
Li, Huiqing and Thompson, Simon (2003) Tool Support for Refactoring
Functional Programs. In: Jeuring, Johan, ed. Proceedings of the 2nd Workshop
on Refactoring Tools. ACM, pp. 27-38. ISBN 1-58113-758-3.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/13934/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/1636642.1636644

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/13934/
https://doi.org/10.1145/1636642.1636644
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Tool Support for Refactoring Functional Programs

Huiqing Li
H.Li@kent.ac.uk

Claus Reinke
C.Reinke@kent.ac.uk

Simon Thompson
S.J.Thompson@kent.ac.uk

Computing Laboratory, University of Kent

ABSTRACT
Refactorings are source-to-source program transformations which
change program structure and organisation, but not program func-
tionality. Documented in catalogues and supported by tools, refac-
toring provides the means to adapt and improve the design of ex-
isting code, and has thus enabled the trend towards modern agile
software development processes. Refactoring has taken a promi-
nent place in software development and maintenance, but most of
this recent success has taken place in the OO and XP communities.

In our project, we explore the prospects for ‘Refactoring Func-
tional Programs’, taking Haskell as a concrete case-study. This
paper discusses the variety of pragmatic and implementation issues
raised by our work on the Haskell Refactorer. We briefly introduce
the ideas behind refactoring, and a set of elementary functional
refactorings. The core of the paper then outlines the main chal-
lenges that arise from our aim to produce practical tools for a de-
cidedly non-toy language, summarizes our experience in trying to
establish the necessary meta-programming infrastructure and gives
an implementation overview of our current prototype refactoring
tool. Using Haskell as our implementation language, we also offer
some preliminary comments on Haskell programming-in-the-large.

Categories and Subject Descriptors
D.2.3 [SOFTWARE ENGINEERING]: Coding Tools and Tech-
niques; D.2.6 []: Programming Environments; D.2.7 []: Distribu-
tion, Maintenance, and Enhancement; D.3.2 [PROGRAMMING
LANGUAGES]: Language Classifications – Applicative (functional)
languages; D.3.4 []: Processors

Keywords
Haskell, refactoring, program transformation, language-aware pro-
gramming environments, semantic editors

1. INTRODUCTION
Refactoring is about ‘improving the design of existing code’ and

as such, it has been practised as long as programs have been writ-
ten. The key characteristic distinguishing refactoring from general

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Haskell’03, August 25, 2003, Uppsala, Sweden.
Copyright 2003 ACM 1-58113-758-3/03/0008 ...$5.00.

‘code meddling’ is the focus on structural changes, strictly sepa-
rated from changes in functionality. The benefit of this separation
is that refactoring does not introduce (nor remove) bugs or invali-
date any tests, while changes in functionality are disentangled from
structural reorganisations. The steps and potential pitfalls involved
in refactoring are documented in catalogues of useful refactorings,
which are supported by tools or validated by testing. Within the
software engineering and object-oriented programming communi-
ties, refactoring has been identified as central to agile software
maintenance and development processes [9, 7, 23].

In our project ‘Refactoring Functional Programs’ 1, we seek both
to complement existing work on refactoring with a functional pro-
gramming perspective and to make refactoring techniques and tools
available to functional programmers.

The idea of continuous design improvement. In his 1978 (!)
ACM Turing Award Lecture [6], Robert Floyd argued that serious
programmers should spend part of their working day examining
and refining their own methods: “After solving a challenging prob-
lem, I solve it again from scratch, retracing only the insight of the
earlier solution. I repeat this until the solution is as clear and direct
as I can hope for. Then I look for a general rule for attacking similar
problems, that would have led me to approach the given problem
in the most efficient way the first time.”. Identifying “paradigms
of programming” in this way – and developing support for such
paradigms – would improve programmer abilities, computer sci-
ence teaching and learning, and language designs.

In practice, industrial software development projects will not be
restarted from scratch when they have already reached their prime
objective – working code. Nevertheless, the idea of continuous de-
sign improvements finally became attractive and feasible because
of: (a) the increasing pressure of maintaining the design quality of
long-living “legacy software” in spite of large numbers of modifica-
tions, bug-fixes and functionality extensions, and (b) the realisation
that the necessary redesign could be achieved in an incremental
fashion, by employing program transformations.

Keeping software soft and malleable. Adapting program
transformations that originated in derivational (or transformational)
program development [1, 2] for languages with side-effects, Gris-
wold introduced the idea of automated program restructuring to
aid software maintenance [9, 8]. The techniques were extended
to cover object-oriented language features, and have since come to
prominence in the OO and extreme programming (XP) communi-
ties [7, 23] under the name of refactoring.

Functional program transformations have a long history [24],
e.g., for deriving programs from specifications, or in optimising

1http://www.cs.kent.ac.uk/projects/refactor-fp/

showAll :: Show a => [a] -> String

showAll = table . map show

where

format :: [String] -> [String]

format [] = []

format [x] = [x]

format (x:xs) = (x ++ "\n") : format xs

table :: [String] -> String

table = concat . format

Figure 1: The initial program

compilers, and so it is somewhat surprising to see this particular
use of program transformations almost exclusively limited to OO
languages. It seems that the problems of inflexible program struc-
tures have been more pressing in OO languages, triggering the need
for complex program manipulation techniques. What is not clear is
whether the cause of this is a relative inflexibility of OO program-
ming constructs or the larger-scale use of OO languages in practice.
Shedding more light on the differences in the way program trans-
formations are used in the OO and FP communities has been one
motivation for our project.

Problems of scale, complexity, and useability. The present
paper focusses on the pragmatic aspects of trying to provide tool
support for meaning-preserving program transformations in mod-
ern functional languages, which are used both as object and im-
plementation languages. For concreteness, we focus on Haskell
throughout, but at this stage, most of the problems and solutions
should apply equally to other functional languages.

The ‘tool support’ of the title refers both to our current prototype
of the Haskell Refactorer and to the tools that make its implementa-
tion feasable. We discuss our approach to the problems of extract-
ing the syntactic and semantic information needed by the Refac-
torer, implementing meaning-preserving program transformations
over Haskell’s non-trivial and many-typed abstract syntax, preserv-
ing the original program layout and comments, and integrating our
tool with standard Haskell programming environments.

In the following sections, we first introduce the main ideas be-
hind refactoring and its role in functional software development,
and identify a set of elementary functional refactorings that our
current tool implements. We then outline the major challenges in-
herent in providing program transformations for a real-world func-
tional language as complex as Haskell, and provide a summary of
our experience in trying to establish the necessary meta-programming
infrastructure. Then we give an overview of the implementation of
our current prototype refactoring tool, built on top of that infras-
tructure and interfaced to the two popular programmers’ editors
Emacs and Vim; we conclude by examining related work and look-
ing at future developments in our project.

2. FUNCTIONAL REFACTORING

2.1 First examples
Figures 2–4 illustrate a variety of ‘structural’ refactorings in Haskell,

performed on the program presented in Figure 1. The examples
presented here are necessarily small-scale, but they are chosen to
illustrate aspects of refactoring which scale to larger programs and

-- First move format to the top level ...

showAll = table . map show

where

table = concat . format

format [] = ...

-- ... then move table to the top level.

showAll = table . map show

table = concat . format

format [] = ...

Figure 2: Elementary scope refactoring 1

-- First make format local to table ...

showAll = table . map show

where

table = concat . format

where

format [] = ...

-- ... then move table to the top level.

showAll = table . map show

table = concat . format

where

format [] = ...

Figure 3: Elementary scope refactoring 2

multi-module systems. It would be possible to reduce the example
programs to one-liners by judicious use of library functions, but we
avoid that for the sake of demonstrating the refactoring examples.

In presenting the examples we elide with ‘. . . ’ those parts of a
program that are unchanged. The types of functions are initially
given explicitly, but are omitted except when they change.

The function showAll has been developed to build a ‘table’ by
showing each line, and then interleaving the results with a newline.
Once completed, the program can be developed in several ways,
starting by making local functionality available in a wider scope.

Figures 2–4 give three variations on lifting the definition of table
to the top level. In the original program, table is defined locally to
showAll, and depends upon format from the same where clause.

promote in dependency order: In Figure 2, format is ‘pro-
moted’ to the top level first, and table secondly. This shows
two examples of lifting local definitions to the top level.

package dependencies, then promote: In Figure 3, format
is first ‘demoted’ to being a local definition of table; the
definition of table, complete with its where clause, can then
be promoted. (It would be possible to follow this by promot-
ing format to the top level.)

abstract over dependencies, then promote: Finally, Fig-
ure 4 shows that format can be made a parameter of table
to break the dependency and enable promotion.

-- Move table to the top level; it needs to take

-- format as a parameter.

showAll = table format . map show

where

format :: [String] -> [String]

format [] = ...

table :: ([String] -> [String]) -> [String] -> String

table format = concat . format

-- Rename the formal parameter for readability.

showAll = table format . map show

where

format [] = ...

table fmt = concat . fmt

-- Move format to the top level.

showAll = table format . map show

format [] = ...

table fmt = concat . fmt

-- Unfold (inline) the definition of table

showAll = (concat . format) . map show

format [] = ...

table fmt = ...

-- Remove the definition of table

showAll = (concat . format) . map show

format [] = ...

-- Define table to be (concat . format)

showAll = table . map show

table = concat . format

format [] = ...

Figure 4: Refactoring with type change

In the remaining steps the formal parameter format is re-
named to fmt; the definition of format is promoted to the
top level and, within showAll, the application of the func-
tion table is inlined. This has the effect of removing the
only use of table, so its definition can be removed, and then
table can be reintroduced with its orginal meaning2.

In Figure 5 further refactorings are shown in a typical program
development scenario. First the separator is made a parameter of
format and subsequently of table, generalising their types.

A copy of showAll, named makeTable, is then generalised over
both the separator and the show function. The result of this is a
higher-order, polymorphic, function, which is ripe for reuse.

Finally, showAll is made an instance of the more general func-
tion makeTable, in an example of a fold transformation.

2The last three steps could be composed to form an ‘inline pa-
rameter’ refactoring.

-- The refactored program, typed.

showAll :: Show a => [a] -> String

showAll = table . map show

format :: [String] -> [String]

format [] = []

format [x] = [x]

format (x:xs) = (x ++ "\n") : format xs

table :: [String] -> String

table = concat . format

-- Stage 1: make "\n" a parameter of format.

...

format :: [a] -> [[a]] -> [[a]]

format sep [] = []

format sep [x] = [x]

format sep (x:xs) = (x ++ sep) : format sep xs

table = concat . format "\n"

-- Stage 2: now make "\n" a parameter of table

showAll :: Show a => [a] -> String

showAll = table "\n" . map show

format :: [a] -> [[a]] -> [[a]]

format sep [] = ...

table :: [a] -> [[a]] -> [a]

table sep = concat . format sep

-- Stage 3: copy showAll, calling it makeTable;

-- generalise by making show and "\n" parameters.

...

makeTable :: (a -> [b]) -> [b] -> [a] -> [b]

makeTable trans sep = table sep . map trans

-- Stage 4: make showAll an instance of makeTable.

showAll :: Show a => [a] -> String

showAll = makeTable show "\n"

...

Figure 5: Refactoring for generalisation

2.2 Reflecting on the examples
Refactoring steps can be applied manually, perhaps with a check-

list for each kind of refactoring, or with partial tool support through
editor macros and test suites, or they can be automated, as in our
Haskell Refactorer. Even in these small examples, it is clear that
refactoring moves beyond mere indentation control or textual search-
and-replace: the transformation steps should preserve program func-
tionality, they may be valid only under certain side-conditions, they
tend to be semantics-based. It is also clear that refactoring could
profit from language-aware tool support, provided such support is
integrated into standard development environments.

Preserving functionality. This can mean a variety of things:

• strictly no change in the semantics of the program;

• no observable change, from the point of view of a well-
defined interface, such as the main program. This latter al-
lows functionality to be added, as in the example of general-
ising showAll to makeTable.

Side-conditions. Consider the scenario of Figures 1–4: it is not
possible simply to move the definition of table to the top level un-
changed, because it depends on format. The validity of attempted
refactoring steps can be checked before or after each transforma-
tion, and can often be ensured by compensating for problems, turn-
ing incomplete transformations into valid refactorings:

Postcondition. Perform the transformation, then test whether
the program functionality has changed. In the scenario, this
will cause the program to fail to compile; if there were also
a definition of format at the top level, then the meaning of
the program might be modified. A good test suite covering
the refactored program might flag up such problems.

Precondition. Reject transformations unless their validity as
refactorings can be ensured in advance; this conservatism is
safe, but not very helpful, leading to longer refactoring se-
quences. It is easy to miss some interactions when checking
complex preconditions by hand.

Compensation. Starting from a local transformation, infer the
intended global refactoring, and compensate for any prob-
lems, to ensure validity. In the promotion scenario, any of the
three variations shown would do. This is the most flexible,
but also the most error-prone choice (not recommended for
manual refactoring, but very convenient in refactoring tools).

Of these options, the ‘postcondition’ approach is not very desirable,
but testing is mandatory as a safety net in by-hand refactoring. Ver-
ifying preconditions, or weakening preconditions where suitable
compensations can be inferred systematically, are more favourable,
but difficult to manage and get right without tool support.

Semantics-based transformations. Refactorings are not sim-
ply syntactic; many require awareness of the static semantics of the
program, of static program analyses, and of the type system.

The examples highlight several reasons why refactoring ‘by hand’
in one of the standard Haskell program development environments
– Vi or Emacs – is not a straightforward matter.

• In renaming the parameter format to fmt it is important
to change only those occurrences of format and not occur-
rences of the function of the same name. Thus, refactoring
tools need to be aware of the static semantics of the language.

• In lifting table, it is necessary to check its dependencies:
this requires analysis of the free variables of the definition,
and how they relate to the environment in which it occurs.

• Moreover, in this case the type of the function table is mod-
ified: if the program contains a type declaration for table
then it has to be amended. A refactoring tool therefore re-
quires access to type information.

Tool support. Although a refactoring may appear to be trivial, it
is usually tedious and error-prone to put it into effect by hand. Take
again the case of renaming the function format: it is necessary to
identify all and only those occurrences of that function, and not to
rename, for example, the parameter format. Renaming a function
will require editing of the module in which the function occurs and
– potentially at least – all the modules which import this module.

Thus, in order to refactor successfully, there needs to be a high
level of automated support. The refactorings seen in the examples
are implemented in our prototype toolkit.

Tool integration. Refactorings are source-level transformations.

Integration. It is vital that a refactoring tool is an integral part
of standard program development environments. According
to our survey on the Haskell mailing list3, tools have to be
integrated with the Vi and Emacs families of editors.

Layout. For a refactoring tool to be useful, it must respect the
layout style of the source; this requires the toolkit to keep
source location information, and to be able to transform this
to maintain consistency of style of transformed definitions.

Comments. Comments need to be retained; in many situations
the comments themselves need to be refactored, in line with
the program. Automatic support for comment refactoring is
problematic in general; it may be possible to provide limited
support within a documentation system such as Haddock.

2.3 Elementary refactorings
This section introduces the refactorings in our prototype tool.

The catalogue on our project home page gives other examples.
Practically motivated refactoring candidates tend to be complex

combinations of simpler components. To avoid duplication of func-
tionality and to provide for flexibility in recombination, it is essen-
tial to break such complex transformations into indivisible compo-
nents from which more complex refactorings can be built.

For example, instead of automatically generating fresh names
when lifting definitions, they can be renamed prior to lifting to
avoid any clashes during lifting, keeping programmers in control
and offering renaming as a refactoring in its own right. This search
for elementary refactorings is sometimes in conflict with the idea
of automatically compensating for programmer-initiated changes,
especially as we do not yet support composite refactorings. These
details are expanded in the discussion below.

Each of the refactorings has side conditions, which emphasises
the fact that these are more than textual manipulations. In the group
of refactorings presented here the prime conditions concern the
static semantics of the program: the scope of definitions, the bind-
ing structure of the program (i.e. the association of the use of an
identifier with its definition), the uniqueness of definitions in each
scope and so forth.

Renaming (α-conversion)
Any program identifier can be renamed, as in Figure 4 where fmt

replaces format. It is important to ensure that all and only the uses
of one binding are renamed.

Conditions. The existing binding structure must not be affected.
No binding for the new name may exist in the same binding group.
No binding for the new name may intervene between the binding
of the old name and any of its uses, as the renamed identifier would
be captured by the renaming. The binding to be renamed must not
intervene between existing bindings and uses of the new name.
3July 2002; results available from our project home page

Duplication
Any definition can be duplicated, at the same level as the original
definition. A name for the duplicated definition needs to be sup-
plied; alternatively a fresh name can be generated.

Conditions. For conditions on the new name see renaming.

Deletion
Any unused definition can be deleted.

Conditions. The condition on deletion is that there are no uses
of the name whose definition is to be deleted.

Promote one level
A definition is lifted from a where or let into the surrounding
binding group. Such lifting widens the scope of the definition.

Conditions.

• Widening the scope of the binding must not capture indepen-
dent uses of the name in the outer scope.

• There should be no existing definition of the name in the
outer binding group (irrespective of whether or not it is used).

• The binding to be promoted must not make use of bindings
in the inner scope.

The third condition is frequently violated in practice, so we com-
pensate by lambda lifting the definition to turn such uses of inner
bindings into formal parameters4. All the uses of the name have
to be modified to take the extra actual parameters. Two conditions
apply because of this.

• The binding must be a simple binding of a function or con-
stant, rather than a pattern binding.

• Any argument must not be used polymorphically; recall that
whilst it is possible to use a defined name at two different
(incompatible) instances, the same is not true of an argument.
Note that to enforce this constraint it is necessary to have
access to type checking facilities.

Demote one level
A definition is demoted to a local scope given by a let or where.

Conditions.

• All uses of the binding to be moved must be within the inner
scope to which the definition is being moved.

• Free variables in the binding must not be captured when it is
moved over nested scopes.

• Moreover, there should be no definition of the name in the
inner binding group (irrespective of whether or not it is used).

Add an argument
Parameters can be added to definitions of constants and functions.
This is one way to prepare for generalisation of a definition, fol-
lowed by specialisaton of its uses. Generalise a definition is often
the preferred alternative.

Conditions. No variable uses may be captured by the new for-
mal parameter. Default values for actual parameters must be sup-
plied and added to all uses of the definition. Adding those defaults
must not introduce errors to the program.

4This temporarily deviates from the ideal of elementary refactor-
ings, as the extra parameters could be introduced in a separate
step, or other compensation could be used. This will become a
composite refactoring once our tool supports those.

Remove an argument
Any unused argument to a definition can be removed.

Conditions. There must be no uses of the formal parameter to
be removed. All uses of the definition must be adapted to remove
the corresponding actual parameters.

Generalise a definition
A definition is generalised by selecting a sub-expression of the
right-hand side of the definition and introducing that sub-expression
as a new parameter.

Conditions. No variable uses may be captured by the new for-
mal parameter. Since the chosen expression becomes a parameter
to the function at each of its call sites, that expression must be de-
fined – and have the same value – at each of these sites:

• Any free names in the selected expression should be bound
to names visible at the level of the definition itself (i.e. not be
formal parameters or be defined locally to the definition).

• Moreover, the same bindings need to be visible at all call
sites of the function, which ensures that the expression has
the same meaning at each call site.

Inline a definition (unfold)
The application of a function is replaced by the right-hand side of
the definition, with actual parameters replacing formals.

Conditions. Single-equation functions (or constants) can simply
be inlined. For a more complicated function, pattern matching may
have to be replaced by a case statement, for example.

Name capture of free variables in right-hand side or actual pa-
rameters must be avoided when unfolding the right-hand side and
substituting actuals for formals at the call site.

Introduce a definition5

A definition is introduced to denote an identified expression.
Conditions. The new definition must not disrupt the binding

structure of the program. Moreover, the free names in the right-
hand side of the new definition must be bound to the same defini-
tions as they were in the original context.

2.4 Interactions with language design
The small set of elementary refactorings presented here focusses

on the functional core of Haskell: names, bindings (parameters and
definitions) and their uses. At this level, specifics of Haskell’s de-
sign do not seem to have an influence, but that appearance is mis-
leading. Alert readers will have noticed that some of these seem-
ingly innocent refactorings need careful adaptation for Haskell, to
take issues such as polymorphic vs monomorphic bindings and the
monomorphism restriction into account, increasing the dependence
of refactoring tools on type information.

Adapting the language design principle of correspondence [29]
to refactorings suggests that for each refactoring of definitions, there
should be a corresponding refactoring of parameters, and vice versa.
Such a correspondence is indeed beginning to emerge, and it will
be useful to look into the cases not yet covered, but it is necessary to
keep in mind that, partially due to its type system, Haskell does not
comply with those language design principles (see above; rank-n
types and explicit type annotations provide work-arounds).

5Combined with ‘Generalise a definition’, this provides part of the
functionality of ‘fold’ transformations. The missing part involves
folding instances of existing definitions. Once we fully support
fold, we will have to address the issue of total correctness.

3. TOOLING UP FOR REFACTORING OF
FUNCTIONAL PROGRAMS

Refactoring tools support interactive program manipulation – they
are used as part of the editing process, but operate on syntactic and
semantic information, not on character strings. Continuing the evo-
lution from plain text editors to syntax- and semantics-aware edi-
tors and IDEs, they share many of the characteristics of optimising
compilers: source texts need to be parsed to extract abstract syntax
trees from concrete syntax strings; programs need to undergo static
analysis to determine, e.g., the scope of identifiers, and type anal-
ysis to extract type information (initially mostly to update existing
type annotations, later to guide type-level refactorings).

Then, the real work of refactoring begins: based on abstract syn-
tax trees annotated with static semantics information, analyses have
to be implemented to validate the side-conditions of refactorings
(which are meaning-preserving only if those side-conditions are
met) and to compute the global changes that are needed to com-
pensate for the local changes initiated by the tool user. For exam-
ple, adding a parameter to a function definition requires follow-on
changes throughout the program wherever that function is applied.

Finally, the program transformations themselves have to be im-
plemented and – unlike in traditional compilers – the modified ab-
stract syntax trees have to be presented to the programmer in con-
crete syntax form. This seemingly minor issue will turn out to have
a major impact on our implementation design, as we discuss below.

For proper refactoring support, a complete compiler frontend is
needed, plus an analysis and transformation engine similar to those
employed in optimising compilers. Last, but not least, the results
have to be presented to the programmers, and the whole refactoring
process needs to be integrated with and interactively controlled via
their favourite development tools.

Given that feature-rich modern functional languages have come
a long way since the days of Lisp S-expressions [12], it quickly
becomes clear that implementing tool support for refactoring pro-
grams in such languages requires tool support itself.

3.1 Meta-Programming I: Information
Ideally, tool-builders and other meta-programmers would reuse

the functionality already present in the language implementations,
via a well-defined standard reflection API such as the ADA Seman-
tic Interface Specification ASIS6. Unfortunately, meta-programming
support in functional languages like SML and Haskell has not kept
pace with their overall development. If it exists at all, it tends
to be relegated to implementation-specific extensions (SML/NJ’s
Compiler structure, or GHC’s template meta-programming).

As functional language implementations tend to be bootstrapped,
extracting the relevant code from the functional implementation
seems to be the next best bet, until one sees just how implementation-
specific and interwoven with other components that code tends to
be. For our concrete example of Haskell, earlier efforts had pro-
duced at least reusable parsing and pretty-printing libraries, but for
the more complete kind of front-end needed for refactoring, the
tools we need have only just started to become available.

3.1.1 Concrete and Abstract Syntax
The best known Haskell frontend is probably the haskell-src7

package in the hierarchical libraries (also known as hsparser or
hssource), which comprises abstract syntax data types and support
for parsing and pretty-printing of Haskell 98 code. A variant of
the parser is used in the Haddock Haskell documentation tool [22].

6
http://www.acm.org/sigada/wg/asiswg/

7
http://haskell.org/ghc/docs/latest/html/haskell-src/

This tends to track GHC’s extensions to Haskell, and has been used
successfully in a companion project on Haskell metrics [27].

In an early prototyping exercise, we implemented a few refac-
torings with syntactic information only, building on no more than
the Haddock parser and the haskell-src pretty-printer. We soon
had to add our own static analysis to determine the scope of vari-
ables, and then we would have had to add our own type analysis for
refactorings interacting with Haskell’s complex type system. Deal-
ing with these non-trivial aspects of Haskell would have delayed
work on the core of our project substantially, so we kept looking for
more complete Haskell-in-Haskell frontends. We also noticed that
we had to write (and later maintain!) large amounts of ‘boilerplate’
code for each refactoring – code that had to spell out ‘obvious’ as-
pects of abstract syntax traversal in painful detail, so we started to
look for better meta-programming alternatives in general.

3.1.2 Adding Types and Static Semantics
The most popular approach towards such more complete Haskell

frontends has been to combine haskell-src with Mark Jones’
“Typing Haskell in Haskell” (thih) [13]. We compared Hatchet8,
and a snapshot of the as yet unreleased Programatica9 frontend,
again by prototyping a small number of refactorings. It soon be-
came clear that more effort had been invested in the Programatica
frontend, but Hatchet remained attractive for its simplicity.

Hatchet, in version 0.1 (released May 2002), offers access to ab-
stract syntax, as well as type and kind information (a slight modifi-
cation was needed to get type information for locally declared vari-
ables), and information about the predefined class hierarchy and in-
stances. It lacks support for multi-module programs, user-defined
classes and instances, and record syntax.

Programatica’s frontend, in a snapshot dating from October 2002,
offers almost complete support for Haskell 98 (plus a small num-
ber of extensions). While inspired by the original ideas of hsparser
and thih, additional thoughts have been put into many aspects of
the system. Examples of such extensions include dealing with the
gap between assumptions in thih and Haskell’s static analysis and
module system [3], replacing the lexer to preserve more informa-
tion about source programs [11], replacing the abstract syntax with
a parameterized version supporting syntax variants and extensions,
and providing for (limited forms of) generic programming [28].

Not all of the additional features of Programatica’s frontend are
beneficial for our own project, but the completeness and ongoing
development of Programatica provided the decisive advantages.

3.2 Meta-Programming II: Transformation
The result of parsing programs will be some representation of

their abstract syntax trees in terms of a collection of mutually recur-
sive types reflecting the structure of the language grammar. Now,
writing compilers and other program processing tools is often cited
as a shining example for the advantages of functional program-
ming, but we have found that this argument tends to ignore issues of
scaling. Naively applying standard functional programming tech-
niques to a collection of data types representing the Haskell gram-
mar leads to impractically large amounts of boilerplate code.

The cause of the trouble is the large number of algebraic types,
each being a sum of a large number of constructors, many of which
may recursively contain elements of types representing other parts
of the abstract syntax. A naive implementation of a simple recur-
sive traversal replacing each constructor by itself would consist of a
function for each type, with a case for each constructor in that type,

8
http://www.cs.mu.oz.au/~bjpop/hatchet.html

9
http://www.cse.ogi.edu/PacSoft/projects/programatica/

and since the function call graph would mimic the recursive gram-
mar, these functions would be so heavily entangled that they could
not be reused in isolation. So each new kind of traversal would
require an effort reflecting the size of the whole grammar, even if
the purpose of the traversal was just to rename all occurrences of
an identifier in a certain scope.

An obvious improvement – defining generalised higher order
traversal operators, such as fold and map, which could then be in-
stantiated for more specific purposes – is slightly impeded by the
complex and many-typed nature of the abstract syntax. Fold and
map can be defined generically, and a variety of Haskell extensions
permit datatype-specific instances of generically defined functions
to be generated automatically [4, section 3.4], so the use of general
higher-order traversal operators can be translated to the problem at
hand. However, generic programming support, while necessary, is
not sufficient to reduce our problem to practical dimensions: in-
stantiating a recursive nest of folds over each of the parts of the
grammar is still proportional to the size of the grammar.

One way to attack this problem, and move towards composable
traversals, are updateable fold-algebras [21], where for each type,
the higher-order parameters to its fold operation are collected in a
record, and default records specifying trivial traversals (generated
using generic programming techniques) only need to be updated
with non-trivial functions for those constructors relevant to a spe-
cific traversal (e.g., those related to variables).

The next problem is the organisation of transformation code.
Here, we wanted to profit from work on rewriting strategies, e.g.,
for program transformations in optimising compilers [32, 31]. Strate-
gic programming separates recursively applied transformations into
local rewrite rules and global reduction strategies, aiming to pro-
vide both as elements of a domain-specific language for compos-
ing transformations. In functional languages, both rewrite rules and
strategies can be supported as first-class functions, so a function
implementing a local rewrite rule can be passed to another func-
tion implementing a bottom-up reduction strategy, and finally the
combination can be applied to a complex data structure.

The Strafunski project [18] has recently translated the ideas of
strategic programming to statically typed frameworks. Design ex-
periments were still in full swing when our Refactoring project
started, but the API for the library of strategic programming com-
binators appears to have stabilised now and isolates us somewhat
from ongoing developments in the underlying implementation tech-
nologies [17]. Combining generic and strategic programming in a
pragmatic way, Strafunski aims to scale the promises of functional
programming over algebraic types to the complexities of realistic
programming language grammars, listing functional transforma-
tions of COBOL programs as a major applicaton area and recently
even experimenting with language-parametric refactorings [16].

We have found Strafunski an indispensible tool for our purposes.
It successfully addresses the issues of generic programming, reuse,
and succinct specification of complex transformation schemes, and
by freeing us from unmaintainable amounts of boilerplate code it
even reduces our dependence on the choice of Haskell frontend.

Programatica comes with support for a small selection of generic
traversal operations, defined explicitly as type class instances for
all types involved in the abstract syntax representation. To limit the
detrimental effects of recursion on reuse, the data type definitions
follow a 2-level scheme which splits recursive algebraic types into
separate parts describing structure and recursion (Sheard [28] de-
scribes the basic techniques as well as the use of general traversal
operations to define a generic unification algorithm).

While mostly successful within Programatica itself, the coding
of generic functions using only type classes leads to large amounts

of boilerplate code for the general traversal functions. That code
does not have to be repeated for each specific traversal, but is sensi-
tive to changes in grammar or traversals. Also, the 2-level approach
to datatype definitions substantially complicates the types repre-
senting Haskell’s abstract syntax, compared with haskell-src.

Currently, we avoid any explicit use of Programatica’s traversal
support in favour of Strafunski’s StrategyLib, which also helps to
isolate us from the complexities of Programatica’s data types.

3.3 Meta-Programming III: Interaction
Refactoring tools provide source-level assistance for programmer-

guided software redesign and thus have to be integrated into the
program development process in as seamless a way as possible.

In his thesis [26, chapter 6], Roberts analyses the differences
between his first, stand-alone refactoring tool (“While technically
interesting, it was rarely used, even by ourselves.”) and his more re-
cent, highly successful Refactoring Browser for Smalltalk [25]. He
lists technical and practical success criteria for a refactoring tool:
maintaining a source code data base with easy access to accurate
syntactic and semantic information (type of object under cursor,
scope-aware search for identifiers, definitions and uses, etc.), speed
of analyses and transformations/recompilations, support for recov-
ery of last-known-good code version via undo, and tight integration
of refactoring into standard programming environment.

Based on the insight that refactoring tools continue the evolu-
tion towards semantics-aware editors and IDEs, it would have been
very tempting to implement such an IDE from scratch, including
a fully fledged syntax-aware editor for Haskell. However, the sub-
stantial efforts involved in such an adventure would not only have
distracted from our current project’s main research questions, such
an approach would also be questionable for pragmatic reasons.

Placing our refactoring tool out of current development tool chains
would have involved us in editor wars at best and condemned our
tool to irrelevance at worst. So we decided to design our Haskell
Refactorer to be independent of a specific GUI, in favour of a
generic textual API and bindings to this API for two of the most
popular programmer’s editors, Vim and Emacs 10. According to
our survey, these two editor families cover the vast majority of
Haskell programmers’ development environments.

4. IMPLEMENTING A REFACTORING TOOL
FOR FUNCTIONAL PROGRAMS

Developing a refactoring tool for a real-world popular functional
language not only provides us with a framework for exploring the
prospects of refactoring functional programs, but also makes refac-
toring techniques and tools available to functional programmers.

Our current prototype Haskell Refactorer is built on top of Stra-
funski and Programatica’s frontend, is integrated with Emacs and
Vim, and supports a small set of basic refactorings. The tool is
straightforward to use, and more importantly, it preserves both com-
ments and layout style of the source. The refactorings are so far
only supported within a single module and are not supported by
type analysis, but implementing them has been essential in identi-
fying technical problems, finding suitable supporting tools and es-
tablishing the current implementation architecture. In this section,
we give a brief overview of our tool, including its interface and its
implementation architecture and techniques.

4.1 The Interface
Figure 6 shows a snapshot of the current Haskell refactoring tool

embedded in Emacs. To perform a refactoring, the source of inter-
10
http://www.vim.org http://www.gnu.org/software/emacs/

Figure 6: A snapshot of the Haskell refactoring tool
embedded in Emacs

est has to be selected in the editor first. For instance, an identifier
is selected by placing the cursor at any of its occurrences; an ex-
pression is selected by highlighting it with the cursor. Next, the
user chooses the refactoring command from the Refactor menu and
inputs any parameters in the mini-buffer if prompted. After that the
refactorer will check the selected source is suitable for this refactor-
ing, the parameters are valid, and the refactoring’s side-conditions
are satisfied. If all checks are successful, the refactorer will perform
the refactoring, otherwise it gives an error message and aborts the
refactoring. Using the refactoring tool embedded in Vim is similar.

Figure 6 also shows a particular refactoring scenario. The user
has selected the identifier format in the definition of table, has
chosen the duplicateDef command from the Refactor menu, and is
just entering a new definition name newFormat in the mini-buffer.
After this, the user would press the Enter key to perform the refac-
toring. The result of this is shown in Figure 7: a new declaration
defining newFormat has been added to the module after the def-
inition of format (note that, unlike editor-based copy&paste, the
refactorer ensures consistent renaming, including recursive calls).

4.2 The Implementation Architecture
The design of the implementation architecture has evolved through

a number of stages. Figure 8 shows a graphical overview of the
original implementation architecture: to perform a refactoring, the
parser takes the program source and parses it into an abstract syn-
tax tree (AST), the refactorer then carries out program analysis and
transformation on the AST and after that, the pretty-printer presents
the modified AST to the programmer in concrete syntax form. This
architecture is straightforward, but has two fatal disadvantages:

• The program is parsed before each refactoring, even if there
has been no editing activity since the previous refactoring.
Frequent reanalysis of large programs can be time-consuming,
which could discourage programmers from using an auto-
matic refactoring tool11. To avoid this, one would want to
reuse the AST if possible. However, the AST contains in-

11Realistic refactorings are composed of multiple small steps, each
of which appears to users as an advanced editing operation, lower-
ing the threshold for what is deemed acceptable processing time.

Figure 7: A snapshot showing the result of dupli-
cating a definition

Program
source

Pretty−printerASTRefactorerASTParser

Figure 8: The original implementation architecture

formation about the position of identifiers (which turns out
to be very useful for both program analysis and transforma-
tion) and, after a refactoring, some position information in
the AST may have become invalid. The new layout is first
computed in the pretty-printer, so one could try to update the
position information in the abstract syntax tree there, but this
involves dramatic changes of the pretty-printer.

• Comments are not preserved in the AST and the pretty-printer
produces output which completely ignores the style – let alone
the concrete layout – of the input program, so after a refac-
toring, programmers may find all the comments in their pro-
grams are missing and the layout style produced by the pretty-
printer is completely different from that before refactoring.

Clearly, this is unacceptable from a programmer’s point of
view, so one would want to preserve comments in the abstract
syntax tree, analyse the input program for the style of layout
used, and modify the pretty-printer to adapt to the input style
and to reproduce comments. However, this is far from ideal.

Inspired by the fact that Programatica’s lexer preserves position
information, and that comments and white space are also preserved
in the first passes of the lexer, we adjusted the implementation ar-
chitecture as shown in Figure 9. Two separate improvements ad-
dress the problems of the original architecture:

• In the new architecture, the refactorer operates on two views
of the program: the token stream produced by the first pass
of the lexer (with comments and white spaces still intact)
and the AST produced by full lexing and parsing. The AST
is used only as an auxiliary representation of the program to
guide the direct modification of the token stream. The refac-
torer still performs program analysis and transformation on

Lexer (pass1)

Refactorer+pretty−printer

AST

Program source

AST

Token Stream Printer AST Updater

Token Stream AST

Token Stream

Lexer

Token Stream

Program source

Lexer (pass1) Parser + Lexer

Figure 9: The new implementation architecture

the AST but, once the AST has been modified, the refactorer
will modify the token stream as well to reflect the changes in
the AST. The token stream also needs adjustment to counter-
act the side-effects of the transformation on the layout rules.

• If there is no editing activity between the current refactor-
ing and the previous one it is possible to update and reuse
the AST. Lexing the program output yields a token stream in
which each token has correct position information, and we
can use this to update the position information in the AST
from the previous refactoring. After that, the updated token
stream and AST are ready for the next refactoring.

Instead of using the pretty printer to present the modified AST
to the programmer in concrete syntax form, the new program will
be extracted from the token stream, preserving both comments and
layout style for the majority of programs. For certain refactorings,
the refactorer may produce new code in which no layout informa-
tion can be inferred (e.g., when unfolding a definition with multiple
guards, the multiple clauses may have to be translated into a con-
ditional expression). In this case, the pretty-printer will be used to
print the new code, which is then inserted into the token stream.
Also, just preserving comments is not sufficient, so we apply sim-
ple heuristics to associate and move comments with nearby code.

Next, we describe the components in the new architecture in
some more detail, explaining our use of Strafunski-style generic
programming and Programatica front-end components.

4.2.1 The Lexer
Programatica’s lexer [11] is generated from a lexical syntax spec-

ification and is split up into several passes. As mentioned before,
position information is preserved by the lexer, and the first passes
of the lexer preserve comments and white space. These two fea-
tures make it possible for our refactoring tool to preserve comment
and program layout style as well as avoiding reparsing the program.
The lexer splits an input String into a list of token Strings:

type Lexer = String -> [(Token,(Pos,String))]

where Token is a data type classifying tokens, and Pos represents
the position of the token in the source.

4.2.2 The parser
Programatica’s parser is based on hsparser, but with a parame-

terised abstract syntax supporting syntax variants and extensions.
We outline the treatment of identifiers only, as these are central to
the refactorings presented. In the AST produced by the parser, each
identifier is paired with its position information in the source file.

A further scoping process on the AST adds more information
to each identifier, and produces a new variant of the AST. In this
variant, called the scoped AST, each identifier is associated with not
only its position in the source file, but also the information about
where it is defined and which name space it belongs to. The type
used for identifiers in the scoped AST is called PNT and defined as:

data PNT=PNT (PN HsName Orig) (IdTy Pid) OptSrcLoc

Roughly, HsName contains the name of the identifier, Orig spec-
ifies the identifier’s origin information which usually contains the
identifier’s defining module and position, the identifier’s name space
information is contained in (IdTy Pid), and OptSrcLoc contains
the identifier’s position information in the source file.

The scoped AST makes our life easier in the following aspects.

• Source position information makes the mapping from a frag-
ment of code in the source (editor view) to its corresponding
representation in the scoped AST (refactorer view) easier.

• Identifiers in different scopes can be distinguished by just
looking at the PNT values themselves. Two identifiers are
same if and only if they have same origin.

• Given an identifier, the scoped AST makes it convenient to
find the binding definition of the identifier if there is one, as
well as the places where it is used.

4.2.3 The Refactorer
The refactorer is the engine that actually performs the program

analysis and source-to-source transformation. Program analysis
aims at validating the side-conditions of refactorings. Program
transformation performs rewriting of the AST and token stream.

Both program analysis and transformation involve traversing the
scoped AST frequently, which is where Strafunski [20, 19] comes
into play. As discussed in Section 3.2, Strafunski was developed to
support generic programming in application areas that involve term
traversal over large abstract syntaxes, such as Haskell’s. The key
idea is to view traversals as a kind of generic function that can tra-
verse into terms while mixing uniform and type-specific behaviour.
Strafunski offers both a generic traversal combinator library Strat-
egyLib and a generative tool support based on DrIFT12 to use the
library on large systems of data types.

Two kinds of generic functions can be constructed using the
combinators provided in StrategyLib: type-preserving generic func-
tions dealing with program transformation and type-unifying generic
functions dealing with program analysis. The result of applying a
type-preserving generic function to a term of type t is of type t in
a monadic form (so that transformations can fail or return multi-
ple results), whereas the result of a type-unifying generic function
application is always of a specific type, say a (again in a monadic
form) regardless of the type of the input term.

Figures 10 and 11 give two simple examples, illustrating the
form of code implementing program analysis and transformation
using Strafunski’s combinators with Programatica’s data types.

The example in Figure 10 defines a type-unifying generic func-
tion which collects all the data constructors in a fragment of Haskell
code. Here, the functions applyTU, stop tdTU, failTU and

12
http://repetae.net/john/computer/haskell/DrIFT/

--type PName = PN HsName Orig

hsDataConstrs::(Term t)=>t->Maybe [PName]

hsDataConstrs = applyTU worker

where

worker = stop tdTU (failTU ‘adhocTU‘ pntSite)

pntSite ::PNT->Maybe [PName]

pntSite (PNT pname (ConstrOf _ _) _)

= Just [pname]

pntSite _ = Nothing

Figure 10: Collecting data constructors

-- data HsName = Qual ModuleName String

-- | UnQual String

-- type PName = PN HsName Orig

rename::(Term t)=>PName->HsName->t->Maybe t

rename oldPName newName = applyTP worker

where

worker = full tdTP (idTP ‘adhocTP‘ pnameSite)

pnameSite :: PName -> Maybe PName

pnameSite pn@(PN name orig)

| pn == oldPName = return (PN newName orig)

pnameSite pn = return pn

Figure 11: Renaming an identifier

adhocTU are type-unifying variants of strategy combinators from
StrategyLib. stop tdTU s t denotes a top-down traversal of term
t: it applies the strategy s at each level, stops if s succeeds, re-
curses if s fails, and collects the results. The polymorphic strategy
failTU always fails, s1 ‘adhocTU‘ s2 extends a polymorphic
default strategy s1 with a type-specific strategy s2.

The function worker performs a top-down traversal of the AST
to the PNT level, where it calls pntSite. This latter function re-
turns the data constructor name in the Maybe monad if the current
PNT is a data constructor, otherwise, it returns Nothing. We use
the list data type to deal with the case where there are several data
constructor names. In combination with stop tdTU, the default
strategy failTU indicates that worker always recurses when faced
with terms of any other type than PNT and that only applications of
pntSite to subterms of type PNT contribute to the result of apply-
ing worker to a term of arbitrary type.

A type-preserving generic function renaming all occurrences of
a specified identifier to a new name is defined in Figure 11. Using
the combinators applyTP, full tdTP, adhocTP and idTP from
StrategyLib, this function carries out a full top-down traversal over
the AST as specified by full tdTP. This way, it will reach each
node in the input AST. Most of the time, it behaves like idTP which
denotes the polymorphic identity strategy, but it will call the func-
tion pnameSite whenever a term of type PName is encountered.
The function pnameSite replaces the identifer name contained in
current PName by newName if this identifier is same as the identifier
to rename. Otherwise, it returns the PName unchanged.

Our early experience in implementing the refactoring tool using
Strafunski indicates that this style of generic programming to some

extent liberates us from the complexity of Haskell syntax, avoiding
large amounts of boilerplate code that is tiresome to write, vulner-
able to change and error prone. We need only to describe function-
alities for the types and constructors that are immediately relevant
for an analysis or transformation at hand, thus concentrating on the
significant part of the implementation.

So far, the code needed to implement a refactoring (not counting
general support code) appears to average out at about 200 lines of
code. For comparison: in our experiments without generic traversal
support, even the simple renaming example of Figure 11 amounted
to that many lines. Chris Ryder, whose metrics library [27] tackles
similar analysis tasks over the Haskell grammar without Strafunski,
corroborates our own impression that the refactoring implementa-
tions are comparatively concise and readable.

However, even with the help of Strafunski and Programatica’s
frontend, implementing a practical refactoring tool is still non-trivial:

• Dozens of refactorings are going to be implemented – an ini-
tial catalogue (that predates our implementation and needs to
be revised) is available from our project home page.

• Each refactoring has its own side-conditions and transforma-
tion rules, usually involving both syntactical and semantical
analysis. We have not even started to support type-based or
type-level refactorings, nor have we addressed multi-module
refactorings or their interaction with separate compilation.

• The refactoring tool should support composite refactorings,
built from series of elementary refactorings. StrategyLib pro-
vides a starting point, but the challenge is to facilitate user-
defined composite refactorings.

• The refactoring tool should support undo/redo of refactor-
ings. Editor-side undo/redo does not interact well with changes
initiated by an external tool, possibly affecting multiple files.

• We need to develop theory to support the implementation.

4.2.4 The Token Stream Printer
After a refactoring, the token steam printer gets the modified to-

ken stream from the refactorer, extracts the strings contained in to-
kens, concatenates them together getting the new program source,
and finally, presents it to the programmer.

4.2.5 The AST Updater
If one refactoring immediately follows another, the scoped AST

from the previous refactoring can be reused. However, some po-
sition information in this scoped AST might be invalid, and some
tokens in the modified token stream from the refactorer might not
be really tokens. So, we lex the new program source getting a to-
ken stream with correct information associated with each token,
then use the new token stream as a guide to update the position
information in the scoped AST, in a two-pass process. The first
pass collects the identifiers and their associated source positions
in a topdown, left-to-right manner. The second pass updates the
position information in the AST according to a mapping between
the positions from the first pass and the positions from the token
stream. Our experiments show that this method is much faster than
reparsing and rescoping the program.

4.3 Haskell programming in-the-large
Our own project is just at the beginning of what is going to be a

substantial code base, but in order to keep the size of code for each
refactoring manageable, we are building on other projects, namely
Strafunski and Programatica. Each of these is a substantial pack-
age of Haskell code in its own right, building on both standard and

project-specific support libraries, and we are integrating these pack-
ages with our own code and support libraries, so we can offer some
preliminary comments on Haskell programming in-the-large:

• Of the roughly 470 Haskell files in the Programatica snap-
shot, our project recursively imports some 210 modules. Stra-
funski’s StrategyLib only adds about 20 modules, but it uses
DrIFT to generate application-specific instances of generic
traversal functions. We automatically extract the AST-related
types from the various Programatica modules and feed them
to DrIFT without changing the Programatica sources or in-
specting the generated boilerplate code (<1k lines). Not
counting the editor interfaces, we have so far added about
4400 lines of code (one module per kind of refactoring, roughly
200 lines each, plus some 2k lines of support code).

• Haskell has a simple and flat module system. With a large
number of modules, distributed over several directory hier-
archies, it is often not obvious which module an item comes
from and where that module is. The hierarchical namespace
extension should help with the latter, consequent use of ex-
plicit import interfaces helps with the former, but not with
recursive imports or with type class instances.

Tool support for program understanding is indispensible here,
e.g., we have applied Programatica to itself to generate a
module dependency graph and have fed that into a standard
graph layout tool, but for a graph of this size, interactive nav-
igation and focussing would be much more useful. A proto-
type module graph browser under development in the MED-
INA project [27] shows promise here.

Another obvious tool is the generation of tag files for func-
tion and type definitions, by which both Emacs and Vim per-
mit interactive browsing from uses to definitions. However,
both Programatica and Strafunski make good use of higher-
order functions and overloading, so that jumping from one
module to another to follow chains of definitions often does
little to reveal the overall picture of control and data flow.

With extensive use of type inference and advanced type-based
features such as monad transformers (Programatica even over-
loads standard IO operations to ease lifting), non-type-aware
tools are at a loss at figuring out which monads a particular
fragment of code might be running in, and what information
and operations might be available at any given point.

• If build times are inexplicably slow, suspect a bug, and not
necessarily in your Haskell compiler. In our case, the prob-
lem could be traced to the linker. Coercing GHC to use Gnu
ld instead of the default ld on Solaris brought link times
down from 20 minutes to under one minute!

• Some Haskell tools and libraries are limited-purpose or proof-
of-concept implementations: the version of DrIFT used in
Strafunski ran into problems with Programatica’s more com-
plex data structures representing the Haskell AST, but the
open-source model made it possible for us to fill the gaps.

• Haskell’s module system lacks control over the import/export
of class instances. This can lead to conflicts when linking
third-party libraries (such as Programatica’s frontend and
Strafunski’s StrategyLib) together: all instances defined in
any modules imported by either of the two projects spill out
to any code that imports them. Avoiding conflicts requires
extra careful information hiding wrt the types (use newtypes
instead of type synonyms when defining not-quite-standard
instances, e.g., functor and monad instances for error monads

based on Either). Even for standard instances (e.g., func-
tor and monad instances for environment monads based on
((->) a)), conflicts arise if equivalent instances are defined
within two sub-projects or their support libraries – common
instances have to be factored out into shared modules.

5. RELATED WORK
We have already mentioned the origins of our work in early

program transformation and language-aware development environ-
ments. The last comprehensive survey of these areas we are aware
of dates from 1983 [24], so we have started to compile a list of
URLs and references in the related work section on our project
home page and only give examples of recent developments here.

Within the SE and OO communities, refactoring has been identi-
fied as central to the software engineering process [9, 7, 23]. There
is a growing collection of tools for refactoring in a variety of lan-
guages. Notable among these is the Refactoring Browser [25],
which was the first successful tool, and which supports Smalltalk
refactoring. Among the other tools, listed at Fowler’s [7] and at our
web site, are systems for refactoring C, C#, Java, Python and UML;
Java is by far the most popular. Many of the tools are components
of IDEs (Integrated Development Environments) of one sort or an-
other; many of the tools are also commercial products.

Fowler proposed 13 support for the ‘extract definition’ refactor-
ing as an indication that a refactoring tool had ‘crossed the Rubi-
con’. It is disappointing that this test appears to be seen by many
as a sufficient rather than a necessary condition for the tool to be
complete. It is interesting to speculate that this might be due to the
effort involved in writing refactoring support with all its attendant
boilerplate in, say, C#, as compared to using a high-level strategy
library such as Strafunski. Also, the presence of unrestricted side-
effects hinders program analysis and transformation.

Tool support for functional refactoring has been explored sub-
stantially less. Lämmel has used Strafunski to describe generic and
functional refactorings [16, 14, 15]; this work has tended to fo-
cus on principles of program transformation rather than on tooling
for specific, complete, languages. Martin Erwig has investigated
a Haskell Update Language [5]; this shares some of its aims with
our project, but treats programs as members of ADTs rather than as
(both) concrete strings and Abstract Syntax Trees.

Systems such as Ultra [10], PATH [30], MAG and HsOpt [4,
section 5.2.2] support Haskell program transformation for program
derivation or for optimisation; both areas have a different empha-
sis from refactoring. Program derivation refines simple, obviously
correct, programs into more complex, more efficient variants; pro-
gram optimisation tends to focus on localised transformations, ad-
dressing a program’s control or data flow. The kind of program
structure considered for refactoring is often non-localised and re-
lated to the overall program design and knowledge representation,
that is to large-scale declarative aspects rather than smaller-scale
operational ones. In spite of these differences, the substantial over-
lap in concepts and infrastructure requirements suggests integrated
tool support for derivation, optimisation, and refactoring.

6. FURTHER WORK AND CONCLUSIONS
We expect our work to develop in a number of directions. The

tool reported in this paper has crossed a ‘Refactoring Rubicon’ of
sorts, but it is in its infancy. There is a host of more complex trans-
formations to be added to the system, which will require the sys-
tem to be aware of Haskell types and modules. Examples include

13
http://www.martinfowler.com/articles/

refactoringRubicon.html

turning a concrete data type into an abstract one, or transforming a
non-monadic computation into a monadic form. These will be com-
posite refactorings, to be built by assembling a number of atomic
refactorings of the kind presented here. Support for undo and redo
operations will be fundamental in allowing programmers to take a
speculative approach to refactoring.

The refactorings we have written will have to be properly doc-
umented in a catalogue; an early draft can be found at our project
web site14. Central to the catalogue – as we saw in the examples de-
scribed in Section 2 – is a description of the conditions under which
each refactoring can be applied. Refactorings form a theory which
is ultimately grounded on the semantics and program equivalences
for the language in question. Functional programming research
provides rich theoretical foundations for reasoning about programs
using denotational and observational program equivalences, and a
store of related work. We expect to develop proofs of correctness
for a variety of the refactorings implemented.

In conclusion, we have built a tool which shows the utility of
refactoring in the functional domain15. The tool is integrated with
the usual Haskell IDEs, namely Emacs and Vim, and preserves pro-
gram layout and comments; we view both of these as essential if the
system is to be used by practising programmers rather than being
an object of polite curiosity. Implementing the tool has been made
possible only because of various toolkits – DrIFT, Programatica,
Strafunski – which support the analysis of Haskell programs and
the construction of generic, typed syntactic transformations.

Strafunski’s StrategyLib has, in particular, allowed us to express
the essence of the refactorings in concise and readable form, in
contrast to hiding the effects in pages of boilerplate.

7. REFERENCES
[1] R. M. Burstall and John Darlington. A Transformation

System for Developing Recursive Programs. Journal of the
ACM, 24(1):44–67, 1977.

[2] J. Darlington. Program Transformations. In J. Darlington,
P. Henderson, and D. A. Turner, editors, Functional
Programming and its Applications, pages 193–215.
Cambridge University Press, 1982.

[3] Iavor S. Diatchki, Mark P. Jones, and Thomas Hallgren. A
Formal Specification for the Haskell 98 Module System. In
ACM Sigplan Haskell Workshop, 2002.

[4] C. Reinke (ed.). Haskell Communities and Activities Report.
http://haskell.org/communities/, May 2003.

[5] M. Erwig and D. Ren. A Rule-Based Language for
Programming Software Updates. In 3rd ACM SIGPLAN
Workshop on Rule-Based Programming (RULE’02), 2002.

[6] Robert W. Floyd. The paradigms of programming. CACM,
22(8), August 1979. Also appears in ACM Turing Award
Lectures: The First Twenty Years 1965-1985.

[7] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999. http://www.refactoring.com/.

[8] W. G. Griswold and D. Notkin. Automated Assistance for
Program Restructuring. ACM Trans. on Softw. Engineering
and Methodology, 2(3):228–269, July 1993.

[9] William G. Griswold. Program restructuring to aid software
maintenance. PhD thesis, Univ. of Washington, Dept. of CS
and Engineering, 1991. Tech. Rep. No. 91-08-04.

[10] W. Guttmann, H. Partsch, W. Schulte, and T. Vullinghs. Tool
Support for the Interactive Derivation of Formally Correct

14 http://www.cs.kent.ac.uk/projects/refactor-fp/
15A first release will be available from our project home page.

Functional Programs, Ext. Abstr. In FM-TOOLS, July 2002.
http://www.informatik.uni-ulm.de/pm/ultra/.

[11] T. Hallgren. A Lexer for Haskell in Haskell.
http://www.cse.ogi.edu/~hallgren/Talks/LHiH/

2002-01-14.html.
[12] Paul Hudak. Conception, Evolution, and Application of

Functional Programming Languages. ACM Computing
Surveys, 21(3):359–411, September 1989.

[13] Mark P. Jones. Typing Haskell in Haskell.
http://www.cse.ogi.edu/~mpj/thih/, November 2000.

[14] Jan Kort and Ralf Lämmel. A Framework for Datatype
Transformation. In Proc. of Language, Descriptions, Tools,
and Applications (LDTA 2003). Elsevier, April 2003.

[15] R. Lämmel. Reuse by Program Transformation. In Greg
Michaelson and Phil Trinder, editors, Functional
Programming Trends 1999. Intellect, 2000.

[16] R. Lämmel. Towards Generic Refactoring. In Proc. of Third
ACM SIGPLAN Workshop on Rule-Based Programming
RULE’02, Pittsburgh, USA, October 2002. ACM Press.

[17] R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a
practical design pattern for generic programming. In Proc. of
the ACM SIGPLAN Workshop on Types in Language Design
and Implementation (TLDI 2003). ACM Press, 2003.

[18] R. Lämmel and J. Visser. Generic Programming with
Strafunski. http://www.cs.vu.nl/Strafunski/, 2001.

[19] R. Lämmel and J. Visser. Design Patterns for Functional
Strategic Programming. In Third ACM SIGPLAN Workshop
on Rule-Based Programming RULE 2002. ACM Press, 2002.

[20] R. Lämmel and J. Visser. Typed Combinations for Generic
Traveral. In Practical Aspects of Declarative Programming
PADL 2002, volume 2257. Springer-Verlag., January 2002.

[21] R. Lämmel, J. Visser, and J. Kort. Dealing with Large
Bananas. In J. Jeuring, editor, Proceedings of WGP’2000,
Tech. Report, Universiteit Utrecht, pages 46–59, July 2000.

[22] Simon Marlow. Haddock: A Haskell Documentation Tool.
http://www.haskell.org/haddock/.

[23] William F. Opdyke. Refactoring Object-Oriented
Frameworks. PhD thesis, Univ. of Illinois, 1992.

[24] H. Partsch and R. Steinbrüggen. Program transformation
systems. ACM Computing Surveys, 15(3), September 1983.

[25] Don Roberts, John Brant, and Ralph Johnson. A Refactoring
Tool for Smalltalk. TAPOS special issue on software
reengineering, 3(4):253–263, 1997. see also http:

//st-www.cs.uiuc.edu/users/brant/Refactory/.
[26] Donald Bradley Roberts. Practical Analysis for Refactoring.

PhD thesis, Univ. of Illinois at Urbana Champaign, 1999.
[27] Chris Ryder. The Medina metrics library for Haskell.

http://www.cs.kent.ac.uk/~cr24/medina/, 2002.
[28] Tim Sheard. Generic Unification via Two-Level Types and

Parameterized Modules. In ICFP’01, Firenze, Italy,
September 2001. expanded version submitted to JFP.

[29] R. D. Tennent. Language Design Methods Based on
Semantic Principles. Acta Informatica, 8:97–112, 1977.

[30] Mark Tullsen. PATH, A Program Transformation System for
Haskell. PhD thesis, Yale University, May 2002.

[31] Eelco Visser. Stratego – Strategies for Program
Transformation. http://www.stratego-language.org/.

[32] Eelco Visser, Zine-el-Abidine Benaissa, and Andrew
Tolmach. Building Program Optimizers with Rewriting
Strategies. In ICFP’98. ACM Press, September 1998.

