Un1vers1ty
Qf Glasgow

Castagna, G., Gesbert, N. and Padovani, L. (2008) A theory of contracts
for web services. In: 35th annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL 2008), 10-12 Jan 2008,
San Francisco, USA.

http://eprints.gla.ac.uk/47889/

Deposited on: 17 December 2010

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

A Theory of Contractsfor Web Services

Giuseppe Castagna Nils Gesbert Luca Padovani
PPS (CNRS) LRI (CNRS) ISTI
Université Paris 7 Université Paris-Sud Universita degli Studi di Urbino
Paris, France Orsay, France Urbino, Italy

Abstract

Contracts are behavioural descriptions of Web servicesd&Vise
atheory of contracts that formalises the compatibility ofient to a
service, and the safe replacement of a service with ano¢iheics.
The use of contracts statically ensures the successfulletiompof
every possible interaction between compatible clientssandices.

The technical device that underlies the theory is the defimif
filters, which are explicit coercions that prevent some possible be
haviours of services and, in doing so, they make servicepatim
ble with different usage scenarios. We show that filters easden
as proofs of a sound and complete subcontracting dedugtsbera
which simultaneously refines and extends Hennessy's chlsst-
iomatisation of the must testing preorder. The relatioreisidbable
and the decision algorithm is obtained via a cut-elimimapficocess
that proves the coherence of subcontracting as a logicarays

Despite the richness of the technical development, thdtiegu
approach is based on simple ideas and basic intuitions. kema
ably, its application is mostly independent of the languaged to
program the services or the clients. We also outline theilpless
practical impact of such a work and the perspectives of éutar
search it opens.

Keywords Web services, contracts, concurrency theorys,
must testing, type theory, subtyping, explicit coercions.

1. Introduction

The recent trend in Web Services is fostering a computingasoe

where clients perform run time queries in search of senvibas
provide some given capabilities. This scenario require® Bé-

vices to publish their capabilities in some known repoyitord the
availability of powerful search operations for capalekti Possible
capabilities that one would like to search concern the fowhthe

exchanged messages, and the protocol-eamtract—required to
interact successfully with the service.

The Web Service Description LanguagespL) [14, 13, 12]
provides a standardised technology for describing thefate ex-
posed by a service. Such a description includes the sendegidn,
the format (orschema of the exchanged messages, the transfer

A very preliminary version of this work was presented on Zap20, 2007, Nice,
France, at PLAN-X 2007, the 5th ACM SIGPLAN Workshop on Peosgming Lan-
guage Technologies for XML (no formal proceedings).

mechanism to be used (i.80AP-RPC, or others), and theontract

In wsDL, contracts are basically limited to one-way (asynchrohous
and request/response (synchronous) interactions. TheSéfetice
Conversation LanguagevEclL) [2] extendswsDL contracts by al-
lowing the description of arbitrary, possibly cyclic seques of
exchanged messages between communicating parties. @ther |
guages, such as the Abstract Web Service Business Exetuation
guage (s-BPEL) [1], provide even more detailed descriptions by
defining the subprocess structure, fault handlers, etclé/ttne lat-
ter descriptions are much too concrete to be used as ca)tthey
can be approximated and compared in terms of contracts apat ¢
ture the external, observable behaviour of a service.

Documents describing contracts can be published in repaest
(see [3, 15] for the case ofsbL andwsclL) so that Web services
can besearchedand queried These two basic operations assume
the existence of some notion of contract equivalence topar§er-
vice discovery in the same way as, say, type isomorphismssaict
to perform library searches [27, 16]. The lack of a formalrelsa
terisation of contracts only permits excessively demapdiotions
of equivalence such as syntactical equality. In fact, it esgberfect
sense to further relax the equivalence intsudcontract preorder
(denoted by< in this paper), so that Web services exposing “larger”
contracts can beafelyreturned as results of queries for Web ser-
vices with “smaller” contracts.

In this work we develop a formal theory that precisely defines
what “larger” and “smaller” mean, and which safety propstive
wish to be preserved. Along the lines of [9] we describe @mig
by a simpleccslike syntax consisting of just three constructors:
prefixing, denoted by a dot, and two infix choice operaters
representing thexternal choicédthe interacting part decides which
one of alternative conversations to carry o@);representing the
internal choice(the choice is not left to the interacting part). Thus
a.o is the contract of services that perform an actioand then
implement the contract, o & 7 is the contract of services that
may decide to implement eitheror 7, while o + 7 is the contract
of services that according to their client’s choice, willplament
eithero or 7.

Following ccsnotation, actions are either write or read actions,
the former being topped by a bar, and one beingciractionof
the other. Actions can either represeperationsor message types
As a matter of facts, contracts are behavioural types ofga®es
that do not manifest internal moves and the parallel stracfThey
areacceptance treeim Hennessy’s terminology [19, 20].

Contracts are then to be used to ensure that interactiongéet
clients and services will always succeed. Intuitivelys thappens if
whenever a service offers some set of actions, the cligmtestyn-

chronises with one of them (that is, it performs the corresipy
co-action) or it terminates. The service contract will tiadiow us
to determine the set of clients theamplywith it, that is that will
successfully terminate any session of interaction witrsthwice.
Of course the client will probably be satisfied to interacthwi
services that offer more than what the searched contracifigse
Intuitively we want to define an order relation on contragtx =
such that every client complying with services implememtrwill
also comply with services of contractIn particular, we would like

grammer to write coercions, either because they do not haye a
actual effect (as in the case of the functiogince the type system
already ensures that tlefield will never be used) or because they
are inserted by the compiler (as when converting an integeithe
corresponding float). In this case we speaknoplicit coercions.
However some programming languages (e.g. OCaml) resert-to
plicit coercions because they have a visible effect and, for instan
they cannot be inferred by the compiler.

Coercions for contracts have an observable effect, therefe

the < preorder to enjoy some basic properties. The first one is that develop their meta-theory in term of explicit coercionswéwer,

it should be safe to replace (the service exposing) a cdntisit a
“more deterministic” one. For instance, we expec® b.c < @,
since every client that terminates with a service that mdgrof
eithera or b.c will also terminate with a service that systematically
offers @. The second desirable property is that it should be safe
to replace (the service exposing) a contract with anothertbat
offers more capabilities. For instance, we expeet @+ b.d since

a client that terminates with services that implemenwill also
terminate with services that leave the client the choiceveeh

@ andb.d. If taken together, these two examples show the main
problem of this intuition: it is easy to see that a client tbatnplies
with @ @ b.c does not necessarily comply with+ b.d: if client

and service synchronise @n then the client will try to write on

¢ while the service expects to read frain Therefore, under this
interpretation <X looks as not being transitive:

adbc=<a AN a=<a+bd == adbc=<a+bd.

The problem can be solved by resorting to the theorgxgdlicit
coercions[5, 11, 28]. The flawed assumption of the approach de-
scribed so far, which is the one proposed in [9], is that sesvi
are used carelessly “as they are”. Note indeed that what we ar
doing here is to use a service of “typa’+ b.d where a service
of typea @ b.c is expected. The knowledgeable reader will have
recognised that we are usingas aninversesubtyping relation for
services. If we denote by:> the subtyping relation for services,
thena @ b.c > @+ b.d and so what we implicitly did is to apply
subsumption [8] and consider that a service that has @ypeb.d
has also typ& @ b.c. The problem is not thak (or, equivalently,

>) is not transitive. It rather resides in the use of subsuompti
since this corresponds to the useimplicit coercions. Coercions
have many distinct characterisations in the literaturé,they all
share the same underlying intuition that coercions aretiome
that embed objects of a smaller type into a larger type “witho
adding new computation” [11]. For instance it is well knovinat
for record types one hafu:s} > {a:s;b:t}. This is so because
the coercion functior: = Az{****} {4 = 2.0} embeds values
of the smaller type into the larger ofdn order to use a term of
type{a:s; b:t} where one of typda:s} is expected we first have to
embed it in the right type by the coercion functieabove, which
erases (masks/shields) th&eld so that it cannot interfere with the
computation. Most programming languages do not requir@ithe

1The inversion is due to the fact that we are considering thentcper-
spective: a contract can be interpreted as the set of clieateomply with
services implementing the contract. We decided to keemtitition rather
than the inverse one for historical reasons, since it isdngessense as used
by De Nicola and Hennessy for the may and must preorders T2f8.in-
version corresponds to the duality between simulation aftlyping, viz.
between observers and observed behaviours.

2|n the case of typed lambda calculus coercions are formhflyacterised

by the fact that their type erasurersequivalent to the identity function,
but in general coercions may not be the identity functior].[11

coercions can be inferred so they can be kept implicit in &éme |
guage and automatically computed at static time. Coming b@ac
our example, the embedding of a service of tgpetoa®b.c is the
identity, since we do not have to mask/shield any action efreise
of the former type in order to use it in a context where a sereic
the latter type is expected. On the contrary, to embed acseofi
typea + b.d into @ we have to mask (at least) theaction of the
service. Soin order to use itin a context that expe@service we
apply to it afilter that will block allb messages. Transitivity being
alogical cut, the coercion from+b.d toa®b.c is the composition
of the two coercions, that is the filter that blod_kmessages. So if
we have a client that complies withs b.c, then it can be used with
a service that implemen® + b.d by applying to this service the
filter that blocks itsh messages. This filter will make the previous
problematic synchronisation dnimpossible, so the client can do
nothing but terminate.

Filters thus reconcile two requirements that were hith@rto
compatible: On the one hand we wish to replace an old seryice b
a new service that offers more choices (thatidth subtypinge.g.

o > o+ 1) and/or longer interaction patterns (thatlepth subtyp-
ing, e.g.a :> a.o) and/or is more deterministic (e.g.® T > o).
On the other hand we want clients of the old service to seafgles
work with the new one.

Two observations to conclude this brief overview. Firsg fiact
that we apply filters to services rather than to clients ig pus
presentational convenience: the same effect as applyimgeovice
a filter that blocks some actions can be obtained by applyinige
client the filter that blocks the corresponding co-actid®scond,
filters must be more fine grained in blocking actions tharrictgin
operators as defined farcsor 7. These are “permanent” blocks,
while filters are required to be able to modulate blocks althey
computation. For instance the filter that embédsa + b)) + b.c
into a.b must blockb only at the first step of the interaction and
only at the second step of the interaction.

Outline of the presentation

We start by presenting the syntax of our contrag®sX), by show-
ing how to use them to expresgspL and wscL descriptions
(§2.2), and by defining their semanti¢®(3). We then characterise
the set of all clients that are strongly compliant with a smvthat
is, clients that successfully complete every direct irttoa ses-
sion with the service—and argue that subcontract relatidmsse
definitions are naively based on strong compliance are reftize
strict or suffer the aforementioned problem of transiyivi2.4).
We argue that subcontracting should not be defined on ali-poss
ble interactions, but focus only on interactions based diore
that a client expects from the services: all the other ptessb-
tions should not interfere with the interaction. We forraealithis
concept by giving a coinductive definition of a subcontratation
that focuses on this kind of actions, we study its propedias de-

scribe the relation with the must preord§8.(1). This subcontract
relation induces a notion of weak compliance which suggstis
non-interference of unexpected actions can be ensureddrgion
functions, which we dulfilters. By shielding the actions atissue, a
filter embeds a service into the “world” of its expected d# e
prove that our subcontract relation can be expressed irstefifil-
ters and of the must preorder and we provide a sound and ctample
deduction system for the subcontract relation where fifeag the
role of “proofs” (§3.2). The subcontract relation is shown to be de-
cidable via the definition of a sound and complete algorithde-
duction system§3.3). Finally, we relate our contract language with
a generic process language (of which we only require theends

of a labelled transition system and of a type system as$ogiedn-
tracts with processes). The soundness of our theory of axcistis
proved by showing that a client that is weakly compliant veitser-
vice via a given filter will successfully terminate everyardaction
with the service mediated by the filte§3(4). A conclusion recaps
our work and hints at possible tracks of future reseagdj. (

Notefor thereviewers. Proofs of lemmas and theorems have been
omitted because of space limits. They can be found in theséul
sion of the paper, which is availabletattp: //www. sti.uniurb.
it/padovani/Papers/filtered_contracts.pdf.

Related work

This research was initially inspired b tswithout t's” [26] and
by Hennessy’s model of acceptance trees [19, 20]. Our auistaae
an alternative representation of acceptance trees. THes\at are
more closely related to ours are by Carpirettal.[9] and the ones
on session typesspecially [18] by Gay and Hole. In [9] the sub-
contract relation exhibits all of the desirable properiilestrated in
the introduction, but subcontracting essentially stopgtetie prob-
lem of transitivity. In that work compliance was a syntact@ion
and contracts lacked a semantic characterisation.

Session types were introduced by Horetaal. [21, 29, 22] in
the context of ther-calculus. These are used to type special chan-
nels through which several different messages may be egeldan
in sequence according to a given protocol. Such a sessiameha
can be seen as a client-service connection, and the segp®ist
the analogous of our contract as it describes which actlomgito-
cesses may perform through this channel. However, sesgies t
have the important restriction, if compared with contratttat only
one part has the floor at a given time: whenever a processrperfo
an internal choice it has to indicate explicitly which pathrder-
action it has chosen, and the other process has to be wastitigi$
indication. Thus there is no way of mixing internal and emégr
choices, and two processes like- b anda + b do not interact suc-
cessfully (because nobody has the floor, so no communication
happen). Subtyping for the session types has been studigd@hy
but because of the aforementioned restriction, the tigitgiprob-
lem we address in this paper does not exist for them: intemdl
external choices can never be related (hence,b < a + b does
not hold). Carboneet al.[6, 7] define a global calculus to describe
choreographies of Web services, and an end-point projetdia-
fer descriptions of individual processes from the globalodiption,
both of which are heavily based on session types. Our apiprisac
different since our typical application for Web servicesésarch-
ing for a service compatible with a given proto¢mm the client
point of view in particular, we want depth subtyping (a service do-
ing further actions after the client has successfully teated is
compatible with this client), which does not hold for seadigpes.

We believe that our theory is more basic than the theory &liges
types and that it can be fruitfully used to enrich the latter.

Finally, there is an important connection with the work ofika
eve and Padovani [23], who propose an approach where ctntrac
are “statically” filtered. Filtering is materialised by asgating each
contract with astatic interfacethat declares the only visible actions
of the contract and that does not change over time. Our agiproa
using explicit coercions subsumes static interfaces dodslus to
further relax the subcontract relation. The work [23] ardeolones
on the testing framework have shown that the subcontraatioalis
not affected in its essence by recursion, and the desirabpefies
we mentioned in the introduction and formalised later indbduc-
tion systems still hold. For the sake of brevity, in this pape only
consider finite contracts without recursion, but the extamef our
contracts and filters to the non-finite case, although itlires®sig-
nificant technicalities, is conceptually straightforwafthe other
aspects investigated in [23] regard contract duality archghplica-
tion of contracts to choreographies of Web services, whiddogus
on the theory of dynamically filtered contracts, on its aidonic
aspects, and on language neutrality.

2. Contracts
21 Syntax

Let ./ be a set of names, we defideto be the set of contracts
generated by the following grammar.

a€eN

«
g

ala
Olaoc| o®o|o+o

where0 is the contract of services that do not perform any action
(the other constructions were already explained in theodhic-
tion). We follow the standard convention of omitting tragdio’s.

2.2 Examples

In this section we relate our contract language to existiegrnolo-
gies for specifying service protocols.

2.2.1 Message exchange patternsin wsbpL

The Web Service Description LanguagesplL) [14, 4, 12, 13] per-
mits to describe and publish abstract and concrete deiscripof
Web services. Such descriptions include the schema [17]esf m
sages exchanged between client and server, the name andftype
operationsthat the service exposes, as well as the locatiors §)
where the service can be contacted. In addition, it definesao-
tion patterns (callechessage exchange patteprsvieps in version
2.0 of wspL) determining the order and direction of the exchanged
messages. In particulawspL 2.0 predefines four message ex-
change patterns for describing services where the intersistini-
tiated by clients. Let us shortly discuss how the informalpEn-
glish semantics of these patterns can be formally definedrinan-
tract language. When theep is inOnly or robustInOnly, cOm-
munication is basicallpsynchronousthe client can only send an
In message containing the request. If the pattefoisist InOnly
the service may optionally send bacFault message indicating
that an error has occurred. When thep is inOut or inOptOut,
communication is basicallgynchronousthe client sends afn
message containing the request and the service sends liaek ei
an Out message containing the response @aalt message. If
the pattern isinOpt0Out, then theQut message is optional. These

four patterns can be encoded in our contract language asvill

inOnly = 1In
robustInOnly = In.(O® Fault)
inOut = In.(Out ¢ Fault)
inOptOut = 1In.(0 @ Out @ Fault)

It is worth noticing that, intuitively, a client that is cdpa of
invoking a service whos®RIEP is robustInOnly will also interact
successfully with a service whoseep is inOnly. Indeed, such
client must be able to handle both a communication that teataes
andaFault message. Similary, a client that is capable of invoking
a service whos®EP inOpt0Out will also interact successfully with
services wWhoselEP is eitherinQut, or robustInOnly, Or even
inOnly. On the other hand, a client that interacts with a service
whoseMEP is inOut will not (always) interact successfully with
a service whos@IEP is inOptOut. The client assumes that it will
always receive either abut or aFault message, buinOptOut
does not give this guarantee.

2.2.2 Conversationsin wscL

The wsDL message exchange patterns cover only the simplest

forms of interaction between a client and a service. Morelirad
forms of interactions, in particular stateful interactpeannot be
captured if not as informal annotation within thesbL interface.
The Web service conversation languagecL [2] provides a more
general specification language for describing commlerversa-
tionsbetween two communicating parties, by means of an activity
diagram. The diagram is basically madeimferactionswhich are
connected with each other by meandrahsitions An interaction

is a basic one-way or two-way communication between thetlie
and the server. Two-way communications are just a shortfand
two sequential one-way interactions. Each interactionavaame
and a list ofdocument typethat can be exchanged during its execu-
tion. A transition connects sourceinteraction with adestination
interaction. A transition may bkabeledby a document type if it

is active only when a message of that specific document tyge wa
exchanged during the previous interaction.

Below we encode the contraet of a simplified e-commerce
service (Figure 1) where the client is required to login befi
can issue a query and thus receive a catalog. From this puitti®
client can decide whether to purchase an item from the catalto
logout and leave. In case of purchase, the service may e#pert
that the purchase was successful, or that the item is osteak, or
that the client's payment was refused:

def

o Login.(InvalidLogin @ ValidLogin.Query.
Catalog.(Logout + Purchase.(

Accepted @ InvalidPayment @ OutOfStock)))

Notice that unlabeled transitions in Figure 1 corresponexto
ternal choices i, whereas labeled transitions correspond to inter-
nal choices.

Now assume that the service is extended with a booking capa-

bility, so that after looking at the catalog the client maykan
item to be bought at some later time. The contract of the servi
would change te’ as follows:

o .Logout + Book.op + Purchase.(...)

It would be desirable for clients that are compliant with the
former service to be compliant with this service as well.eAfall,
the extended service offemsorethan the old one. However, assume
to have a client that does actually account f@Bbak message from

the service and that such a client is compliant with the farme
service for the simple reason that, since the former serdide
not provide a booking capability, whatever contrat the client
provided after théook action was irrelevant in order to establish
compliance. In the extended service this is no longer the, casl
the client can safely interact with the extended servicg drthe
Book action is filtered out. This is precisely the transitivitpptem
we pointed out in the introduction.

2.3 Semantics

Contracts describe the behaviour of the processes thaemepit

them. This behaviour is defined by describing the actionsdta

offered by a process and the way in which they are offereds iBhi
formally stated by the two definitions given below.

DEFINITION 2.1 (TRANSITION). Leto 4 be the least relation
such that:

0+

ifa#p3

if o —> andT

«
B.0

«@
oPDT

o+ T if o —— andt ——

Thetransition relatiorof contracts, noted—, is the least relation
satisfying the rules:

«
o0 —— O

@ / [’ [e) 12 o
o +— 0o TH—T

«
c+T——o o1

@ !

@ !
o+ 0 T T

«@ «
cPhT— o BT ocPT+—— 0

and closed under mirror cases for the external and interhaices.
We writeo —— if there existsr’ such thatr —— ¢”.

The relation—= is different from standard transition relations
for ccsprocesses [24]. For example, there is always at most one
contracte’ such thatr —— ¢, while this is not the case incs
(the process:.b + a.c has two differentz-successor states:and
¢). This mismatch is due to the fact that contract transitidefne
the evolution of conversation protocdtem the perspective of the
communicating partiesThusa.b+a.c —— b@ ¢ because, once the
actiona has been performed, the communicating party is not aware
of which branch has been chosen. On the contiargtransitions
define the evolution of processigsm the perspective of the process
itself.

NOTATION 2.2. We writeo(«) for the unique continuation of
after o, that is, the contract’ such thatr = o’.

The labelled transition system above describes the actifiesed
by (a service implementing) a contract, but does not show
these actions are offered. In particular the actions aoffdng an
external choice are all available at once while the actidfesexd by
different components of an internal choice are mutuallyiesice.
Such a description is given by tiheady setshat are observable for
a given contract:

DEFINITION 2.3 (OBSERVABLE READY SETS. LetZ; (N UN)
be the set of finite parts of"U./", calledready setslet alsoo || R

in:
out:

Logi n
Val i dLogi n
I nval i dLogi n

[Val i dLogi n]

out :

[I nval i dLogi n]

in: Logout i
L

[Accept ed]

in: Purchase I nval i dPaynent]
out: Accepted Qut O St ock]
out: InvalidPaynent ‘

out: CQut Of Stock

Figurel. Contract of a simple e-commerce service agssCL diagram.

be the least relation between contraetsn 3 and ready set in
Pr(AN UA) such that:

0y

a.o | {a}

(c+7)JRUS ifol Randr | s
(c@7)IR if eitheroc J Ror 7 | R

NOTATION 2.4. We use the convention that the bar operation is
an involution,a = a, and for a given ready sat we define its
complementary ready set as(R) = {a | « € R}.

24 Theproblem

We now possess all the technical instruments to formalle ste
problem we described in the introduction and recalled atetin
of §2.2. This first requires the precise definition afmpliance
Recall that, intuitively, the behaviour of a client comglieith the
behaviour of a service if for every set of actions that theviser
may offer, the client either synchronises with one of themito
terminates successfully. The behaviour of clients, as agthe one
of services, is described by contracts. Therefore we neddftne
when a contracp describing the behaviour of a client complies
with a contracto describing the behaviour of a service. For this
we reserve a special actien(for “end”) that can occur in client
contracts and that represents the ability of the client eocassfully
terminate. Then we require that, whenever no further ictera is
possible between the client and the service, the client laesiiate
where this action is available.

DEFINITION 2.5 (STRONG COMPLIANCH. % is astrong compli-
ance relationf (p, o) € ¥ implies that:

1. p { Rando | simplies eithere € R or co(R) N's #), and
2. pr% o ando —% o implies(p',0’) € €.
We use- to denote the largest strong compliance relation.

In words the definition above states that a client of contract
is compliant with a service of contraetif (1) for every possible
combinations and R of the independent choices of the service
and the client, either there is an action in the client chaiee
can synchronise with an action among those offered by thecser
(co(R) N's #) or the client terminates successfully € R),
and (2) whenever a synchronisation happens, the contimuafi
the client after it is compliant with the continuation of thervice
(0, 0') € E).

Once we have such a definition it is natural to define the subcon
tract relation in terms of compliance. Intuitively, (cli¢rontracts
are seen as “tests” for comparing (service) contracts. Beovice)
contracts are related if so are the sets of (client) corgramnpliant
with them [25].

DEFINITION 2.6 (STRONG SUBCONTRAC]. The contracto is a
strong subcontraaif the contractr, writteno C 7, if and only if
for all p we havep - o impliesp 4 7. We writeoc ~ 7if o C 7
andr C o.

This definition corresponds to giving a set theoretic seinarid
service contracts which are thus interpreted as the seteif th
compliant clients. Thug is interpreted as set-theoretic inclusion.

As usual with testing semantics, it is hard to establish a-rel
tionship between two contracts because the set of clieatsatte
strongly compliant is infinite. A direct definition of the mreler is
therefore preferred:

DEFINITION 2.7. .7 is a coinductive strong subcontract relation
if (o, 7) € . implies that

1. 7 || rRimplies that there exists C R such thatr |} s, and
2. 7+% 7’ implieso v ¢’ and (o', 7') € .7

THEOREM2.8. C is the largest coinductive strong subcontract
relation.

PrRoOOF. First of all we prove thaE is a coinductive subcontract
relation. Let

S {(o,7) |0 E 7}

and assuméo, 7) € .. As regards condition (1) in the definition
of coinductive strong subcontract relation, kt, ..., R, be the
ready sets ofr. By contradiction, assume that there existsuch

thatr |} R” and for everyl < i < n there existsy; € R; such that

a; € R. Letp def > i<i<n @i.e. Thenp - o butp # 7, which

is absurd. Hence condition (1) is satisfied. As regards ¢iomd(2)
in the definition of coinductive strong subcontract relatiassume
7 +=. By contradiction, assume +—+-. Thene + @ - o but
e +a A 7, which is absurd. Hence —=. Now we have to prove
that (o(a), 7(a)) € #. Let p’ be such thap’ - o(a). Then
eta.p’ 4 ohencee+a.p’ - 7, namelyp’ - 7(«) by definition of
strong compliance. Heneg(a) T 7(«) from which we conclude
(o(a), 7(v)) € . by definition of.#.

Now we prove thatC is indeed the largest coinductive subcon-
tract relation, namely that every coinductive subcontralztion is
included inC. Let. be a coinductive strong subcontract relation
such that(o,) € . and let% be a strong compliance relation
such that(p, o) € €. Itis sufficient to prove that

¢ < {(p,7) | 3o, (p,0) €C N (0,7) € L}

is a strong compliance relation, singg 7) € ¢”. Let(p,7) € €.
As regards condition (1) in Definition 2.5, lgtl} R andr | s. If
e € Rthere is nothing to prove. AssuneeZ R. From(o, 1) € .%
there existss’ C s such thatr || s'. From(p,o) € ¢ we know

co(R) N's" # 0, hence we concludeo(R) N's # . As regards

condition (2) in Definition 2.5, assume —— and T . From
(o0,7) € . we know thate —=. From (p,0) € € we know
that(p(«), o(a)) € %, hence we concludé (), 7(a)) € €' by
definition of ¢”. O

It turns out that the relatiof is the must testing preordeas
defined in [25] (a proof can be found in [23], where a different
albeit equivalent notion of strong compliance is used)sTaiation
is well studied and it enjoys interesting properties, intipatar it
is a precongruence with respect to prefixing, internal andraal
choices, and alse®b C «a, which is one of the desirable properties
for <, holds. HowevelC is stronger than< since, for example,

@ Z @+0b. Indeeda.e + b 4 @buta.e + b A @+ b. In general,
the must preorder allows neither width nor depth extensiins
contracts.

In previous work [9] an attempt was made to directly relate tw
contractss andr depending on their form, rather than on the sets
of their clients. Letdual (o) denote the dual contract ef which,
roughly, is obtained by replacing tnevery action by its coaction,

0 by e, every internal choice by an external one, and viceversa
(the formal definition is slightly more involved and requtferst to
transformo into the normal form of Definition 3.10 and then apply
the transformation described above; see [9] for detaitgitively
dual(c) denotes the contract of a “canonical” client complying

with o services. Then one can define a new relation on service

contracts as:

oxr &L dual(o) 471 (1)
In words, a contract is a subcontract of- if and only if its
canonical client complies with.

This relation isnearly what we are looking for. For instance
now we haver @ b.c X a anda x a + b.d, sincedual(a @ b.c) =
G.e + b.¢.e 4aanddual(a) = a.e 4a + b.d.

Unfortunately, x is not a preorder since transitivity does not
hold: @.e + b.c.e A a + b.d implies thata @ b.c ¥ a + b.d.
The reason for such a failure is essentially due to the fatith
establishinga ® b.c x a anda x a + b.d we are restricting
compliance to conversations in which no synchronisatiorthen
nameb happens. While contracts account for non-determinism that
is internal to each process—being it a client or a serviceiey t
cannot handle the “system” non-determinism that springsnfr
process synchronisation. In the example above, the faigselts
from the interaction of two external choic@se +b.¢.e anda+b.d,
which yields non-determinism at system level and which doss
preventa priori a synchronisation on tHename. By preventing the
synchronisation on the nanmbethe clienta.e + b.¢.e can terminate
successfully.

In summary, the strong subcontract relation implementdea sa
substitutability relation for services thate compatible, but is ex-
cessively demanding because it takes into account evesilpes
synchronisation. Our theory of contracts will define a saiflessi-
tutability relation for services thaian be madeompatible.

3. A theory of contracts

At the end of the previous section we said that we wanted a sub-

contract relatiorr < 7 such that a service with contractcan be
madecompatible with a service with contraet The keypoint of
the discussion is the “can be made”.

Of course we do not want to consider arbitrary transfornmatio
of the service, e.g. transformations that alter the sercsuati the
service. In fact, we cannot hope to affect in any way the igker

non-determinism of a service as the service is typicallysaered
as an unmodifiable black box. Instead we look for transfoionat
that embed & service in a world o& clients so that such clients
will perceive their interaction as being carried over a E&rwith
contracto (or possibly a more deterministic one). Roughly speak-
ing we want to filter out all behaviours of the contract that do
not belong to the possible behaviours ofworld, and leave the
others unchanged. This is, precisely, the characterisafian ex-
plicit coercion fromr to o (recall that the subcontract relation is
the inverse of a service subtyping relatiorf, Footnote 1): an em-
bedding function that maps possible behaviours ofto the same
behaviours ot (thus, it does not add new computation).

3.1 Weak subcontract relation

The idea is that < 7 if there exists some (possibly empty) set of
actions belonging to the world of that, if shielded, can makea
service appear asaservice. This is formalised by the following
definition:

DEFINITION 3.1 (WEAK SUBCONTRACT). # is aweak subcon-
tract relationif (o, 7) € # implies that (1) ifr | R, then there
existssg C R such thato || sz and (2) for alla € sz we have
(0(a),7(@)) € 7.

We denote by the largest weak subcontract relation.

The basic intuition about the weak subcontract relatiormad t
a client that interacts successfully with a service withtcact o
must be able to complete whatever ready set is chosen drolfn
we want to replace the service with another one whose cdrisrac
T, we require that whatever ready sets chosen frony there is
a smaller onesy C R in o such that all of the continuations with
respect to the actions is: are in the weak subcontract relation.
However, in order to avoid interferences we might need terfdut
the actions irr \ Sk.

First of all notice that the weak subcontract relation idelsithe
strong one (condition (1) is the same and condition (2) iskeBa
so that, for example; @ b.c < a holds. Additionally, we also have
a =< a + b.d since a service with contraat+ b.d can be made
to behave as a service with contradby filtering out theb action.
On the other handg A a @ b.c since there is no way to make
a @ b.c behave as by simply filtering out actions (filtering out
the b action froma @ b.c yields a & 0, not a). Finally, we also
havea @ b.c < a + b.d, again by filtering out thé action. In this
case, the filtered service: (4 b.d) is not made equivalent to the
smaller serviced @ b.c) but rather to one of its more deterministic
behaviours ¢).

3.1.1 Weak compliance

In contrast with the “strong” case, for the weak subcontralettion

it was more intuitive to provide its coinductive characsation
first. We now face the problem of understanding which notibn o
compliance induces the weak subcontract relation. As wesesd,
this is an essential intermediate step as it provides thessacy
insight for devising the practical solution to the probletescribed

in §2.4.

DEFINITION 3.2 (WEAK COMPLIANCE). Z is aweak compliance
relationif (p, o) € 7 implies that there exists a finite set of actions
A C 4 U4 such that:

1. p Rando | simpliese € Ror co(R)NANS# O, and

2. a €A pr— p ando v o’ implies(p’,o’) € 2.

We denote by the largest weak compliance relation.

Note how the existence of the setn the above definition must be
independenbf the ready sets of the client and of the service. This
reflects the fact that the internal non-determinism of theracting
parties cannot be affected.

The following theorem proves that is the compliance relation
inducing <.

THEOREM3.3. o < rifand onlyifforallp, p + o impliesp 4 7.

PROOF. (=) Let # be a weak subcontract relation such that
(o,7) € # and letZ be a weak compliance relation such that
(p,0) € 2. ltis sufficient to prove that

7" {(p,7) |30, (p,0) € DA (0,7) € #'}

is a weak compliance relation sin¢e,7) € 2. Let (p,7) € 2.
As regards condition (1) in Definition 3.2, assumé R andr || s.
If e € R there is nothing to prove. Assume¢ R. By definition
of 2’ there existsr such that(p, o) € 2 and(o,7) € #. From
(o,7) € # we have that |} s"ands’ C s. From(p, o) € Z we
have that there exists’ such thatco(R) N A’ N's" # (), hence
we concludeco(R) N A" N's # (. As regards condition (2) in

Definition 3.2, leta f AN Assumen € A andp . Then
o 2, andr %, From(p, o) € 2 we have thatp(a),o(a)) €
2. From (o,7) € % we have that(o(a),7()) € #. We
conclude(p(a), 7(a)) € 2’ by definition of 7".

(<) We prove that

W E {(o,7) |V, pHo=p AT}
is a weak subcontract relation. Lgt, 7) € # . As regards condi-
tion (1) in Definition 3.1, leRr4, . . ., R, be all the (distinct) ready
sets ofo. By contradiction, suppose that there exists a readg’set
such thatr || R” and for everyl < i < n we haver; Z R’, namely
there existsy; € R; \ R’. Letp % 3", _._ @&;.e. By construction
we havep I o but p A 7, which is absurd. As regards condi-
tion (2) in Definition 3.1, letc € {1,...,n} be such thak, C R’
andRy is minimalamong ther;’s. We takery, as the ready sedx/
in the definition of weak subcontract relationrif = 0, then con-
dition (2) trivially holds. Assumer;, # (). For everya € Ry, let
pa be a client contract such that, - o(«). Notice that for every
i€{l,...,n}\ {k}, we haver; \ R, # () because thg;’s are all
distinct andry, is minimal. Let

def = —
p = Zie{l,m,n}\{k}yﬁERi\Rk B.e+ @aeRk Q.Po -

By constructionp 4 o, hencep - 7 by definition of 7.
Furthermore, the set in p 4 o must be at least as large ag
because, by construction pf p cannot be (weakly) compliant with
o if any of the actions iRy, is filtered out. Thus, for every € Ry,
from p -l o we derivep, 1 o(a), hencep. — 7(«). Because the
pa’s are arbitrary, we conclud@r («), 7(a)) € # by definition of
. O

3.1.2 Comparison with other relations

In §2.4 we said that the relatior defined by equation (1) was
nearly what we sought for, but for the lack of transitivitywas
not a preorder. The following theorem shows tkabbviates this
problem.

THEOREM3.4. The subcontract relatiorx is the transitive clo-
sure ofix.

PROOF. We did not definedual(o) formally here, so we will
give an equivalent definition ok not based on the notion of dual
contract, which was also the definition used in [9], and juege g
the intuition of how we obtain it usingual(c). The important
property aboutdual(c) is that its ready sets are defined as all
the possible sets obtained by picking one action in eachyrsed

of o, and taking their co-actions. This can be seen by looking
at the definition of observable ready sets and thinking that w
just exchange internal and external choices. Now if we lobk a
Definition 2.5 and assum@ual(c),) € ¥ where% is a strong
compliance relation the first condition says that any readyobr
contains at least one action from each ready setel (o), which

is equivalent to the fact that it contains a ready set.ofranslation

of condition (2) is straightforward, so we get thatis the largest
relation# such that(o,) € # implies:

1. 7 || Rimplieso |} sfor somes C R, and
2. 0+ and7 % implies (o (), 7(a)) € .

Now let us prove thaK is the transitive closure of the relation
thus defined. Note that the condition (1) is the same in bd# re
tions, and that condition (2) in Definition 3.1 is a weakenetsion
of condition (1) for#, so obviouslyx C < and so does the tran-
sitive closure ofix, < being itself transitive. So what we have to
show is that two contracts related byare also related by the tran-
sitive closure ofx. Let 7 be a weak subcontract relation such that
(o,7) € #. Let

def

A - (0, 4r Ses, a-0(@) | (0,7) € #}

F2 = {(@Tuﬁ ZaesR a.o(a),7)|(o,7) € W}

where, for each ready setof 7, we write S: for the ready set of
such thatsz C R that satisfies condition (2) in Definition 3.1. It is
trivial to verify that#: U %> C x, from which we conclude that
is included in the transitive closure &f. O

For what concerns the inclusion of the strong relation in the
weak one note that if we compare Definition 3.1 with Defini-
tion 2.7, we see that they differ on the setd$ considered in con-
dition (2). The latter requires that whatever interacticayrhappen
between a client and a server, the relation must be satisfi¢ieb
continuations. The former instead requires this to hapdy for
interactions on actions that are expected for the smalletract.
This means that with the weak subcontract relation all thees
that are not expected by the smaller contracist nottake part in
the client-server interaction. If we want to replace a sebyea dif-
ferent server with a (weak) super-contract, then we mustrerthat
the client is shielded from these unexpected actions. Té¢tenteal
instrument to ensure it are tifikers we define next.

3.2 Filters

A filter is the specification of a set of actions that are alldves
a certain time, along with the continuation filters that gpelieed
after an action has occurred:

fo= HQEA a.fa

By convention we us® for denoting theempty filter that is the
filter that allows no actionq = (). Filters have a simple transition
relation, as follows:

B
H(yeA a'fa — fﬁ

As usual we writef —— if there is nof’ such thatf —— f.
The application of a filtef to a contract, written f (o), produces

if €A

oc+o=0

oco+T=T+0
a'+(0"+0"):(a'+0')+0"

o+ (" dd")y=(c+7)®(0c+0")

ocdbo=o0
ocbT=TDO

oc® (" ®o")=(c®)

oc® (' +o"y=(c®)+ (cDdd")

@ 0_//

c+0=0 a.ct+ar=a(c®T) a.cParT=a(c®dT)
(WEAKENING) (TRANSITIVITY)
(MusT) (DEPTHEXT) f:o<7t gNhNI.<f f:o0<o g:0 <o”
I VI :obT<0 0:0<¢ — — —
fVvg:o<rt fAg:o<o”
(PREFIX) (INTCHOICE) (EXTCHOICE)
fro<T fio<o f:r<7 f:io<o f:7<7

a.fraoc < ar

fioor<o @1

fio+7<o +7

Table 1. Deduction system for the weak subcontract relation.

another contract where only the allowed actions are visible

f0) =0
flao) = 0 if fr
flao) = a.falo) if [fa
flo+7) = [flo)+ f(7)
fleor) = [flo)® f(7)

Filter application is monotone with respect to the strong-su
contract preorder. This property, which is fundamentalrrioving
most of the results that follow, guarantees that equivatentracts
remain equivalent if filtered in the same way.

PROPOSITION3.5. o C 7 impliesf (o) C f(7).

Filters allow us to express the weak subcontract relatioerims
of the strong one:

THEOREM3.6. o =< 7 if and only if there exists a filtef such that
o C f(r).

PROOF. With an abuse of notation we writ&R), the application
of a filter f to a set of actions, for the set{a € R | f —}.

(<) Let . be a coinductive strong subcontract relation such

that(c, f(7)) € .. We show that
7 E{(0,7) | 3f,(0.f()) € 7}

is a weak subcontract relation. Let, 7) € # . Regarding condi-
tion (1) in Definition 3.1, assume |} R. From (o, f(7)) € ¥ we
know that there exists C f(R) such thatr |} s and we conclude
s C f(R) C R. Regarding condition (2) in Definition 3.1, take
a € s. From (o, f(7)) € ¥ we know (o(a), fo(T(a))) € &
wheref % f,. Hence we concludér (o), 7(a)) € #.

(=) Let 7 be a weak subcontract relation such thatr) €
W . Forevery(o,T) € ¥, let

def
Alo,T) = U, yr Se

wheresz C Ris such thatr || sz and sk satisfies condition (2)
in Definition 3.1. Basicallya(c, 7) is the set of actions that need
not be shielded for proving that < 7. Notice thata € A(o, T)
implieso = andr ——.

For every(o, 1) € %, let

def
forr) = Haeaom) @ fo(@)r) -

The filtersf, .y are well defined and finite because contracts
andr are finite. Now we prove that

S EL (0, flomy (7)) | (0,7) € W'}

is a strong subcontract relation. Let, f,. (7)) € .. Asregards
condition (1) in the definition of coinductive strong subtrait
relation, assume J} R. By definition ofA (o, 7) there existsg C R
such thats |} sk and alsoss C A(o,7), SO we concludesg C
fis,-)(R). As regards condition (2) in the definition of coinductive
strong subcontract relation, assuffig () ~—. Thenr — and
there exists: such that |} sz anda € sg, hence we obtaia ——
andA(o,) # 0. From(o,7) € # we derive(o(a), 7(a0)) € #
so we concludéo (), fio(a), (o) (T(a))) € - by definition of
7. O

Let us consider again our examplea® b.c anda + b.d. These
contracts are not related by the strong subcontract ralaiat any
client complying with the first one has to be ready to readuzon
and then terminate. Then, we see that the second@am®e made
compliant with any such client, because it is ready to writex0
so we are sure that synchronisationois possible, and that if it
occurs the client will terminate. The point is then to engheg this
synchronisation will indeed occur and that the charinedill not
be selected instead, which would lead to deadlock. Thisrig dxy
applying toa + b.d the filter f = @, which lets the sole actio@
pass. Formally, we have th#{(@ + b.d) = @, anda @ b.c C @
holds.

3.2.1 Deduction system for <

Filters can also be used as proofs (in the sense of the Cuowakdl
isomorphism) for the weak subcontract relation. More iy,
the idea is to devise a deduction system within which a deléva
judgement of the forny : o < 7 implies thatec < 7, and f is
a filter that embeds the service with contracinto the world of
o-compliant clients.

The definition of such deduction system requires a few aanyili
notions. First we have to define the “identity” filter, thatlie one
that proves isomorphic (with respect to an interpretatibfiliers
as morphisms) contracts.

DEeFINITION 3.7. Theidentity filter for a contracto, denoted by
I, is defined as

def
Ig = H a ,OC.L.,/

o——0

Itis easy to see thdt, (o) = 0.

Next, we define two basic operations for combining filters.

Intuitively, given a derivation tree for the judgemeft: o < 7,
such operations allow us to show how the filfeis built step-by-
step, according to the structure of the derivation.

DEFINITION 3.8. Let f and g denote the filterd [., . f and
[.cs @-ga respectively. Then theonjunctionand disjunctionof
f andg are respectively defined as follows:

def
f/\g é HaeAﬁBa'(fa/\ga)
ot faVga, a€ANB
fVvg = HaEAUBa' fas a€A\B
G, a€B\A

Finally, we need a way for comparing filters. Filters can ba€o
pared according to the actions that they let pass. In theatiedu
system the need for comparing filters arises naturally inmtbak-
ening rule, where we want to replace a filter with a “largeréda
filter that allows more actions). This can be done safely drtlye
larger filter does not thwart the functionality of the origifilter by
re-introducing actions that must be kept hidden. The filtergrder
will also be fundamental i§3.3, in order to define the “best” filter
that provesr < .

DEFINITION 3.9. The ordering relation on filterg < g is the least
relation such thaf [, ., o.fa < [15c, 8.95 impliesa C B and
foreverya € A, fo < ga-

Filters can be seen asary trees with edges labelled by actions,
each node having at most one outgoing edge labelled by a goren
tion. The ordering we just introduced is nothing but tredusion
where we consider that all trees share the same root. It faluse
notice that the syntactical “conjunction” and “disjunctian Def-
inition 3.8 can be alternatively defined in a natural way gsime
ordering: the conjunction of two filters is the largest pamnenon
to both trees, that is, their greatest lower bound:

fizgandfa>g <= (finf2) > g 2

Similarly, the disjunction of two filters is the tree obtaihéy
merging the two initial trees, that is their least upper ktbun

fi<gandfa <g <= (fiVf2) <y)

A further interpretation of filters is as prefix-closed regyuban-
guages of strings of actions. Then, filter conjunction argjudic-
tion correspond to language intersection and union, reispéc
whereas the filter ordering is set inclusion (notice thatiersec-
tion and the union of prefix-closed sets is again prefix-apse

Table 1 defines the deduction system farln the table we use
a single axiomr = 7 as a shorthand for two axionTs : ¢ < 7
andl. : 7 < o. The equalities and rule (VsT) are well known
since they fully characterise the strong compliance m@ativhich
coincides with the must preorder (see [25, 20]). Notice that
the rule (MUST) no action needs to be filtered out. In fact, this

is the only axiom for safely enlarging a contract without the
tervention of any filter (which is expected since this axionare
acterises strong compliance, where filters are not needad
(DeEPTHEXT) formalisesdepthextension of contracts, where a con-
tract can be prolonged if no action is made visible from thatice
uation. Rule (WEAKENING) shows how to safely enlarge a filtgr
to f Vv g: the premisgy A I, < f states thay may allow actions
not allowed byf, provided that such actions are not those that have
been hidden for the purposes of provifig o < 7. Rule (TRAN-
SITIVITY) is standard and the resulting filter is the composition
filter. Three forms of (limited) pre-congruence follow. RUPRE-
FIX) is standard and poses no constraints. Rulesr CHOICE)
and (ExTCHOICE) state the limited precongruence property for
internal and external choices, respectively. The fundaaheron-
straint is that two contracts combined by meanspadr + can be
enlarged, provided that they can be filtered in the same waig. T
requirement has an intuitive explanation: the filter thatiates
the interaction of a client with a service is unaware of therinal
choices that have been taken by the parties at a branching o,
it must be possible to ugbe samdilter that works equally well in
all branches in order for the branches to be enlarged.

By combining the rules (BPTHEXT), (WEAKENING), and
(ExTCHOICE) it is easy to derive a further rule, which formalises
width extension of contracts:

(WIDTHEXT)
I NI <0

Is:0<o+T1

Basically (WIDTHEXT) states that a service can be extended so
that it provides more capabilities, provided that such bdpies
are disjoint from those that were available before the esiten

3.22 Properties

The deduction system we devised in the previous sectionuiscso
and complete with respect tg and the set of filters, in the sense
that it proves all and only the pair of contracts that areteela
according to Definition 3.1, and for any such pair it dedudés a
and only the filters that validate the pair according to TheoB.6.

While the soundness of the deduction system can be easily
established, its completeness is less immediate, but thef pf
this fact follows a standard pattern: completeness is pkdoe a
restricted class of contracts which are said to be in sommalor
form and then it is shown that it is always possible to trarmsfan
arbitrary contract to an equivalent one which is in normaffdy
using the axioms.

As regards the actual definition of the normal form, we can
notice that it is always possible to add new ready sets to engiv
contracto without altering its semantics (according+9, so long
asI, does not change and the new ready sets contain older ones:
for exampleo @ 7 ~ 0 & 7 @ (0 + 7). Now we can see that,
if we saturate the set of ready sets of a contract by adding to i
every possible ready set meeting the conditions above, wbwl
a unique (up to commutativity and associativity) hormahfdior
each equivalence class. This normal form is defined as fellow

DEFINITION 3.10 (NORMAL FORM [20]). For any contractr, we
define its saturated set of ready sets:

X(o) = {RC UyysS13s,0 SASCR}

The normal form ofr is then defined up to associativity and
commutativity of the choices by the following recursiveresgion:

nf (o) def @RE%(U) ZaeR a.nf(o(a))

the empty external choice being definedd# is not necessary to
define the empty internal choice, because any contract hizsstt
one ready set).

Normal forms can be used as the canonical representations of

classes of the equivalence relation
PROPOSITION3.11. 0 ~ nf(0).

The normal form enjoys also the following important projeest
(1) In a given mix of internal and external choices (eithetogi
level or under a given sequence of prefixes), a prefiz always
followed by the exact same continuation. (2)ofand are two
normal form contracts such that T 7, condition (1) of the
strong subcontract relation holds if and only if every ready
of 7 is also a ready set of. These two properties lead to the
fact that two equivalent normal forms are syntactically aqup
to commutativity and associativity of the choice operators

We now possess all the technical tools to prove that the deduc
tion system shown in Table 1 is sound and complete<f@nd the
sets of filters that prove it.

THEOREM3.12. f : o < rifand only ifo C f(7).

PROOF. (=) We only show the most interesting inequalities, since
the other rules are trivial. We proceed by induction on thecstire
of the derivation tree fof : o < 7 and by cases on the last rule
applied. If the last rule was (MsT), thenoc @ 7 C o = (I, V
I;)(0o). Ifthe last rule was (BPTHEXT), then0 C 0(o). If the last
rule was (WEAKENING), then by induction hypothesis C f(7)
and(f Vv g)(r) = (f V (g A I.))(r) = f(r) becausg/ A I < f.
Nowo C f(r) = (fVg)(7).If the last rule was (RANSITIVITY),
then by induction hypothesis we have = f(o’') ando’ C
g(c”). Since filter application is monotone with respectiqsee
Proposition 3.5) we obtaie C f(o') T f(g(c”)) = (f A
g)(c"). If the last rule was (REFIX), then by induction hypothesis
o C f(r). Thena.o C a.(f(7)) = (a.f)(a.7) becauseC
is a precongruence with respect to prefixing and by definition
of filter application. If the last rule was irCHOICE), then by
induction hypothesis = f(o’) andT C f(7'). Theno @ 7 C
fle)® f(r') = f(o' ® 7') by precongruence df with respect
to @ and by definition of filter application. If the last rule was
(ExTCHOICE), then we can reason as for thelfiCHOICE) rule,
except that we conclude by precongruencé&afith respect tot-.
(«=) The conversion of a contract to an equivalent one in normal
form is not detailed in here because it can be carried overtantly
the same way as done in [20]. Assumend 7 in normal form
such thaic T f(7). Notice thatf(r) is also in normal form. We
show by induction on the depth of andr that f : o < 7. If
o = 0, then f(r) ~ 0 and we conclude by idempotency of
and reflexivity of<. If 7 = 0, thenoc must have an empty ready
set hence by (MsT) we havel, : ¢ < 0, by (DEPTHEXT) we
haveO : 0 < 7, by (TRANSITIVITY) we have0 : ¢ < 7 and we
conclude by (WVEAKENING) so that the resulting filter ig (since
I, = 0 we havef A I, = 0). For the remaining cases, assume

o= ®i61 Zaem Q.0a T= ®jeJ ZaESj A.To

and assume |} R. Fromo C f(7) and the fact that andr are
in normal form we haver || f(R). For everya € f(R) we have

0o C fo(1a) wheref v f,, hence by induction hypothesis we
obtain

fa:i0a < Ta
then, by (RREFIX),
a.fo:a.oq < Q.Ty
then, by (WEAKENING),

fria.oq < aTq

where fr def]_[aef(R) a.fa. Indeedfr A a.l-, < a.fq follows

immediately from the definition ofz. Now, by (EXTCHOICE),
fr: Zaef(R) a.0q < Zaef(R) QT -
From f(R) C rRand by applying (WbTHEXT),
fr: Zaef(R) a.0q < ZQER ATa -
Let f Ve fr FromU_ o f(R)NR = f(U, 4 R) N
R C f(R) we observe thaf’ A], ..a.I-, < fs. Hence, by

(WEAKENING), by iterating over all the ready sets of and by
(INTCHOICE), we obtain

f/ : ®TU«R ZaEf(R) Q.00 < T

, def

Now

I, :0< @THR Zaef(R) a.0q

by possibly applying (MsT) for removing all the ready sets of
o that have disappeared if(7) hence, by (RANSITIVITY), we
concludef’ : ¢ < 7 becausef’ < I, since eachf(R) is a ready
set ofo andl, A f' = f’.Inorder to provef : o < 7 itis sufficient
to apply (WEAKENING). This is possible becauseA I, < f'.
Indeed, assum¢(r) . Thena € R for somer |} R, hence
o |} f(R) and nowa € f(R). So, it must befx + from which
we concludef’ —. O

As we did for the weak subcontract relation, the weak com-
pliance relation can be decomposed in terms of filters armhgtr
relation:

COROLLARY 3.13.
Ir<Lo,p-r (4)
3fipf(o) (5)

Finally filters have an operational meaning, since theywallo
us to state the soundness of our type system. This can belyough
expressed as the fact that given a service and a weakly camhpli
client, every interaction between them mediated by ther filiat
proves the weak compliance (Theorem 3.13(2)) will be sisfaks
(the client terminates). This will be formally statedsi.4.

pHo <

—

3.3 Algorithmic deduction system

We introduced a device, filters, that allows us to transforweak
subcontract or compliance relation into a strong one byldinig
the incompatible actions. The next step is to infer filtegosth-
mically, so that the weak relations can be used in practice.

As usual the process of finding a decision algorithm for a con-
tainment relation corresponds to a cut-elimination pregése cut
here being the (RANSITIVITY) rule in Table 1), which amounts to
finding a canonical proof for each provable relation. In oteems,
we have to associate every provable weak subcontractingael
with a canonical filter that represents all other possibtefs. In
order to choose a canonical filter, we have to solve two piatlent
problems. First, there usually are several filters that weitk a

given relation. For example, to show thatp b < a + b, we can
either let pass only, only b, or both. The best solution here is to let
pass both, because we do not want to shield out actions thabta
cause any harm. This example suggests the definition of amoti
of “better filter”, that is, of a partial order on filters thagtérmines
which filter is better to use, and such partial order is eyastl
(Definition 3.9). The second problem is that in the examptevata
filter that letsa, b, and, say¢ pass will work as well. The intuition
here is that the filter that lefast a andb pass is better since allow-
ing any action besides andb to pass is useless. This suggests the
definitions of a notion of “filter relevance”, to single outdis that
do not contain useless actions.

The subcontracting algorithm will pick up, among all the pos
sible filter for a given relation, the “best relevant” filtérat proves
it.

3.3.1 Filter relevance

In order to determine the property of “relevance” we havedtidy
understand the role played by the identity filters. It may bted
that the identity filter of a given contract is exactly theetref

all possible sequences of actions that the contract can fiwebe
reducing to0, without distinguishing between internal and external
choices. This is embodied by the operator on filters which is a
unique choice operator representing both kinds of choisgha
following relation shows:

(6)

Note that ifc andr share common actions in their outermost pre-
fixes, the continuations of both filters after this action@eectly
merged by the disjunction operator.

The tree of an identity filter accurately represents the idea
mentioned in the introduction of a contract’s “world”: thets of
actions the contract knows of at each step of an interaction.
filter f : ¢ < 7 embedsr services into the “world” ofz: then
the intuition is that to be relevant must be defined (only) on the
“world” of 7, world that is represented Wy. Indeed, applying te
the filter f or the filter f A I give the same result, thus the partfof
thatis notinf A I is irrelevant (and this is why there is no greatest
filter corresponding to a given relation in the absolute)usve
will say that a filterf is relevantwith respect to a relation < 7 if
itis smaller thar/..

Now if we restrict ourselves to relevant filters we can have
another interesting upper bound: if we look at condition ¢2)
the strong subcontract relation, we see that, at each stepy e
action available to the greater contract has to be avaikalste to
the smaller one. This exactly means that the greater cariteaca
smaller tree, and thus we have (by noticing that,) = f A I,):

@)

Thus relevant filters that prove a relation have to be smétlan
the identity filters ofboth contracts.

We now would like to find the greatest relevant filter that gov
a given relation. Note that projecting o A I, itself is not
necessarily enough to make the relation work, because df/rea
sets: it might be necessary to project on something smaller t
prevent a wrong branch to be taken, for examplednb.(a + b) <
a + b.(a ® b), the initial b has to be filtered out even if the trees
are the same, because its continuation in the right conhrast
incompatible ready sets. However, the following importatéation

IUG)T = do4+7 — —IU \% IT

if o C f(r)andf < I, thenf < I,

holds:
if o C f(r)ando C g(7) theno C (f V g)(7) (8)

meaning that if we can make the relation work either by silgct
some branches or by selecting some other branches, thefl it wi
still work if we take all these branches at once. This shows, tih

o = 7 holds, there will be a greatestibtreeof = that makes the
relation work: even if there is no greatest filter in the absnlwe
can take the disjunction of all filters less thanthat work (there
are a finitely many). This filter, which is the least upper bdohall
relevant filters that prove < 7, is the one we choose as canonical.

3.3.2 Algorithm

The last step is to define an algorithm for building the cacaini
filter of a relation. The monotonicity of filters (Propositi8.5) and

the soundness and completeness of the deduction systero-(The
rem 3.12) ensure that filters prove subcontracting modulivag
lence, that is iff : ¢ < 7,thenf : ¢/ < 7/, foranyo’ ~ o,

7/ ~ 7. Since a contract is equivalent to its normal form (Propo-
sition 3.11), then the set of filters that prave< 7 is the same as
the set of those that prowef (o) < nf(7). Therefore in order to
choose in this set a canonical filter for< r, it suffices to choose it
for their normal forms. Hence, we define the following algfomi:

DEFINITION 3.14. We define the ternary relatioff : ¢ < 7
between a filter and two contracts in normal form by the iniese
rule

A={a € (Upex R N(Uscr 9) | 3fa, fo 1 0a <70}
g ={A CA|Vse S sNA e} o #0
V Il afa: @ > acad P > ata
A ed acn’ REZ ER s€ a€S

We then extend the relation to arbitrary contracts by th&ofet
ing definition:

frodr LN f:nf(o) <nf(r).

Although it is not immediate, the definition above descril@s
algorithm to check whether two contracts are in relatiorst fine
two contracts are put in normal form; then for every actiothat
can be immediately emitted by both normal forms, the alporits
recursively called on the two continuations of the actioime Beta
represents the largest set of actions leading to contonstivhich
are in the relation and the recursion basis occurs when(). The
set.e7 contains the subsets C A such that, by restricting each
ready set of the larger contract to the actiong\inthis is a ready
set of the smaller contract (recall that for any two consacandr

in normal form such that C 7, every ready set af is also a ready
set ofo). If there is at least one suet set of actions.¢Z # (), then
o andr can be related. The filter defined in the conclusion is the
disjunction of the filters corresponding to all these setaations:
it uses Equation (8) to compute the greatest relevant filter.

3.3.3 Properties

The algorithm described in Definition 3.14 enjoys fundaraknt
properties, namely) it proves only (soundness) and all (complete-
ness) weak subcontract relatios,) in case of success it returns
the largest relevant filter that proves the relation &iid) it always
terminates, which implies the decidability of the weak srficact
relation.

LEMMA 3.15 FILTER RELEVANCE). If f: 0 < 7, thenf < I-.

PROOF. A trivial induction on the derivation of : o < 7, where
the base case is whenin the premise of the rule is empty. This
eventually happens asandr are finite. O

THEOREM3.16 SOUNDNESY. If f: 0 < 7theno C f(7).

PrROOF. By Proposition 3.11 it is sufficient to prove the result
on contracts in normal form. We do an induction on the proof of
f: o0 < 7. Lete/ and f be as determined by the rule. As regards
condition (1) in the definition of strong subcontract redati let

7 s,andA’” € . Theno | sN A" andsn A" C f(s) by
definition of f. As regards condition (2), assunfér) ——. From

f += we derive that there exists € .o such thaix € A’ and a
ready sets such thatr |} sanda € s. By the hypotheses of the
rule we haver |} sNA’ anda € sNA’, hences ——. Furthermore,
there existsf, such thatf, : o. < 7. By induction hypothesis
we derives, T fa (7). We conclude by observing thft— f,.

O

THEOREM3.17 (COMPLETENESS. If o C g(7), then there exists
afilter f suchthatf : o < 7,andf > g A I,.

PROOF. First note that ifr C g(7), then alsor C (g A I,)(7)
(applying the conjunction of two filters is like applying otteen
the other, it projects on the part of the tree common to balth)s
we can assume < I without loss of generality, and we also have
g < I, by (7). By Proposition 3.11, we can also assume ¢haind
T are in normal form.

We proceed by induction on the depthcofand r. If the depth
of o is 0, then it has only one ready set, which is empty= {0}
and we conclude by taking = 0. If the depth ofr is 0, thens |} 0
and.«z = {0}. Again we conclude by taking = 0. If the depths
of o andr are positive, then frone C ¢(7) and the fact thatr
andr are in normal form we derive that (4)7) is in normal form,
@ {g(s) | 7 4 s} C{r| o R} and (3)ifg - g, then
T+ 74 andog C ga(7a). LetA’ = {a | g +=+}. By induction
hypothesis, for everst € A’ there exists, suchthatf, : o, < 74
andg. < fo.LetA be as defined in the premises of the rule. Since
g < I, A I, we know thata” C A. HenceA’ € /. We conclude
by taking f as defined in the rule, and observing that f. O

COROLLARY 3.18.If o and 7 are two contracts, there exists at
most one filterf such thatf : o < 7. Furthermore, iff : 0 < 7,
then

f=max{g <L |cCg(r)} =max{g < I; |g: 0 <7}.

The corollary above describes the logical interpretatibthe al-
gorithm as the result of a cut-elimination process. The™guthe
system of Table 1 is given by the rule RANSITIVITY). This rule
intersects filters, that is it minimises the proofs: therefm order

to eliminate cuts we have to find a proof with a maximum filter.
However we have also to avoid useless applications of theAXV
ENING) rule, which instead maximises proofs: therefore we have to
set an upper bound to filter maximisation, upper bound endobdi
by the definition of relevance (therefore it would be morecize

to speak of a cut-weakening-elimination process).

PROPOSITION3.19 DECIDABILITY). Given two contracts and
7, we can decide whether there exists a filfesuch thatf : o < 7
and compute this filter.

PROOF. The first step is to put and = into normal form. For
this, if the contract is of depth there is nothing to do, else we

have to compute its ready sets, which can be done in finite time
because the contract only contains a finite numbe#-adind &
operators, then the union of those ready sets is finite, soame c
compute the saturated ready sets in finite time too. Then we ha
to compute the normal forms of all the(a), of which there is

a finite number and whose depths are strictly smaller. Scethes
normal forms are computable. Then we prove that the relasion
decidable by induction on the depth of If this depth is0, thent

is 0 andA has to be the empty set. The only thing to check is if one
of the ready sets on the left is empfly € #); there is only a finite
number of them so we can conclude.

If the depth isn > 0, then the seh is computable becaus#
and.¥ are finite sets of finite sets, so there are a finite number of
elements, and by induction hypothesis the condition isdidste
for each of them. Theny is computable becaugeis finite and so
is.7. O

3.4 Language

The final step of our investigation is to relate contractsi¢ivh
are behavioural types) with processes that implementtsliand
services. We do not consider any particular process lareguaay

do we require that clients and services be implemented uhimg
same language. We just require that the observable belaviou
such language(s) be described by a labelled transitioersyand
abstracted by a static type system, so that we can reasonthbiu
programs. More precisely we assume that a process langsage i
equipped with a labelled transition system so that

PP

describes the evolution of a proceBsthat performs g action
thus becoming the proces?’. Here, 1 can either be a visible
action of the forma or @, which is meant to synchronise with
the corresponding co-action in the procd3ss interacting with,
or it can be an internal, invisible action (not to be confused
with 7 that we used to range over contracts) that the proéess
executes autonomously. It is understood that the relatfonis
not necessarily deterministic. As usual, wedatange over visible
actions and we writ® - if P - P’ for some process#”’.

DEFINITION 3.20 (STRONG PROCESS COMPLIANCE Let
P||Q — P'|| Q' be the least relation defined by the rules:

Q Q'
PllQ — P

P=p
PlQ — P'|Q

PP Q-5
PllQ — P'|Q

We write= for the reflexive, transitive closure ef—; we write
P|Q —if P||Q — P'||Q’ for someP’ and Q’; we write
P||Q ——ifnotP | Q —.

The clientP is strongly compliantwith the serviceQ, written
P - Q, ifwheneverP | Q = P’ || Q" — we haveP —*.

The intuition of this definition is thaP || Q represents a client
P and a servicé) interacting with each other. Whdn —+ Q every
interaction betwee® and@ terminates withP being able to emit
e, denoting the successful completion/®k task.

We also assume that a type system is given to check that a
processP implementsthe contracto. This is expressed by the

judgement
FP:o
While we do not give details on the particular typing ruleg w

require typing and the reduction relation to satisfy somsida
properties: essentially, contracts must describe theradisenal

behaviour of processes and the reduction must decrease non-

determinism (entropy must always increase). In this respec
makes sense to be able to apply the strong subcontractorelati
to client contracts too, where the actiens treated like any other
action (recall that, according to Theorem 2.8, the relafiotan be
defined without any notion of “successful actics)"

DEFINITION 3.21. The type system isonsistentf, whenever +
P:oandP - P/ thent P’ : ¢’ and (1) ifu = T, then
o C o @Qifu= athensc > ando(a) C o'. Also, the
type system imformativeif, whenever P : ¢ ando ——, then

P

Intuitively, condition (1) states that a process perforgnimter-
nal actions can only make its contract more deterministandi
tion (2) states that if a process performs a visible actiorthen
its contract must account for that action and the contrath®fe-
sulting processd”’ is (more deterministic than) the contracfo),
which accounts for all the possible behaviourdoaftera. An in-
formative type system does not deduce capabilities thabeegs
does not have.

The following lemma states that it is possible to replace a
client contrac with another one which is more deterministic, still
preserving the compliance property. The lemma is fundaahémt
proving the soundness of the type system.

LEMMA 3.22.1f p 4o andp C p’ thenp’ - o.

PROOF. Let% be a compliance relation such that o) € ¢ and
let . be a strong subcontract relation such thatp’) € .. Itis
sufficient to prove that

¢ L {(0',0) | 3p, (p,0) €C A (p,p)) € 7}

is a strong compliance relation singgp’,oc) € %’. Assume
(p',0) € ¢'. Then there existp such that(p,0) € ¥ and
(p,p") € . As regards condition (1) in Definition 2.5, assume
p I Rando || s. If e € R the condition is satisfied. Assume
e & R. From(p,p’) € . there existR’ C R such thatp || R'.
In particular,e ¢ R. From(p, o) € ¢ we haveco(R') N's # 0,
henceco(R) N's # (.
As regards condition (2) in Definition 2.5, assupie—— and
o . From(p, p') € .7 we derivep ~— and (p(a), p'(a)) €
. From (p,0) € ¢ we derive(p(a),o(a)) € €. Hence we
conclude(p’(a), o(a)) € ¢ by definition of¢”. O
Given a consistent type system, the following result stttas
given a pair of processd3|| Q whose respective contracts comply,
and given any two residual procesges| Q' resulting fromP || Q,
the respective contracts 6f andQ’ comply as well.

LEMMA 3.23 SUBJECTREDUCTION. If F P:pand - Q : o
andp HcandP|Q — P'||Q’,thent P’ : p’ andt Q' : o’
andp’ 4 o',

PROOF. We need to consider all the possibilities by whieh| Q
reduces t?’ || Q’, namelyP || Q — P'|| Q. If P = P/, then
from consistency condition (1) we have P’ : p’ andp C p’
and by Lemma 3.22 we conclugé - o. If Q — @, then

from consistency condition (1) we have Q' : ¢’ ando C o’

and by definition ofZ we concludep 4 ¢’. Finally, if P = P’
andQ —= @', then from consistency condition (2) we have that
P :pand- Q' : ¢’ andp(a) C p’ ando(a) C o'. By
Lemma 3.22 and by definition & we concludey’ + o', O

The soundness of a consistent and informative type system is
ensured by the following result, stating that if the contsaaf two
processes comply, the corresponding processes comply lgs we
guaranteeing termination on the client side.

THEOREM3.24.If F P:pand - @Q : o andp 4 o thenP H Q.

PrROOF. Because of Lemma 3.23 we only need to consider the
caseP ||Q ——. Assume, by contradiction, tha? —. From
P||Q —— we have that wheneveP -2~ we haveQ —+. Since
F P : pandk @ : o and since the type system is informative,
this means that for any ready sebf p there is no ready setof o
such thato(R) N's #), but this is absurd from the hypothesis that
p - o. HenceP —-. O
Notice that the soundness theorem holds when the client’s co
tract and the service’s contract are strongly compliantb&a@ble
to use a service for which we only have a weakly complianntlie
we need to shield potentially dangerous service actions &gns
of a filter. Thus, we enrich the process language with an opera

f1P]
that applies a filterf to a processP, the idea being that the filter
constraints the set of visible actions Bf that is its capabilities to
interact with the environment, still not altering its betwawr. The
labelled transition system of the language is consequentliched
with the following two inference rules:

(FILTERD) (FILTER2)
S Y PP
fIP] = f'[P'] fIP] = fIP']

The introduction of filters into the process language haseon
quences on the type system as well. Since our discussionas pa
metric in the process language and in the type system, weneely
to show that the typing rule

(TYPEFILTER)
FP:o

EfP]: f(o)
does not jeopardise the type system.

PrRoOPOSITION3.25. A consistent and informative type system en-
riched with rule(TYPEFILTER) results in another consistent and
informative type system.

PROOF. As regards consistency condition (1), assufe——
P andt P : ¢'. Theno C o' implies f(oc) T f(o’) by
Proposition 3.5. As regards consistency condition (2ymssthat
P % P’ and+ P’ : o'. There are two possibilities: if =,
then f[P] —*- and there is nothing to prove. Jf ~* f’, then
o(a) E o'. Now we concludef(o)(a) = f'(o(a)) T f'(o).
Finally, if ¢ = and f ~+-, thenf(c) — and f[P] —, wher
easiff - f/, thenf(o) —— and f[P] -~ f'[P’], so the type
system is still informative. O

The following result summarises the contribution of our kvor
the adoption of filters enlarges the number of possible sesvihat
can be used to let a client terminate.

COROLLARY 3.26.1f - P : p, F Q : o,andp - f(o), then
PHflQl.

4. Conclusion and Future Wor k

This paper provides a foundation for behavioural typing @bV
services and it promotes service reuse and/or redefinityoth®
introduction of a subcontract relation.

Our approach reconciles two hitherto apparently incorbpeti
requirements. On the one hand a subcontract relation mlost al
a service to be replaced or upgraded by offering more ojpesti
(width subtyping), longer interaction patterns (depthtgping)
and/or more deterministic ones. On the other hand this meist b
done without disrupting the behaviour of clients.

Filters provide the technical device that makes it possible
Although we initially defined filters essentially as techogital
mechanism to couple clients and services, filters turn otiate
an elegant logical justification: they are explicit coensidetween
related contracts. Following the Curry-Howard isomorphfgters
can be interpreted as proofs of a sound and complete deductio
system for the subcontract relation. Such deduction systemal-
taneously refines and extends Hennessy’s classical aigatiah
of the must testing preorder. Its algorithmic counterpadhtained
as a cut elimination process, which proves the coherenagabs-
tracting as a logical system. The canonical proof, the ondywred
by the algorithmic deduction system, is characterised rimgeof
an order relation on filters, and the algorithmic preseotesillows
us to show the decidability both of the subcontracting reteand
of filter inference.

The theory of subcontracting is independent of the language
used to implement services and clients. We do not rely on a par
ticular language nor on a particular paradigm (objectscese al-
gebrae, functions, ...). By defining some minimal requiretsen
the language (in a nut-shell, the observable behavioursgbrio-
grams must be faithfully captured by contracts), we esthtihe
soundness of our contract system: clients always termintgeac-
tions with any, possibly filtered, compliant service.

Filters thus play the double role of a proof tool and of pro-
gramming glue between clients and services. As an asidaiités
to notice that filters can encodecs and w-calculus restrictions:
(va)P = fop[P] where

far = Hae(fn(P)Uco(fn(P))\{a,E} a.fap.

Even if in this presentation we applied filters to servicegrac-
tice itis the client’s responsibility to apply them. A cliesearching
for a service with a given contract will receive as answetsquery
the reference of a service together with a filter that alldvesdlient
to use the service. Thus the filter must be computed by theyquer
engine, which is why the algorithmic inference of filters raaal
for a practical application.

Actually, it is more realistic to imagine that a query wilcegve
not one but several different answers, each one contairliegsfi
that may be unrelated one to each other. Therefore a seceraf us
filters could be that of refining the search space, by spexjfin
a query a minimum acceptable filter. In this way the clientldou
specify which of the possible behaviours of its “canonicatvice
are considered mandatory and not to be filtered out.

Several future research directions stem from this work. The
following is a non-exhaustive list:

Recursion and higher-order: The contracts and filters we dis-
cussed in this work are finite. The next step of this researthe

introduction of recursion both in contracts and, consetiydn fil-

ters. Actually, most of the proofs use coinduction and theay loe
applied with minor changes to the recursive case. Alsohetite
being synchronisation does not carry any information. Tdnfigr-
ther natural step is the introduction of higher order chésada
m-calculus.

Asymmetric choices: The choice operators are commutative. We
could try to relax this property in order to give the summands
different priorities, which is impossible with the curretgfinitions.
For instance, there is no way for a client that has to use acgerv
with contract(a + b) @ a to specify that it wants to connect with

b if this action is available, and with otherwise (in order to be
compliant it must accept a possible synchronisation wjthit is
unclear to which extent such constructs would affecthreorder
over contracts.

Security: There exists a rich literature on security focs. We
want to check whether it is possible to reuse or adapt some of
the techniques already developed to state security resultd/eb
service interactions and choreographies.

Contract isomorphisms: The only morphisms between contracts
we have considered are filters. Since filters are coercibes, by
definition they essentially do not alter the semantics oéctsj. One
could try to consider more expressive morphisms (e.g. r@mam
and/or reordering of actions) and to completely charastetihe
isomorphisms of contracts. This would allow us to performviee
discovery modulo isomorphisms: when searching for sesvidea
given contract a client could be returned a service and twwere
sion functions, one to call the service, the other to comestilts
(see [27, 16]).

This could later be extended to richer query/discovery lan-
guages obtained by adding union, intersection and neggtj@s
on the basis of the set-theoretic interpretation preseméed and
the work on semantic subtyping [10].

Relation with other formalisms: Finally, connection with other
formalisms such as linear logic, session types, and gamarsem
tics must surely be deeply investigated. In particularegsurds the
semantic aspects, it is interesting to notice that clientsservices
introduce a notion of orthogonality which suggests thagdisabil-
ity semantics for contracts is worth to be explored.

References

[1] A. Alves, A. Arkin, S. Askary, C. Barreto, et al. Web Ser-
vices Business Process Execution Language Versignlartuary
2007. http://docs.oasis-open.org/wsbpel/2.0/CS01/
wsbpel-v2.0-CS01.html.

[2] A. Banerji, C. Bartolini, D. Beringer, V. Chopella, et.alWeb
Services Conversation LanguagegcL) 1.0, March 2002.http:
//www.w3.org/TR/2002/N0TE-wsc110-20020314.

[3] D. Beringer, H. Kuno, and M. Lemon.Using wSCL in a uDDI
Registry 1.02001. UDDI Working Draft Best Practices Document,
http://xml.coverpages.org/HP-UDDI-wscl-5-16-01.pdf.

[4] D. Booth and C. Kevin Liu. Web Services Description Language
(wsbL) Version 2.0 Part 0: PrimerMarch 2006.http://www.w3.
org/TR/2006/CR-wsd120-primer-20060327.

[5] K. Bruce and G. Longo. A modest model of records, inheg@and
bounded quantificationinformation and Computatiqr87(1/2):196—
240, 1990.

[6] M. Carbone, K. Honda, and N. Yoshida. A calculus of global
interaction based on session typ&dectronic Notes in Theoretical
Computer Sciencel71(3):127-151, 2007.

[7] M. Carbone, K. Honda, and N. Yoshida. Structured comcatin-
centred programming for web services.1th European Symposium
on Programming, ESOP 200@umber 4421 in LNCS, pages 2-17.
Springer, 2007.

L. Cardelli. A semantics of multiple inheritancénformation and
Computation 76:138-164, 1988. A previous version can be found in
Semantics of Data Types, LNCS 173, 51-67, Springer, 1984.

S. Carpineti, G. Castagna, C. Laneve, and L. Padovaniorfél
account of contracts for Web Services.W8-FM, 3rd Int. Workshop
on Web Services and Formal Methpdsmber 4184 in LNCS, pages
148-162. Springer, 2006.

[10] G. Castagna and A. Frisch. A gentle introduction to setma
subtyping. In Proc. oPPDP '05 ACM Press (full version) and
ICALP '05,LNCS n. 3580, Springer (summary), 2005. Joint ICALP-
PPDP keynote talk.

[11] G. Chen. Soundness of coercion in the calculus of coottms.
Journal of Logic and Computatiori4(3):405-427, 2004.

[12] R. Chinnici, H. Haas, A. Lewis, J.-J. Moreau, et alWeb
Services Description LanguagevépL) Version 2.0 Part 2:
Adjuncts March 2006. http://www.w3.org/TR/2006/
CR-wsd120-adjuncts-20060327.

[13] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana
Web Services Description LanguageqDL) Version 2.0 Part
1: Core Language 2006. http://www.w3.org/TR/2006/
CR-wsd120-20060327.

[14] E. Christensen, F. Curbera, G. Meredith, and S. Weemavwea
Web Services Description LanguageqpL) 1.1, 2001. http:
//www.w3.org/TR/2001/NOTE-wsd1-20010315.

[15] J. Colgrave and K. Januszewski. UsiagDL in a UDDI reg-
istry, version 2.0.2. Technical note, OASIS, 2004http:
//wuw.oasis-open.org/committees/uddi-spec/doc/tn/
uddi-spec-tc-tn-wsdl-v2.htm.

8

—_

[9

—

[16] R. Di Cosmo. Isomorphisms of Types: from Lambda Calculus to
Information Retrieval and Language Desigirkhauser, 1995. ISBN-
0-8176-3763-X.

[17] D. C. Fallside and P. WalmsleXML Schema Part 0: Primer Second
Edition, October 2004http://www.w3.org/TR/xmlschema-0/.

[18] S. Gay and M. Hole. Subtyping for session types inthealculus.
Acta Informatica 42(2-3):191-225, 2005.

[19] M. Hennessy. Acceptance treesACM: Journal of the ACM
32(4):896-928, 1985.

[20] M. Hennessy. Algebraic Theory of ProcessesFoundation of
Computing. MIT Press, 1988.

[21] K. Honda. Types for dyadic interaction. (B(ONCUR’93 number
715in LNCS, pages 509-523. Springer, 1993.

[22] K. Honda, V. T. Vasconcelos, and M. Kubo. Language pives and
type discipline for structured communication-based progning. In
European Symposium on Programming (ESOPR'#8)mber 1381 in
LNCS, pages 122-138, 1998.

[23] C. Laneve and L. Padovani. Thmeustpreorder revisited — An
algebraic theory for web services contractsCIANCUR '07 LNCS,
Springer, 2007.

[24] R. Milner. A Calculus of Communicating SystenSpringer, 1982.

[25] R. De Nicola and M. Hennessy. Testing equivalences focgsses.
Theor. Comput. ScB4:83-133, 1984.

[26] R. De Nicola and M. Hennessy. CCS withatg. In TAPSOFT/CAAP
‘87, number 249 in LNCS, pages 138-152. Springer, 1987.

[27] M. Rittri. Retrieving library functions by unifying fyes modulo linear
isomorphism. RAIRO Theoretical Informatics and Applications
27(6):523-540, 1993.

[28] S. Soloviev, A. Jones, and Z. Luo. Some Algorithmic amdd®
Theoretical Aspects of Coercive Subtyping. TNPES’ 96 LNCS
1512, 173-196, Springer, 1996.

[29] K. Takeuchi, K. Honda, and M. Kubo. An interaction-bddanguage
and its typing system. IiParallel Architectures and Languages
Europe pages 398-413, 1994.

	citation_temp.pdf
	0Bhttp://eprints.gla.ac.uk/47889/

