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Abstract

In this paper we describe the formal verification of refaicigs for
untyped and typed lambda-calculi. This verification is perfed
in the proof assistant Isabelle/HOL.

Refactorings are program transformations applied to imgro
the design of source code. Well-structured source codesigrea
and cheaper to maintain, and this motivates the use of oefact
ing. These transformations have been implemented as pnogea
tools and, as with other metaprogramming tools, it is desrthat
implementations of refactorings are correct. For a refangato be
correct the refactored program must be identical in beheatmthe
original program.

Since refactorings are source-to-source transformatioos-
crete program information matters: for example, names éof v
ables, procedures, etc) and program layout should alscelseed
by refactoring. This is a particular characteristic of oésings
since general program transformations operate over machijo
resentations of programs, rather than readable source code

The paper describes the formalisation adopted, and thmalte
tives explored. It also reflects on some of the difficultiegef-
forming such formalisations, the interaction between aiefiang
and phases such as type-checking and parsing, and the tigmera
of correct implementations from mechanised proofs.

Categories and Subject DescriptorsD.2.3 [Software Engineer-
ing]: Coding Tools and Techniques; F.3logics and Meanings
of Program$: Specifying and Verifying and Reasoning about Pro-
grams; D.2.4$oftware EngineerirjgSoftware/Program Verifica-
tion; D.2.13 Boftware EngineerirfjgReusable Software

General Terms Theory, Verification

Keywords Refactoring, Isabelle/HOL

1. Introduction

Refactorings are program transformations applied to impithe
design of source code. This is important since well-stmactu
source code is easier and cheaper to maintain (Griswold)1991
These transformations were initially carried out manualty
great expense: this is a repetitive and error-prone tasthdnast
decade these transformations have been implemented aaipog
called refactoring engines. These have been collectedefaotor-
ing tools (Li and Thompson 2008) and integrated with IDEs. As
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with all metaprogramming software, it is desirable thahcsbring
engines are correct. Advances in proof assistants have prade
ble the certification of software by verifying the softwaneai proof
assistant: here we use Isabelle/HOL. This approach isatvkect
since it is modular: rather than verifying the whole tool dutd
be verified in separate pieces and then combined.

The structural changes effected by refactorings must revigé
the behaviour of the refactored program. Moreover, sinfacter-
ings transform source code it is important that the refadt@ode
retains the original source code’s characteristics: nafoesari-
ables, procedures, etc), comments, and layout. Preseroimgete
program information is very relevant to source-to-sounagmm
transformations since it keeps the source code easily gréso
able” to its author.

This paper summarises results described in (Sultana 20@7) a
its contributions are: (i) the first verification carried an refac-
torings using an LCF-style proof assistant, (ii) a numbecade-
studies on the verification of refactorings in this mannet@émon-
strate the method. Within these contributions we explotté He-
oretical and practical aspects — for instance, how the prokk
stated in terms of standapdcalculus notions, how the verification
process may be made more tractable using a modular appmach t
separate the refactoring stage from other parts of the gspead
so on. These are discussed further at the end of the papé¢h¢oge
with a discussion of limits of our approach and suggestions$u-
ture work.

The remainder of the paper is organised as follows: the refac
toring process will be described next and some of the chonzae
during verification will be discussed. The verified refagigs are
presented ir§3 and related research is outlined§. The paper
then concludes g5 with a reflection on this work and suggests
directions for future research.

2. Background

Refactorings are organised into a simple dichotomy acngrtth
their complexity and the kind of expressions they are prilpaon-
cerned with. A refactoring is said to leementanyif it cannot be
decomposed into simpler refactorings, and it said todmepoundf
it can be decomposed into simpler refactorings applieddneece.
If a refactoring targets the structure of program elemetefirfi-
tions, expressions etc.) then it is said to b&tractural refactoring.
A refactoring is also classified according to the level oftayrit
transforms, for examplenodule-leverefactorings transform pro-
grams at the level of modules rather than expressions. Ifaz+e
toring targets types of expressions then it is callegyme-based
refactoring. Within type-based refactorings one fidd&a-oriented
refactorings: these target specifically the types modgiarticular
data.



preprocessing refactoring printing

>

program

Figure 1. Automated refactoring process

2.1 Stages in refactoring

Li (2006, see Chapter 4) describes refactoring as being mpde
of three stages. This is illustrated in Figure 1. The prepssmg
stage involves producing representations of the progranate
suitable for transformation — this stage involves lexingrsing,
and possibly further processing to generate a represemtafi
programs that is more rich than their Abstract Syntax Tre®8TA

if required.

The second stage involves the actual refactoring. Applygng
refactoring involves two steps: checking the refactosngrecon-
ditions and transforming the program if the preconditioressatis-
fied by the program.

The last stage involves printing the program represemtatim
the representation we usually manipulate — a list of characEor
some programming languages, such as Erlang, it sufficegttypr
print the program since there is a widely-accepted and adker
layout for programs (Li et al. 200§3.1). For other languages, such
as Haskell, further processing is required to ensure tlegptimted
refactored program mimics the layout of the original progsince
the language does not enforce a particular layout.

2.2 Preserving program appearance

Since the layout of Haskell programs can be idiosyncratnsfor-
mation tools need to take this into account by restoring tiggral
program’s appearance in the transformed program. For Haske
grams one could choose between explicit delimitation ubiages
and using a so-calledffside structure: the delimitation of code
is inferred from the code’s indentation. This is describedhie
Haskell Report (Jones et al. 20G3.3).

During manual refactoring the preservation of layout anah-co
ments is straightforward, but automating this presermatian be
challenging. Li (2006§2.4) describes the automatic preservation
of program appearance for refactored Haskell programs.ader
proach uses two basic program representations: the tokesinst
and an AST annotated with type and scope information. These t
representations are kept consistent (Li 20962.3) since trans-
formations are effected on both: the AST is transformed fiecef
changes to the program, and the token stream is also modiféesd t
sure that program layout rules are adhered to following tB&'4
transformation. Comments are also preserved —and moveth&rg
with code deemed related — using information in the tokesasir
and heuristics used to associate comments to code.

Besides program layout and comments, names (of variables,
definitions, etc) are features that should be preserved\ames
are typically chosen with care in order to improve the pragsa
readability. Name information can be obtained from the A8the
work described in this paper we focus solely on the main (sgco
stage in the refactoring process. Within this stage we aurae
on the preservation of name information together with paogr
behaviour. From this point onwards whenever a referenceagem
to refactoringwe intend this second stage.

2.3 Correctness property

A refactoring is composed of a collection of preconditionsl @
program transformation. When a refactoring is applied ta@ p
gram, the transformation is effected only if all the predtinds
are satisfied by the program. Otherwise the program is retLun-
changed. A refactoring with conjoined preconditions repreed
by the effective predicat€), and effecting program transformation
T, behaves thus:

Ap. if (Qp) then (T'p) else p

Let ~ denote a behavioural equivalence over programs. Then in
order to verify the refactoring (establishing that it is heiour-
preserving for arbitrary programs) one must prove that:

Vp. (@p) — (T'p) ~p

Apart from p, refactorings are usually parametrised by other
values required by transformati@hand which might also be con-
sumed byQ. Let us assume that the parameters have already been
provided and that the refactoring is a curried function —tsthis
stage we only see the last formal parameter: the prograrf. itse
Together with the program, the parameter values are inpuitset
refactoring and the values themselves might influence venetie
preconditions are satisfied. For example, theame a variable
refactoring is additionally parametrised by two variabdenes: the
name to change and the name to change it to. These paranreters a
also provided to the refactoring’s preconditions since thelude
provisions to ensure that name-clash does not occur as k& oésu
transformation.

2.4 Models of refactoring

As previously explained, if the preconditions of a refatgrare
not satisfied then the program is not transformed. In impleme
tions of refactorings, if the preconditions are not satikfleen the
user may be prompted to provide different parameters toatae+
toring and offered the choice to abandon the refactoringukteall
this theinteractivemodel.

A different approach would involve endowing the refactgen
with more automation such that they can autonomously change
parts of the program in order to satisfy the preconditiorte Uiser
is later informed of these changes and might need to effetidu
corrective changes. For example, in the event of a namé-thes
refactoring might perform renamings such that the tramséion
would still preserve program behaviour. By contrast, thisdel
involvescompensatindor preconditions that are not satisfied.

These two models have analogues in ddealculus; for exam-
ple, with regards to names a transformation can be defined in a
non-renamingor in arenamingmanner. These lead to interactive
and compensating refactoring definitions respectively.opefor
the interactive approach in the research described in #gispThe
two transformation definitions will be described furthetlie next
section and the effect each has on the complexity of prodfdwi
discussed.

The interactive approach is illustrated by means of a ttiemsi
diagram in Figure 2.

2.5 Transformation operations

Transformations might simply replace an (sub)expressiibim an-
other, or else propagate changes in expressions by saivgtitu-
tion. Substitution is the canonical transformation operat@rcfas-
sical A\-calculi — other expositions ok-calculi may use different
canonical operations. For example when using nominal tquks
(Urban and Tasson 2005yvappings the canonical operation.
In order to facilitate reasoning about programs, programs a

usually identified ‘up to renaming of bound variables’. Mover,



Program to refactor &
refactoring to use are
chosen from the IDE

to cancel

Refactor

User chooses to supply
different arguments

User chooses

User supplies
arguments to
the refactoring

Precondition
checks

Pass

Program is transformed

Figure 2. Interactive refactoring

the substitution operations used avoid variable capturefigming
bound variables automatically on demand.

When reasoning formally this creates a contention between
informal practise and the complexity of formal proofsrekaming
substitution operation might introduce fresh names, inmglythat
equations between expressions in which substitution takese
must be proved modulo renaming of bound variables. In oraler t
simplify this process it is convenient to anonymise syn&,in
de Bruijn indices and levels (de Bruijn 1972), since thisids@ny
explicit concrete renaming. As illustrated by Berghofed &frban
(2007), a theorem’s formulation in a system encoded usirsg fir
order abstract syntax and using a renaming substitutioratipa
would appear as follows (note that the universal closure ahd
M is left implicit) :

VL.z ¢ FVM —s M[L/z] =0 M

Using anonymous syntax or name-carrying syntax where the se
of variable names is restricted, as in the approach destihye
Berghofer and Urban, this result would be formulated thus:

VL.z ¢ FVM — M[L/z] = M

Berghofer and Urban call thenechanicalproof of the first
theorem atour de forcedue to the combination of explicit-
equivalence with the renaming substitution operation bseaof
the latter’s provision of new names. The second theoremoigsgr
comparatively easily by straightforward induction on th®icture
of expressions.

Anonymous syntax is criticised because of poor readabidity
in the case of refactoring this encoding is particularly uitable
since namegsio matter, therefore they should not be abstracted

away. Moreover, the model of refactoring we will use, ddsexli
in the previous section, does not use a renaming substitaper-
ation. The substitution operation used allows variablgio® and
does not rename variables, so theorems are formulated asat
rather than identity modula-renaming.

In order to compensate for using this substitution opencttie
0 rule will be made partial: it has non-capture as a side-cmdi
Variable capture can be defined strongly as in the Baren®¥eegt
able Convention (BVC): reasoning is constrained to a sutisat
where free variables of an arbitrary expression and bouridblas
of another arbitrary expression do not overlap (Barendi®gy,
§2.1.13). A weaker definition, sometimes expressed as aqatedi
called Traps involves checking that capture does not occur when
the operand is placed in occurrences of the variable in tleeasp
tor. Either of these ensure that free variables do not bedwmuad
during 8-reduction, thus keeping the theory consistent.

The BVC is formalised in Definition 3.2Trapsis defined in
Definition 5.1, and;5.1.2 discusses this further.

2.6 Proof development

In order to verify the refactorings the programming langspr
which refactoring was studied were embedded in the system Is
abelle/HOL (Nipkow et al. 2002). Isabelle provides a mejalo
within which logics can be embedded. It also provides sesyic
for instance unification, which are inherited by object tzgiOther
services can be instantiated, such as extraction of prowiste/Ne
used the logic HOL, a higher-order logic as first used in tletesy
HOL (Gordon and Melham 1993).

Isabelle is an LCF-style proof assistant. That is, it is ieapl
mented as a library for a programming language (ML) thateserv



as its metalanguage. Within this metalanguage is implesdean
abstract datatype of theorems and proofs are terms inhglfiat
type. Proof checking is done by means of type checking — ¢his i
decidable for the type system used by ML. One of the guidiivy pr
ciples in Isabelle’s design is its reliance on a small trdigiernel to
ensure sound inference: this is called teeBruijn principle

Formal verification through theorem proving is an expensive
process, but offers attractive advantages beyond the aag=uit
provides. The proofs may be rendered more intelligible bngis
a declarative style — in Isabelle this is called Isar (Wer20¢12) —
thus resembling the proofs used in mathematics. Isabaltepab-
vides tools for marking-up formal developments f&fgX output
and extracting programs from proofs.

3. \Verification case-studies

This section presents the verification of two refactoririgis work
is described in full in (Sultana 2007).

The first refactoring is @ompoundefactoring. It will be spec-
ified and verified for the\-calculus extended with recursive defi-
nitions. The second refactoring igype-basedefactoring defined

over PCF (Plotkin 1977) extended with unit and sum types. The

first language is inspired by the work in (Li 2006, see Chapjer
on the formal verification of th&eneralise a definitionefactoring.
Subsequently we studied refactorings in the second lamgimagy-
der to appreciate the effect of the complexity of the languaad
its features — including types.

language is given next. The definition used in the seconditzgy
is similar but omits the last disjunct.

DEFINITION 3.2.
Captures M N £ 3v € FV N. (v € BV M)V (v € DV M)

The language semantics are defined as an equational logic ove
programs. This logic is embedded in HOL using an inductive re
lation definition. The rules of the logic induce an intensibhe-
havioural equivalence based @n-equivalence. It has already been
suggested that thé-rules of both logics — each logic correspond-
ing to one of the programming languages — are “partial” sthey
are conditional on-Captures The predicatd-reshplays a role in
the definition of the logics too: it is used in the side-coiaditfor
rule a.

Since the first language has two syntactic categories, tefisi
must be given for each category. For exampleshmust be de-

fined for both expressions and definitions. Functions andipages

defined for definitions will have their names suffixed with “dfor
instanceFreshdis the analogue dfreshover definitions.
Refactorings are specified by universal HOL implicatione®h
antecedents are the preconditions and whose consequerfts-ar
mulae in the equational logic. Typically, correctness fsoare
performed by induction on the structure of expressions. él@wv
in the case of the first language proofs are done by simulteneo
induction. This is due to the mutually-dependent naturerafrg

Since the methods used to verify these refactorings are very Matical categories in the language,

similar the general approach will be outlined first then adpton
of the specific results will follow.

3.1 Method
Both programming languages are encoded as first-orderaabstr

syntax with concrete variable names. The lambda calculus ex

tended with recursive definitions has two syntactic caiegoex-
pressions and definitions. These grammatical categoreesnar
tually dependent — this will affect definitions and proofs this
language. The second language has a single grammaticgboate
defining expressions in the language.

In what follows we useM as a metavariable ranging over
expressions,D ranges over definitions, and over variables.
Metavariables may appear primed or indexed.

Various meta-linguistic functions are defined. Severahekse
are standard — including the functidiV" that returns the set of
free variables and the functioBV that returns the set of bound
variables in an expression. The first language has anothetidn
over expressions calledV. It returns the set of variables bound by
recursive definitions. The substitution operation is defitteallow
name-capture, as explainedsia.5.

Two important predicates over expressions are defined. ™te fi
predicate,Fresh indicates that a variable is fresh relative to an
expression. That is, the variable does not appear free ancbou
in the expression. A weaker definition may also be used: tieat t
variable does not appear free in the expression. Howeveettend
definition allows shadowing to take place. The definitiorFash
used in the first language is given next; the definition usetthén
second language is similar but omits the last conjunct.

DEFINITION 3.1.
def

Freshv M = (v¢ FVM)A(v¢ BV M)A (v¢ DV M)
The infix notationvf M will be used instead of'resh v M. The
second predicateCaptures indicates whether substituting an ex-

pression into another expression will lead to previoustefvari-
ables become bound. The definition @&pturesused in the first

Verifying the type-based refactoring also required prgwev-
eral lemmas about the type-system, e.g. that substitutiesepves
well-typing. Such results were proved by induction on thmectire
of the derivations of type judgements.

3.2 Elementary refactorings

Using this refactoring one could extract a definition fromra-p
gram and replace occurrences of the expression it definebeby t
definition’s name. The set of expressions in the language/iich
this refactoring is studied is the least set induced by tHeviing
grammar:

letrec D in M Definition

M = =z Variable
| Az.M Abstraction
| M-N Application
|

Definitions are formed from the following grammar:

D
x:= M Single definition
D || D' Parallel definitions

Definitions are well-formed if and only if two parallel defini
tions do not define the same name.
Note that the two grammars are mutually dependent. Thisnesju
definitions to be given in “pairs” in order to be defined ovethho
expressions and definitions. For instanB&d is a function over
definitions returning the set of-bound variables in a definition.
Predicatd-reshdis defined in the same way &seshbut usesBVvd
instead oBV. The substitution operation we use in this language is
described in Definition 3.4 — note that the operation is @ased
in order to use the same notation for substitution over esgioas
and substitution over definitions. The metavariahlaswill range
over variables andv will range over expressions in what follows.
The termM [N/ z] expresses the substitution &ffor z in M.

The predicateDVTopthat appears in the following definition
is a restriction ofDV to the definitions affecting the body of an
expression. For instance, assume that y and letL abbreviate

n= € Empty definition
|
|



LEMMA 3.3. Demote a definition

= Captures (letrec f:=letrec h:=N in M in L)y N N h# f N —Captures LM A
—Captures N M N\ —Captures Lh N —Captures N f N —Captures fix f

— letrec h:= N in letrec f:=M in L ~ letrec h:=N in letrec f:=

(letrech:=N in M) in L

the expression:
letrec x := (letrecy := N in N') in M

ThenDV Lis{z,y}andDVTop Lis {z}. The operatio®VTopd
is the analogue dbVTopdefined over definitions instead of expres-
sions.

DEFINITION 3.4. Variable-capturing substitution
def

e[M/z] = ¢
(y := N)[M/z] Eifzx=ytheny:=N
- else y := (N[M/x])
(D1 || D2)[M/x] £ ifz € DVTopd (D: || D2)
then (Dl || Dz)
else (D1[M/z] || D2[M/x])
i[M/x] E ifa=ithen M else i
(Ni.N)[M/z] & ifx =i then \i.N
- else Xi.(N[M/z])
(N - N')[M /] = (N[M/z]) - (N'[M/z))

(letrec D in N)[M/z] = if x € DVTopd (letrec D in N)
then (letrec D in N)

else letrec (D[M/z]) in (N[M/x])

The sole judgement of equational logic is defined as an induc-
tive relation~ C A x A. The rules of the logic consist of the rules
for theory Ay together with rules making: an equivalence relation
compatible with respect to application and abstractioe (titer
rule is often calledveak extensionalityor &), and rules for con-
verting letrec expressions into expressions in the puetrécfree)
A-calculus. Expressions only have meaning if they can beertent
into the pure calculus.

The verification of “extract a definition” proceeds by firstrve
ifying the elementary refactorings that constitute it aneint com-
posing these results. The refactorings will be described uging
pseudocode fragments together with informal descriptadreach
refactoring’s preconditions and the transformation ieef§. This
will be followed by a formal specification of the refactoring

Add/drop a redundant definition

—
=

The pseudocode fragment above illustrates the changedesifec
by this refactoring — original code is displayed in the lefbp and
the refactored code is shown in the right pane.

This refactoring adds or removes a definition; the variable
bound to this definition (i.e. the name of the definition) muost
appear free in the body of the expression.

LEmMMA 3.5. Add/drop a redundant definition
h ¢ FV L AN —Captures LN — L ~ letrec h:=N in L

The first formal precondition requires that no variable cap-
ture results from the user’s choice bf The second conjunct in
the precondition might appear superfluous — particulanygesiit

would not appear in ap-rule for letrec However recall thate-
trec-expressions are not attributed any meaning unless thepean
translated intdetrecfree expressions in the pure calculus — the
rules for this translation are provided as part of the lo@ace
translated into pure-expressions the computation would proceed
by g-reduction. As explained i§2.5 the3-rule used in this sys-
tem is partial and the reduction is conditional upon thes&attion

of = Captures L N. Many similar preconditions will appear in the
next refactorings for the same reason.

Demote a definition

=
h :=H h :=H

in let f := F in let f := F

in .. in let h := H
in ..

This refactoring reproduces the outermost definition imgk
definition directly below it. We look at a particular instanef this
refactoring; as mentioned by Li (20062.8) it is not uncommon
to find varying definitions of similar refactorings. The elemtary
refactorings being described here will ultimately serveatcom-
modate the compound refactoring being verified, and thus may
seem awkward for individual application.

Compared to the refactoring described previously, thizatef-
ing is more sophisticated and has many more preconditioms. T
refactoring’s correctness is formulated in Lemma 3.3. Nboafix
is not part of the grammar of the language being used heranitls
for an expression in the language that behaves like a fixjgoimt
binator, therefore we need to ensure that the choice ofhbhlaga
in this expression will not lead to capture when this expoesis
evaluated — thus the preconditietCaptures fiz f.In the language
described in the next sectidfix is a primitive notion and a precon-
dition such as this will not be necessary since the unwindihg
fix is done using a rule in the logic rather than Byeducing the
expression denoted Hix.

The preconditionh # f is needed since i = f then M
and N cannot be arbitrary expressions. Finally, preconditiarchs
as —Captures L M are required to ensure that both the original
and refactored programs can be translated jpteedexes — re-
call that this was explained for the precondition of the mes
refactoring. Moreover, preconditions such-a€aptures L h and
= Captures N f are needed to ensure that the refactoring will pre-
serve non-recursion whenand f define non-recursive definitions.
These preconditions also serve to preserve recursion ogathe
definition. Definitions are used by simply replacing occooes of
their defining variables with the expressions they definesétpre-
conditions ensure that the expression being replaced iffietent
in meaning.



Declare/inline a definition

I

in ...

This refactoring produces a local definition from a subespre
sion. When applied in the opposite direction this refaciminlines
a definition in all its calling sites — that is, in all free ocmnces of
the variable with which it is bound. As explained for the poexs
refactoring, there may be different ways of specifying dipatar
refactoring. For instance, the definition of this particulefactor-
ing contains a toplevel definitiofi which might seem unecessary.
The refactoring was specified in this manner due to its mlthée
compound refactoring it features in, as will be seef3rB.

Some new definitions appear in the specification of this refac
toring. The substitution operatiaif [¢: V] substitutes variables for
expressionsRec (g:= N) is true whenevey := N is recursive (i.e.
gisfreeinN),andN C, M istrue whenN is a subexpression of
M.

LEMMA 3.6. Declare/Inline a definition

~Rec (g=N) A (g (f:= M) A (N Ca M) A

—Capturesd (f:=M)N A f ¢ DVTop N —

letrec f:=M in L ~ letrec f:=letrecg:=N in M[g:N] in L

The precondition—Capturesd (f:=M) N ensures that the
side-condition of thgg-rule is satisfied. Recall th&apturesds the
analogue of the predicateéapturesdefined over definitions rather
than expressions. As in the previous refactorifig¢ DV Top N
ensures that non-recursion is preserved, d¢f:# M is recursive
that the recursion on the same definition will be preserved.

The proviso thay # (f := M) stipulates that the name chosen
for the new definition is fresh. The expression in the new dedim
was formerly a subexpression of the main expression, byoprée
tion N Cp M.

Recall that definitions are used by simply inlining them iaqa
of their defining variables. The preconditiohRec (g:= N) re-
quires the definition to be non-recursive since when thisiifn
is removed (in the right-to-left direction) recursion wdulo longer
be made on the same definitiongoand thus the meaning of the ex-
pression would have been changed.

3.3 “Extract a definition”

I

“Extract a definition” is a non-trivial, compound refactogi
which we define by composing the previous three refactorings
using the transitivity rule. The compound refactoring ives the
following steps:

1. letrec f := M in L is the original expression, and is changed
to

2. letrec f := letrecg := N in M[g : N] in L by “declare a
definition”, then to

3. letrec g := N in letrec f :=letrecg:= N in M[g: N] in L
using “add a redundant definition”, and finally to

4. letrec g:= N in letrec f:=M|[g: N] in L by using “demote a
definition”.

As any compound refactoring, this refactoring inherits phe-
conditions of its constituent refactorings. It is not alwagbvious
which refactorings the preconditions originate from sitioe pre-
conditions might need to be adapted to optimise the refator
Moreover, further adaptation of the preconditions may beese
sary in order to “interface” between the constituent refanogs
— i.e. proving that the output of a refactoring in a compouhd a
ways satisfies the precondition of a successive refactoRnberts
(1999) calls thespostconditionsthey serve to lessen the number
of potentially wasteful checks made on programs after theyeh
been transformed.

For example, when the compound refactoring arrived at téte la
step —that s, “lift or demote a definition” — the followingdhto be
checked for satisfaction:

—Captures (letrec f:=letrec g:=N in M|g:N] in L) NA
g # f N—Captures L (M[g:N]) A

—Captures N (M|[g: N]) A —~Captures L g A

- Captures N f N\ ~Captures fix f

These are the preconditions of the “lift/demote a definitiefac-
toring instantiated to the refactored program producedsmfthe
“extract a definition” refactoring. Note that the first, thaind fourth
conjuncts of this formula are propositions concerning te(medi-
ate) transformed program. As the program is transformechbi e
constituent refactoring in turn, the preconditions of esutcessive
refactoring need to be satisfied by the refactored program.

Proving additional lemmas about the implication of predend
tions pertaining to constituent refactorings from the prettions
of the compound refactoring supports the construction oh-co
pound refactorings. This is because it guarantees thaeittm-
pound preconditions are satisfied then the compound refagto
can be effected in its entirety. This also has economic fiagmice:
if a compound refactoring is aborted in an intermediateestaer
cause of failed preconditions then the computing resoueses
pended checking and transforming until that point wouldehasen
wasted.

To improve the specification of the compound refactorings we
have proved such additional lemmas, and the compound oeifagt
process can be illustrated as follows:

1. The compound refactoring’s precondi-
» tions are checked and found to be satis-
fied.
2. The first constituent refactoring’s trans-

=

formation is effected. The satisfaction
of its preconditions usually follows the
compound refactoring’s preconditions
directly, but small adaptations may be
done - for instance, where the com-
pound’s preconditions are in a different
form to accommodate the preconditions
of several constituent refactorings.

The second constituent refactoring’s
transformation is effected, its precondi-
tions having been guaranteed to be sat-
isfied once the compound’s precondi-
tions have been satisfied.

The process continues; satisfaction of
the compound’s preconditions guaran-
tees that preconditions of all constituent
refactorings will be satisfied.



The main result is stated formally as follows:

THEOREM3.7. Extract a definition

g¢ FV LA

—Rec(g:=N) A

gt (f=M)A

N Cy M AN

—Captures fir f N\

—Captures L g N

—Captures N f N\

—Captures L M N

= Captures N M N

- Captures letrec f:=letrec g:=N in M in L N A
—Captures L (M[g:N]) A —Captures N (M[g:N]) —
letrec f:=M in L ~ letrec g:= N in letrec f:=M|[g: N] in L

3.4 Type-based refactoring

The same conventions and metavariables used in the presgous
tion will be used there. The additional metavarialblevill range
over types. The grammar of the language is the following:

M = =z

| Az:T.M
M-N
fixx:T.M
unity
zero
suce M
pred M
ifz LM N
inLT M
i’l’LRT M
(M <= z)L{y = N)

The clausdiz x:T.M bindsz in M and is unfolded recursively
to solve the fixpoint equation = M z. The symbolzerois a
constant of the type of natural numbers, awtcand pred are
unary functions in that type. We useity to denote the only value
inhabiting the unit type. Arifz-expression is a ternary function
and evaluates to either its second or third arguments dépeod
whether its first argument sera The last clause in the grammar
stands for “case of” expressionsifis a left injection then the left
branch is evaluated, and similar for the right branch. Nb& it
bindsz in M and bindsy in N.

Note that the language is explicitly typed; uniqueness pésy
is proved in order to check our definitions. The grammar oégyp
is defined next.

T == Nat
| T—-T
|  Unit

| T+T1

As one can expect, typeatis the type of natural numbergnit
is the unit type,I" — T is the function space arifl + 7" forms
coproducts.

A typing contexis formalised as a finite map from variables to
types. Letl" be a metavariable ranging over typing contexts. We
will use “T", z: t” to denote the extension of the typing contéxt
with a type forz of ¢. Type judgements are triples expressed us-
ing the syntax" > M :: T'. The equational semantics for this lan-
guage are expressed using a logic of typed equations; th#igrot
T'HM~N: Tisused.

Recursive definitions were part of the “core” language in the
approach described i§3.2. Definitions and recursive definitions
are not part of the present language but are “syntactic sgjar
and are defined next in terms of the core language.

DEFINITION 3.8.
let :T:=Nin ME Ax:T.M)-N

DEFINITION 3.9.
letrec :T := N in M £ Az :T.M) - (fizx : T.N)

In order to verify the refactoring one must first prove type-
related lemmas, such as inversion, weakening, strengtemd
the substitution lemma. The substitution lemma assertshibaub-
stitution operation is type-sound. Indeed, proving thesfitution
lemma required much more effort than the correctness pmmof f
the refactoring. This lemma is stated next. The metavagigiill
range over types.

LEMMA 3.10. (Substitution lemma)
I'>N=S A

I'>axaT A

—Captures N L N
Dx:T'>L:T

— T,z:T'> N[L/z] = S

3.5 “Enlarge definition type”
=
x :: T x :: Either T T’
X = ... x := Left ...
L x) ... ...(either f L x)...

“Enlarge the definition type” is a type-based refactoringtth
transforms a definition of a certain type into a coproduchwiite
original term as a left injection. This refactoring might bgeful
for adapting code prior to extending its functionality tokaaise
of the broader type.

The refactoring is specified formally in Theorem 3.11. The-pr
conditionsl' > N :: S, 'z = T,I'> M :: T and
I,y: T > L :: T express the requirement that the original pro-
gram is well-typed and that the newly-introduced exprasgids
of the right type.

The precondition of the3-rule is satisfied by requiring that
—Captures N (z' < z')x{y = L), ~Captures N M and
—Captures L M.

The constraints’ ¢ FV M andy ¢ FV M are placed on
the new variables’ andy. The constraintt ¢ FV L is placed
on the newly-introduced expressi@n These constraints help keep
the specification of the refactoring simple since, for exmipwe
do not assume ¢ F'V L then the refactored program would have
been transformed to:

N[z’ < 2"Vz{y = LinLy 1 M/z])/z]

4. Related work

The work described in this paper was inspired by the formatsp
ification and verification of refactorings described by LO(B, see
Chapter 7). In that chapter of her doctoral dissertationtuds
iesgeneralise a definitiona non-trivial structural refactoring, and
move a definition from one module to anotteemodule-level refac-
toring. The first refactoring is studied for the languagg;.. — this
is an adaptation oko,.n. described by Ariola and Blom (1997).
In order to study the module-level refactoring Li extends i e.
with notions inspired from Haskell’s module system.

Other related work includes the formal, but not mechanised,
work by Cornélio (2004) and Ettinger (2007) for similar 1an
guages resembling a fragment of Java. The mechanisatioarbf p



THEOREM3.11. Enlarge definition type
I>N:z:SATpaaT AT,y:T'>L=T A
—Captures N (z' < z')x{y = L) A

I'>M:T AN =Captures NM AN —Captures LM A
¢ FVMAy¢é¢ FVMAxz ¢ FV L —

Thletz:T:=Min N ~let x:T+T = inLy,m M in N[(z' < 2)x(y = L) /2] =:

S

of Cornélio’s work is described by Junior et al. (2007). Td@
proach used by Cornélio is followed closely in the mecheais:
this involves first proving laws (equations between progaimthe
refinement calculus under study, then defining refactotimggrms
of these laws. The refactorings would be behaviour-préservy
their construction.

The first mechanised verification of refactorings was dbscri
by Garrido and Meseguer (2006), where they use Maude tofgpeci
and verify refactorings for Java. They build on previous kvior
which the semantics of Java were formalised in Maude. Coaapar
to the work described in this paper, Java is clearly a more-pra
tical object-language to address. The work described hadies
fragments of functional languages embedded in an LCF-ptylef
assistant — the checked proofs have higher assurance cuel&d-t
ter. In this work we were more concerned with studying thehoet
rather than aiming for a more complex object language. Tfiage
ments may be extended to study more realistic languaged; or a
ternatively the method might be adapted to study other laggs.
There already exist mechanisations of practical language€F-
style systems with similar logics — for instance C (Norri§98) in
the system HOL — that might be adapted for this purpose.

Garrido and Meseguer (2006) state that their goal is to éeriv
tools from executable specifications in Maude. They also pba
render their method more appealing through language gétyeri
In previous work, Garrido also studied the formalisatiorreffic-
torings for C's preprocessor language in Maude.

5.1 Reflections

In this section we reflect on the experience of proving theacr
torings correct in Isabelle.

511

Using a proof assistant incurred a startup cost but we hawe-be
fited greatly from using Isabelle to mechanise and presentesu
sults. Various similar and complementary tools exist tdsasa

the mechanisation of mathematics, and more are being gmatlo
for the purpose of programming language theory. For exantipte
tool ott (Sewell et al. 2007) reads specifications of programming
languages and can translate them into various other laeguay
cluding ETEX, Isabelle, Coq, etc) and can check the specification
for basic flaws. Rather than mechanising a complete systam, o
could save work by building on a foundation found in a mecha-
nised corpus, if available.

Apart from establishing a theorem, the formal developmant ¢
be used to produce the implementation of the refactoring.prbof
assistant’s program extraction facility can be used toraate this.

The size of the Isabelle development described in this paper
around 5000 lines. Two theory files — containing the formal de
velopment — of roughly equal size were produced, one for each
language studied. An Isabelle theory consists of defirstidem-
mas and proofs, however it may also include, as it did in thiec
additional explanatory material to improve the preseotatvhen

Isabelle usage

The tools Maude and CafeOBJ are related: both are algebraicrendering these theories into formal documents.

specification languages and refactorings are defined astopes

in an algebra. The behaviour of refactorings is describedgus
equations in the algebra’s theory. The refactorings can the
executed by performing rewriting using their equationsrrida
and Meseguer (2006) and Junior et al. (2007) seem to haviasimi
goals albeit using different tools.

There is a wealth of other work concerned with the verifi-
cation of program transformations other than refactorirgs
namide and Okuma (2003) verify the transformations of paogyr
into Continuation-Passing Style (CPS). These transfoomsitare
useful for making the control flow explicit in declarativeopr
grams. Glesner et al. (2007) verify various optimisationshon-
terminating programs. These programs are modelled asmsrea
of states and the authors use coinductive reasoning to phaie
the optimisations are behaviour-preserving. Leroy (22@&s Coq
to verify a compiler back-end translating Cminor (an intediate
language resembling C) to PowerPC assembly code. A fraht-en
is bolted on Leroy’s work by Blazy et al. (2006): they verityet
front-end of a compiler translating a subset of the C prognarg
language into Cminor. A certified compiler is then composechf
the code extracted from either proof.

5. Conclusions

A number of refactorings have been verified mechanicallygiks-
abelle/HOL. The refactorings ranged from simple and eldéargn
to compound structural and type-based refactorings. Thehaie
nisation process also served to reveal the challenges fabed
verifying refactorings formally.

Mechanisation entails finding sensible ways of encodingea th
ory: a naive encoding of the informal methods, althoughesziy
may prove too limiting or inefficient in formal practice. Bhpro-
cess involves experimenting with techniques that are kaithftl
to the theory and also possess some desired practical praper
terms of formal development. The variety of techniques rbiq@a
larly manifest in the embedding of languages. Some of thede t
nigues, such as de Bruijn indices, have been mentioneeearli

As in all fully-formal work, verifying non-trivial refactongs re-
quired first discharging several smaller lemmas in ordeatopkn
the complexity of proving the overall result. In the accopno-
vided here these results were concealed in order to convegha h
level view of the development. The amount of results uneelab
refactoring were particularly appreciable when verifythg refac-
toring described ir§3.5: more than half of all the work needed to
verify this refactoring involved proving type-theoreticogndwork
to arrive at the Substitution Lemma. Such extensive priougd-
work inhibits exploration. For example, changing the siabisbn
operation slightly would have required redoing parts of $u-
stitution Lemma: this is easy for cases suclzam but thecase
of clause is far more challenging. The accumulation of a cogbus
mechanised results would hasten the early phase of develdpm
but perhaps further automated support is needed to adapopse
formalisations for other contexts of use.

5.1.2 Weaker preconditions

In §2.5 we briefly described the benefit of weak preconditions.
Weak preconditions render refactorings more generalplicgble
since they allow the transformation to be effected on a great



number of programs. Thus using weaker preconditions inggov
the specification of refactorings.

For instance, the predica@apturesused above can be replaced
with a stronger alternativ@raps defined in Definition 5.1. It can
be proved thaTrapsimplies Capturesbut not vice versa.

Note that the definition ofrapsis recursive — such a definition
is amenable to automation using the proof assistant’s tenriting
engine: this may facilitate developing the formal proof.

5.1.3 Economy

We sought to make the terms checked by preconditions as amall
possible in order to optimise the definitions of refactosingrying
to split up checks on large terms into several checks on emall
terms can help since it might spare some unnecessary catioputa
When specifying the preconditions, we focused on checking
the original program rather than the transformed versids Ts
beneficial since if checks on the latter fail then the effqrérs
transforming the program would have been wasted, as exglain
in §3.3. This often required further lemmata in order to prove
properties about the transformed program using propesfi¢se
original program.

5.1.4 Language encoding

Low effort techniques for mechanising results on prograngfen-
guages are valuable for verifying source-to-source t@mnsitions

— for instance verifying a source-to-source translatordifferent
versions of a language. These transformations share thectbds-

tic of keeping the transformed code recognisable, partigrbgerv-

ing names. Names are usually chosen by programmers and mus
be handled very carefully by the machine. Changing the names
of variables might be distracting to programmers. Othediof
metaprograms, such as compilers, do not have this requiteime

the verification of such transformations, programs diffgronly in

the names of bound variables can be identified and reprekaste
binding graphs.

For this reason aame-carryingembedding of the language
syntax is usually ideal when studying refactoring. On thieeot
hand, anonymoussyntax lends itself better to automation since
the names are abstracted away and only the pure binding graph
retained.

When implementing a refactoring the syntax can be anonytmise
before transforming the program, but after transformatii@nvari-
ables must be named again. The computer could generate name
from scratch but since the choice of names in programs can mat
ter greatly it would be preferable to attempt to use names fiee
original program. However the original names cannot be used
variable capture or name-clash is detected. This wouldidate
the whole refactoring process and waste the resources @gen
transforming and post-checking the program. It would hastenb
computationally cheaper to leave names in the program aeckch
for clashes before having done any processing.

Not every name-carrying embedding might be suitable; tech-
niques used to study terms in the abstract might not be $aitab
to verify refactorings since these operate on programs.Beren-
dregt Variable Convention, described§8.5, is too strong an as-
sumption for programs. In our formalisation we emulate @is-
vention using theCapturespredicate but the weaker alternative,
Traps would have been a better choice.

Nonetheless, it might be useful to have an anonymous encod-
ing of the programming language. As we have seen earligfyver
ing the refactoring in the typed language involved a consiole
amount of work directed at type-theoretic groundwork. (gsam
anonymous approach would be a partial and “lightweigh#&rala-
tive to a full verification: the effort saved reasoning aboame-
issues could be invested in ensuring type soundness.

5.2 Future work

Further work can be done on a number of fronts. Some posbili
will be elaborated next.

5.2.1 Larger languages and refactorings

One direction for future work involves studying refactginthat
cannot be verified using the method used here — for instanea wh
the original and refactored programs are extensionally, ot
intensionally, equivalent.

The work described in this paper focused on functional pro-
grams. Future work could also address refactorings in ddrer
guage paradigms. This could complement other work done-(Gar
rido and Meseguer 2006; Junior et al. 2007) to study the nmésaa
tion of refactorings’ correctness proofs. Mechanisingsbmantics
of realistic programming languages can be challengingguages
may lack formal semantics, and mechanising formal semantay
require additional work to study the best means of embedtiieig
in the proof assistant’s logic.

Another possible route for research involves studyingdarg
refactorings. It has been suggested that formalised lafgetor-
ings may appear more complex and contain conjunctions df-imp
cations in the consequent rather than just equations. Btarioe,
theMove a definition from one module to anothefactoring veri-
fied by Li (2006, see Chapter 7) has this kind of behaviour.

5.2.2 Mechanised catalogue of refactorings

One could also explore the design space further, as deddribki
(2006,§ 2.8), and gradually build a useful catalogue of mechanised
tefactorings. For example, the refactoring describegBi’ could

be specialised to focus on functions to produce the refactor
“Enlarge return type of a function”. Rather than refactandtions

of typeT — T"into (T' — T') + S, this new refactoring would
instead change the type © — (7" + S). The work described

in §3.5 could then be extended to verify this refactoring. Aeoth
possibility for future work involves extracting refactog engines
from their correctness proofs.

5.2.3 \Verifying other parts of the process

One could also study the refactoring process from start ishfin
— encompassing the three stages describegRifh. This might
involve mechanising work such as the layout-preservatigo-a
rithm described by Li (2006§2.4). Such a mechanisation would

quire one to use different representations of progratastirg
at the token stream and the AST. This would involve verifyting
different tools interacting during this process, incluglithe type-
checker (recall that the preconditions of “Enlarge defimittype”
included several propositions regarding the types of esgio@s).
This would provide further assurance to users of the refagjo
tool: that not only the correctness of refactoring transfations
has been checked, but also that of other related pre/poséegsing
stages.
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DEFINITION 5.1. Traps- a “finer-grained” alternative toCaptures

Trapsi N = &' False
Traps(\i : t.M) Nz L ific FVN Az #i
then x € FV M

else Traps M N x
Traps(M - M2) N x =
Traps(fixi: t.M) N x = ific FVNAx #1

thenx € F'V M
else Traps M N x
Trapszero N x £ False
Traps(succ M) N x £ Traps M N
Traps(pred M) N x = Traps M N x

Traps(ifz M1 My M3) N x = (Traps M1 N z) vV

(Traps M2 N z) vV

(Traps M3 N x)
Trapsunity N x £ False
Traps(inLy M) N x E Traps M N
Traps(inRr M) N x £ Traps M N

Traps((My < y)L(z = Ms)) Nz =

(Traps M1 N z) V (Traps Mz N x)

(y#xNy€ FVNAx€FV M)V

(z#xNz€ FVNAz € FV Ma) V

(Traps L N z)
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