
Story Scripting for Automating
Cinematics and Cut-Scenes in Video Games

W. Zhang, M. McLaughlin, and M. Katchabaw
Department of Computer Science
The University of Western Ontario

London, Ontario, Canada
N6A 5B7

wzhang95@csd.uwo.ca, mmclaug3@uwo.ca, katchab@csd.uwo.ca

ABSTRACT
Storytelling can play a very important role in the success of
modern video games. Unfortunately, it can be quite difficult for
writers to directly create and integrate story content into games on
their own, and they must instead rely upon programmers and
others on the development team to implement their stories. This
needlessly complicates the game development process, leading to
increased costs, more strain on developer time, and loss of
creative control and, potentially, story quality as a result.
Consequently, tools and supports are necessary to enable writers
to generate story content for games directly, with minimal
programming or programmer assistance required, if any.

This paper examines the use of specialized story scripting
elements to automate the production of cinematics and cut-scenes
for video games. These elements allow writers to specify their
stories in a well-defined, structured format that can be acted out
automatically by software. This paper discusses these story
scripting elements in depth, along with a prototype software
engine capable of using these elements for cinematic and cut-
scene automation. This paper also presents experiences with
using this engine to recreate cinematics and cut-scenes from
existing commercial video games.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Multimedia
Information Systems – animations, artificial, augmented, and
virtual realities; K.8.0 [Personal Computing]: General – games

General Terms
Design, Human Factors, Languages.

Keywords
Storytelling, automation, story scripting, cut-scenes, cinematics,
video games

1. INTRODUCTION
Storytelling is widely recognized as an important element of
modern video games [2,9,12], and in some cases is regarded as
one of their most defining aspects [7]. Some predict that
storytelling in games will continue to grow in prominence as new
hardware and technologies create more opportunities for stories in
games, and shifts in player audiences increase the demand for the
inclusion of quality stories in games [4].

Delivering story in games, unfortunately, can be a challenging
task. While story creation is naturally the responsibility of writers
on the development team [2,17], these writers traditionally must
work with programmers and others on the team to integrate story
content into the game being developed due to the complexity
involved and programming expertise required. This, however,
can be expensive in terms of budget and scheduling resources [6],
which is problematic considering the limitations often in place in
creating story content for games [2]. Furthermore, this introduces
a gap between storyteller and story [6], which can impact the
creative process and overall story quality as a result.
Consequently, a simpler, more streamlined story creation process
for games is necessary—a need recognized for some time by
industry practitioners [2,6].

Automating storytelling can alleviate these issues by allowing
writers to tell their stories in games with minimal programming or
programmer support required, if any. Following this approach,
tools and supports would allow writers to convey their stories in
natural language, graphically, or in some other simple form, while
automation prepares this story content for use with little or no
human intervention required. Unfortunately, work in this area is
relatively scarce, as discussed in Section 2 of this paper, and many
outstanding problems remain unresolved as a result.

Aside from in-game storytelling embedded in gameplay,
cinematics and cut-scenes are two of the more common
techniques for storytelling in games, conveying story through
visuals and audio, typically presented much like a dramatic piece
[12]. Our current work is a continuation of our earlier work in
this area towards the development of a Reusable Scripting Engine
designed specifically for automating cinematics and cut-scenes in
games [16].

Our earlier work primarily focused on the core elements of the
Reusable Scripting Engine, establishing an architecture and
workflow that took story content from authoring tools through to

presentation. While this allowed basic cinematics and cut-scenes,
this did not enable robust presentations with the high level of
production values necessary for most modern video games.
Consequently, our current work has focused on providing
enriched story scripting elements, giving writers considerably
more power, flexibility and expressiveness in story creation than
our earlier work.

This paper introduces and discusses the details of our enhanced
story scripting elements for video games, as well as their
integration into our Reusable Scripting Engine platform. This
paper also describes our experiences through using these
enhanced elements to replicate cinematics and cut-scenes from
commercial games, thereby demonstrating their effectiveness and
suitability in automating the story creation process for video
games.

The remainder of this paper is organized as follows. Section 2
presents related work in this area, both from research and
industrial perspectives. Section 3 discusses story scripting for
video games in general, and describes the scripting elements and
approach taken in our current work. Section 4 presents the design
and implementation of our proof of concept system, the Reusable
Scripting Engine. Section 5 discusses our experiences from using
this prototype, in particular presenting a case study in replicating
cinematics and cut-scenes from commercial video games. Finally,
in Section 6, we conclude this paper with a summary and a
discussion of directions for future work.

2. RELATED WORK
This section discusses relevant related work, both from research
and industrial perspectives. As mentioned in the previous section,
however, work towards automation to directly support writers in
their storytelling and story creation efforts for video games is
relatively scarce. Nevertheless, progress is being made, and
related work has many lessons to teach us, even if direct support
for writers is not being offered.

One notable work is ScriptEase [6], an innovative pattern and
template-driven approach, primarily aimed at in-game storytelling
and behaviour control of non-player characters. In theory, the
same framework could be extended to support cinematic and cut-
scene generation, but this has not been done to date.

Work towards the <e-Game> engine [17] is also very promising.
While primarily targeted at the development of adventure games,
the XML-based <e-Game> language could be used to assist in the
creation of cinematics and cut-scenes. The language, however, is
geared towards game creation, and was not specifically designed
with cinematic and cut-scene creation in mind. (In fact, it would
appear from [17] that cinematics and cut-scenes are intended to be
handled using pre-rendered movies instead of being specified and
acted out by the engine itself.)

Interesting work also comes in the form of Bubble Dialogue [5],
developed primarily as a tool to investigate communication and
social skills, particularly in educational settings. Bubble
Dialogue, however, is intended to be a stand-alone tool not
suitable for embedded use in video games, and it is questionable
whether its interface, designed for novices to easily construct

stories, would be expressive, flexible, and powerful enough for
professional game writers.

The Behavior Expression Animation Toolkit (BEAT) [3] is also
relevant to story automation for games. Text is input to the
system to be spoken by an animated character. As output, speech
is generated, along with synchronized nonverbal behaviours that
appropriately match the text according to rules based on human
conversational patterns. This system is quite powerful and
flexible, but as noted in [3], lacks many of the elements necessary
to provide a complete performance on its own. It is designed,
however, to plug into other systems for this purpose, and so could
rely upon our own Reusable Scripting Engine for this support.
Likewise, our system could benefit by having interesting and
appropriate behavioral animations that are made possible by
BEAT, and not available in our current prototype. The work is
quite complementary.

Work towards interactive storytelling in games, such as the work
in [8,11,15] and other examples discussed in [14], is also related,
in that it involves story automation and story representation. In
this case, automation tends to involve the synthesis of story
emerging from the interactions between player and non-player
characters in the game, with artificial intelligence controlling the
non-player characters, according to authored constraints on
behaviour. Our work, on the other hand, does not deal with
interactivity, and so storytelling is driven entirely by the originally
authored story. As a result, story representation for interactive
stories can be significantly more complex, as additional elements
are required to support and specify interactivity. This makes the
process of story creation for interactive stories more like
programming and, consequently, less friendly to writers with little
or no programming experience. Our approach, on the other hand,
avoids this complexity and burden on writers for cut-scenes and
cinematics, where interactivity in the story is not required.

Other related work can be found in an interesting commercial
video game entitled The Movies [13]. While this game allows
players to construct their own stories for their own films, the
general approach and interface might not be the most productive
or easiest one for writers to use in crafting stories for use in other
games.

From an industrial perspective, as noted in [6,17], the video
games industry has adopted a variety of standard and custom
languages to be used in the development of games. These
languages are used for many purposes, including the scripting of
cinematics and cut-scenes. Unfortunately, while these languages
improve and simplify matters somewhat, they are still rather
complex and technical in nature. Consequently, writers still must
rely upon at least some programming talent to integrate their
stories into games [6].

In the end, much work is still required to assist writers in the story
creation process for video games.

3. STORY SCRIPTING FOR VIDEO
 GAMES
Stories must be properly scripted to be automatically presented
within a video game. This scripting identifies characters,
dialogue, stage directions, setting, and other elements common to

traditional dramatic pieces. Fortunately, writers must already
define these elements for cinematics and cut-scenes constructed
according to traditional story creation processes [2], so the need
for this information is not a new imposition created by
automation.

For automation to be effective, however, stories must be scripted
in a precise and formal manner to avoid potential ambiguity and
confusion over the interpretation of the script by the software
automating its presentation. Consequently, there is a need to
provide a structured and standardized approach to scripting for
storytelling within video games for automation efforts to be
successful.

3.1. Encoding of Dramatic Pieces
As mentioned above, story scripts for games contain largely the
same elements that can be commonly found in traditional
dramatic pieces. Consequently, instead of developing our own
custom language for specifying stories for games, as is frequently
done in the literature in this area, we turn to efforts towards the
standardization of encoding dramatic pieces, led by the Text
Encoding Initiative (TEI).

These efforts have led to the development of an XML-based
specification for marking up various kinds of texts, including
dramatic pieces [18]. TEI guidelines provide an extensive set of
tags for structuring dramatic pieces and identifying all of the
elements listed above that must be defined for cinematics and cut-
scenes in video games. Consequently, the TEI guidelines for
dramatic pieces provide an excellent starting point for adding
precision and formality to script specifications for automated
presentation in video games.

XML, however, is not the most natural or convenient method of
expression for writers to use in creating their stories. Requiring
writers to produce stories with manually embedded TEI tags
needlessly complicates the process, and could be a barrier to story
creation. To assist in the process of working with TEI tags, there
are numerous software packages available that adhere to TEI
guidelines for importing existing works or writing them from
scratch [20]. Several of these packages plug into existing word
processing or office productivity software, or otherwise work with
this software, to ensure that writers can work with familiar tools
and still take advantage of the TEI guidelines. This can greatly
facilitate the story creation process, particularly when it comes to
automation.

In the end, however, we could not completely follow TEI
guidelines in our current work, and instead had to derive slightly
tailored guidelines for automation purposes, with some
modifications and extensions to the existing TEI guidelines. This
was necessary for several reasons:

• TEI guidelines require information that does not quite make

sense or fit well within the realm of cinematics or cut-scenes
for video games.

• Many elements in the TEI guidelines are not formal or precise

enough for our purposes. For example, stage directions in the
TEI guidelines are too open and too flexible; additional

structure and formality needed to be applied to ensure these
directions could be followed automatically.

• Additional elements were required to link game content and

assets into story scripts. For example, character models,
scenery, and other art assets must be identified and linked with
corresponding elements within scripts, as well as audio assets
for music, voice-overs, and so on.

• Other new elements were necessary to make managing story

content within a game easier. For example, dialogue elements
needed to be in manageable units that could be displayed on-
screen and linked with voice-overs as necessary.

3.2. Story Scripting Elements
The final collection of story scripting elements used in our current
work was derived from two sources. The first source, naturally,
was the TEI guidelines themselves. Since these guidelines were
developed based on the collaboration of experts in dramatic
writing, they provide a reasonable set of elements with which to
begin. The second source was an examination of cinematics and
cut-scenes from several commercial video games of various
genres from multiple platforms. This second source validated the
elements from the first source, and identified refinements and
other elements necessary, as discussed in the previous section.

The primary story scripting elements defined in our current work
are depicted in Figure 1, showing the overall structure to our
scripting schema. The main elements of this schema are briefly
discussed in the subsections that follow. A full XML
specification of this schema and a complete discussion of all of
the story scripting elements defined within the schema can be
found in [21].

3.2.1. The Performance
The Performance element is the top-level element for a cinematic
or cut-scene. It identifies the name of the performance, as well as
its place in the game. Its main purpose is to contain the Front
Matter and Body for the cinematic or cut-scene, which provide the
actual specification for the performance.

3.2.2. Front Matter
Front Matter is used to contain definitions of all of the elements to
be used when the performance is acted out according to
specifications in the Body, as described below. This includes the
cast list for the performance, as well as a list of set materials,
overlays, dialogue elements, sound effects, music, and voice-
overs. This also includes a media element specifying, among
other things, where media files for the various elements can be
found.

The cast list defines every character that makes an appearance
during the performance, as well as narrator characters that are
heard but not necessarily seen. Each character may have multiple
models, allowing them to appear in multiple costumes or multiple
poses during the performance. The set list defines backdrops for
the scenes of the performance. Overlays are essentially set
elements that can be placed within a scene to create depth as
characters can move both in front of and behind them. Dialogue

-

- Performance Schema

Performance

- Front

Media

+ CastList

+ SetList

+ OverlayList

+ DialogueElements

+ SoundList

+ MusicList

+ VoiceOverList

- Body

- Scene+

- Dialogue*

- StageDirection*

Movement*

CostumeChange*

SetChange*

OverlayChange*

LightingChange*

MusicPlayback*

SoundPlayback*

+ Effect*

+ Interactivity*

+ Line+

Figure 1. Schema Structure for Specifying Story Elements

for Cinematics and Cut-Scenes.

Elements consist of dialogue areas into which text is rendered,
definitions of fonts used to render text, and various options
defining how and where this is done on-screen. The sound effect
list identifies sounds that can be queued at any point throughout a
performance. The music list defines background music that can
be played or looped during a performance. Lastly, the voice-over
list specifies speech effects that can be linked to lines of dialogue
that appear in the Body of the performance.

3.2.3. The Body
The Body of a performance is used to specify the sequence of
actual activities that constitute the performance using the elements
defined in the Front Matter. The Body essentially consists of one
or more scenes, based on the sets defined in the Front Matter.
Scenes, in turn are composed of collections of dialogue elements
and stage directions.

Dialogue elements are used to specify the narration and
conversational elements in the performance. Each dialogue
element is tied to a particular speaker (either an on-screen
character or narrator), and consists of lines. Lines contain text,
references to voice-overs to contain the narration or conversation
of the dialogue, or both. Each dialogue element also carries with
it a tone, allowing dialogue to be linked to changes in characters
or dialogue areas to indicate the emotional context of the
dialogue.

Stage directions are used to define all of the non-dialogue
activities that occur during the performance of a cinematic or cut-
scene. Movement directions bring characters on-screen, move
them while on-screen, and move them off-screen when their part
in the performance is done. Costume changes substitute the active
character models in use for the characters in the performance.
These can be used to make costume changes, as the name implies,
or can be used for other purposes, such as changing the tone used
by a character in dialogue. Set and overlay changes switch the
current backdrop for the scene or alter the presence or positioning
of items in the scene. Lighting changes adjust the lighting on
scenery objects, characters, or both by increasing or decreasing
light intensity, or by changing the colour of the lighting that is
applied. Music and sound playback elements are used to control
the playback of music and sound effects respectively.

There are also a variety of effects elements that are capable of
providing a variety of miscellaneous effects during a performance.
These include atmospheric effects (such as fog or smoke),
transformation effects (such as flipping or rotating objects), and
various special effects (like object transparency).

Lastly, interactivity elements are used to enable various types of
interactions with the player of the game as they watch the
cinematic or cut-scene in question. This includes pausing the
performance for a period of time, waiting for user input (such as a
key press or mouse button to indicate that the performance should
proceed), and allowing the user to cancel the performance before
it has ended.

4. PROOF OF CONCEPT
Having defined the story scripting elements of our current work in
the previous section, in this section we examine the design and
implementation of a proof of concept software engine capable of
processing these elements and presenting a cinematic or cut-scene
automatically as a result. This software engine is called the
Reusable Scripting Engine.

4.1. Engine Design
To illustrate our design, we present the architecture of our engine
in Figure 2, and then proceed to discuss the major modules of this
architecture in the subsections below.

4.1.1. Director
The primary role of the Director in the engine is to manage the
Script Reader and Stage Manager modules to oversee the entire
production and presentation of the cinematic or cut-scene. As
such, it handles internal object management and communication
tasks as required for the engine. The Director module is also
responsible for managing any interactions with the user of the
engine, which, depending on the context, could either be the
player of the game in question or the game itself. These
interactions could include interactivity control to regulate the flow
of the cinematic or cut-scene, as well as any other access required
to the engine.

4.1.2. Script Reader
As the name implies, the Script Reader module reads in the story
script, crafted by a writer using an appropriate authoring tool, and
processes it to prepare it for use in the engine. This requires the
module to parse the XML representation of the script to find the
elements of the story, verify the correctness and completeness of
the script, and fill in any missing or assumed elements of the story
where possible. When the script is deemed ready for
performance, the Script Reader generates a collection of actions
from the script, creating a performance, and passes this
performance on to the Director module to have the performance
executed.

4.1.3. Stage Manager
The Stage Manager module is responsible for generating the
actual on-screen performance of the story script read in by the
Script Reader module. This module receives its direction on what
to do, how to do it, and when to do it from the Director module,
which is basing its directions on the collection of actions
generated by the Script Reader. The Stage Manager also reports
back to the Director on the status of the production as it

progresses. Any commands or directions received from the
Director are executed immediately, to provide the Director a good
measure of control over how the story is presented.

4.2. Engine Implementation
Based on the architecture discussed in the previous section, we
have implemented a prototype engine for Microsoft Windows XP,
written in C# using Microsoft Visual Studio 2005 Professional
Edition. To enable script processing, Microsoft’s XML Software
Development Kit was used, as it provides easy to use and robust
XML processing and handling facilities when working in this
environment.

For graphics and audio support, Microsoft DirectX was used.
This provided us with clean, standard, and efficient support for
both 2D and 3D graphics, as well as audio support, all in a single
package. This also resolved outstanding issues from our earlier
prototype [16] that primarily arose from our choice of rendering
engine at the time. Consequently, this engine prototype is
significantly more robust, efficient, and feature-rich than its
predecessor.

Our engine implementation provides both a standalone processor
that can generate cinematics and cut-scenes on its own, and a
module that can be linked in with other code. These options
provide developers with flexibility in how they integrate the
engine into an existing game project.

Our implementation choices are also compatible with Microsoft’s
XNA Game Studio Express, meaning that we can target both the
Windows platform and the Xbox 360 with our engine. While we
have primarily carried out development on the Windows platform
thus far, Xbox 360 support is currently under investigation as
well.

DirectorDirector Stage
Manager

Stage
Manager

Script
Reader

Script
Reader

Authoring
Tools

Authoring
Tools

ScriptScript

User User Display Display

Storyteller Writer

Reusable Scripting Engine

Figure 2. Reusable Scripting Engine Architecture.

Figure 3. Scripting Used to Replicate Standard Procedure
Scene from Trauma Center: Second Opinion.

5. EXPERIENCES TO DATE
Initial experimentation with our Reusable Scripting Engine
involved recreating scenes from movies and television shows such
as the Princess Bride [10] and The Simpsons [19], as discussed in
[16]. While this experimentation demonstrated that our engine
could create cinematics and cut-scenes, it did not necessarily
validate its suitability for use in video games.

To do so, we selected a game from the set of games with
cinematics and cut-scenes initially examined as discussed in
Section 3.2, and replicated some of its scenes. The game selected
for our current work was Trauma Center: Second Opinion [1],
developed by Atlus for the Nintendo Wii platform. This game
was chosen as it would require a robust and rich set of story
scripting elements to be adequately replicated, and consequently
provided a suitable test of our engine’s capabilities.

Figure 3 presents an excerpt from the scripting that was used in
replicating the Standard Procedure cut-scene that appears before
the first operation in the game. Figure 4 contains screenshots
illustrating how this script would appear when performed. This
portion of the cut-scene is performed as follows:

1. The scene begins by preparing the set for the cut-scene, the

consultation room. Initially, lighting is set to a level of 0%,
indicating that the set will be dark to begin with. Stage
directions then begin playback of background music, set to
loop indefinitely. A lighting change occurs, to raise set
lighting to a level of 100%, to fully illuminate the set. This
is done over a period of 1 second. This is followed by a
pause of 2 seconds before the performance continues. This
results in the scene as depicted in Figure 4 (a).

2. Dialogue then begins, with the narrator introducing the
scene, resulting in what appears in Figure 4 (b), with
dialogue text appearing in a shaded area at the bottom of the
screen.

3. Stage directions have the performance pause to wait for input
from the player, to ensure they have had the chance to read
the dialogue. Any input is acceptable to continue the scene.
A beep sound effect is then played to acknowledge the input,
as was done in the original game. Mary is then directed to
quickly enter from stage right and stay on the right half of the
scene, resulting in what is depicted in Figure 4 (c).

4. Mary then says her line in her default tone, since no tone was

specified. Since no voice-overs occurred in the original
game, none were included with this line of dialogue either.
This results in what appears in Figure 4 (d).

5. At this point, the scene pauses as discussed in Step 3, and a

lighting change occurs to dim scenery lighting to 25%. The
lighting on Mary, however, is preserved, causing her to stand
out while the narrator introduces her in the next line of
dialogue, as shown in Figure 4 (e).

6. The scene pauses once again as discussed above, and the
narrator completes the introduction of Mary, as depicted in
Figure 4 (f). After this, lighting is restored to normal levels,
and the scene continues appropriately.

<scene id="standardProcedure"
 setID="consultationRoom"
 initialLightingLevel="0">
 <stageDirection>
 <musicPlayback id="bgMusic"
 loop="on"/>
 <lightingChange level="100"
 subject="scenery"
 duration="1"/>
 <pause duration="2"/>
 </stageDirection>
 <dialogue speaker="narrator">
 <line>- Hope Hospital,
 Consultation Room - </line>
 </dialogue>
 <stageDirection>
 <waitFor event="anyInput"/>
 <soundPlayback id="beep" />
 <movement castID="mary"
 type="enterHorizontal"
 startLocation="offRight"
 endLocation="onRight"
 speed="1000" />
 </stageDirection>
 <dialogue speaker="mary">
 <line>The patient has been
 moved to \nthe pre-op
 area.</line>
 </dialogue>
 <stageDirection>
 <waitFor event="anyInput"/>
 <soundPlayback id="beep" />
 <lightingChange level="25"
 subject="scenery"
 duration="1"/>
 <pause duration="1"/>
 </stageDirection>
 <dialogue speaker="narrator">
 <line>Mary Fulton, age 39: Hope
 Hospital's \nveteran
 surgical assistant.</line>
 </dialogue>
 <stageDirection>
 <waitFor event="anyInput"/>
 <soundPlayback id="beep" />
 </stageDirection>
 <dialogue speaker="narrator">
 <line>She's kind and well-
 liked, so nobody\n
 mentions she tends to
 ramble too much.</line>
 </dialogue>

(a) (b)

(c) (d)

(e) (f)

Figure 4. Screenshots from Replication of Standard Procedure Scene from Trauma Center: Second Opinion.

In the end, our Reusable Scripting Engine allowed us to faithfully,
accurately, and easily replicate scenes from the original game.
The story script was authored using the XML editing facilities in
Visual Studio 2005 Professional Edition. Even though this
package has meager XML editing capabilities in comparison to
other packages, it took very little time and effort to construct the
scripts.

All in all, our experiences with our Reusable Scripting Engine
prototype have been very positive, and it demonstrates
tremendous possibilities for its use in the future.

6. CONCLUSIONS AND FUTURE WORK
Storytelling is an important aspect of modern video games, and
plays a central role both in drawing in players initially and in
keeping them playing over the long term. With the success or
failure of games depending on their story elements, it is becoming
increasingly important to provide tools and supports to allow
writers to directly produce story content for games, without
requiring programming background and expertise. This allows
stories for games to be crafted more efficiently and more
effectively, easing the development process and potentially
increasing the quality of the games as a result.

Our current work in this area addresses this need for tools and
supports by providing story scripting elements and a software
engine capable of using these elements to automatically produce
cinematics and cut-scenes for video games. By feeding authored
story content directly into our Reusable Scripting Engine, writers
no longer need to depend upon programming talent to have their
stories acted out, which can have significant benefits. Results
from using our prototype engine to date have been quite positive
and show great potential for the future.

Possible directions for continued work in this area include the
following. Replicating cinematics and cut-scenes from other
video games is an important next step. This will not only provide
further validation of our approach and engine, but it will also help
to uncover additional stage directions, effects, or other elements
that should be supported in our work. Support for animated
characters, set elements, and effects is also important. Static
characters with little or no animation are still in use in many
games today (such as Trauma Center: Second Opinion), but our
engine must support more than that in the future. Support for 3D
cinematics and cut-scenes is also necessary, and is fortunately
possible through our use of DirectX. This will require the
addition or refinement of stage directions to enable our scripting
to work in a truly 3D space. There is currently considerable
interest in dynamic story elements in video games that allow the
flow of story to change depending on in-game events. Our engine
can and should be extended to support these efforts. Our Reusable
Scripting Engine should be ported through XNA to the Xbox 360.
This platform is attractive to academic, independent, and hobbyist
developers, and so providing automated storytelling support
would be very beneficial to development efforts in this area.

7. REFERENCES
[1] Atlus. Trauma Center: Second Opinion. Published by

Atlus, 2006.
[2] Bateman, C. Game Writing: Narrative Skills for

Videogames. Charles River Media. 2007.

[3] Cassell, J., Vilhjalmsson, H. and Bickmore, T. BEAT: The
Behavior Expression Animation Toolkit. SIGGRAPH 2001
Conference. Los Angeles, California, August 2001.

[4] Chandler, R. Game Writing Handbook. Charles River
Media. 2007.

[5] Cunningham, D., McMahon, H. and O’Neill, B. “Bubble
Dialogue: A New Tool for Instruction and Assessment”,
Educational Technology Research and Development,
Volume 40, Number 2. 1992.

[6] Cutumisu, M., Onuczko, C., McNaughton, M., Roy, T.,
Schaeffer, J., Schumacher, A., Siegel, J., Szafron, D.,
Waugh, K., Carbonaro, M., Duff, H. and Gillis, S.
“ScriptEase: A Generative/Adaptive Programming
Paradigm for Game Scripting”. Science of Computer
Programming, Volume: 67, Issue: 1. June, 2007.

[7] Davies, M.. Designing Character-Based Console Games.
Charles River Media. 2007.

[8] El-Nasr, M. Interaction, Narrative, and Drama Creating an
Adaptive Interactive Narrative using Performance Arts
Theories. Interaction Studies, Volume 8, Number 2, 2007.

[9] Glassner, A. Interactive Storytelling: Techniques for 21st
Century Fiction. A K Peters Limited. 2004.

[10] Goldman, W. The Princess Bride. 20th Century Fox.
September 1987.

[11] Gordon, A., van Lent, M., van Velsen, M., Carpenter, M.
and Jhala, A. Branching Storylines in Virtual Reality
Environments for Leadership Development. \ Sixteenth
Innovative Applications of Artificial Intelligence Conference
(IAAI-04), San Jose, California, July 2004.

[12] Krawczyk, M. and Novak, J. Game Development
Essentials: Game Story and Character Development.
Thomson Delmar Learning. 2006.

[13] Lionhead Studios. The Movies. Activision. 2005.
[14] Magerko, B. A Comparative Analysis of Story

Representations for Interactive Narrative Systems. Third
Annual Artificial Intelligence for Interactive Digital
Entertainment Conference. Marina del Rey, California.
2007.

[15] Mateas, M. and Stern, A. Facade: An Experiment in
Building a Fully-Realized Interactive Drama. Game
Developer's Conference, San Francisco, California, March
2003.

[16] McLaughlin, M. and Katchabaw, M. “A Reusable Scripting
Engine for Automating Cinematics and Cut-Scenes in Video
Games”. Loading ... The Journal of the Canadian Game
Studies Association, Vol. 1, No. 1, May 2007.

[17] Moreno-Gera, P., Sierra, J., Martínez-Ortizb, I. and
Fernández-Manjóna, B. “A Documental Approach to
Adventure Game Development”. Science of Computer
Programming, Vol. 67, Issue 1. June, 2007.

[18] Sperberg-McQueen, C. and Burnard, C., (eds). Guidelines
for Text Encoding and Interchange: XML-compatible
Edition. Published for the TEI Consortium by the
Humanities Computing Unit, University of Oxford. 2004.

[19] Stern, D. “Duffless.” The Simpsons Episode 9F14. 20th
Century Fox Broadcasting Company. February1993.

[20] The TEI Consortium. “TEI Software”. Available at:
http://www.tei-c.org/Software. Last accessed July 2007.

[21] Zhang, W. “Reusable Storytelling Engine”. MSc. Directed
Study Report, The Department of Computer Science, The
University of Western Ontario. June 2007.

