, and folding the checkpoint resets the bit.
A single bit is sufficient because all the instructions belonging to a checkpoint
must read their registers and execute before releasing the checkpoint.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

25:14 • A. Golander and S. Weiss

Fig. 15. Optimized register-management flow. The upper part includes a time axis with multiple
events and 14 timestamps. The lower part of the figure describes the state of the register control
fields at each timestamp. Changes are marked in bold.

Example 2: Optimized Register-Management Flow

Figure 15 is an example of how the register-management mechanism operates,
demonstrating why a single RegUse bit is equivalent in functionality to a full-
size RegUse counter. The register at hand (Ri) is allocated by an instruction
belonging to checkpoint five (CP5), saved in the mapping table of checkpoint
six, and removed from the mapping table before taking checkpoint seven. CP6
is taken before timestamp six and released after timestamp 13. The two in-
structions belonging to CP6 are renamed between timestamps 6 and 7 (after
CP6 is taken) and the register value is read between timestamps 10 and 12
(before CP6 is released). Hence it is sufficient to track taking and releasing
CP6, any relevant events (renaming an instruction Ik that uses Ri as a source
operand, and the read of Ri, which marks the end of the use of Ri by Ik) must
have occurred between these two points. Note that the optimized management
mechanism does not delay register deallocation compared to the baseline. In

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

Hiding the Misprediction Penalty • 25:15

Fig. 16. Rollback with the optimized register-management logic. Two scenarios are described, A
and B, rolling back to CP6 and CP5, respectively.

the example, although all the reads of Ri occur before time 12, the register is
still locked in the mapping table of CP6 and can be freed only after releasing
CP6. Delaying register deallocation because of a checkpoint release was evalu-
ated by Akkary et al. [2004, Section 4.3], in which they compare the aggressive
register reclamation scheme (our baseline model) with an ideal scheme.

Example 3: Rollback

Figure 16 shows how the optimized register-management logic is modified dur-
ing a rollback. During the first seven timestamps the same events occur as in
Figure 15, the register, however, is not removed from the mapping table by time
eight. CP6 is the last taken checkpoint, and rolling back to it (scenario A) has no
effect on the status of the register. After the rollback we begin again execution
from CP6, and thus we leave the RegUse bit of CP6 set, as it was before. Rolling
back to CP5 is different. The register is not contained in the mapping table of
CP5. Hence the register is freed, its RegUnmapped flag is set, and the RegUse
counter and bits are all cleared.

Having restored the RegUse counter and bits to consistent values after a
rollback, we are now ready to take care of the instructions in the instruction
queue. As explained earlier in Section 3, every instruction carries a ChkpntTag
as it flows down the pipeline. For clarity, this tag, which is really part of the
instruction’s state, is shown as a separate field in Figure 17. As shown in the
figure, the tag of checkpoint CPn is loaded into a register and simultaneously
compared with the checkpoint tags of all the instructions in the IQ. All matching
instructions are flushed. If the last taken checkpoint is CPn, to roll back to
CPn−i+1 the “Checkpoint to be flushed” register is loaded in consecutive clock
cycle with the tags of CPn, CPn−1, . . . CPn−i+1 until all the i checkpoints are
folded. Purging i checkpoints takes i clock cycles. The time required to flush
the instruction queue can be shortened. In Subsection 8.1 we show why this is
not necessary.

Note that this simple and fast procedure of selectively flushing the instruc-
tions in the IQ is made possible by the new register management scheme

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

25:16 • A. Golander and S. Weiss

Fig. 17. Selective flushing of the IQ and LSQ structures.

described above. Now that the instructions in the IQ are no longer needed
to update counters, stale instructions can be removed from the IQ as fast as
possible. This is done by matching checkpoint tags and eliminating instructions
belonging to folded checkpoints. The same selective-flushing method described
for the IQ is also used for the LSQ. The LSQ contains either instructions that
have already read their operands or store instructions in which the operand is
not yet ready. In the latter case, the store is also kept in the IQ until the store
operand is ready, it is read from the register file and the RegUse counter is
decremented. Instructions in the LSQ do not decrement the RegUse counters
and they can be flushed by matching checkpoint tags.

6.2 Handling Long-Latency Units

Recall that the overlapping model (Section 4 and Figure 5, in particular), which
we use as the baseline model in this work, supports overlapping of the front-
end and the out-of-order engine, but does not support selective flushing of the
execution units. Without selective flushing, new and stale instructions cannot
mix in the execution units. Thus instructions are not allowed to enter the OOO
core until all stale instructions are purged. This model has been implemented
in the Intel P6 microarchitecture [Shen and Lipasti 2005, p. 338]. In the rest
of this section, we propose a simple and inexpensive solution that, functionally,
has the same effect as selective flushing of the execution units. This solution
allows new instructions to enter the OOO core as soon as they become available,
after the rollback latency of the front-end. Those pipelines whose latency is no
longer than FERollback do not pose a problem, as they have already been drained.
Hence, we only have to handle long-latency units whose execution requires more
than FERollback cycles.

Our goal is to allow the OOO core process new instructions, while stale in-
structions still drain in long-latency pipelined execution units. For each such
unit, we add control logic as shown in Figure 18 that marks the unit as
busy until it completes all the operations associated with folded checkpoints.
The structural hazard that occurs when a unit is busy prevents new instruc-
tions from mixing with stale instructions inside the long latency unit. In this
situation, the same ChkpntTagj can be used to identify an old stale checkpoint
within the long latency unit and a new checkpoint in the rest of the OOO core.
Long-latency execution units are those that require more than FERollback cycles.
In our simulation model, this applies only to division instructions, but other
processors might support other long latency instructions. Finally, long-latency

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

Hiding the Misprediction Penalty • 25:17

Fig. 18. An implementation of the control logic associated with an L deep pipelined execution
unit. We add to the execution unit and accompanying the ChkpntTag structure, two bit vectors
each, with a length equal to the total number of checkpoints. In the Use vector, a bit is on if the
corresponding tag is used by at least one instruction currently in the pipeline. In the Fold vector,
a bit is on if the corresponding checkpoint is to be folded, which is determined when a rollback
is started. The control logic blocks the pipeline input if, for any k, Use[k] ∗ Fold[k] = 1. The logic
purges a result if Fold[ChkpntTag(L)] = 1.

execution units that are not pipelined hold a single instruction, so they are
either entirely valid or entirely stale, and the additional control logic could be
optimized to a single ChkpntTag and comparator flushing the unit when the
checkpoint is folded.

Example 4: Handling-Long Latency Units

Figure 19 demonstrates how CRB maintains consistent tag naming by isolating
long-latency units that contain stale instructions from the rest of the OOO core.
Figure 19a illustrates the instruction flow. Figure 19b is a step-by-step trace of
the example.

Figure 19a shows two rollbacks. In the first one, CP2 is folded. The long-
latency instructions were dispatched before CP2 and none of them uses the CP2
tag. After the rollback, new instructions carrying the CP2 tag are allowed to en-
ter the long pipeline, which is marked not busy (see Busy column in Figure 19b).

In the second rollback CP4 is folded. The long instructions, which were dis-
patched after CP4, are still in the pipeline. This time, after the rollback, new
instructions are not allowed to enter the long pipeline, which is marked busy
(Figure 19b). This prevents new and old instructions carrying the same check-
point tag from getting mixed up.

7. CRB PERFORMANCE

Figure 20 illustrates the performance of the constant rollback method. The rel-
evant IPC results are 2.1% and 4.8% for the floating-point and integer bench-
marks, respectively. In the integer benchmarks, the speedup is in the range
2.3% (Bzip) to 8.3% (Eon). Results from running a specific benchmark on an
overlapping model can be used to roughly estimate how efficient will a CRB
model be for that benchmark. Eon has a large number of branch mispredic-
tions (but not the largest in the set of the integer programs), a high IPC (but
not the highest), and, on average, a large number of stale instructions that
have to be eliminated during rollback. The combination of these three factors

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

25:18 • A. Golander and S. Weiss

Fig. 19. An example of the CRB control logic associated with a long-latency execution unit.

contributes to Eon’s speedup. As noted earlier, seven of the floating-point pro-
grams have low branch misprediction rates and any reduction in the recovery
time is bound to have a minor effect, if any, on the speedup.

7.1 CRB Implementation Cost

Power, area, and latency costs of the CRB hardware structures were estimated
using version 4.2 of Cacti [Tarjan et al. 2006] with 70-nm technology, the most
advanced technology the tool was verified on. Dynamic energy was translated
to power consumption using a 2-GHz clock frequency and switching data from
the performance simulation. Leakage power was also taken into account using
CACTI. The figures in Table II are reported separately for leakage and dynamic
power.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

Hiding the Misprediction Penalty • 25:19

Fig. 20. Impact of constant recovery time. (IPC is normalized relative to the overlapping model)

Table II. Area and Power Consumption of the Storage and Combinational Logic
Required by the CRB Microarchitecture

Optimized Selective Flushing
Register Management of IQ and LSQ Total

Area [mm2] 0.100 0.024 1.124
Leakage power [mW] 2.101 0.496 2.597
Dynamic power [mW] 10.464 3.009 13.473
Total power [mW] 12.565 3.505 16.070

Table II shows the area and power consumption of the storage and combi-
national logic required by the CRB microarchitecture. These numbers do not
include any control associated with the long-latency execution unit. The reason
for this is that the logic added to the long-latency execution unit is expected
to be small and, to a large extent, depends on parameters that vary between
processors, such as ISA, the unit’s latency relative to FERollback, and the degree
of pipelining. The access time is not specified as it is either not on the critical
path, or was measured to be well below a single cycle.

7.2 Register File Size

Adding more registers should improve performance by reducing the number of
events that block instruction rename. This is indeed true for CRB, as shown
in Figure 21A. Interestingly enough, this is not always true for the other mi-
croarchitectures. As expected, the extra registers are used to handle more in-
structions in parallel. This is beneficial when speculation is correct, but could
be harmful when incorrrect. Handling more instructions in parallel introduces
additional stale instructions, consequently, traditional rollback models like the
nonoverlapping and overlapping require longer periods of time to clean the
pipelines and resume execution following mispredictions. The balance of these
two opposite effects changes from one benchmark to another. However, for most
integer benchmarks it is a moderate slowdown.

On the other hand, the rollback time in CRB is not affected by the
number of instructions that have to be purged and the performance im-
proves with the addition of registers. As a result, in the integer benchmarks
(Figure 21A) the gap between CRB and the overlapping model grows from 4.8%
at 128 registers to 7.4% at 256 registers. A similar trend can be observed when

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

25:20 • A. Golander and S. Weiss

Fig. 21. Effect of the register file size.

Table III. Effect of the Memory Access Latency

Memory Overlapping CRB CRB
Benchmarks Latency Model (%) Model (%) Advantage (%)
Integer 600 100.0 104.8 4.8

450 107.0 112.5 5.1
300 115.1 121.4 5.5
150 123.9 131.4 6.0

FP 600 100.0 102.1 2.1
450 111.3 113.8 2.3
300 124.7 127.9 2.6
150 139.4 143.4 2.9

comparing CRB to the nonoverlapping model. Figure 21B shows the data for the
floating-point benchmarks, and again, the gap between CRB and overlapping
or nonoverlapping models grows with the number of registers. The floating
point benchmarks have fewer branch mispredictions, however, and none of the
models show a performance slowdown.

7.3 Memory Latency

Overlapping and CRB performance was measured for four memory access laten-
cies: 600, 450, 300, and 150 cycles. Table III shows the normalized IPC relative
to the overlapping model with a 600 cycle memory latency, for both models and
for both the integer and floating point benchmarks. The performance of the
models improves substantially when memory latency is shorter.

Looking closer at the rightmost column, it appears that the performance of
CRB improves at a slightly greater rate. To understand this effect consider the
following equation:

CPI = CPIEx + CPIMemStalls + CPIRollbackStalls.

For the purpose of this explanation, we assume that there is no overlap between
the three parts of the sum (that is, any cycles during which a nonblocking
memory access occurs are counted in CPIEx , not in CPIMemStalls). CRB reduces
CPIRollbackStalls and we assume it does not affect the other two parts of the sum,
a reasonable assumption for a first-order approximation. The extra cycles spent

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

Hiding the Misprediction Penalty • 25:21

Fig. 22. Average rollback time in clock cycles.

without CRB are

CPINoCRB − CPICR B = �CPIRollbackStalls,

and the speedup of CRB is

speedup = �CPIRollbackStalls

CPIEx + CPIMemStalls + CPIRollbackStalls
.

The speedup improves with decreasing memory latency because the CPIMemStalls

part of the denominator decreases.

7.4 Rollback Time: Clock Cycles

Throughout the paper, so far, we have mostly examined the performance aspects
of the proposed techniques by looking at the IPC. In this section, we offer a more
local view by focusing on the rollback time, in clock cycles, of the three main
methods that we have considered: overlapping, Split–Stale First, and CRB.
Figure 22 shows that for almost all the benchmark programs, with the exception
of Art, Fma3d, and Wupwise, CRB substantially reduces the rollback time. As
expected, on average, the reduction is larger in the floating point programs. As
we have already seen, however, in many floating programs this gain does not
translate into IPC gains because mispredictions are infrequent.

8. CRB IMPLEMENTATION TRADEOFFS

In this section we describe implementation tradeoffs related to the number of
checkpoints to be folded, front-end latency, checkpoint buffer depth, and branch
prediction unit size.

8.1 Number of Checkpoints to be Folded per Rollback Event

The latency of the selective flushing method described in Section 6 depends
on the number of checkpoints which need to be folded. The time required to
flush the instruction queue can be shortened by making the “Checkpoint to be
flushed” register wider and adding comparators. This, however, is not needed.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

25:22 • A. Golander and S. Weiss

Fig. 23. Folded checkpoints. The total (100%) is the total number of recovery events. The percent-
ages are the number of recovery events in which i = 1, 2, . . . 8 checkpoints were folded. We maintain
an 8-deep in-order checkpoint buffer (Table I).

Fig. 24. Effect of the front end rollback time.

As shown in Figure 23, the number of folded checkpoints is small—in 64% and
82% of the rollbacks of the integer and floating-point benchmarks, respectively,
only one two or three checkpoints have to be flushed. Reducing the time needed
to process the IQ below the front-end recovery time is useless, as the OOO core
will wait until the FE supplies new instructions.

8.2 Front-End Latency

As expected, increasing the front-end latency reduces performance. Figure 24
shows that the performance of the overlapping and the CRB models decreases
almost linearly as the front-end rollback time increases. The linear dependence
shown is only valid for the range presented. This is the range of interest, be-
cause the latency of reasonable implementation alternatives differ only by a

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

Hiding the Misprediction Penalty • 25:23

Fig. 25. Number of reexecuted instructions and speedup as a function of the checkpoint buffer
depth. All measurements are normalized to the results of a CRB model with parameters as pre-
sented in Table I (checkpoint buffer depth of eight).

few cycles. The difference in the slope of the lines in parts A and B of the
figure is related to the frequency of mispredictions, which is higher in the inte-
ger benchmarks.

The advantage of CRB over the overlapping model is that it always repairs
the OOO core by the time a new instruction reaches the IQ after recovery.
Naturally, if the FE pipeline is very deep, this advantage is worn out. (Dual-
path processing can be used to reduce the effective FE pipeline depth.) This
effect is demonstrated in Figure 24 by the diminishing gap between the CRB
and overlapping models.

8.3 Checkpoint Buffer Depth

Situations in which the checkpoint buffer is full may prevent the processor from
taking checkpoints. As a result more instructions may have to be reexecuted
when a mispredicted branch is detected. Figure 25A shows how the number of
reexecuted instructions changes as a function of the checkpoint buffer depth.
The reexecution portions of the integer and the floating-point benchmarks re-
spond in a similar way, both decreasing as long as additional checkpoints are
available.

Reexecution affects overall IPC but is not always the most dominant factor.
As shown in Figure 25B, the integer benchmarks slow down after 12 check-
points, although the number of reexecuted instructions keeps decreasing. One
factor that may reduce the performance of a processor with a deeper buffer is
register availability. Every checkpoint prevents registers that are part of its
mapping table from being reused until the checkpoint is freed. Unnecessary
checkpoints might cause renaming to halt because of lack of registers. This
analysis is backed by the fact that slowdown occurs mostly in benchmarks that
tend to use the free registers, and the average slowdown vanishes when a larger
register file is available.

Probability of executing on the wrong path is another factor decreasing the
advantage of a deeper checkpoint buffer. As branch misprediction is the only
cause for rollback in our simulated model, checkpoints are mostly taken be-
cause of low confidence branch prediction estimations, especially in integer

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

25:24 • A. Golander and S. Weiss

Fig. 26. IPC speedup sensitivity to the time it takes to read the NPC field of a checkpoint. The
basic IPC speedup curve is using a constant FERollback, so it is identical to the one in Figure 25.
Arrows point to where the IPC speedup would be if FERollback would be dependent on checkpoint
buffer depth. In this example, FERollback is a cycle shorter for a checkpoint buffer with four entries
and a cycle longer for 12 entries or more. The results are normalized to a buffer of depth eight.

benchmarks. When more checkpoints are used, the probability of still execut-
ing on the correct path is lower and the advantage of having a deeper checkpoint
buffer diminishes. The same observation is also the motivation for pipeline gat-
ing [Manne et al. 1998].

So far we have analyzed CRB sensitivity to checkpoint buffer depth disre-
garding the fact that the number of checkpoints affect FERollback time. Each
checkpoint contains a next PC (NPC) field, used when the processor rolls back.
Reading the NPC field directly affects FERollback time, it is a serial action pre-
ceding the fetch. In processors with short clock cycles the time to read the NPC
depends on the buffer depth. Figure 26 illustrates how IPC speedup changes
when FERollback time is proportional to the checkpoint buffer depth. For the inte-
ger benchmarks the result is an almost flat, though an irregular curve showing
that the performance of CRB remains within a narrow range when the buffer
depth changes from four to 16 entries. The performance of the FP benchmarks
remains almost unaffected.

8.4 Branch Prediction Unit Size

All rollback models experience a slowdown when a smaller branch predictor
unit is used. In this section, we look at the dependence on the branch prediction
unit size, and show that CRB is less affected relative to the other rollback
models. Figure 27A illustrates the impact of reducing the branch predictor size
on the nonoverlapping, overlapping, and CRB models.

For all the models, reducing the branch predictor table size causes aliasing
that decreases the branch predictor accuracy. Nevertheless, the IPC slowdown
is dependent not only on the branch predictor accuracy, but also on the average
misprediction penalty, which varies between the models. For this reason, CRB
with the smallest misprediction penalty, is less affected relative to the two other
models.

Although integer benchmarks are characterized by many branches and mis-
predictions in comparison to floating point benchmarks, their performance

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

Hiding the Misprediction Penalty • 25:25

Fig. 27. (A). IPC speedup as a function of the direction predictor unit size, for floating-point bench-
marks. (B). Branch predictor (BP) accuracy and quality of the branch prediction confidence estima-
tor as a function of the branch predictor size. The quality of the confidence estimator is measured
using two indicators, SPEC (specificity), which is the fraction of branch prediction misses that were
estimated as low confidence predictions, and PVN (predictive value of a negative test), which is the
fraction of branch predictions estimated as low confidence estimations that were actual mispre-
dictions. The values of the rightmost configuration are an average accuracy of 94.5%, an average
SPEC of 87.3% and an average PVN of 20.9% for the integer benchmarks. For clarity of comparing
the trends on a single scale, all results are normalized to the results of rightmost configuration.

deteriorates slower, in all the models, when the branch predictor size is re-
duced. The reason for this is that predicting the branch direction and estimating
the associated confidence level are related issues. Thus, even though reducing
the branch predictor size decreases the branch predictor accuracy, it improves
the confidence estimator quality [Grunwald et al. 1998], as shown in Figure 27B.
IPC depends on both structures. Better confidence estimations translate to re-
executing fewer instructions and to lower use of checkpointing resources. This
tradeoff helps to reduce the performance slowdown associated with reducing the
branch predictor size on both benchmark types, but has greater value for integer
benchmarks, which are more sensitive to the quality of the confidence estimator.

We have used TAGE [Seznec and Michaud 2006] to check the effect of the
branch prediction algorithm. Compared with the tournament branch predictor
used in the remainder of this paper, TAGE improved the average branch pre-
diction accuracy from 94.5% to 95.7%, achieving an IPC speedup of 3.2% for
both CRB and the overlapping model. Reinforcing the tradeoff discussed in this
section, when TAGE is used the confidence estimation accuracy deteriorated
from an average SPEC of 87.3% to 66.5% and from an average PVN of 20.9% to
10.9%. TAGE did not significantly change the CRB advantage over the overlap-
ping model and showed a very moderate slowdown when too many checkpoints
were being used, resembling the one presented in Figure 25A.

9. A STREAMLINED IMPLEMENTATION: URB

The CRB approach provides constant rollback time. In this section, we use the
fact that long-latency instructions are usually infrequent to present a stream-
lined version of CRB in which the OOO core repair is stalled until all the ex-
ecution units are drained. In this scheme, the rollback time is upper bounded
by the execution time of the slowest execution unit. We refer to this simplified

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

25:26 • A. Golander and S. Weiss

Table IV. Usage of Long Latency Division Execution Unit and URB Slowdown

Unit is not Unit is not
Idle at Idle After IPC Slowdown

Benchmarks Rollback Event (%) FERollback Cycles (%) 1 − IPCURB
IPCCRB

(%)
INT Eon 7.31 4.74 0.61

Gap 4.75 3.33 0.14
Twolf 10.84 6.42 0.38
Vortex 2.21 1.43 0.05

FP Applu 8.82 8.79 0.00
Apsi 1.42 0.48 0.01
Facerec 0.74 0.37 0.00
Mesa 15.71 7.87 0.49
Sixtrack 27.78 7.37 0.41
Swim 6.42 6.39 0.00

method as URB (Upper-bounded rollback time). URB is based on CRB’s reg-
ister management and selective flushing methods. URB, however, has simpler
control logic for the long-latency pipelined execution units.

A stale instruction in an execution unit pipeline is associated with a stale
checkpoint. After rollback, this checkpoint becomes valid and new instructions
will reuse it. CRB maintains consistent checkpoint tagging by isolating the
execution units containing stale instructions from the rest of the OOO core.
Thus, the same ChkpntTagj can be stale within the execution unit, but valid
in the rest of the OOO core. URB avoids inconsistency by adding stalls. It will
not allow new instructions to propagate into the IQ until all execution units
are drained.

URB’s simpler control logic also causes false dependencies, in which recov-
ery is stalled even if none of the instructions in the execution unit pipeline is
stale, or if the stale instructions were already drained. There are several “en-
hanced URB” design alternatives that analyze checkpoint tags, to some degree,
and can reduce or eliminate the false dependencies. We do not quantify these
options, because the difference in the performance between URB and CRB is
insignificant.

The difference between URB and CRB shows up only for long-latency in-
structions, such as division. Table IV tracks the use of the division unit during
rollback events. SPEC2000 benchmarks which are not specified in the table
do not use the execution unit frequently (less than 0.1% occupancy). It can be
seen that on the vast majority of rollback events the execution unit is idle. Fur-
thermore, when checked after FERollback cycles, the execution unit was found
idle for at least 90% of the time for all the benchmarks. Hence, we expect URB
to come very close to CRB, which is indeed shown by the results presented in
the rightmost column. Only a few benchmarks show a noticeable performance
slowdown (at most 0.6%).

In order to estimate the URB slowdown for a specific benchmark, we have
found that knowing the instruction mix and the number of rollback events is
insufficient. The URB slowdown is hard to estimate as it is highly dependent
upon two additional code characteristics. The first is that instruction mix is
sometimes different in the vicinity of mispredicted branches than it is in the
rest of the code. For example, 0.61% of the Swim benchmark instructions were

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

Hiding the Misprediction Penalty • 25:27

measured to be division instructions, while only-half that rate (0.33%) was
measured when only reexecuted instructions were considered. The second code
characteristic concerns the average time a long-latency execution unit takes
to drain. There are large differences between benchmarks regarding the aver-
age location of the long-latency instructions within the execution unit pipeline.
While in the Applu benchmark, for example, almost every (8.79

8.82 = 99.66%) event
in which the execution unit is busy results in URB adding stalls; in Sixtrack
benchmark, only a quarter of these events do so (7.37

27.78 = 26.50%, values are
taken from Table IV).

As was done for CRB, URB sensitivity to register file size, memory ac-
cess time, number of checkpoints, front-end pipeline depth, and the branch
prediction unit size was also measured. In all cases, URB’s average perfor-
mance was found to be within 0.1% of CRB.

10. RELATED WORK

This section describes previous work on two related topics, misprediction re-
covery and ROB-free microarchitectures.

Misprediction recovery can be divided into three phases. First, the processor
returns to a correct state, then the first new instruction is issued, and finally
new instructions are processed until the next misprediction event occurs. Re-
turning the processor to the correct state includes mainly restoring the register
mapping table. In ROB-based microarchitectures, a restored copy is usually
available either when the mispredicted instruction is committed or earlier, by
incrementally reconstructing a copy on misprediction detection. Mapping table
incremental reconstruction can be made from either the commit-stage map-
ping table, or the front-end mapping table [Hinton et al. 2001; Akkary et al.
2004]. A second approach, exemplified by the MIPS R10000 and Alpha 21264
processors, is to use checkpoints in addition to the ROB to refresh rather than
reconstruct the mapping table [Yeager 1996; Kessler 1999]. Cristal et al. [2004b]
aim at supporting a large instruction window. They too use a checkpoint to re-
fresh the mapping table, but also introduce a method to prevent the instruction
queues from blocking new instructions. The method converts stale instructions
to special no-operations which issue (maintain correctness of source operands
management counters), but do not execute. Postponing the act of updating the
counters prevents stalls at the cost of a less efficient register file and instruc-
tion queue. This method achieves 82% and 63% of the CRB speedup for the
integer and floating-point benchmarks, respectively, but is sensitive to the size
of the register file, for example, when the processor has 96 registers (instead
of 128) it achieves only 65% and 16% (integer and floating-point) of the CRB
speedup. A third approach for returning the processor to the correct state was
suggested by Zhou et al. [2005]. They allow renaming new instructions before
the mapping table is fully reconstructed. In this scheme, the mapping table
structure differentiates between restoration-dependent and -independent in-
structions. Overlapping the mapping table reconstruction and the execution of
independent instruction increases performance but requires complex control,
especially when a subsequent misprediction occurs and the mapping table has
not as yet been restored.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

25:28 • A. Golander and S. Weiss

Selective dual-path execution was proposed by Heil and Smith [1996]. This
scheme reduces the recovery time of mispredicted branches by executing in-
structions from both paths of the branch if the branch is predicted with a low
confidence level. Aragon et al. [2002] process instructions from the alternative
path also, but wait for the branch to be resolved before actually executing them.
This simplifies the processor implementation while still reducing the average
time required for new instructions to reach the execution units. Dual-path pro-
cessing optimizations are complementary to our work.

In certain situations the results of speculative instructions, executed follow-
ing the mispredicted path, can be reused. Chou et al. [1999], Gandhi et al. [2004]
and others accelerated control independent subsets of new instructions that
were already executed following the branch misprediction. Similarly, Sarangi
et al. [2005] accelerated data independent subsets of new instructions following
a false load value speculation. Filtering the reusable instructions that are both
control and data independent with wrong path instructions preceding them is
the main difficulty. Checkpoint based microarchitectures have a unique subset
which can always be accelerated, as every instruction between the checkpoint
and the mispredicting instruction will be reexecuted. Mutlu et al. [2005b] ex-
amine accelerating reexecution. They conclude that this is not a promising
direction, but their study was limited to reexecution on infrequent events (last
level cache misses). Faster processing of new instructions is complementary to
rollback time, the topic we are exploring in this paper.

The work closest to the research presented in this paper is the work of Akkary,
Rajwar, and Srinivasan on CPR (Checkpoint processing and recovery) [Akkary
et al. 2003, 2004]. CPR is a ROB-free checkpoint microarchitecture with several
novel features. The register-management scheme in which there is no need for a
reorder buffer to determine when registers can be freed, follows earlier work by
Moudgill et al. [1993]. The register management of CPR includes an enhance-
ment that prevents freeing registers pointed by the mapping table saved in a
checkpoint. Other features of CPR include confidence based checkpoints, a con-
cept derived from the work of Moshovos [2003], and a novel hierarchical store
queue structure. A property that makes CPR attractive is scalability. Moreover,
the CPR misprediction recovery scheme was shown to outperform ROB based
microarchitectures. Our microarchitecture is derived from CPR.

In later studies, CPR was optimized for long-latency memory accesses. This
was done by freeing registers and instruction queue slots populated by long-
latency cache miss-dependent instructions [Srinivasan et al. 2004] and exploit-
ing CPR bulk commits to simplify the LSQ design [Gandhi et al. 2005]. Although
we do not model these enhancements, based on the study we present in Subsec-
tion 7.3, we expect our CRB mechanism advantage to be even greater if these
enhancements were modeled.

11. CONCLUDING REMARKS

Beginning with a checkpoint-based, ROB-free microarchitecture, conceived for
highly efficient speculative processing, we have investigated several alterna-
tive designs aimed at reducing the recovery time of speculative events. The

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

Hiding the Misprediction Penalty • 25:29

motivation for this research was provided by results showing that the OOO
core rollback time is a significant factor in the recovery process. Our initial
effort, based on the observation that the recovery time is proportional to the
number of instructions in the instruction queue, led to two complementary
enhancements. The first one, the Split Queue method, reduces the IQ popula-
tion. The second enhancement, Stale First, gives priority to stale instructions.
We have presented performance results for a microarchitecture integrating the
overlapping, Split Queue, and Stale First methods.

Our second attempt at reducing the rollback time follows a different route. We
introduce a novel register-management scheme that supports bulk retirement
of instructions from the instruction queue. All the instructions belonging to a
folded checkpoint are flushed in a single clock cycle. This constant rollback time
(CRB) method can be easily extended to support multiple checkpoints per cycle,
but the extension is not necessary and satisfactory results are obtained by the
checkpoint-per-cycle scheme.

An optimized implementation of CRB, using a single RegUse counter and
per checkpoint RegUse bits, substantially lowers the implementation cost. This
optimization is based on the insight that counting the use of a register is only
necessary until a new checkpoint is taken. All the register use events occur
between taking and releasing the checkpoint, hence, a single bit monitoring
the use of the checkpoint is sufficient.

We have presented performance results for CRB and for a closely related
method, upper-bounded rollback (URB). We have shown that the area and
power consumption of the additional logic required by these methods is low,
and also presented a detailed performance study of CRB and reported results
obtained by varying key parameters—the register file size, the memory la-
tency, the front-end recovery time, the checkpoint buffer depth, and the branch
prediction unit. These results demonstrate that a CRB processor core can
be made smaller by reducing certain resources with a minimal performance
cost.

The checkpoint microarchitecture investigated in this paper is a resource–
efficient machine [Akkary et al. 2004] that uses early register release mecha-
nisms to attain satisfactory performance with a reduced-size register file. The
exclusion of the reorder buffer further reduces both complexity and power.
In this paper, we have proposed several methods that reduce the rollback
time of the resource–conscious microarchitecture, and by doing so further
enhance its efficiency. Higher efficiency can be translated to higher perfor-
mance, or if a certain performance level is desired, it can be also translated to
lower power by proportionally reducing the machine’s activity level or its clock
frequency.

ACKNOWLEDGMENTS

Thanks to the anonymous reviewers, Haitham Akkary, Daniel Citron, and Ron
Gabor for helpful feedback on this work. Also thanks to Andreas Moshovos for
tips on building the simulation model, and to Noam Jungmann for assistance
in estimating the cost of CRB.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

25:30 • A. Golander and S. Weiss

REFERENCES

AKKARY, H., RAJWAR, R., AND SRINIVASAN, S. 2003. Checkpoint processing and recovery: Towards
scalable large instruction window processors. In Proc. of the 36th Annual Int’l Symp. on Microar-
chitecture. 423–434.

AKKARY, H., RAJWAR, R., AND SRINIVASAN, S. 2004. An analysis of a resource efficient checkpoint
architecture. ACM Trans. on Architecture and Code Optimization 1, 4 (Dec.), 418–444.

ARAGON, J., GONZALEZ, J., GONZALEZ, A., AND SMITH, J. 2002. Dual path instruction processing. In
Proc. of the 16th Annual Int’l Conf. on Supercomputing. 220–229.

BALAKRISHNAN, S., RAJWAR, R., UPTON, M., AND LAI, K. 2005. The impact of performance asymme-
try in emerging multicore architectures. In Proc. of the 32nd Annual Int’l Symp. on Computer
Architecture. 506–517.

BURGER, D. AND AUSTIN, T. 1997. The simplescalar tool set. SIGARCH Computer Architecture
News 25, 3 (June), 13–25.

CANAL, R. AND GONZALEZ, A. 2001. Reducing the complexity of the issue logic. In Proc. of the 15th
Annual Int’l Conf. on Supercomputing. 312–320.

CEZE, L., STRAUSS, K., TUCK, J., TORRELLAS, J., AND RENAU, J. 2006. Cava: Using checkpoint-assisted
value prediction to hide l2 misses. ACM Trans. on Architecture and Code Optimization 3, 2 (June),
182–208.

CHOU, Y., FUNG, J., AND SHEN, J. 1999. Reducing branch misprediction penalties via dynamic
control independence detection. In Proc. of the 13th Annual Int’l Conf. on Supercomputing. 109–
118.

CHUNG, J., CHAFI, H., MINH, C., MCDONALD, A., CARLSTROM, B., KOZYRAKIS, C., AND OLUKOTUN, K. 2006.
The common case transactional behavior of multithreaded programs. In Proc. of the 12th IEEE
Int’l Symp. on High-Performance Computer Architecture. 266–277.

CRISTAL, A., MARTINEZ, J., AND VALERO, M. 2003. A case for resource-conscious out-of-order proces-
sors. IEEE Computer Architecture Letters 2.

CRISTAL, A., ORTEGA, D., LLOSA, J., AND VALERO, M. 2004. Out-of-order commit processors. In Proc.
of the 9th IEEE Int’l Symp. on High-Performance Computer Architecture. 48–59.

CRISTAL, A., SANTANA, O., VALERO, M., AND MARTINEZ, J. 2004. Toward kilo-instruction processors.
ACM Trans. on Architecture and Code Optimization 1, 4 (Dec.), 389–417.

DAVIS, J., LAUDON, J., AND OLUKOTUN, K. 2005. Maximizing CMP throughput with mediocre cores.
In Proc. of the 14th Int’l Conf. on Parallel Architectures and Compilation Techniques. 51–
62.

GANDHI, A., AKKARY, H., RAJWAR, R., SRINIVASAN, S., AND LAI, K. 2005. Scalable load and store
processing in latency tolerant processors. In Proc. of the 32nd Annual Int’l Symp. on Computer
Architecture. 446–457.

GANDHI, A., AKKARY, H., AND SRINIVASAN, S. 2004. Reducing branch misprediction penalty via se-
lective branch recovery. In Proc. of the 10th IEEE Int’l Symp. on High-Performance Computer
Architecture. 254–264.

GROCHOWSKI, E., RONEN, R., SHEN, J., AND WANG, H. 2004. Best of both latency and throughput. In
Proc. of the Int’l Conf. on Computer Design. 236–243.

GRUNWALD, D., KLAUSER, A., MANNE, S., AND PLESZKUN, A. 1998. Confidence estimation for spec-
ulation control. In Proc. of the 25th Annual Int’l Symp. on Computer Architecture. 122–
131.

HAMMOND, L., WONG, V., CHEN, M., CARLSTROM, B., DAVIS, J., HERTZBERG, B., PRABHU, M., WIJAYA, H.,
KOZYRAKIS, C., AND OLUKOTUN, K. 2004. Transactional memory coherence and consistency. In
Proc. of the 31st Annual Int’l Symp. on Computer Architecture. 102–113.

HEIL, T. AND SMITH, J. 1996. Selective dual path execution. Tech. Rep. ECE, University of
Wisconsin-Madison. Nov.

HINTON, G., SAGER, D., UPTON, M., BOGGS, D., CARMEAN, D., KYKER, A., AND ROUSSEL, P. 2001. The
microarchitecture of the Pentium 4 processor. Intel Technology Journal 1 (Feb.), 1–12.

HWU, W. AND PATT, Y. 1987. Checkpoint repair for high-performance out-of-order execution ma-
chines. IEEE Transactions on Computers 36, 12 (Dec.), 1496–1514.

JACOBSEN, E., ROTENBERG, E., AND SMITH, J. 1996. Assigning confidence to conditional branch pre-
dictions. In Proc. of the 29th Annual Int’l Symp. on Microarchitecture. 142–152.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

Hiding the Misprediction Penalty • 25:31

KAHLE, J. 2005. The Cell processor architecture. In Proc. of the 38th Annual Int’l Symp. on Mi-
croarchitecture. 3.

KESSLER, R. 1999. The Alpha 21264 microprocessor. IEEE micro 19, 2 (Apr.), 24–36.
KONGETIRA, P., AINGARAN, K., AND OLUKOTUN, K. 2005. Niagara: A 32-way multithreaded Sparc

processor. IEEE micro 25, 2 (Mar.), 21–29.
KUNG, H. AND ROBINSON, J. 1981. On optimistic methods for concurrency control. ACM Transac-

tions on Database Systems 6, 2 (June), 213–226.
LEE, J. AND SMITH, A. 1984. Branch prediction strategies and branch target buffer design. IEEE

Computer Magazine 17, 1 (Jan.), 6–22.
LIPASTI, M. AND SHEN, J. 1996. Exceeding the dataflow limit via value prediction. In Proc. of the

29th Annual Int’l Symp. on Microarchitecture. 226–237.
MANNE, S., KLAUSER, A., AND GRUNWALD, D. 1998. Pipeline gating: Speculation control for en-

ergy reduction. In Proc. of the 25th Annual Int’l Symp. on Computer Architecture. 132–
141.

MORAD, T., WEISER, U., KOLODNY, A., VALERO, M., AND AYGUAD, E. 2005. Performance, power effi-
ciency and scalability of asymmetric cluster chip multiprocessors. IEEE Computer Architecture
Letters 4.

MOSHOVOS, A. 2003. Checkpointing alternatives for high performance, power-aware processors.
In Proc. of the 2003 Int’l Symp. on Low Power Electronics and Design. 318–321.

MOSHOVOS, A. AND SOHI, G. 1999. Read-after-read memory dependence prediction. In Proc. of the
32st Annual Int’l Symp. on Microarchitecture. 177–185.

MOUDGILL, M., PINGALI, K., AND VASSILIADIS, S. 1993. Register renaming and dynamic speculation:
an alternative approach. In Proc. of the 26th Annual Int’l Symp. on Microarchitecture. 202–
213.

MUTLU, O., KIM, H., AND PATT, Y. 2005. Address-value delta (AVD) prediction: Increasing the
effectiveness of runahead execution by exploiting regular memory allocation patterns. In Proc.
of the 38th Annual Int’l Symp. on Microarchitecture. 233–244.

MUTLU, O., KIM, H., STARK, J., AND PATT, Y. 2005. On reusing the results of pre-executed instructions
in a runahead execution processor. IEEE Computer Architecture Letters 4.

MUTLU, O., STARK, J., WILKERSON, C., AND PATT, Y. 2003. Runahead execution: An alternative to
very large instruction windows for out-of-order processors. In Proc. of the 9th IEEE Int’l Symp.
on High-Performance Computer Architecture.

PALACHARLA, S., JOUPPI, N., AND SMITH, J. 1997. Complexity-effective superscalar processors. In
Proc. of the 24th Annual Int’l Symp. on Computer Architecture. 206–218.

RAJWAR, R. AND GOODMAN, J. 2001. Speculative lock elision: Enabling highly concurrent multi-
threaded execution. In Proc. of the 34th Annual Int’l Symp. on Microarchitecture.

RATTNER, J. 2005. Multi-core to the masses. In Proc. of the 14th Int’l Conf. on Parallel Architectures
and Compilation Techniques. 3.

SARANGI, S., W. LIU, J. T., AND ZHOU, Y. 2005. Reslice: Selective re-execution of long-retired mis-
speculated instructions using forward slicing. In Proc. of the 38th Annual Int’l Symp. on Microar-
chitecture. 257–270.

SEZNEC, A. AND MICHAUD, P. 2006. A case for (partially) TAgged GEometric history length branch
prediction. Journal of Instruction-Level Parallelism 8.

SHEN, J. AND LIPASTI, M. 2005. Modern Processor Design, Fundamentals of Superscalar Processors.
Mcgraw-Hill.

SMITH, J. AND PLESZKUN, A. 1988. Implementing precise interrupts in pipelined processors. IEEE
Transactions on Computers 37, 5 (May), 562–573.

SPRACKLEN, L. AND ABRAHAM, S. 2005. Chip multithreading: Opportunities and challenges. In Proc.
of the 11th IEEE Int’l Symp. on High-Performance Computer Architecture. 248–252.

SRINIVASAN, S., RAJWAR, R., AKKARY, H., GANDHI, A., AND UPTON, M. 2004. Continual flow pipelines. In
Proc. of the 11th Int’l Conf. on Architectural Support for Programming Languages and Operating
Systems. 107–119.

TARJAN, D., THOZIYOOR, S., AND JOUPPI, N. 2006. Cacti 4.0. Tech. Rep. HPL-2006-86, HP Laborato-
ries Palo Alto. June.

YEAGER, K. 1996. The MIPS R10000 superscalar microprocessor. IEEE micro 16, 2 (Apr.), 28–
40.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

25:32 • A. Golander and S. Weiss

ZHANG, Y., RAUCHWERGER, L., AND TORRELLAS, J. 1999. Hardware for speculative parallelization of
partially-parallel loops in DSM multiprocessors. In Proc. of the 5th IEEE Int’l Symp. on High-
Performance Computer Architecture.

ZHOU, P., ONDER, S., AND CARR, S. 2005. Fast branch misprediction recovery in out-of-order super-
scalar processors. In Proc. of the 19th Annual Int’l Conf. on Supercomputing. 41–50.

Received August 2006; revised December 2006; accepted May 2007

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 25, Publication date: January 2008.

