Studying the Evolution of the Eclipse Java Editor

Daging Hou
Electrical and Computer Engineering
Clarkson University, Potsdam, New York 13699

dhou@clarkson.edu

ABSTRACT

In evolutionary software development, knowing how design
evolves with features can be valuable in guiding future projects.
It helps answer questions like “How much upfront design
should and can be done?” and “How and why are designs
changed?” To shed light on these questions, we report on a
study of the evolution history of the Eclipse Java editor. We
find that the MVC-based design was cleanly laid out in the
beginning of the project and carefully followed and main-
tained, which has contributed positively to the continuous
growth of the editor features. Although design changes at
the individual feature level happened for reasons like exten-
sibility and reusability, they appear to be local and manage-
able. The AST facility is a key service that enables more
than one half of the Java editor features.

1. INTRODUCTION

Good software designs enable concurrent development, fa-
cilitate evolution and maintenance, and support reuse [7].
Ideally, we would prefer to lay out the complete design in
a project up-front. In practice, however, many successful
software systems are developed in an evolutionary fashion.
One reason is because they must be constantly improved to
remain useful [8]. Consequently, new features are added and
important design decisions made dynamically in the process.

Studying the evolution of a successful system can improve
the understanding of both the practice of evolutionary de-
velopment and the particular domain to which the system
belongs. In particular, it helps conceptualize the feature
space for the problem domain, and understand how designs
have supported and evolved with feature evolution during
the process. Good designs should anticipate and accommo-
date future changes [7]. Designs that hinder the evolution
of features need to be reworked to remove the obstacles.

In this paper, we report on a case study on the evolution of
the Eclipse Java editor. Our goal was to track down how the
Java editor was designed initially and evolved subsequently

To appear in the Eclipse Technology eXchange Workshop (ETX) at OOP-
SLA’ 2007, Oct. 21, 2007, Montréal, Canada.

to host all of the features that it has acquired over time. We
classify the features according to whether they need the sup-
port of ASTs, among other criteria. We find that more than
one half of the Java editor features make use of ASTs. A no-
ticeable pattern is the continuous growth of feature groups
like coding assists. Modular design supports the addition
of new features as well as the incremental growth of feature
groups. In particular, the MVC architecture established in
early releases appears to have accommodated new features
nicely and remains stable throughout the releases we exam-
ined, and the modular design for a feature group not only
enables the smooth addition of sub-features, but also pro-
tects them from the ripple effect of other design changes.
As an example, we describe some design changes made to
coding assists, which was driven primarily by the need to
support reuse and extension.

1.1 Methodology

In this study, we relied on artifacts publicly available for
the multiple releases of Eclipse [10], including the “new and
noteworthy” notes, source code, and executables.

We extracted the evolution of the Java editor features (Ta-
ble 1) by running six versions of Eclipse (1.0, 2.0, 2.1, 3.0,
3.1, and 3.2) and studying the “new and noteworthy” notes
for releases 2.1, 3.0, 3.1, and 3.2. A “new and noteworthy”
note summarizes the new features and major improvements
in a release. These notes are necessarily brief. Even though
experienced in using the Java editor, we did not know all
of its features. To verify what is described in the notes, we
installed and ran six versions of the Eclipse IDE. This has
also helped us identify features not covered by the notes.

To investigate design evolution, we studied the Eclipse source
code obtained from the CVS repository [9]. The earliest re-
lease available is 2.0. We started with version 3.2 to recover
the design of the Java editor, and then proceeded to study
and compare with the designs of earlier versions. Subse-
quent design recovery took considerably less effort than the
first one.

1.2 Organization

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview and classification of the Java
editor features. Section 3 summarizes observations on the
functional evolution of the editor. Section 4 investigates how
the editor design supports and evolves with the feature evo-
lution. Section 5 surveys related work. Finally, Section 6

concludes the paper.

2. FEATURE CLASSIFICATION

As can be seen from Table 1, the Java editor offers a rich set
of features. At the basic level, the Java editor presents Java
code and supports code browsing and editing. With the
assistance from the compiler back end, it reveals to a devel-
oper deep information embedded in the source code like the
existence of problems and relationships between program
elements. To help grapple with these features, in particu-
lar, the role that AST support plays, we classify them into
four categories: (1) simple, text model-based features, (2)
advanced, AST-based features, (3) coding assists, and (4)
management and miscellaneous. Coding assists are sepa-
rated from AST-based features because they not only re-
quire AST support, but also rewrite code.

2.1 Simple, Text Model-based Features

The text model of code is character and line oriented, and is
used to support the display of program text as well as imple-
ment features like line numbers, quick diff, block comment-
ing, and syntax highlighting. Note that syntax and semantic
highlighting are different. Syntax highlighting, based on lex-
ical patterns, highlights keywords and JavaDocs. Semantic
highlighting is AST-based and highlights, for example, the
invocation of static methods.

2.2 Advanced, AST-based Features

This category of features, in addition to the text model, also
requires the support of the parsing and semantic analysis
from the compiler. These features help integrate informa-
tion and increase a developer’s awareness of the status of
the program text in the editor. Occurrence marking and
hovering are examples of information integration. With the
support of ASTs and bindings, occurrence marking high-
lights within the current compilation unit all occurrences of
the identifier that is currently selected. Another example
is hovering. For example, hovering over a class name will
display the JavaDocs for the class. Reconciliation is an ex-
ample of increasing awareness. It parses and checks source
code as it is typed. Consequently, feedback and syntax and
semantic highlighting are done to the code, and a developer
is informed of code status in real time. Another awareness
feature, prominent status indication, is the red icon on the
top of the overview ruler that indicates that there are anno-
tations in the current compilation unit.

2.3 Coding Assists

Coding assists infer actions from a developer’s current con-
text of interaction with the source code, from which the de-
veloper can choose and apply one that does what he wants to
do. Such features may increase programming productivity.
Eclipse distinguishes three kinds of coding assists, content
assist (content completion), quick assist, and quick fix. We
will discuss more about the design evolution of coding assists
in Section 4.3.

2.4 Management and Miscellaneous

The number of annotations and opened editors can be over-
whelmingly large. To help a developer manage his interac-
tion with the editor, the Java editor maintains the history of

new features enhanced
1.0 | syntax highlighting/S None
problem navigation/M
vertical ruler/M
code formatting/A
2.0 | reconciliation/A None
quick fix/T
quick assist/T
content assist/T
hovering/A
line number/S
2.1 | editor navigation/M quick fix
member navigation/A hovering
quick outline/A (sticky note)
overview ruler/M hovering on ruler
prominent status/A
hyperlink in code/A
current line highlighting/S
print margin/S
3.0 | quick hierarchy/A content assist
quick reference/A quick assist
marking occurrences/A quick fix
marking method exits/A quick outline
marking exceptions/A (inherited members)
marking overridings/A code formatting
code folding/A annotation navigation
semantic highlighting/A
quick diff in rulers/S
roll-over hover/S
block commenting/S
update imports on paste/A
spell checking/M
3.1 | marking methods quick assist
from supertype/A quick fix
view all key bindings/M hovering
(reference in JavaDocs)
semantic highlighting
new folding indicators
code formatting
3.2 | marking jumping targets/A | content assist
quick assist
quick fix
Table 1: Evolution Profile of Eclipse Java Editor
Features. S: Simple, A: Advanced, T: Coding as-

sists, M: Management.

annotations visited and files opened and supports the navi-
gation of these elements. These features are especially useful
when a developer works with a large project. Other capa-
bilities like spell checking are also integrated into the editor.

3. FEATURE EVOLUTION

Based on the “new and noteworthy” notes, we tabulated
the evolution of the editor features as shown in Table 1. We
make the following observations on this table:

1. Features that are based on AST support dominate the
feature space. Overall, 21 out of 35 features require
AST support. These include three coding assists, and

18 advanced features. Other features, like support for
line numbers and quick diff, use only the text model.

2. The majority of enhanced features involve ASTs.

3. While there are enhancements to aspects of individual
features, like showing the inherited members in the
quick outline view, a noticeable pattern is the contin-
uous addition of sub-features to a feature group, which
spreads over multiple releases. For example, the three
coding assists were enhanced in almost all releases.

4. Coding assists were added early in 2.0. Most other
features that use ASTs were added in 2.1 and subse-
quent releases. This might be the result of a deliberate
prioritization of coding assists, which transform code,
over other advanced features that do not.

A feature group may provide very fine-grained support. For
example, in 3.1, quick assist supports the manipulation of
boolean expressions and string literals. In 3.2, there are ap-
proximately fifty sub-features for coding assists and twenty
for semantic highlighting.

There can be several reasons for the incremental addition of
sub-features. It may be attributed to the lack of develop-
ment resource or that the sub-features are discovered only
at a later release. Lastly, when the underlying model evolves
(e.g., from JLS 2 to JLS 3), sub-features may be added for
new language constructs such as generics and annotations.

4. DESIGN EVOLUTION

In this section, we examine how the Java editor design evolves
with and supports the addition of new features and sub-
features to a feature group. The MVC-based modular de-
sign laid out in early releases appears to be adequate in
supporting the addition of new features. This design has
been carefully followed and maintained during the addition
of new features, as evidenced by the fact that it is relatively
straightforward to locate the respective code for the roles of
model, view, and controller in all releases examined. There
are also changes to the design of individual features, for
reasons like extensibility and reusability. Due to the careful
design of interfaces, such design changes seem to be localized
and do not unnecessarily impact other design elements. We
describe the design changes to coding assists as an example.

4.1 Core Design

As shown in Figure 1, the text editor design follows the
model-view-controller model. The model for a text edi-
tor consists of two parts, a basic text model (IDocument)
and an annotation model (IAnnotationModel). IDocument
models the text as a sequence of characters and lines, and
supports both presentation and text replacement. Program
text is constrained by language specific syntactic and se-
mantic rules. These rules provide the editor with additional
elements like compilation errors and warnings, which are
mapped back to positions in an IDocument in order to be
displayed in the editor. Furthermore, Eclipse generalizes
these into the concept of an annotation, which is defined
by a location in the text model and a description. An an-
notation model manages the annotations associated with a
compilation unit. In addition to errors and warnings, users

o.e.jface.text o.e.ui.texteditor

<<interface>>
ITextViewer

o.etext
ITextEditor
JAN
<<interface>> JA
o.e.workbench.textediitor

/\
<<interface>>
IAnnotationModel

SourceViewer

/\

ProjectionViewer

o.e.jdtinternal.ui. |

JavaEditor
JANJVAN
o0.e.swt ClassFileEditor

CompilationUnitEditor

StyledText

Figure 1: Eclipse Editor Design (MVC)

can also define annotations like tasks and bookmarks in pro-
gram text.

The view part is defined by the ITextViewer type hierarchy,
which composes a StyledText widget and an IDocument.
The StyledText widget from the SWT library can display
program text with a rich variety of fonts and styles like italic,
color, underline, and strike-through.

A controller listens and responds to events produced by the
view and the model. The controller usually requires access
to both the model and the view to produce a proper re-
sponse. In Eclipse, the ITextEditor type hierarchy is respon-
sible for configuring the various controllers with an I'TextViewer
object. Table 2 shows nine editor features that are imple-
mented as controllers.

To support reuse, a general design layer is factored out that
all editors inherit and extend. In Figure 1, the general design
is colored white and mainly located in 4 plug-ins o.e.text,
o.e.jface.text, o.e.ui.editors, and o.e.workbench.texteditor. The
Java-specific design is colored grey and located in o.e.jdt. ui.

4.2 Core Design and Feature Addition

Table 1 shows the features that were added to the Java editor
in each release. In order to understand how the core design
has supported the addition of these features, we examined
the design of a few Java editor features from the source code.
Table 2 summarizes these features, the event that triggers
each feature and its origin, and the “seed” classes that im-
plement the feature. Seeds are classes that one would look
at first to explore a feature. Typically, these classes register
listeners to listen to the events. In addition to the seeds, a
feature usually has other helper classes and interfaces.

We find that the core design for the editor has been sta-
ble since introduced in the beginning of the Eclipse project,
and appears to be adequate in accommodating the new fea-
tures. With the support of the core design, adding a new
controller consists of three activities: (1) registering event
listeners, (2) modeling the context of interaction, and (3)
designing an interface between the listener and the compiler
and implementing the feature behind the interface. Typi-
cally, steps (1) and (2) are located in the seed classes, and
step (3) is implemented in the compiler back end.

editor features

triggering events and origins

seed classes

syntax highlighting

text change/IDocument

PresentationReconciler

reconciliation text change/IDocument Reconciler

content assist key /Styled Text ContentAssistant

quick fix/assist key/Styled Text QuickAssist Assistant
JavaCorrectionAssistant

hovering mouse/Styled Text AnnotationBarHoverManager

AbstractHoverInformation

semantic highlighting

reconciled /reconciliation

SemanticHighlightingManager
SemanticHighlightingReconciler

occurrence marking

selection/ITextViewer

ISelectionListenerWithAST

quick outline

action/Abstract TextEditor

InformationPresenter

quick hierarchy

action/Abstract TextEditor

InformationPresenter

Table 2: Features Implemented as Controllers in 3.2

4.3 Design for Extensibility and Reusability
Software designers should design for changes [7], but an-
ticipating changes may take a lot of thought [8]. In this
study, we observe that sometimes the ‘right’ designs may
simply emerge in response to external demands for extensi-
bility and reusability. Next, we use the evolution of coding
assists to illustrate this point.

The Java editor supports three coding assists, content as-
sist, quick fix, and quick assist. Content assist infers actions
using what has been typed in as a prefix. For example, it
may return a set of identifiers that share the same prefix.
Quick fix offers actions for a compilation problem. For ex-
ample, if a class does not exist, one action may be to create
the class. Quick assist covers all other actions that may be
offered. For example, for an if with a conditional that does
an instanceof test, a reasonable action would be to create
a local variable and cast and assign the object being tested
to it. In response to a user action, an assistant passes the
context where the coding assist is requested to the compiler
back end. Using the context information, the compiler back
end proposes possible transformations that can be applied
to the compilation unit in the active editor. Usually, there
can be more than one possible transformation. The assis-
tant lets the user choose one from these transformations and
applies it to the compilation unit.

Figure 2 depicts the initial design for coding assists in 2.1,
and the subsequent changes in 3.0 and 3.2. In 2.1, ICon-
tent Assist Assistant and ContentAssist Assistant are respon-
sible for interacting with the user. In response to a user
action, a ContentAssist Assistant queries the multiple ICon-
tent Assist Processor associated with it for possible code trans-
formations that can be applied to the current context in
the editor. These three types are the main design elements
for the content assist feature. However, in 2.1, they were
also (mis)used to implement quick fix and quick assist. In
particular, JavaCorrectionProcessor was made to implement
IContentAssistProcessor in order to register itself to Java-
CorrectionAssistant. This design worked, but apparently
was not conceptually clean, since quick assist and fix are
distinct from content assist, and thus their implementation
should be independent of that of content assist.

In 3.0, a decision was made at the Java editor level to sup-

port the addition of extensions to quick assist and quick fix,
using the extension point mechanism in Eclipse. To enable
the extensions, two new interfaces, IQuickAssistProcessor
and IQuickFixProcessor, were introduced for QuickAssist-
Processor and QuickFixProcessor, respectively. The ICor-
rectionProcessor in 2.1 was deprecated.

In 3.2, another decision was made to move the Java sup-
port for quick assist and fix to the general design layer
so that they can be reused by other editors. Support for
content assist (IContentAssistAssistant and ContentAssis-
tAssistant) has already been available for reuse. To reuse
quick assist and quick fix similarly, IQuickAssistAssistant
and IQuickAssistProcessor were added. Now, JavaCorrec-
tionAssistant implements [QuickAssistAssistant, instead of
IContentAssistAssistant, via the newly introduced Quick-
AssistAssistant. The design finally seems to become right
because now quick assist and fix become independent of con-
tent assist. For example, now it is possible to design a new
editor that supports only content assist, but neither quick
assist nor quick fix. This is impossible before 3.2 due to the
tight coupling of the three.

Despite these design changes to coding assists, they have had
no impact on the actual proposals for code transformation,
which are modeled by the ICompletionProposal interface.
This interface has remained stable since introduced in 2.0.
As a result, the implementation for the fifty or so proposals
is not impacted by these changes.

An interesting anecdote in Figure 2 is that the two IQuick-
AssistProcessor in the 3.0 box and the 3.2 box actually rep-
resent two different interfaces that are located in two differ-
ent packages with two different bodies. Thus using the same
name is confusing for both future maintainers and users of
these APIs. This might have been due to a lack of commu-
nication between the two teams who own the two packages.

S. RELATED WORK

Functional Evolution Studies in functional evolution fo-
cus on system services that are visible to end users, char-
acterizing the introduction, refinement and enrichment, and
displacement of services. Unlike ours, these studies do not
focus on the design of the systems studied.

coding assists in 2.1 D

IContentAssistant
T JAN JAN T
: ‘
i
T
JavaCompletionProcessor ; 5
IC' Hcm kF]

JavaCorrectionAssistant

change to coding ™ change to coding ™
assists in 3.0 assists in 3.2

nterface>
IQuickAssistAssistant

IQuickAssistProcessor

)
ol

I>

JavaCorrectionProcessor

l JavaCorrectionAssistant]

Figure 2: Evolution of Coding Assists

In [1], Ant6én and Potts developed a theory for functional
evolution. In this theory, functional morphology refers to
the overall profile or shape of benefits and burdens exhibited
by a system at a given point during its evolution. Func-
tional evolution is then defined as the changes in functional
morphology over time. Functional evolution can be charac-
terized as either gradual or saltationist (meaning that ser-
vices are introduced in bursts or expansions that separate
comparatively stable “epochs.”) In each epoch, a new set of
services may be added (service cohort) to the service base-
line exhibited by the previous epoch, and an existing set of
services may be displaced (displacement cohort). As a vali-
dation of this theory, the authors characterized the evolution
of telephony services in the USA over a 50-year period from
1950 to 1999.

In [6], Hsi and Potts studied the enhancement and evolution
of software features over three releases of Microsoft Word
(2.0, Word 95, and Word 97). They built a feature profile
for each release, and characterized the changes between re-
leases. They observed that user interface features of Word
has grown tremendously, and that functional growth, while
steady over releases, tends to be focused on one or more ar-
eas, while keeping others unchanged. New features tend to
be added in a manner loosely coupled with existing core, ei-
ther as small extensions of existing concepts or as a new set
of features that expand the system independently of existing
features.

Inferring Knowledge from Evolution of Artifact Size
Studies in this category use size information in terms of mod-
ules, programs, or lines of code to infer knowledge about
software development, e.g., to characterize the trend in sys-
tem growth [2], explain evolutionary patterns [4], or identify
suspicious subsystems [3]. In this study, we looked into the
detailed designs in order to understand how designs have
supported and evolved with features.

Lehman and Belady [2] studied the release history of IBM
OS 360 and observed that the system is growing sub-linearly.
Godfrey and Tu [4] studied the growth patterns of subsys-
tems of the Linux kernel during a six-year period to explain
why the kernel is exhibiting a super-linear growth rate. They
identified that mainly two subsystems, device drivers and
architectures, contributed to this super-linear growth, and
that the Linux kernel itself is relatively small and exhibits
a “steady” growth. Gall et al. studied the release history
of a telecommunication switching system to identify a sus-
picious subsystem that may be subject to restructuring [3].
Grosskurth and Godfrey studied the reference architecture
for web browsers [5].

6. SUMMARY

In this paper, we report on a case study on the evolution of
the Eclipse Java editor, with a focus on how designs have
supported and evolved with features. We find that although
there are changes to the design of individual features, archi-
tecturally, the editor benefits from the MVC based design
laid out in the outset of the project. We also find that AST
support is required for more than one half of the editor fea-
tures, which shows the importance of domain semantics in
enabling user-visible features. The Eclipse editor has gone
through a long period of evolution, and, thus, necessarily
contains more evolution information than we have discussed
here. In the future, we plan to look further into other aspects
of its evolution, like supporting backward compatibility.

7. REFERENCES
[1] Annie I. Antén and Colin Potts. Functional
paleontology: The evolution of user-visible system
services. IEEE Transactions on Software Engineering,
29(2):151-166, 2003.

[2] L.A. Belady and M.M. Lehman. A model of large
program development. IBM Systems Journal,
15(3):225-252, 1976.

[3] Harald Gall, Mehdi Jazayeri, René Klosch, and Georg
Trausmuth. Software evolution observations based on
product release history. In ICSM’97, pages 160—167.

[4] Michael W. Godfrey and Qiang Tu. Evolution in open
source software: A case study. In ICSM’2000, pages
131-140.

[5] Alan Grosskurth and Michael W. Godfrey. A reference
architecture for web browsers. In ICSM’2005, pages
661-664.

[6] Idris Hsi and Colin Potts. Studying the evolution and
enhancement of software features. In ICSM’2000,
pages 143-151.

[7] David Lorge Parnas. On the criteria to be used in
decomposing systems into modules. Commun. ACM,
15(12):1053-1058, 1972.

[8] David Lorge Parnas. Software aging. In ICSE "94:
Proceedings of the 16th international conference on
Software engineering, pages 279-287, 1994.

[9] The Eclipse Foundation. CVS Access to Eclipse Source
Code. http://wiki.eclipse.org/index.php/CVS_Howto,
last verified: May 1, 2007.

[10] The Eclipse Foundation. Eclipse Binaries.
http://www.eclipse.org/downloads, last verified: May

1, 2007.

