
Mechanical Verification of Refactorings

Nik Sultana
University of Kent

nik.sultana@yahoo.com

Simon Thompson
University of Kent

s.j.thompson@kent.ac.uk

Abstract
In this paper we describe the formal verification of refactorings for
untyped and typed lambda-calculi. This verification is performed
in the proof assistant Isabelle/HOL.

Refactorings are program transformations applied to improve
the design of source code. Well-structured source code is easier
and cheaper to maintain, and this motivates the use of refactor-
ing. These transformations have been implemented as programmer
tools and, as with other metaprogramming tools, it is desirable that
implementations of refactorings are correct. For a refactoring to be
correct the refactored program must be identical in behaviour to the
original program.

Since refactorings are source-to-source transformations, con-
crete program information matters: for example, names (of vari-
ables, procedures, etc) and program layout should also be preserved
by refactoring. This is a particular characteristic of refactorings
since general program transformations operate over machine rep-
resentations of programs, rather than readable source code.

The paper describes the formalisation adopted, and the alterna-
tives explored. It also reflects on some of the difficulties ofper-
forming such formalisations, the interaction between refactoring
and phases such as type-checking and parsing, and the generation
of correct implementations from mechanised proofs.

Categories and Subject DescriptorsD.2.3 [Software Engineer-
ing]: Coding Tools and Techniques; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; D.2.4 [Software Engineering]: Software/Program Verifica-
tion; D.2.13 [Software Engineering]: Reusable Software

General Terms Theory, Verification

Keywords Refactoring, Isabelle/HOL

1. Introduction
Refactorings are program transformations applied to improve the
design of source code. This is important since well-structured
source code is easier and cheaper to maintain (Griswold 1991).

These transformations were initially carried out manuallyat
great expense: this is a repetitive and error-prone task. Inthe last
decade these transformations have been implemented as programs
called refactoring engines. These have been collected intorefactor-
ing tools (Li and Thompson 2008) and integrated with IDEs. As
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with all metaprogramming software, it is desirable that refactoring
engines are correct. Advances in proof assistants have madepossi-
ble the certification of software by verifying the software in a proof
assistant: here we use Isabelle/HOL. This approach is tractable
since it is modular: rather than verifying the whole tool it could
be verified in separate pieces and then combined.

The structural changes effected by refactorings must not change
the behaviour of the refactored program. Moreover, since refactor-
ings transform source code it is important that the refactored code
retains the original source code’s characteristics: names(of vari-
ables, procedures, etc), comments, and layout. Preservingconcrete
program information is very relevant to source-to-source program
transformations since it keeps the source code easily “recognis-
able” to its author.

This paper summarises results described in (Sultana 2007) and
its contributions are: (i) the first verification carried outon refac-
torings using an LCF-style proof assistant, (ii) a number ofcase-
studies on the verification of refactorings in this manner todemon-
strate the method. Within these contributions we explore both the-
oretical and practical aspects – for instance, how the problem is
stated in terms of standardλ-calculus notions, how the verification
process may be made more tractable using a modular approach to
separate the refactoring stage from other parts of the process, and
so on. These are discussed further at the end of the paper together
with a discussion of limits of our approach and suggestions for fu-
ture work.

The remainder of the paper is organised as follows: the refac-
toring process will be described next and some of the choicesmade
during verification will be discussed. The verified refactorings are
presented in§3 and related research is outlined in§4. The paper
then concludes in§5 with a reflection on this work and suggests
directions for future research.

2. Background
Refactorings are organised into a simple dichotomy according to
their complexity and the kind of expressions they are primarily con-
cerned with. A refactoring is said to beelementaryif it cannot be
decomposed into simpler refactorings, and it said to becompoundif
it can be decomposed into simpler refactorings applied in sequence.

If a refactoring targets the structure of program elements (defini-
tions, expressions etc.) then it is said to be astructural refactoring.
A refactoring is also classified according to the level of syntax it
transforms, for examplemodule-levelrefactorings transform pro-
grams at the level of modules rather than expressions. If a refac-
toring targets types of expressions then it is called atype-based
refactoring. Within type-based refactorings one findsdata-oriented
refactorings: these target specifically the types modelling particular
data.



Figure 1. Automated refactoring process

2.1 Stages in refactoring

Li (2006, see Chapter 4) describes refactoring as being madeup
of three stages. This is illustrated in Figure 1. The preprocessing
stage involves producing representations of the program that are
suitable for transformation – this stage involves lexing, parsing,
and possibly further processing to generate a representation of
programs that is more rich than their Abstract Syntax Tree (AST),
if required.

The second stage involves the actual refactoring. Applyinga
refactoring involves two steps: checking the refactoring’s precon-
ditions and transforming the program if the preconditions are satis-
fied by the program.

The last stage involves printing the program representation into
the representation we usually manipulate – a list of characters. For
some programming languages, such as Erlang, it suffices to pretty-
print the program since there is a widely-accepted and adhered-to
layout for programs (Li et al. 2006,§3.1). For other languages, such
as Haskell, further processing is required to ensure that the printed
refactored program mimics the layout of the original program since
the language does not enforce a particular layout.

2.2 Preserving program appearance

Since the layout of Haskell programs can be idiosyncratic, transfor-
mation tools need to take this into account by restoring the original
program’s appearance in the transformed program. For Haskell pro-
grams one could choose between explicit delimitation usingbraces
and using a so-calledoffsidestructure: the delimitation of code
is inferred from the code’s indentation. This is described in the
Haskell Report (Jones et al. 2003,§9.3).

During manual refactoring the preservation of layout and com-
ments is straightforward, but automating this preservation can be
challenging. Li (2006,§2.4) describes the automatic preservation
of program appearance for refactored Haskell programs. Herap-
proach uses two basic program representations: the token stream
and an AST annotated with type and scope information. These two
representations are kept consistent (Li 2006,§4.2.3) since trans-
formations are effected on both: the AST is transformed to effect
changes to the program, and the token stream is also modified to en-
sure that program layout rules are adhered to following the AST’s
transformation. Comments are also preserved – and moved together
with code deemed related – using information in the token stream
and heuristics used to associate comments to code.

Besides program layout and comments, names (of variables,
definitions, etc) are features that should be preserved too.Names
are typically chosen with care in order to improve the program’s
readability. Name information can be obtained from the AST.In the
work described in this paper we focus solely on the main (second)
stage in the refactoring process. Within this stage we concentrate
on the preservation of name information together with program
behaviour. From this point onwards whenever a reference is made
to refactoringwe intend this second stage.

2.3 Correctness property

A refactoring is composed of a collection of preconditions and a
program transformation. When a refactoring is applied to a pro-
gram, the transformation is effected only if all the preconditions
are satisfied by the program. Otherwise the program is returned un-
changed. A refactoring with conjoined preconditions represented
by the effective predicateQ, and effecting program transformation
T , behaves thus:

λp. if (Qp) then (T p) else p

Let ≃ denote a behavioural equivalence over programs. Then in
order to verify the refactoring (establishing that it is behaviour-
preserving for arbitrary programs) one must prove that:

∀p. (Qp) −→ (T p) ≃ p

Apart from p, refactorings are usually parametrised by other
values required by transformationT and which might also be con-
sumed byQ. Let us assume that the parameters have already been
provided and that the refactoring is a curried function – so at this
stage we only see the last formal parameter: the program itself.
Together with the program, the parameter values are inputs to the
refactoring and the values themselves might influence whether the
preconditions are satisfied. For example, therename a variable
refactoring is additionally parametrised by two variable names: the
name to change and the name to change it to. These parameters are
also provided to the refactoring’s preconditions since they include
provisions to ensure that name-clash does not occur as a result of
transformation.

2.4 Models of refactoring

As previously explained, if the preconditions of a refactoring are
not satisfied then the program is not transformed. In implementa-
tions of refactorings, if the preconditions are not satisfied then the
user may be prompted to provide different parameters to the refac-
toring and offered the choice to abandon the refactoring. Let us call
this theinteractivemodel.

A different approach would involve endowing the refactorings
with more automation such that they can autonomously change
parts of the program in order to satisfy the preconditions. The user
is later informed of these changes and might need to effect further
corrective changes. For example, in the event of a name-clash the
refactoring might perform renamings such that the transformation
would still preserve program behaviour. By contrast, this model
involvescompensatingfor preconditions that are not satisfied.

These two models have analogues in theλ-calculus; for exam-
ple, with regards to names a transformation can be defined in a
non-renamingor in a renamingmanner. These lead to interactive
and compensating refactoring definitions respectively. Weopt for
the interactive approach in the research described in this paper. The
two transformation definitions will be described further inthe next
section and the effect each has on the complexity of proofs will be
discussed.

The interactive approach is illustrated by means of a transition
diagram in Figure 2.

2.5 Transformation operations

Transformations might simply replace an (sub)expression with an-
other, or else propagate changes in expressions by usingsubstitu-
tion. Substitution is the canonical transformation operation for clas-
sical λ-calculi – other expositions ofλ-calculi may use different
canonical operations. For example when using nominal techniques
(Urban and Tasson 2005)swappingis the canonical operation.

In order to facilitate reasoning about programs, programs are
usually identified ‘up to renaming of bound variables’. Moreover,



Figure 2. Interactive refactoring

the substitution operations used avoid variable capture byrenaming
bound variables automatically on demand.

When reasoning formally this creates a contention between
informal practise and the complexity of formal proofs. Arenaming
substitution operation might introduce fresh names, implying that
equations between expressions in which substitution takesplace
must be proved modulo renaming of bound variables. In order to
simplify this process it is convenient to anonymise syntax,as in
de Bruijn indices and levels (de Bruijn 1972), since this avoids any
explicit concrete renaming. As illustrated by Berghofer and Urban
(2007), a theorem’s formulation in a system encoded using first-
order abstract syntax and using a renaming substitution operation
would appear as follows (note that the universal closure ofx and
M is left implicit) :

∀L. x /∈ FV M −→ M [L/x] ≡α M

Using anonymous syntax or name-carrying syntax where the set
of variable names is restricted, as in the approach described by
Berghofer and Urban, this result would be formulated thus:

∀L. x /∈ FV M −→ M [L/x] = M

Berghofer and Urban call themechanicalproof of the first
theorem atour de forcedue to the combination of explicitα-
equivalence with the renaming substitution operation because of
the latter’s provision of new names. The second theorem is proved
comparatively easily by straightforward induction on the structure
of expressions.

Anonymous syntax is criticised because of poor readability, but
in the case of refactoring this encoding is particularly unsuitable
since namesdo matter, therefore they should not be abstracted

away. Moreover, the model of refactoring we will use, described
in the previous section, does not use a renaming substitution oper-
ation. The substitution operation used allows variable-capture and
does not rename variables, so theorems are formulated as equations
rather than identity moduloα-renaming.

In order to compensate for using this substitution operation the
β rule will be made partial: it has non-capture as a side-condition.
Variable capture can be defined strongly as in the BarendregtVari-
able Convention (BVC): reasoning is constrained to a subsetof Λ
where free variables of an arbitrary expression and bound variables
of another arbitrary expression do not overlap (Barendregt1984,
§2.1.13). A weaker definition, sometimes expressed as a predicate
calledTraps, involves checking that capture does not occur when
the operand is placed in occurrences of the variable in the opera-
tor. Either of these ensure that free variables do not becomebound
duringβ-reduction, thus keeping the theory consistent.

The BVC is formalised in Definition 3.2,Traps is defined in
Definition 5.1, and§5.1.2 discusses this further.

2.6 Proof development

In order to verify the refactorings the programming languages for
which refactoring was studied were embedded in the system Is-
abelle/HOL (Nipkow et al. 2002). Isabelle provides a metalogic
within which logics can be embedded. It also provides services,
for instance unification, which are inherited by object logics. Other
services can be instantiated, such as extraction of proof terms. We
used the logic HOL, a higher-order logic as first used in the system
HOL (Gordon and Melham 1993).

Isabelle is an LCF-style proof assistant. That is, it is imple-
mented as a library for a programming language (ML) that serves



as its metalanguage. Within this metalanguage is implemented an
abstract datatype of theorems and proofs are terms inhabiting that
type. Proof checking is done by means of type checking – this is
decidable for the type system used by ML. One of the guiding prin-
ciples in Isabelle’s design is its reliance on a small trusted kernel to
ensure sound inference: this is called thede Bruijn principle.

Formal verification through theorem proving is an expensive
process, but offers attractive advantages beyond the assurance it
provides. The proofs may be rendered more intelligible by using
a declarative style – in Isabelle this is called Isar (Wenzel2002) –
thus resembling the proofs used in mathematics. Isabelle also pro-
vides tools for marking-up formal developments for LATEX output
and extracting programs from proofs.

3. Verification case-studies
This section presents the verification of two refactorings;this work
is described in full in (Sultana 2007).

The first refactoring is acompoundrefactoring. It will be spec-
ified and verified for theλ-calculus extended with recursive defi-
nitions. The second refactoring is atype-basedrefactoring defined
over PCF (Plotkin 1977) extended with unit and sum types. The
first language is inspired by the work in (Li 2006, see Chapter7)
on the formal verification of theGeneralise a definitionrefactoring.
Subsequently we studied refactorings in the second language in or-
der to appreciate the effect of the complexity of the language and
its features – including types.

Since the methods used to verify these refactorings are very
similar the general approach will be outlined first then a description
of the specific results will follow.

3.1 Method

Both programming languages are encoded as first-order abstract
syntax with concrete variable names. The lambda calculus ex-
tended with recursive definitions has two syntactic categories: ex-
pressions and definitions. These grammatical categories are mu-
tually dependent – this will affect definitions and proofs for this
language. The second language has a single grammatical category
defining expressions in the language.

In what follows we useM as a metavariable ranging over
expressions,D ranges over definitions, andv over variables.
Metavariables may appear primed or indexed.

Various meta-linguistic functions are defined. Several of these
are standard – including the functionFV that returns the set of
free variables and the functionBV that returns the set of bound
variables in an expression. The first language has another function
over expressions calledDV . It returns the set of variables bound by
recursive definitions. The substitution operation is defined to allow
name-capture, as explained in§2.5.

Two important predicates over expressions are defined. The first
predicate,Fresh, indicates that a variable is fresh relative to an
expression. That is, the variable does not appear free or bound
in the expression. A weaker definition may also be used: that the
variable does not appear free in the expression. However thesecond
definition allows shadowing to take place. The definition ofFresh
used in the first language is given next; the definition used inthe
second language is similar but omits the last conjunct.

DEFINITION 3.1.

Fresh v M
def
= (v /∈ FV M) ∧ (v /∈ BV M) ∧ (v /∈ DV M)

The infix notationv♯M will be used instead ofFresh v M . The
second predicate,Captures, indicates whether substituting an ex-
pression into another expression will lead to previously-free vari-
ables become bound. The definition ofCapturesused in the first

language is given next. The definition used in the second language
is similar but omits the last disjunct.

DEFINITION 3.2.

Captures M N
def
= ∃v ∈ FV N. (v ∈ BV M) ∨ (v ∈ DV M)

The language semantics are defined as an equational logic over
programs. This logic is embedded in HOL using an inductive re-
lation definition. The rules of the logic induce an intensional be-
havioural equivalence based onβη-equivalence. It has already been
suggested that theβ-rules of both logics – each logic correspond-
ing to one of the programming languages – are “partial” sincethey
are conditional on¬Captures. The predicateFreshplays a rôle in
the definition of the logics too: it is used in the side-condition for
ruleα.

Since the first language has two syntactic categories, definitions
must be given for each category. For example,Freshmust be de-
fined for both expressions and definitions. Functions and predicates
defined for definitions will have their names suffixed with “d”– for
instance,Freshdis the analogue ofFreshover definitions.

Refactorings are specified by universal HOL implications whose
antecedents are the preconditions and whose consequents are for-
mulae in the equational logic. Typically, correctness proofs are
performed by induction on the structure of expressions. However
in the case of the first language proofs are done by simultaneous
induction. This is due to the mutually-dependent nature of gram-
matical categories in the language,

Verifying the type-based refactoring also required proving sev-
eral lemmas about the type-system, e.g. that substitution preserves
well-typing. Such results were proved by induction on the structure
of the derivations of type judgements.

3.2 Elementary refactorings

Using this refactoring one could extract a definition from a pro-
gram and replace occurrences of the expression it defines by the
definition’s name. The set of expressions in the language forwhich
this refactoring is studied is the least set induced by the following
grammar:

M ::= x Variable
| λx.M Abstraction
| M · N Application
| letrec D in M Definition

Definitions are formed from the following grammar:

D ::= ε Empty definition
| x := M Single definition
| D ‖ D′ Parallel definitions

Definitions are well-formed if and only if two parallel defini-
tions do not define the same name.
Note that the two grammars are mutually dependent. This requires
definitions to be given in “pairs” in order to be defined over both
expressions and definitions. For instance,BVd is a function over
definitions returning the set ofλ-bound variables in a definition.
PredicateFreshdis defined in the same way asFreshbut usesBVd
instead ofBV. The substitution operation we use in this language is
described in Definition 3.4 – note that the operation is overloaded
in order to use the same notation for substitution over expressions
and substitution over definitions. The metavariablesi, x will range
over variables andN will range over expressions in what follows.
The termM [N/x] expresses the substitution ofN for x in M .

The predicateDVTop that appears in the following definition
is a restriction ofDV to the definitions affecting the body of an
expression. For instance, assume thatx 6= y and letL abbreviate



LEMMA 3.3. Demote a definition
¬Captures (letrec f := letrec h :=N in M in L) N ∧ h 6= f ∧ ¬Captures L M ∧
¬Captures N M ∧ ¬Captures L h ∧ ¬Captures N f ∧ ¬Captures fix f
−→ letrec h :=N in letrec f :=M in L ≃ letrec h :=N in letrec f :=(letrec h :=N in M) in L

the expression:

letrec x := (letrec y := N in N ′) in M

ThenDV L is{x, y} andDVTop L is{x}. The operationDVTopd
is the analogue ofDVTopdefined over definitions instead of expres-
sions.

DEFINITION 3.4. Variable-capturing substitution
ε[M/x]

def
= ε

(y := N)[M/x]
def
= if x = y then y := N

else y := (N [M/x])

(D1 ‖ D2)[M/x]
def
= if x ∈ DVTopd (D1 ‖ D2)

then (D1 ‖ D2)
else (D1[M/x] ‖ D2[M/x])

i[M/x]
def
= if x = i then M else i

(λi.N)[M/x]
def
= if x = i then λi.N

else λi.(N [M/x])

(N · N ′)[M/x]
def
= (N [M/x]) · (N ′[M/x])

(letrec D in N)[M/x]
def
= if x ∈ DVTopd (letrec D in N)

then (letrec D in N)
else letrec (D[M/x]) in (N [M/x])

The sole judgement of equational logic is defined as an induc-
tive relation≃ ⊆ Λ × Λ. The rules of the logic consist of the rules
for theoryλη together with rules making≃ an equivalence relation
compatible with respect to application and abstraction (the latter
rule is often calledweak extensionality, or ξ), and rules for con-
verting letrecexpressions into expressions in the pure (letrec-free)
λ-calculus. Expressions only have meaning if they can be converted
into the pure calculus.

The verification of “extract a definition” proceeds by first ver-
ifying the elementary refactorings that constitute it and then com-
posing these results. The refactorings will be described next using
pseudocode fragments together with informal descriptionsof each
refactoring’s preconditions and the transformation it effects. This
will be followed by a formal specification of the refactoring.

Add/drop a redundant definition�

�

�

�
f := ...

⇆

h := ...
f := ...

The pseudocode fragment above illustrates the change effected
by this refactoring – original code is displayed in the left pane and
the refactored code is shown in the right pane.

This refactoring adds or removes a definition; the variable
bound to this definition (i.e. the name of the definition) mustnot
appear free in the body of the expression.

LEMMA 3.5. Add/drop a redundant definition

h /∈ FV L ∧ ¬Captures L N −→ L ≃ letrec h :=N in L

The first formal precondition requires that no variable cap-
ture results from the user’s choice ofh. The second conjunct in
the precondition might appear superfluous – particularly since it

would not appear in anη-rule for letrec. However recall thatle-
trec-expressions are not attributed any meaning unless they canbe
translated intoletrec-free expressions in the pure calculus – the
rules for this translation are provided as part of the logic.Once
translated into pureλ-expressions the computation would proceed
by β-reduction. As explained in§2.5 theβ-rule used in this sys-
tem is partial and the reduction is conditional upon the satisfaction
of ¬Captures L N . Many similar preconditions will appear in the
next refactorings for the same reason.

Demote a definition'

&

$

%

h := H
in let f := F
in ...

⇆

h := H
in let f := F
in let h := H
in ...

This refactoring reproduces the outermost definition inside the
definition directly below it. We look at a particular instance of this
refactoring; as mentioned by Li (2006,§2.8) it is not uncommon
to find varying definitions of similar refactorings. The elementary
refactorings being described here will ultimately serve toaccom-
modate the compound refactoring being verified, and thus may
seem awkward for individual application.

Compared to the refactoring described previously, this refactor-
ing is more sophisticated and has many more preconditions. This
refactoring’s correctness is formulated in Lemma 3.3. Notethatfix
is not part of the grammar of the language being used here. It stands
for an expression in the language that behaves like a fixpointcom-
binator, therefore we need to ensure that the choice of variables
in this expression will not lead to capture when this expression is
evaluated – thus the precondition¬Captures fix f . In the language
described in the next section,fix is a primitive notion and a precon-
dition such as this will not be necessary since the unwindingof
fix is done using a rule in the logic rather than byβ-reducing the
expression denoted byfix.

The preconditionh 6= f is needed since ifh = f then M
andN cannot be arbitrary expressions. Finally, preconditions such
as¬Captures L M are required to ensure that both the original
and refactored programs can be translated intoβ-redexes – re-
call that this was explained for the precondition of the previous
refactoring. Moreover, preconditions such as¬Captures L h and
¬Captures N f are needed to ensure that the refactoring will pre-
serve non-recursion whenh andf define non-recursive definitions.
These preconditions also serve to preserve recursion on thesame
definition. Definitions are used by simply replacing occurrences of
their defining variables with the expressions they define; these pre-
conditions ensure that the expression being replaced is notdifferent
in meaning.



Declare/inline a definition�

�

�

�
f := ...N...

⇆

f := let g := N
in ...g...

This refactoring produces a local definition from a subexpres-
sion. When applied in the opposite direction this refactoring inlines
a definition in all its calling sites – that is, in all free occurrences of
the variable with which it is bound. As explained for the previous
refactoring, there may be different ways of specifying a particular
refactoring. For instance, the definition of this particular refactor-
ing contains a toplevel definitionf which might seem unecessary.
The refactoring was specified in this manner due to its rôle in the
compound refactoring it features in, as will be seen in§3.3.

Some new definitions appear in the specification of this refac-
toring. The substitution operationM [g :N ] substitutes variables for
expressions,Rec (g :=N) is true wheneverg :=N is recursive (i.e.
g is free inN ), andN ⊆Λ M is true whenN is a subexpression of
M .

LEMMA 3.6. Declare/Inline a definition
¬Rec (g :=N) ∧ (g ♯ (f :=M)) ∧ (N ⊆Λ M) ∧
¬Capturesd (f :=M)N ∧ f /∈ DVTop N −→
letrec f :=M in L ≃ letrec f := letrec g :=N in M [g :N ] in L

The precondition¬Capturesd (f :=M) N ensures that the
side-condition of theβ-rule is satisfied. Recall thatCapturesdis the
analogue of the predicateCapturesdefined over definitions rather
than expressions. As in the previous refactoring,f /∈ DVTop N
ensures that non-recursion is preserved, or iff := M is recursive
that the recursion on the same definition will be preserved.

The proviso thatg ♯ (f := M) stipulates that the name chosen
for the new definition is fresh. The expression in the new definition
was formerly a subexpression of the main expression, by precondi-
tion N ⊆Λ M .

Recall that definitions are used by simply inlining them in place
of their defining variables. The precondition¬Rec (g :=N) re-
quires the definition to be non-recursive since when this definition
is removed (in the right-to-left direction) recursion would no longer
be made on the same definition ofg and thus the meaning of the ex-
pression would have been changed.

3.3 “Extract a definition”�

�

�

�
f := ...N...

⇆

g := N
f := ...g...

“Extract a definition” is a non-trivial, compound refactoring
which we define by composing the previous three refactorings
using the transitivity rule. The compound refactoring involves the
following steps:

1. letrec f := M in L is the original expression, and is changed
to

2. letrec f := letrec g := N in M [g : N ] in L by “declare a
definition”, then to

3. letrec g := N in letrec f := letrec g := N in M [g : N ] in L
using “add a redundant definition”, and finally to

4. letrec g :=N in letrec f :=M [g :N ] in L by using “demote a
definition”.

As any compound refactoring, this refactoring inherits thepre-
conditions of its constituent refactorings. It is not always obvious
which refactorings the preconditions originate from sincethe pre-
conditions might need to be adapted to optimise the refactoring.
Moreover, further adaptation of the preconditions may be neces-
sary in order to “interface” between the constituent refactorings
– i.e. proving that the output of a refactoring in a compound al-
ways satisfies the precondition of a successive refactoring. Roberts
(1999) calls thesepostconditions; they serve to lessen the number
of potentially wasteful checks made on programs after they have
been transformed.

For example, when the compound refactoring arrived at the last
step – that is, “lift or demote a definition” – the following had to be
checked for satisfaction:

¬Captures (letrec f := letrec g :=N in M [g :N ] in L) N∧
g 6= f ∧ ¬Captures L (M [g :N ]) ∧
¬Captures N (M [g :N ]) ∧ ¬Captures L g ∧
¬Captures N f ∧ ¬Captures fix f

These are the preconditions of the “lift/demote a definition” refac-
toring instantiated to the refactored program produced so far in the
“extract a definition” refactoring. Note that the first, third and fourth
conjuncts of this formula are propositions concerning a (intermedi-
ate) transformed program. As the program is transformed by each
constituent refactoring in turn, the preconditions of eachsuccessive
refactoring need to be satisfied by the refactored program.

Proving additional lemmas about the implication of precondi-
tions pertaining to constituent refactorings from the preconditions
of the compound refactoring supports the construction of com-
pound refactorings. This is because it guarantees that if the com-
pound preconditions are satisfied then the compound refactoring
can be effected in its entirety. This also has economic significance:
if a compound refactoring is aborted in an intermediate stage be-
cause of failed preconditions then the computing resourcesex-
pended checking and transforming until that point would have been
wasted.

To improve the specification of the compound refactorings we
have proved such additional lemmas, and the compound refactoring
process can be illustrated as follows:

1. The compound refactoring’s precondi-
tions are checked and found to be satis-
fied.

2. The first constituent refactoring’s trans-
formation is effected. The satisfaction
of its preconditions usually follows the
compound refactoring’s preconditions
directly, but small adaptations may be
done – for instance, where the com-
pound’s preconditions are in a different
form to accommodate the preconditions
of several constituent refactorings.

3. The second constituent refactoring’s
transformation is effected, its precondi-
tions having been guaranteed to be sat-
isfied once the compound’s precondi-
tions have been satisfied.
The process continues; satisfaction of
the compound’s preconditions guaran-
tees that preconditions of all constituent
refactorings will be satisfied.



The main result is stated formally as follows:

THEOREM 3.7. Extract a definition
g /∈ FV L ∧
¬Rec (g :=N) ∧
g ♯ (f :=M) ∧
N ⊆Λ M ∧
¬Captures fix f ∧
¬Captures L g ∧
¬Captures N f ∧
¬Captures L M ∧
¬Captures N M ∧
¬Captures letrec f := letrec g :=N in M in L N ∧
¬Captures L (M [g :N ]) ∧ ¬Captures N (M [g :N ]) −→
letrec f :=M in L ≃ letrec g :=N in letrec f :=M [g :N ] in L

3.4 Type-based refactoring

The same conventions and metavariables used in the precioussec-
tion will be used there. The additional metavariableT will range
over types. The grammar of the language is the following:

M ::= x
| λx : T.M
| M · N
| fix x : T.M
| unity
| zero
| succ M
| pred M
| ifz L M N
| inLT M
| inRT M
| 〈M ⇐ x〉L〈y ⇒ N〉

The clausefix x :T.M bindsx in M and is unfolded recursively
to solve the fixpoint equationx = M x. The symbolzero is a
constant of the type of natural numbers, andsuccand pred are
unary functions in that type. We useunity to denote the only value
inhabiting the unit type. Anifz-expression is a ternary function
and evaluates to either its second or third arguments depending on
whether its first argument iszero. The last clause in the grammar
stands for “case of” expressions: ifL is a left injection then the left
branch is evaluated, and similar for the right branch. Note that it
bindsx in M and bindsy in N .

Note that the language is explicitly typed; uniqueness of types
is proved in order to check our definitions. The grammar of types
is defined next.

T ::= Nat

| T → T ′

| Unit
| T + T ′

As one can expect, typeNat is the type of natural numbers,Unit
is the unit type,T → T ′ is the function space andT + T ′ forms
coproducts.

A typing contextis formalised as a finite map from variables to
types. LetΓ be a metavariable ranging over typing contexts. We
will use “Γ, x : t” to denote the extension of the typing contextΓ
with a type forx of t. Type judgements are triples expressed us-
ing the syntaxΓ ⊲ M :: T . The equational semantics for this lan-
guage are expressed using a logic of typed equations; the notation
Γ ⊢ M ≃ N :: T is used.

Recursive definitions were part of the “core” language in the
approach described in§3.2. Definitions and recursive definitions
are not part of the present language but are “syntactic sugaring”
and are defined next in terms of the core language.

DEFINITION 3.8.

let x :T := N in M
def
= (λx : T.M) · N

DEFINITION 3.9.

letrec x :T := N in M
def
= (λx : T.M) · (fix x : T.N)

In order to verify the refactoring one must first prove type-
related lemmas, such as inversion, weakening, strengthening and
the substitution lemma. The substitution lemma asserts that the sub-
stitution operation is type-sound. Indeed, proving the substitution
lemma required much more effort than the correctness proof for
the refactoring. This lemma is stated next. The metavariableS will
range over types.

LEMMA 3.10. (Substitution lemma)
Γ ⊲ N :: S ∧
Γ ⊲ x :: T ∧
¬Captures N L ∧
Γ, x : T ′

⊲ L :: T
−→ Γ, x : T ′

⊲ N [L/x] :: S

3.5 “Enlarge definition type”'

&

$

%

x :: T
x := ...

...(f x)...

⇆

x :: Either T T’
x := Left ...

...(either f L x)...

“Enlarge the definition type” is a type-based refactoring that
transforms a definition of a certain type into a coproduct with the
original term as a left injection. This refactoring might beuseful
for adapting code prior to extending its functionality to make use
of the broader type.

The refactoring is specified formally in Theorem 3.11. The pre-
conditionsΓ ⊲ N :: S, Γ ⊲ x :: T , Γ ⊲ M :: T and
Γ, y : T ′

⊲ L :: T express the requirement that the original pro-
gram is well-typed and that the newly-introduced expression L is
of the right type.

The precondition of theβ-rule is satisfied by requiring that
¬Captures N 〈x′ ⇐ x′〉x〈y ⇒ L〉, ¬Captures N M and
¬Captures L M .

The constraintsx′ /∈ FV M and y /∈ FV M are placed on
the new variablesx′ andy. The constraintx /∈ FV L is placed
on the newly-introduced expressionL. These constraints help keep
the specification of the refactoring simple since, for example, if we
do not assumex /∈ FV L then the refactored program would have
been transformed to:

N [〈x′ ⇐ x′〉x〈y ⇒ L[inLT+T ′ M/x]〉/x]

4. Related work
The work described in this paper was inspired by the formal spec-
ification and verification of refactorings described by Li (2006, see
Chapter 7). In that chapter of her doctoral dissertation Li stud-
iesgeneralise a definition, a non-trivial structural refactoring, and
move a definition from one module to another, a module-level refac-
toring. The first refactoring is studied for the languageλLetrec – this
is an adaptation ofλ◦name described by Ariola and Blom (1997).
In order to study the module-level refactoring Li extendsλLetrec

with notions inspired from Haskell’s module system.
Other related work includes the formal, but not mechanised,

work by Cornélio (2004) and Ettinger (2007) for similar lan-
guages resembling a fragment of Java. The mechanisation of part



THEOREM 3.11. Enlarge definition type
Γ ⊲ N :: S ∧ Γ ⊲ x :: T ∧ Γ, y : T ′

⊲ L :: T ∧
¬Captures N 〈x′ ⇐ x′〉x〈y ⇒ L〉 ∧
Γ ⊲ M :: T ∧ ¬Captures N M ∧ ¬Captures L M ∧
x′ /∈ FV M ∧ y /∈ FV M ∧ x /∈ FV L −→
Γ ⊢ let x :T := M in N ≃ let x :T +T ′ := inLT+T ′ M in N [〈x′ ⇐ x′〉x〈y ⇒ L〉/x] :: S

of Cornélio’s work is described by Junior et al. (2007). Theap-
proach used by Cornélio is followed closely in the mechanisation:
this involves first proving laws (equations between programs) in the
refinement calculus under study, then defining refactoringsin terms
of these laws. The refactorings would be behaviour-preserving by
their construction.

The first mechanised verification of refactorings was described
by Garrido and Meseguer (2006), where they use Maude to specify
and verify refactorings for Java. They build on previous work in
which the semantics of Java were formalised in Maude. Compared
to the work described in this paper, Java is clearly a more prac-
tical object-language to address. The work described here studies
fragments of functional languages embedded in an LCF-styleproof
assistant – the checked proofs have higher assurance due to the lat-
ter. In this work we were more concerned with studying the method
rather than aiming for a more complex object language. Thesefrag-
ments may be extended to study more realistic languages, or al-
ternatively the method might be adapted to study other languages.
There already exist mechanisations of practical languagesin LCF-
style systems with similar logics – for instance C (Norrish 1998) in
the system HOL – that might be adapted for this purpose.

Garrido and Meseguer (2006) state that their goal is to derive
tools from executable specifications in Maude. They also plan to
render their method more appealing through language genericity.
In previous work, Garrido also studied the formalisation ofrefac-
torings for C’s preprocessor language in Maude.

The tools Maude and CafeOBJ are related: both are algebraic
specification languages and refactorings are defined as operations
in an algebra. The behaviour of refactorings is described using
equations in the algebra’s theory. The refactorings can then be
executed by performing rewriting using their equations. Garrido
and Meseguer (2006) and Junior et al. (2007) seem to have similar
goals albeit using different tools.

There is a wealth of other work concerned with the verifi-
cation of program transformations other than refactorings. Mi-
namide and Okuma (2003) verify the transformations of programs
into Continuation-Passing Style (CPS). These transformations are
useful for making the control flow explicit in declarative pro-
grams. Glesner et al. (2007) verify various optimisations on non-
terminating programs. These programs are modelled as streams
of states and the authors use coinductive reasoning to provethat
the optimisations are behaviour-preserving. Leroy (2006)uses Coq
to verify a compiler back-end translating Cminor (an intermediate
language resembling C) to PowerPC assembly code. A front-end
is bolted on Leroy’s work by Blazy et al. (2006): they verify the
front-end of a compiler translating a subset of the C programming
language into Cminor. A certified compiler is then composed from
the code extracted from either proof.

5. Conclusions
A number of refactorings have been verified mechanically using Is-
abelle/HOL. The refactorings ranged from simple and elementary
to compound structural and type-based refactorings. The mecha-
nisation process also served to reveal the challenges facedwhen
verifying refactorings formally.

5.1 Reflections

In this section we reflect on the experience of proving these refac-
torings correct in Isabelle.

5.1.1 Isabelle usage

Using a proof assistant incurred a startup cost but we have bene-
fited greatly from using Isabelle to mechanise and present our re-
sults. Various similar and complementary tools exist to assist in
the mechanisation of mathematics, and more are being developed
for the purpose of programming language theory. For example, the
tool ott (Sewell et al. 2007) reads specifications of programming
languages and can translate them into various other languages (in-
cluding LATEX, Isabelle, Coq, etc) and can check the specification
for basic flaws. Rather than mechanising a complete system, one
could save work by building on a foundation found in a mecha-
nised corpus, if available.

Apart from establishing a theorem, the formal development can
be used to produce the implementation of the refactoring. The proof
assistant’s program extraction facility can be used to automate this.

The size of the Isabelle development described in this paperis
around 5000 lines. Two theory files – containing the formal de-
velopment – of roughly equal size were produced, one for each
language studied. An Isabelle theory consists of definitions, lem-
mas and proofs, however it may also include, as it did in this case,
additional explanatory material to improve the presentation when
rendering these theories into formal documents.

Mechanisation entails finding sensible ways of encoding a the-
ory: a naı̈ve encoding of the informal methods, although correct,
may prove too limiting or inefficient in formal practice. This pro-
cess involves experimenting with techniques that are both faithful
to the theory and also possess some desired practical property in
terms of formal development. The variety of techniques is particu-
larly manifest in the embedding of languages. Some of these tech-
niques, such as de Bruijn indices, have been mentioned earlier.

As in all fully-formal work, verifying non-trivial refactorings re-
quired first discharging several smaller lemmas in order to dampen
the complexity of proving the overall result. In the accountpro-
vided here these results were concealed in order to convey a high-
level view of the development. The amount of results unrelated to
refactoring were particularly appreciable when verifyingthe refac-
toring described in§3.5: more than half of all the work needed to
verify this refactoring involved proving type-theoretic groundwork
to arrive at the Substitution Lemma. Such extensive prior ground-
work inhibits exploration. For example, changing the substitution
operation slightly would have required redoing parts of theSub-
stitution Lemma: this is easy for cases such aszero, but thecase
of clause is far more challenging. The accumulation of a corpusof
mechanised results would hasten the early phase of development,
but perhaps further automated support is needed to adapt previous
formalisations for other contexts of use.

5.1.2 Weaker preconditions

In §2.5 we briefly described the benefit of weak preconditions.
Weak preconditions render refactorings more generally-applicable
since they allow the transformation to be effected on a greater



number of programs. Thus using weaker preconditions improves
the specification of refactorings.

For instance, the predicateCapturesused above can be replaced
with a stronger alternativeTraps, defined in Definition 5.1. It can
be proved thatTrapsimpliesCapturesbut not vice versa.

Note that the definition ofTrapsis recursive – such a definition
is amenable to automation using the proof assistant’s term rewriting
engine: this may facilitate developing the formal proof.

5.1.3 Economy

We sought to make the terms checked by preconditions as smallas
possible in order to optimise the definitions of refactorings. Trying
to split up checks on large terms into several checks on smaller
terms can help since it might spare some unnecessary computation.

When specifying the preconditions, we focused on checking
the original program rather than the transformed version. This is
beneficial since if checks on the latter fail then the effort spent
transforming the program would have been wasted, as explained
in §3.3. This often required further lemmata in order to prove
properties about the transformed program using propertiesof the
original program.

5.1.4 Language encoding

Low effort techniques for mechanising results on programming lan-
guages are valuable for verifying source-to-source transformations
– for instance verifying a source-to-source translator fordifferent
versions of a language. These transformations share the characteris-
tic of keeping the transformed code recognisable, partly bypreserv-
ing names. Names are usually chosen by programmers and must
be handled very carefully by the machine. Changing the names
of variables might be distracting to programmers. Other kinds of
metaprograms, such as compilers, do not have this requirement; in
the verification of such transformations, programs differing only in
the names of bound variables can be identified and represented as
binding graphs.

For this reason aname-carryingembedding of the language
syntax is usually ideal when studying refactoring. On the other
hand, anonymoussyntax lends itself better to automation since
the names are abstracted away and only the pure binding graphis
retained.

When implementing a refactoring the syntax can be anonymised
before transforming the program, but after transformationthe vari-
ables must be named again. The computer could generate names
from scratch but since the choice of names in programs can mat-
ter greatly it would be preferable to attempt to use names from the
original program. However the original names cannot be usedif
variable capture or name-clash is detected. This would invalidate
the whole refactoring process and waste the resources expended
transforming and post-checking the program. It would have been
computationally cheaper to leave names in the program and check
for clashes before having done any processing.

Not every name-carrying embedding might be suitable; tech-
niques used to study terms in the abstract might not be suitable
to verify refactorings since these operate on programs. TheBaren-
dregt Variable Convention, described in§2.5, is too strong an as-
sumption for programs. In our formalisation we emulate thisCon-
vention using theCapturespredicate but the weaker alternative,
Traps, would have been a better choice.

Nonetheless, it might be useful to have an anonymous encod-
ing of the programming language. As we have seen earlier, verify-
ing the refactoring in the typed language involved a considerable
amount of work directed at type-theoretic groundwork. Using an
anonymous approach would be a partial and “lightweight” alterna-
tive to a full verification: the effort saved reasoning aboutname-
issues could be invested in ensuring type soundness.

5.2 Future work

Further work can be done on a number of fronts. Some possibilities
will be elaborated next.

5.2.1 Larger languages and refactorings

One direction for future work involves studying refactorings that
cannot be verified using the method used here – for instance when
the original and refactored programs are extensionally, but not
intensionally, equivalent.

The work described in this paper focused on functional pro-
grams. Future work could also address refactorings in otherlan-
guage paradigms. This could complement other work done (Gar-
rido and Meseguer 2006; Junior et al. 2007) to study the mechanisa-
tion of refactorings’ correctness proofs. Mechanising thesemantics
of realistic programming languages can be challenging: languages
may lack formal semantics, and mechanising formal semantics may
require additional work to study the best means of embeddingthem
in the proof assistant’s logic.

Another possible route for research involves studying larger
refactorings. It has been suggested that formalised large refactor-
ings may appear more complex and contain conjunctions of impli-
cations in the consequent rather than just equations. For instance,
theMove a definition from one module to anotherrefactoring veri-
fied by Li (2006, see Chapter 7) has this kind of behaviour.

5.2.2 Mechanised catalogue of refactorings

One could also explore the design space further, as described by Li
(2006,§ 2.8), and gradually build a useful catalogue of mechanised
refactorings. For example, the refactoring described in§3.5 could
be specialised to focus on functions to produce the refactoring
“Enlarge return type of a function”. Rather than refactor functions
of typeT → T ′ into (T → T ′) + S, this new refactoring would
instead change the type toT → (T ′ + S). The work described
in §3.5 could then be extended to verify this refactoring. Another
possibility for future work involves extracting refactoring engines
from their correctness proofs.

5.2.3 Verifying other parts of the process

One could also study the refactoring process from start to finish
– encompassing the three stages described in§2.1. This might
involve mechanising work such as the layout-preservation algo-
rithm described by Li (2006,§2.4). Such a mechanisation would
require one to use different representations of programs, starting
at the token stream and the AST. This would involve verifyingthe
different tools interacting during this process, including the type-
checker (recall that the preconditions of “Enlarge definition type”
included several propositions regarding the types of expressions).
This would provide further assurance to users of the refactoring
tool: that not only the correctness of refactoring transformations
has been checked, but also that of other related pre/post-processing
stages.
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DEFINITION 5.1. Traps– a “finer-grained” alternative toCaptures

Trapsi N x
def
= False

Traps(λi : t.M) N x
def
= if i ∈ FV N ∧ x 6= i

then x ∈ FV M
else Traps M N x

Traps(M1 · M2)N x
def
= (Traps M1 N x) ∨ (Traps M2 N x)

Traps(fix i : t.M) N x
def
= if i ∈ FV N ∧ x 6= i

then x ∈ FV M
else Traps M N x

Trapszero N x
def
= False

Traps(succ M) N x
def
= Traps M N x

Traps(pred M) N x
def
= Traps M N x

Traps(ifz M1 M2 M3) N x
def
= (Traps M1 N x) ∨

(Traps M2 N x) ∨
(Traps M3 N x)

Trapsunity N x
def
= False

Traps(inLT M) N x
def
= Traps M N x

Traps(inRT M) N x
def
= Traps M N x

Traps(〈M1 ⇐ y〉L〈z ⇒ M2〉) N x
def
= (y 6= x ∧ y ∈ FV N∧ x ∈ FV M1) ∨

(z 6= x ∧ z ∈ FV N∧ x ∈ FV M2) ∨
(Traps L N x)
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