

Castagna, G., Gesbert, N. and Padovani, L. (2008) A theory of contracts
for web services. In: 35th annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL 2008), 10-12 Jan 2008,
San Francisco, USA.

http://eprints.gla.ac.uk/47889/

Deposited on: 17 December 2010

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

A Theory of Contracts for Web Services

Giuseppe Castagna
PPS (CNRS)

Université Paris 7
Paris, France

Nils Gesbert
LRI (CNRS)

Université Paris-Sud
Orsay, France

Luca Padovani
ISTI

Università degli Studi di Urbino
Urbino, Italy

Abstract
Contracts are behavioural descriptions of Web services. Wedevise
a theory of contracts that formalises the compatibility of aclient to a
service, and the safe replacement of a service with another service.
The use of contracts statically ensures the successful completion of
every possible interaction between compatible clients andservices.

The technical device that underlies the theory is the definition of
filters, which are explicit coercions that prevent some possible be-
haviours of services and, in doing so, they make services compati-
ble with different usage scenarios. We show that filters can be seen
as proofs of a sound and complete subcontracting deduction system
which simultaneously refines and extends Hennessy’s classical ax-
iomatisation of the must testing preorder. The relation is decidable
and the decision algorithm is obtained via a cut-elimination process
that proves the coherence of subcontracting as a logical system.

Despite the richness of the technical development, the resulting
approach is based on simple ideas and basic intuitions. Remark-
ably, its application is mostly independent of the languageused to
program the services or the clients. We also outline the possible
practical impact of such a work and the perspectives of future re-
search it opens.

Keywords Web services, contracts, concurrency theory,CCS,
must testing, type theory, subtyping, explicit coercions.

1. Introduction
The recent trend in Web Services is fostering a computing scenario
where clients perform run time queries in search of servicesthat
provide some given capabilities. This scenario requires Web ser-
vices to publish their capabilities in some known repository and the
availability of powerful search operations for capabilities. Possible
capabilities that one would like to search concern the format of the
exchanged messages, and the protocol—orcontract—required to
interact successfully with the service.

The Web Service Description Language (WSDL) [14, 13, 12]
provides a standardised technology for describing the interface ex-
posed by a service. Such a description includes the service location,
the format (orschema) of the exchanged messages, the transfer

A very preliminary version of this work was presented on January 20, 2007, Nice,
France, at PLAN-X 2007, the 5th ACM SIGPLAN Workshop on Programming Lan-
guage Technologies for XML (no formal proceedings).

mechanism to be used (i.e.SOAP-RPC, or others), and thecontract.
In WSDL, contracts are basically limited to one-way (asynchronous)
and request/response (synchronous) interactions. The WebService
Conversation Language (WSCL) [2] extendsWSDL contracts by al-
lowing the description of arbitrary, possibly cyclic sequences of
exchanged messages between communicating parties. Other lan-
guages, such as the Abstract Web Service Business ExecutionLan-
guage (WS-BPEL) [1], provide even more detailed descriptions by
defining the subprocess structure, fault handlers, etc. While the lat-
ter descriptions are much too concrete to be used as contracts, they
can be approximated and compared in terms of contracts that cap-
ture the external, observable behaviour of a service.

Documents describing contracts can be published in repositories
(see [3, 15] for the case ofWSDL andWSCL) so that Web services
can besearchedandqueried. These two basic operations assume
the existence of some notion of contract equivalence to perform ser-
vice discovery in the same way as, say, type isomorphisms areused
to perform library searches [27, 16]. The lack of a formal charac-
terisation of contracts only permits excessively demanding notions
of equivalence such as syntactical equality. In fact, it makes perfect
sense to further relax the equivalence into asubcontract preorder
(denoted by� in this paper), so that Web services exposing “larger”
contracts can besafelyreturned as results of queries for Web ser-
vices with “smaller” contracts.

In this work we develop a formal theory that precisely defines
what “larger” and “smaller” mean, and which safety properties we
wish to be preserved. Along the lines of [9] we describe contracts
by a simpleCCS-like syntax consisting of just three constructors:
prefixing, denoted by a dot, and two infix choice operators+
representing theexternal choice(the interacting part decides which
one of alternative conversations to carry on);⊕ representing the
internal choice(the choice is not left to the interacting part). Thus
α.σ is the contract of services that perform an actionα and then
implement the contractσ, σ ⊕ τ is the contract of services that
may decide to implement eitherσ or τ , while σ + τ is the contract
of services that according to their client’s choice, will implement
eitherσ or τ .

Following CCSnotation, actions are either write or read actions,
the former being topped by a bar, and one being theco-actionof
the other. Actions can either representoperationsor message types.
As a matter of facts, contracts are behavioural types of processes
that do not manifest internal moves and the parallel structure. They
areacceptance treesin Hennessy’s terminology [19, 20].

Contracts are then to be used to ensure that interactions between
clients and services will always succeed. Intuitively, this happens if
whenever a service offers some set of actions, the client either syn-

chronises with one of them (that is, it performs the corresponding
co-action) or it terminates. The service contract will thenallow us
to determine the set of clients thatcomplywith it, that is that will
successfully terminate any session of interaction with theservice.

Of course the client will probably be satisfied to interact with
services that offer more than what the searched contract specifies.
Intuitively we want to define an order relation on contractsσ � τ

such that every client complying with services implementing σ will
also comply with services of contractτ . In particular, we would like
the� preorder to enjoy some basic properties. The first one is that
it should be safe to replace (the service exposing) a contract with a
“more deterministic” one. For instance, we expecta ⊕ b.c � a,
since every client that terminates with a service that may offer
eithera or b.c will also terminate with a service that systematically
offers a. The second desirable property is that it should be safe
to replace (the service exposing) a contract with another one that
offers more capabilities. For instance, we expecta � a + b.d since
a client that terminates with services that implementa will also
terminate with services that leave the client the choice between
a and b.d. If taken together, these two examples show the main
problem of this intuition: it is easy to see that a client thatcomplies
with a ⊕ b.c does not necessarily comply witha + b.d: if client
and service synchronise onb, then the client will try to write on
c while the service expects to read fromd. Therefore, under this
interpretation,� looks as not being transitive:

a ⊕ b.c � a ∧ a � a + b.d Y=⇒ a ⊕ b.c � a + b.d .

The problem can be solved by resorting to the theory ofexplicit
coercions[5, 11, 28]. The flawed assumption of the approach de-
scribed so far, which is the one proposed in [9], is that services
are used carelessly “as they are”. Note indeed that what we are
doing here is to use a service of “type”a + b.d where a service
of type a ⊕ b.c is expected. The knowledgeable reader will have
recognised that we are using� as aninversesubtyping relation for
services.1 If we denote by:> the subtyping relation for services,
thena ⊕ b.c :> a + b.d and so what we implicitly did is to apply
subsumption [8] and consider that a service that has typea + b.d

has also typea ⊕ b.c. The problem is not that� (or, equivalently,
:>) is not transitive. It rather resides in the use of subsumption,
since this corresponds to the use ofimplicit coercions. Coercions
have many distinct characterisations in the literature, but they all
share the same underlying intuition that coercions are functions
that embed objects of a smaller type into a larger type “without
adding new computation” [11]. For instance it is well known that
for record types one has{a:s} :> {a:s; b:t}. This is so because
the coercion functionc = λx{a:s;b:t}.{a = x.a} embeds values
of the smaller type into the larger one.2 In order to use a term of
type{a:s; b:t} where one of type{a:s} is expected we first have to
embed it in the right type by the coercion functionc above, which
erases (masks/shields) theb field so that it cannot interfere with the
computation. Most programming languages do not require thepro-

1 The inversion is due to the fact that we are considering the client per-
spective: a contract can be interpreted as the set of clientsthat comply with
services implementing the contract. We decided to keep thisnotation rather
than the inverse one for historical reasons, since it is the same sense as used
by De Nicola and Hennessy for the may and must preorders [25].This in-
version corresponds to the duality between simulation and subtyping, viz.
between observers and observed behaviours.
2 In the case of typed lambda calculus coercions are formally characterised
by the fact that their type erasure isη-equivalent to the identity function,
but in general coercions may not be the identity function [11].

grammer to write coercions, either because they do not have any
actual effect (as in the case of the functionc since the type system
already ensures that theb field will never be used) or because they
are inserted by the compiler (as when converting an integer into the
corresponding float). In this case we speak ofimplicit coercions.
However some programming languages (e.g. OCaml) resort toex-
plicit coercions because they have a visible effect and, for instance,
they cannot be inferred by the compiler.

Coercions for contracts have an observable effect, therefore we
develop their meta-theory in term of explicit coercions. However,
coercions can be inferred so they can be kept implicit in the lan-
guage and automatically computed at static time. Coming back to
our example, the embedding of a service of typea into a⊕b.c is the
identity, since we do not have to mask/shield any action of a service
of the former type in order to use it in a context where a service of
the latter type is expected. On the contrary, to embed a service of
typea + b.d into a we have to mask (at least) theb action of the
service. So in order to use it in a context that expects aa service we
apply to it afilter that will block all b messages. Transitivity being
a logical cut, the coercion froma+b.d to a⊕b.c is the composition
of the two coercions, that is the filter that blocksb messages. So if
we have a client that complies witha⊕b.c, then it can be used with
a service that implementsa + b.d by applying to this service the
filter that blocks itsb messages. This filter will make the previous
problematic synchronisation onb impossible, so the client can do
nothing but terminate.

Filters thus reconcile two requirements that were hithertoin-
compatible: On the one hand we wish to replace an old service by
a new service that offers more choices (that iswidth subtyping, e.g.
σ :> σ+ τ) and/or longer interaction patterns (that isdepth subtyp-
ing, e.g.a :> a.σ) and/or is more deterministic (e.g.σ ⊕ τ :> σ).
On the other hand we want clients of the old service to seamlessly
work with the new one.

Two observations to conclude this brief overview. First, the fact
that we apply filters to services rather than to clients is just a
presentational convenience: the same effect as applying toa service
a filter that blocks some actions can be obtained by applying to the
client the filter that blocks the corresponding co-actions.Second,
filters must be more fine grained in blocking actions than restriction
operators as defined forCCS or π. These are “permanent” blocks,
while filters are required to be able to modulate blocks alongthe
computation. For instance the filter that embeds(a.(a + b)) + b.c

into a.b must blockb only at the first step of the interaction anda

only at the second step of the interaction.

Outline of the presentation

We start by presenting the syntax of our contracts (§2.1), by show-
ing how to use them to expressWSDL and WSCL descriptions
(§2.2), and by defining their semantics (§2.3). We then characterise
the set of all clients that are strongly compliant with a service—that
is, clients that successfully complete every direct interaction ses-
sion with the service—and argue that subcontract relationswhose
definitions are naively based on strong compliance are either too
strict or suffer the aforementioned problem of transitivity (§2.4).
We argue that subcontracting should not be defined on all possi-
ble interactions, but focus only on interactions based on actions
that a client expects from the services: all the other possible ac-
tions should not interfere with the interaction. We formalise this
concept by giving a coinductive definition of a subcontract relation
that focuses on this kind of actions, we study its propertiesand de-

scribe the relation with the must preorder (§3.1). This subcontract
relation induces a notion of weak compliance which suggeststhat
non-interference of unexpected actions can be ensured by coercion
functions, which we dubfilters. By shielding the actions at issue, a
filter embeds a service into the “world” of its expected clients. We
prove that our subcontract relation can be expressed in terms of fil-
ters and of the must preorder and we provide a sound and complete
deduction system for the subcontract relation where filtersplay the
role of “proofs” (§3.2). The subcontract relation is shown to be de-
cidable via the definition of a sound and complete algorithmic de-
duction system (§3.3). Finally, we relate our contract language with
a generic process language (of which we only require the existence
of a labelled transition system and of a type system associating con-
tracts with processes). The soundness of our theory of contracts is
proved by showing that a client that is weakly compliant witha ser-
vice via a given filter will successfully terminate every interaction
with the service mediated by the filter (§3.4). A conclusion recaps
our work and hints at possible tracks of future research (§4).
Note for the reviewers: Proofs of lemmas and theorems have been
omitted because of space limits. They can be found in the fullver-
sion of the paper, which is available athttp://www.sti.uniurb.

it/padovani/Papers/filtered_contracts.pdf.

Related work

This research was initially inspired by “CCSwithout τ’s” [26] and
by Hennessy’s model of acceptance trees [19, 20]. Our contracts are
an alternative representation of acceptance trees. The works that are
more closely related to ours are by Carpinetiet al. [9] and the ones
on session types, especially [18] by Gay and Hole. In [9] the sub-
contract relation exhibits all of the desirable propertiesillustrated in
the introduction, but subcontracting essentially stoppedat the prob-
lem of transitivity. In that work compliance was a syntacticnotion
and contracts lacked a semantic characterisation.

Session types were introduced by Hondaet al. [21, 29, 22] in
the context of theπ-calculus. These are used to type special chan-
nels through which several different messages may be exchanged
in sequence according to a given protocol. Such a session channel
can be seen as a client-service connection, and the session type is
the analogous of our contract as it describes which actions the pro-
cesses may perform through this channel. However, session types
have the important restriction, if compared with contracts, that only
one part has the floor at a given time: whenever a process performs
an internal choice it has to indicate explicitly which path of inter-
action it has chosen, and the other process has to be waiting for this
indication. Thus there is no way of mixing internal and external
choices, and two processes likea+ b anda+ b do not interact suc-
cessfully (because nobody has the floor, so no communicationcan
happen). Subtyping for the session types has been studied by[18],
but because of the aforementioned restriction, the transitivity prob-
lem we address in this paper does not exist for them: internaland
external choices can never be related (hence,a ⊕ b � a + b does
not hold). Carboneet al. [6, 7] define a global calculus to describe
choreographies of Web services, and an end-point projection to in-
fer descriptions of individual processes from the global description,
both of which are heavily based on session types. Our approach is
different since our typical application for Web services issearch-
ing for a service compatible with a given protocolfrom the client
point of view: in particular, we want depth subtyping (a service do-
ing further actions after the client has successfully terminated is
compatible with this client), which does not hold for session types.

We believe that our theory is more basic than the theory of session
types and that it can be fruitfully used to enrich the latter.

Finally, there is an important connection with the work of Lan-
eve and Padovani [23], who propose an approach where contracts
are “statically” filtered. Filtering is materialised by associating each
contract with astatic interfacethat declares the only visible actions
of the contract and that does not change over time. Our approach
using explicit coercions subsumes static interfaces and allows us to
further relax the subcontract relation. The work [23] and older ones
on the testing framework have shown that the subcontract relation is
not affected in its essence by recursion, and the desirable properties
we mentioned in the introduction and formalised later in thededuc-
tion systems still hold. For the sake of brevity, in this paper we only
consider finite contracts without recursion, but the extension of our
contracts and filters to the non-finite case, although it involves sig-
nificant technicalities, is conceptually straightforward. The other
aspects investigated in [23] regard contract duality and the applica-
tion of contracts to choreographies of Web services, while we focus
on the theory of dynamically filtered contracts, on its algorithmic
aspects, and on language neutrality.

2. Contracts
2.1 Syntax

Let N be a set of names, we defineΣ to be the set of contracts
generated by the following grammar.

α ::= a | a a ∈ N

σ ::= 0 | α.σ | σ ⊕ σ | σ + σ

where0 is the contract of services that do not perform any action
(the other constructions were already explained in the introduc-
tion). We follow the standard convention of omitting trailing0’s.

2.2 Examples

In this section we relate our contract language to existing technolo-
gies for specifying service protocols.

2.2.1 Message exchange patterns in WSDL

The Web Service Description Language (WSDL) [14, 4, 12, 13] per-
mits to describe and publish abstract and concrete descriptions of
Web services. Such descriptions include the schema [17] of mes-
sages exchanged between client and server, the name and typeof
operationsthat the service exposes, as well as the locations (URLs)
where the service can be contacted. In addition, it defines interac-
tion patterns (calledmessage exchange patternsor MEPs in version
2.0 of WSDL) determining the order and direction of the exchanged
messages. In particular,WSDL 2.0 predefines four message ex-
change patterns for describing services where the interaction is ini-
tiated by clients. Let us shortly discuss how the informal plain En-
glish semantics of these patterns can be formally defined in our con-
tract language. When theMEP is inOnly or robustInOnly, com-
munication is basicallyasynchronous: the client can only send an
In message containing the request. If the pattern isrobustInOnly

the service may optionally send back aFault message indicating
that an error has occurred. When theMEP is inOut or inOptOut,
communication is basicallysynchronous: the client sends anIn
message containing the request and the service sends back either
an Out message containing the response or aFault message. If
the pattern isinOptOut, then theOut message is optional. These

four patterns can be encoded in our contract language as follows:

inOnly = In

robustInOnly = In.(0 ⊕ Fault)
inOut = In.(Out⊕ Fault)

inOptOut = In.(0 ⊕ Out⊕ Fault)

It is worth noticing that, intuitively, a client that is capable of
invoking a service whoseMEP is robustInOnly will also interact
successfully with a service whoseMEP is inOnly. Indeed, such
client must be able to handle both a communication that terminates
andaFault message. Similary, a client that is capable of invoking
a service whoseMEPinOptOut will also interact successfully with
services whoseMEP is eitherinOut, or robustInOnly, or even
inOnly. On the other hand, a client that interacts with a service
whoseMEP is inOut will not (always) interact successfully with
a service whoseMEP is inOptOut. The client assumes that it will
always receive either anOut or aFault message, butinOptOut
does not give this guarantee.

2.2.2 Conversations in WSCL

The WSDL message exchange patterns cover only the simplest
forms of interaction between a client and a service. More involved
forms of interactions, in particular stateful interactions, cannot be
captured if not as informal annotation within theWSDL interface.
The Web service conversation languageWSCL [2] provides a more
general specification language for describing complexconversa-
tionsbetween two communicating parties, by means of an activity
diagram. The diagram is basically made ofinteractionswhich are
connected with each other by means oftransitions. An interaction
is a basic one-way or two-way communication between the client
and the server. Two-way communications are just a shorthandfor
two sequential one-way interactions. Each interaction hasa name
and a list ofdocument typesthat can be exchanged during its execu-
tion. A transition connects asourceinteraction with adestination
interaction. A transition may belabeledby a document type if it
is active only when a message of that specific document type was
exchanged during the previous interaction.

Below we encode the contractσ of a simplified e-commerce
service (Figure 1) where the client is required to login before it
can issue a query and thus receive a catalog. From this point on, the
client can decide whether to purchase an item from the catalog or to
logout and leave. In case of purchase, the service may eitherreport
that the purchase was successful, or that the item is out-of-stock, or
that the client’s payment was refused:

σ
def
= Login.(InvalidLogin ⊕ ValidLogin.Query.

Catalog.(Logout + Purchase.(
Accepted ⊕ InvalidPayment ⊕ OutOfStock)))

Notice that unlabeled transitions in Figure 1 correspond toex-
ternal choices inσ, whereas labeled transitions correspond to inter-
nal choices.

Now assume that the service is extended with a booking capa-
bility, so that after looking at the catalog the client may book an
item to be bought at some later time. The contract of the service
would change toσ′ as follows:

σ′ def
= . . . Logout + Book.σB + Purchase.(. . .)

It would be desirable for clients that are compliant with the
former service to be compliant with this service as well. After all,
the extended service offersmorethan the old one. However, assume
to have a client that does actually account for aBook message from

the service and that such a client is compliant with the former
service for the simple reason that, since the former servicedid
not provide a booking capability, whatever contractσ′

B the client
provided after theBook action was irrelevant in order to establish
compliance. In the extended service this is no longer the case, and
the client can safely interact with the extended service only if the
Book action is filtered out. This is precisely the transitivity problem
we pointed out in the introduction.

2.3 Semantics

Contracts describe the behaviour of the processes that implement
them. This behaviour is defined by describing the actions that are
offered by a process and the way in which they are offered. This is
formally stated by the two definitions given below.

DEFINITION 2.1 (TRANSITION). Let σ X
α

7−→ be the least relation
such that:

0 X
α

7−→

β.σ X
α

7−→ if α 6= β

σ ⊕ τ X
α

7−→ if σ X
α

7−→ andτ X
α

7−→

σ + τ X
α

7−→ if σ X
α

7−→ andτ X
α

7−→

Thetransition relationof contracts, noted
α

7−→, is the least relation
satisfying the rules:

α.σ
α

7−→ σ

σ
α

7−→ σ′ τ
α

7−→ τ ′

σ + τ
α

7−→ σ′ ⊕ τ ′

σ
α

7−→ σ′ τ X
α

7−→

σ + τ
α

7−→ σ′

σ
α

7−→ σ′ τ
α

7−→ τ ′

σ ⊕ τ
α

7−→ σ′ ⊕ τ ′

σ
α

7−→ σ′ τ X
α

7−→

σ ⊕ τ
α

7−→ σ′

and closed under mirror cases for the external and internal choices.
We writeσ

α
7−→ if there existsσ′ such thatσ

α
7−→ σ′.

The relation
α

7−→ is different from standard transition relations
for CCS processes [24]. For example, there is always at most one
contractσ′ such thatσ

α
7−→ σ′, while this is not the case inCCS

(the processa.b + a.c has two differenta-successor states:b and
c). This mismatch is due to the fact that contract transitionsdefine
the evolution of conversation protocolsfrom the perspective of the
communicating parties. Thusa.b+a.c

a
7−→ b⊕c because, once the

actiona has been performed, the communicating party is not aware
of which branch has been chosen. On the contrary,CCS transitions
define the evolution of processesfrom the perspective of the process
itself.

NOTATION 2.2. We writeσ(α) for the unique continuation ofσ
afterα, that is, the contractσ′ such thatσ

α
7−→ σ′.

The labelled transition system above describes the actionsoffered
by (a service implementing) a contract, but does not showhow
these actions are offered. In particular the actions offered by an
external choice are all available at once while the actions offered by
different components of an internal choice are mutually exclusive.
Such a description is given by theready setsthat are observable for
a given contract:

DEFINITION 2.3 (OBSERVABLE READY SETS). LetPf (N ∪N)
be the set of finite parts ofN ∪N , calledready sets. Let alsoσ ⇓ R

in: Login

out: ValidLogin

out: InvalidLogin

in: Query

out: Catalog in: Purchase

out: Accepted

out: InvalidPayment

out: OutOfStock

in: Logout

[Accepted]

[OutOfStock]
[InvalidPayment]

��
��
��

��
��
��

��
��
��

��
��
��������

[ValidLogin]

[InvalidLogin]

Figure 1. Contract of a simple e-commerce service as aWSCL diagram.

be the least relation between contractsσ in Σ and ready setsR in
Pf (N ∪ N) such that:

0 ⇓ ∅
α.σ ⇓ {α}
(σ + τ) ⇓ R ∪ S if σ ⇓ R andτ ⇓ S

(σ ⊕ τ) ⇓ R if eitherσ ⇓ R or τ ⇓ R

NOTATION 2.4. We use the convention that the bar operation is
an involution,a = a, and for a given ready setR we define its
complementary ready set asco(R) = {α | α ∈ R}.

2.4 The problem

We now possess all the technical instruments to formally state the
problem we described in the introduction and recalled at theend
of §2.2. This first requires the precise definition ofcompliance.
Recall that, intuitively, the behaviour of a client complies with the
behaviour of a service if for every set of actions that the service
may offer, the client either synchronises with one of them, or it
terminates successfully. The behaviour of clients, as wellas the one
of services, is described by contracts. Therefore we need todefine
when a contractρ describing the behaviour of a client complies
with a contractσ describing the behaviour of a service. For this
we reserve a special actione (for “end”) that can occur in client
contracts and that represents the ability of the client to successfully
terminate. Then we require that, whenever no further interaction is
possible between the client and the service, the client be ina state
where this action is available.

DEFINITION 2.5 (STRONG COMPLIANCE). C is a strong compli-
ance relationif (ρ, σ) ∈ C implies that:

1. ρ ⇓ R andσ ⇓ S implies eithere ∈ R or co(R) ∩ S 6= ∅, and

2. ρ
α

7−→ ρ′ andσ
α

7−→ σ′ implies(ρ′, σ′) ∈ C .

We use⊣ to denote the largest strong compliance relation.

In words the definition above states that a client of contractρ

is compliant with a service of contractσ if (1) for every possible
combinationS and R of the independent choices of the service
and the client, either there is an action in the client choicethat
can synchronise with an action among those offered by the service
(co(R) ∩ S 6= ∅) or the client terminates successfully (e ∈ R),
and (2) whenever a synchronisation happens, the continuation of
the client after it is compliant with the continuation of theservice
((ρ′, σ′) ∈ C).

Once we have such a definition it is natural to define the subcon-
tract relation in terms of compliance. Intuitively, (client) contracts
are seen as “tests” for comparing (service) contracts. Two (service)
contracts are related if so are the sets of (client) contracts compliant
with them [25].

DEFINITION 2.6 (STRONG SUBCONTRACT). The contractσ is a
strong subcontractof the contractτ , writtenσ ⊑ τ , if and only if
for all ρ we haveρ ⊣ σ impliesρ ⊣ τ . We writeσ ≃ τ if σ ⊑ τ

andτ ⊑ σ.

This definition corresponds to giving a set theoretic semantics to
service contracts which are thus interpreted as the set of their
compliant clients. Thus⊑ is interpreted as set-theoretic inclusion.

As usual with testing semantics, it is hard to establish a rela-
tionship between two contracts because the set of clients that are
strongly compliant is infinite. A direct definition of the preorder is
therefore preferred:

DEFINITION 2.7. S is a coinductive strong subcontract relation
if (σ, τ) ∈ S implies that

1. τ ⇓ R implies that there existsS ⊆ R such thatσ ⇓ S, and
2. τ

α
7−→ τ ′ impliesσ

α
7−→ σ′ and(σ′, τ ′) ∈ S .

THEOREM2.8. ⊑ is the largest coinductive strong subcontract
relation.

PROOF. First of all we prove that⊑ is a coinductive subcontract
relation. Let

S
def
= {(σ, τ) | σ ⊑ τ}

and assume(σ, τ) ∈ S . As regards condition (1) in the definition
of coinductive strong subcontract relation, letR1, . . . , Rn be the
ready sets ofσ. By contradiction, assume that there existsR′ such
thatτ ⇓ R′ and for every1 ≤ i ≤ n there existsαi ∈ Ri such that
αi 6∈ R′. Let ρ

def
=

P

1≤i≤n αi.e. Thenρ ⊣ σ but ρ 6⊣ τ , which
is absurd. Hence condition (1) is satisfied. As regards condition (2)
in the definition of coinductive strong subcontract relation, assume
τ

α
7−→. By contradiction, assumeσ X

α
7−→. Thene + α ⊣ σ but

e + α 6⊣ τ , which is absurd. Henceσ
α

7−→. Now we have to prove
that (σ(α), τ (α)) ∈ S . Let ρ′ be such thatρ′ ⊣ σ(α). Then
e+α.ρ′ ⊣ σ hencee+α.ρ′ ⊣ τ , namelyρ′ ⊣ τ (α) by definition of
strong compliance. Henceσ(α) ⊑ τ (α) from which we conclude
(σ(α), τ (α)) ∈ S by definition ofS .

Now we prove that⊑ is indeed the largest coinductive subcon-
tract relation, namely that every coinductive subcontractrelation is
included in⊑. Let S be a coinductive strong subcontract relation
such that(σ, τ) ∈ S and letC be a strong compliance relation
such that(ρ, σ) ∈ C . It is sufficient to prove that

C
′ def

= {(ρ, τ) | ∃σ, (ρ, σ) ∈ C ∧ (σ, τ) ∈ S }

is a strong compliance relation, since(ρ, τ) ∈ C
′. Let (ρ, τ) ∈ C

′.
As regards condition (1) in Definition 2.5, letρ ⇓ R andτ ⇓ S. If
e ∈ R there is nothing to prove. Assumee 6∈ R. From(σ, τ) ∈ S

there existsS′ ⊆ S such thatσ ⇓ S′. From(ρ, σ) ∈ C we know

co(R) ∩ S′ 6= ∅, hence we concludeco(R) ∩ S 6= ∅. As regards

condition (2) in Definition 2.5, assumeρ
α

7−→ and τ
α

7−→. From
(σ, τ) ∈ S we know thatσ

α
7−→. From (ρ, σ) ∈ C we know

that(ρ(α), σ(α)) ∈ C , hence we conclude(ρ(α), τ (α)) ∈ C
′ by

definition ofC ′. �

It turns out that the relation⊑ is themust testing preorderas
defined in [25] (a proof can be found in [23], where a different
albeit equivalent notion of strong compliance is used). This relation
is well studied and it enjoys interesting properties, in particular it
is a precongruence with respect to prefixing, internal and external
choices, and alsoa⊕b ⊑ a, which is one of the desirable properties
for �, holds. However⊑ is stronger than� since, for example,
a 6⊑ a + b. Indeeda.e + b ⊣ a but a.e + b 6⊣ a + b. In general,
the must preorder allows neither width nor depth extensionsof
contracts.

In previous work [9] an attempt was made to directly relate two
contractsσ andτ depending on their form, rather than on the sets
of their clients. Letdual(σ) denote the dual contract ofσ which,
roughly, is obtained by replacing inσ every action by its coaction,
0 by e, every internal choice by an external one, and viceversa
(the formal definition is slightly more involved and requires first to
transformσ into the normal form of Definition 3.10 and then apply
the transformation described above; see [9] for details). Intuitively
dual(σ) denotes the contract of a “canonical” client complying
with σ services. Then one can define a new relation on service
contracts as:

σ ⋉ τ
def

⇐⇒ dual(σ) ⊣ τ (1)
In words, a contractσ is a subcontract ofτ if and only if its
canonical client complies withτ .

This relation isnearly what we are looking for. For instance
now we havea⊕ b.c ⋉ a anda ⋉ a + b.d, sincedual(a⊕ b.c) =
a.e + b.c.e ⊣ a anddual(a) = a.e ⊣ a + b.d.

Unfortunately,⋉ is not a preorder since transitivity does not
hold: a.e + b.c.e 6⊣ a + b.d implies thata ⊕ b.c 6⋉ a + b.d.
The reason for such a failure is essentially due to the fact that in
establishinga ⊕ b.c ⋉ a and a ⋉ a + b.d we are restricting
compliance to conversations in which no synchronisation onthe
nameb happens. While contracts account for non-determinism that
is internal to each process—being it a client or a service—, they
cannot handle the “system” non-determinism that springs from
process synchronisation. In the example above, the failureresults
from the interaction of two external choices,a.e+b.c.e anda+b.d,
which yields non-determinism at system level and which doesnot
preventa priori a synchronisation on theb name. By preventing the
synchronisation on the nameb, the clienta.e+ b.c.e can terminate
successfully.

In summary, the strong subcontract relation implements a safe
substitutability relation for services thatare compatible, but is ex-
cessively demanding because it takes into account every possible
synchronisation. Our theory of contracts will define a safe substi-
tutability relation for services thatcan be madecompatible.

3. A theory of contracts
At the end of the previous section we said that we wanted a sub-
contract relationσ � τ such that a service with contractτ can be
madecompatible with a service with contractσ. The keypoint of
the discussion is the “can be made”.

Of course we do not want to consider arbitrary transformations
of the service, e.g. transformations that alter the semantics of the
service. In fact, we cannot hope to affect in any way the internal

non-determinism of a service as the service is typically considered
as an unmodifiable black box. Instead we look for transformations
that embed aτ service in a world ofσ clients so that such clients
will perceive their interaction as being carried over a service with
contractσ (or possibly a more deterministic one). Roughly speak-
ing we want to filter out all behaviours of theτ contract that do
not belong to the possible behaviours ofσ world, and leave the
others unchanged. This is, precisely, the characterisation of an ex-
plicit coercion fromτ to σ (recall that the subcontract relation is
the inverse of a service subtyping relation;c.f. Footnote 1): an em-
bedding function that maps possible behaviours ofτ into the same
behaviours ofσ (thus, it does not add new computation).

3.1 Weak subcontract relation

The idea is thatσ � τ if there exists some (possibly empty) set of
actions belonging to the world ofτ that, if shielded, can make aτ
service appear as aσ service. This is formalised by the following
definition:

DEFINITION 3.1 (WEAK SUBCONTRACT). W is a weak subcon-
tract relationif (σ, τ) ∈ W implies that (1) ifτ ⇓ R, then there
existsSR ⊆ R such thatσ ⇓ SR and (2) for all α ∈ SR we have
(σ(α), τ (α)) ∈ W .

We denote by� the largest weak subcontract relation.

The basic intuition about the weak subcontract relation is that
a client that interacts successfully with a service with contract σ
must be able to complete whatever ready set is chosen fromσ. If
we want to replace the service with another one whose contract is
τ , we require that whatever ready setR is chosen fromτ there is
a smaller oneSR ⊆ R in σ such that all of the continuations with
respect to the actions inSR are in the weak subcontract relation.
However, in order to avoid interferences we might need to filter out
the actions inR \ SR.

First of all notice that the weak subcontract relation includes the
strong one (condition (1) is the same and condition (2) is weaker),
so that, for example,a⊕ b.c � a holds. Additionally, we also have
a � a + b.d since a service with contracta + b.d can be made
to behave as a service with contracta by filtering out theb action.
On the other hand,a 6� a ⊕ b.c since there is no way to make
a ⊕ b.c behave asa by simply filtering out actions (filtering out
the b action froma ⊕ b.c yields a ⊕ 0, not a). Finally, we also
havea ⊕ b.c � a + b.d, again by filtering out theb action. In this
case, the filtered service (a + b.d) is not made equivalent to the
smaller service (a⊕ b.c) but rather to one of its more deterministic
behaviours (a).

3.1.1 Weak compliance

In contrast with the “strong” case, for the weak subcontractrelation
it was more intuitive to provide its coinductive characterisation
first. We now face the problem of understanding which notion of
compliance induces the weak subcontract relation. As we will see,
this is an essential intermediate step as it provides the necessary
insight for devising the practical solution to the problemsdescribed
in §2.4.

DEFINITION 3.2 (WEAK COMPLIANCE). D is aweak compliance
relationif (ρ, σ) ∈ D implies that there exists a finite set of actions
A ⊆ N ∪ N such that:

1. ρ ⇓ R andσ ⇓ S impliese ∈ R or co(R) ∩ A ∩ S 6= ∅, and

2. α ∈ A, ρ
α

7−→ ρ′ andσ
α

7−→ σ′ implies(ρ′, σ′) ∈ D .

We denote by⊣⊣ the largest weak compliance relation.

Note how the existence of the setA in the above definition must be
independentof the ready sets of the client and of the service. This
reflects the fact that the internal non-determinism of the interacting
parties cannot be affected.

The following theorem proves that⊣⊣ is the compliance relation
inducing�.

THEOREM 3.3. σ � τ if and only if for allρ, ρ ⊣⊣ σ impliesρ ⊣⊣ τ .

PROOF. (⇒) Let W be a weak subcontract relation such that
(σ, τ) ∈ W and letD be a weak compliance relation such that
(ρ, σ) ∈ D . It is sufficient to prove that

D
′ def

= {(ρ, τ) | ∃σ, (ρ, σ) ∈ D ∧ (σ, τ) ∈ W }

is a weak compliance relation since(ρ, τ) ∈ D
′. Let (ρ, τ) ∈ D

′.
As regards condition (1) in Definition 3.2, assumeρ ⇓ R andτ ⇓ S.
If e ∈ R there is nothing to prove. Assumee 6∈ R. By definition
of D

′ there existsσ such that(ρ, σ) ∈ D and(σ, τ) ∈ W . From
(σ, τ) ∈ W we have thatσ ⇓ S′ andS′ ⊆ S. From(ρ, σ) ∈ D we
have that there existsA′ such thatco(R) ∩ A′ ∩ S′ 6= ∅, hence
we concludeco(R) ∩ A′ ∩ S 6= ∅. As regards condition (2) in

Definition 3.2, letA
def
= A′ ∩ S′. Assumeα ∈ A andρ

α
7−→. Then

σ
α

7−→, andτ
α

7−→. From(ρ, σ) ∈ D we have that(ρ(α), σ(α)) ∈
D . From (σ, τ) ∈ W we have that(σ(α), τ (α)) ∈ W . We
conclude(ρ(α), τ (α)) ∈ D

′ by definition ofD ′.
(⇐) We prove that

W
def
= {(σ, τ) | ∀ρ, ρ ⊣⊣ σ ⇒ ρ ⊣⊣ τ}

is a weak subcontract relation. Let(σ, τ) ∈ W . As regards condi-
tion (1) in Definition 3.1, letR1, . . . , Rn be all the (distinct) ready
sets ofσ. By contradiction, suppose that there exists a ready setR′

such thatτ ⇓ R′ and for every1 ≤ i ≤ n we haveRi 6⊆ R′, namely
there existsαi ∈ Ri \ R′. Let ρ

def
=

P

1≤i≤n
αi.e. By construction

we haveρ ⊣⊣ σ but ρ 6⊣⊣ τ , which is absurd. As regards condi-
tion (2) in Definition 3.1, letk ∈ {1, . . . , n} be such thatRk ⊆ R′

andRk is minimalamong theRi’s. We takeRk as the ready setSR′

in the definition of weak subcontract relation. IfRk = ∅, then con-
dition (2) trivially holds. AssumeRk 6= ∅. For everyα ∈ Rk, let
ρα be a client contract such thatρα ⊣⊣ σ(α). Notice that for every
i ∈ {1, . . . , n} \ {k}, we haveRi \ Rk 6= ∅ because theRi’s are all
distinct andRk is minimal. Let

ρ
def
=

P

i∈{1,...,n}\{k},β∈Ri\Rk
β.e +

L

α∈Rk
α.ρα .

By constructionρ ⊣⊣ σ, henceρ ⊣⊣ τ by definition of W .
Furthermore, the setA in ρ ⊣⊣ σ must be at least as large asRk

because, by construction ofρ, ρ cannot be (weakly) compliant with
σ if any of the actions inRk is filtered out. Thus, for everyα ∈ Rk,
from ρ ⊣⊣ σ we deriveρα ⊣⊣ σ(α), henceρα ⊣⊣ τ (α). Because the
ρα’s are arbitrary, we conclude(σ(α), τ (α)) ∈ W by definition of
W . �

3.1.2 Comparison with other relations

In §2.4 we said that the relation⋉ defined by equation (1) was
nearly what we sought for, but for the lack of transitivity itwas
not a preorder. The following theorem shows that� obviates this
problem.

THEOREM 3.4. The subcontract relation� is the transitive clo-
sure of⋉.

PROOF. We did not definedual(σ) formally here, so we will
give an equivalent definition of⋉ not based on the notion of dual
contract, which was also the definition used in [9], and just give
the intuition of how we obtain it usingdual(σ). The important
property aboutdual(σ) is that its ready sets are defined as all
the possible sets obtained by picking one action in each ready set
of σ, and taking their co-actions. This can be seen by looking
at the definition of observable ready sets and thinking that we
just exchange internal and external choices. Now if we look at
Definition 2.5 and assume(dual(σ), τ) ∈ C whereC is a strong
compliance relation the first condition says that any ready set of τ
contains at least one action from each ready set ofdual(σ), which
is equivalent to the fact that it contains a ready set ofσ. Translation
of condition (2) is straightforward, so we get that⋉ is the largest
relationR such that(σ, τ) ∈ R implies:

1. τ ⇓ R impliesσ ⇓ S for someS ⊆ R, and

2. σ
α

7−→ andτ
α

7−→ implies(σ(α), τ (α)) ∈ R.

Now let us prove that� is the transitive closure of the relation
thus defined. Note that the condition (1) is the same in both rela-
tions, and that condition (2) in Definition 3.1 is a weakened version
of condition (1) forR, so obviously⋉ ⊆ � and so does the tran-
sitive closure of⋉, � being itself transitive. So what we have to
show is that two contracts related by� are also related by the tran-
sitive closure of⋉. Let W be a weak subcontract relation such that
(σ, τ) ∈ W . Let

R1
def
= {(σ,

L

τ⇓R

P

α∈SR
α.σ(α)) | (σ, τ) ∈ W }

R2
def
= {(

L

τ⇓R

P

α∈SR
α.σ(α), τ) | (σ, τ) ∈ W }

where, for each ready setR of τ , we writeSR for the ready set ofσ
such thatSR ⊆ R that satisfies condition (2) in Definition 3.1. It is
trivial to verify thatR1 ∪ R2 ⊆ ⋉, from which we conclude that
W is included in the transitive closure of⋉. �

For what concerns the inclusion of the strong relation in the
weak one note that if we compare Definition 3.1 with Defini-
tion 2.7, we see that they differ on the set ofα’s considered in con-
dition (2). The latter requires that whatever interaction may happen
between a client and a server, the relation must be satisfied by the
continuations. The former instead requires this to happen only for
interactions on actions that are expected for the smaller contract.
This means that with the weak subcontract relation all the actions
that are not expected by the smaller contractmust nottake part in
the client-server interaction. If we want to replace a server by a dif-
ferent server with a (weak) super-contract, then we must ensure that
the client is shielded from these unexpected actions. The technical
instrument to ensure it are thefilters we define next.

3.2 Filters

A filter is the specification of a set of actions that are allowed at
a certain time, along with the continuation filters that are applied
after an action has occurred:

f ::=
‘

α∈A
α.fα

By convention we use0 for denoting theempty filter, that is the
filter that allows no action (A = ∅). Filters have a simple transition
relation, as follows:

‘

α∈A
α.fα

β
7−→ fβ if β ∈ A

As usual we writef X
α

7−→ if there is nof ′ such thatf
α

7−→ f ′.
The application of a filterf to a contractσ, writtenf(σ), produces

σ + σ = σ σ ⊕ σ = σ

σ + τ = τ + σ σ ⊕ τ = τ ⊕ σ

σ + (σ′ + σ′′) = (σ + σ′) + σ′′ σ ⊕ (σ′ ⊕ σ′′) = (σ ⊕ σ′) ⊕ σ′′

σ + (σ′ ⊕ σ′′) = (σ + σ′) ⊕ (σ + σ′′) σ ⊕ (σ′ + σ′′) = (σ ⊕ σ′) + (σ ⊕ σ′′)

σ + 0 = σ α.σ + α.τ = α.(σ ⊕ τ) α.σ ⊕ α.τ = α.(σ ⊕ τ)

(MUST)

Iσ ∨ Iτ : σ ⊕ τ ≤ σ

(DEPTHEXT)

0 : 0 ≤ σ

(WEAKENING)

f : σ ≤ τ g ∧ Iτ 6 f

f ∨ g : σ ≤ τ

(TRANSITIVITY)

f : σ ≤ σ′ g : σ′ ≤ σ′′

f ∧ g : σ ≤ σ′′

(PREFIX)

f : σ ≤ τ

α.f : α.σ ≤ α.τ

(INTCHOICE)

f : σ ≤ σ′ f : τ ≤ τ ′

f : σ ⊕ τ ≤ σ′ ⊕ τ ′

(EXTCHOICE)

f : σ ≤ σ′ f : τ ≤ τ ′

f : σ + τ ≤ σ′ + τ ′

Table 1. Deduction system for the weak subcontract relation.

another contract where only the allowed actions are visible:

f(0) = 0

f(α.σ) = 0 if f X
α

7−→

f(α.σ) = α.fα(σ) if f
α

7−→ fα

f(σ + τ) = f(σ) + f(τ)
f(σ ⊕ τ) = f(σ) ⊕ f(τ)

Filter application is monotone with respect to the strong sub-
contract preorder. This property, which is fundamental in proving
most of the results that follow, guarantees that equivalentcontracts
remain equivalent if filtered in the same way.

PROPOSITION3.5. σ ⊑ τ impliesf(σ) ⊑ f(τ).

Filters allow us to express the weak subcontract relation interms
of the strong one:

THEOREM 3.6. σ � τ if and only if there exists a filterf such that
σ ⊑ f(τ).

PROOF. With an abuse of notation we writef(R), the application
of a filterf to a set of actionsR, for the set{α ∈ R | f

α
7−→}.

(⇐) Let S be a coinductive strong subcontract relation such
that(σ, f(τ)) ∈ S . We show that

W
def
= {(σ, τ) | ∃f, (σ, f(τ)) ∈ S }

is a weak subcontract relation. Let(σ, τ) ∈ W . Regarding condi-
tion (1) in Definition 3.1, assumeτ ⇓ R. From(σ, f(τ)) ∈ S we
know that there existsS ⊆ f(R) such thatσ ⇓ S and we conclude
S ⊆ f(R) ⊆ R. Regarding condition (2) in Definition 3.1, take
α ∈ S. From (σ, f(τ)) ∈ S we know (σ(α), fα(τ (α))) ∈ S

wheref
α

7−→ fα. Hence we conclude(σ(α), τ (α)) ∈ W .
(⇒) Let W be a weak subcontract relation such that(σ, τ) ∈

W . For every(σ, τ) ∈ W , let

A(σ, τ)
def
=

S

τ⇓R
SR

whereSR ⊆ R is such thatσ ⇓ SR and SR satisfies condition (2)
in Definition 3.1. BasicallyA(σ, τ) is the set of actions that need
not be shielded for proving thatσ � τ . Notice thatα ∈ A(σ, τ)
impliesσ

α
7−→ andτ

α
7−→.

For every(σ, τ) ∈ W , let

f(σ,τ)
def
=

‘

α∈A(σ,τ) α.f(σ(α),τ(α)) .

The filtersf(σ,τ) are well defined and finite because contractsσ

andτ are finite. Now we prove that

S
def
= {(σ, f(σ,τ)(τ)) | (σ, τ) ∈ W }

is a strong subcontract relation. Let(σ, f(σ,τ)(τ)) ∈ S . As regards
condition (1) in the definition of coinductive strong subcontract
relation, assumeτ ⇓ R. By definition ofA(σ, τ) there existsSR ⊆ R

such thatσ ⇓ SR and alsoSR ⊆ A(σ, τ), so we concludeSR ⊆
f(σ,τ)(R). As regards condition (2) in the definition of coinductive
strong subcontract relation, assumef(σ,τ)(τ)

α
7−→. Thenτ

α
7−→ and

there existsSR such thatσ ⇓ SR andα ∈ SR, hence we obtainσ
α

7−→
andA(σ, τ) 6= ∅. From(σ, τ) ∈ W we derive(σ(α), τ (α)) ∈ W

so we conclude(σ(α), f(σ(α),τ(α))(τ (α))) ∈ S by definition of
S . �

Let us consider again our example ofa⊕ b.c anda+ b.d. These
contracts are not related by the strong subcontract relation, but any
client complying with the first one has to be ready to read ona

and then terminate. Then, we see that the second onecan be made
compliant with any such client, because it is ready to write on a:
so we are sure that synchronisation ona is possible, and that if it
occurs the client will terminate. The point is then to ensurethat this
synchronisation will indeed occur and that the channelb will not
be selected instead, which would lead to deadlock. This is done by
applying toa + b.d the filterf = a, which lets the sole actiona
pass. Formally, we have thatf(a + b.d) = a, anda ⊕ b.c ⊑ a

holds.

3.2.1 Deduction system for �

Filters can also be used as proofs (in the sense of the Curry-Howard
isomorphism) for the weak subcontract relation. More specifically,
the idea is to devise a deduction system within which a derivable
judgement of the formf : σ ≤ τ implies thatσ � τ , andf is
a filter that embeds the service with contractτ into the world of
σ-compliant clients.

The definition of such deduction system requires a few auxiliary
notions. First we have to define the “identity” filter, that isthe one
that proves isomorphic (with respect to an interpretation of filters
as morphisms) contracts.

DEFINITION 3.7. The identity filter for a contractσ, denoted by
Iσ, is defined as

Iσ
def
=

‘

σ
α

7−→σ′
α.Iσ′

It is easy to see thatIσ(σ) = σ.
Next, we define two basic operations for combining filters.

Intuitively, given a derivation tree for the judgementf : σ ≤ τ ,
such operations allow us to show how the filterf is built step-by-
step, according to the structure of the derivation.

DEFINITION 3.8. Let f and g denote the filters
‘

α∈A
α.fα and

‘

α∈B
α.gα respectively. Then theconjunctionand disjunctionof

f andg are respectively defined as follows:

f ∧ g
def
=

‘

α∈A∩B
α.(fα ∧ gα)

f ∨ g
def
=

‘

α∈A∪B
α.

8

<

:

fα ∨ gα, α ∈ A ∩ B

fα, α ∈ A \ B

gα, α ∈ B \ A

Finally, we need a way for comparing filters. Filters can be com-
pared according to the actions that they let pass. In the deduction
system the need for comparing filters arises naturally in theweak-
ening rule, where we want to replace a filter with a “larger” one (a
filter that allows more actions). This can be done safely onlyif the
larger filter does not thwart the functionality of the original filter by
re-introducing actions that must be kept hidden. The filter pre-order
will also be fundamental in§3.3, in order to define the “best” filter
that provesσ � τ .

DEFINITION 3.9. The ordering relation on filtersf 6 g is the least
relation such that

‘

α∈A
α.fα 6

‘

β∈B
β.gβ impliesA ⊆ B and

for everyα ∈ A, fα 6 gα.

Filters can be seen asn-ary trees with edges labelled by actions,
each node having at most one outgoing edge labelled by a givenac-
tion. The ordering we just introduced is nothing but tree inclusion
where we consider that all trees share the same root. It is useful to
notice that the syntactical “conjunction” and “disjunction” in Def-
inition 3.8 can be alternatively defined in a natural way using the
ordering: the conjunction of two filters is the largest part common
to both trees, that is, their greatest lower bound:

f1 > g andf2 > g ⇐⇒ (f1 ∧ f2) > g (2)

Similarly, the disjunction of two filters is the tree obtained by
merging the two initial trees, that is their least upper bound:

f1 6 g andf2 6 g ⇐⇒ (f1 ∨ f2) 6 g (3)

A further interpretation of filters is as prefix-closed regular lan-
guages of strings of actions. Then, filter conjunction and disjunc-
tion correspond to language intersection and union, respectively,
whereas the filter ordering is set inclusion (notice that theintersec-
tion and the union of prefix-closed sets is again prefix-closed).

Table 1 defines the deduction system for�. In the table we use
a single axiomσ = τ as a shorthand for two axiomsIσ : σ ≤ τ

andIτ : τ ≤ σ. The equalities and rule (MUST) are well known
since they fully characterise the strong compliance relation, which
coincides with the must preorder (see [25, 20]). Notice thatin
the rule (MUST) no action needs to be filtered out. In fact, this

is the only axiom for safely enlarging a contract without thein-
tervention of any filter (which is expected since this axiom char-
acterises strong compliance, where filters are not needed).Rule
(DEPTHEXT) formalisesdepthextension of contracts, where a con-
tract can be prolonged if no action is made visible from the contin-
uation. Rule (WEAKENING) shows how to safely enlarge a filterf

to f ∨ g: the premiseg ∧ Iτ 6 f states thatg may allow actions
not allowed byf , provided that such actions are not those that have
been hidden for the purposes of provingf : σ ≤ τ . Rule (TRAN-
SITIVITY) is standard and the resulting filter is the composition
filter. Three forms of (limited) pre-congruence follow. Rule (PRE-
FIX) is standard and poses no constraints. Rules (INTCHOICE)
and (EXTCHOICE) state the limited precongruence property for
internal and external choices, respectively. The fundamental con-
straint is that two contracts combined by means of⊕ or + can be
enlarged, provided that they can be filtered in the same way. This
requirement has an intuitive explanation: the filter that mediates
the interaction of a client with a service is unaware of the internal
choices that have been taken by the parties at a branching point. So,
it must be possible to usethe samefilter that works equally well in
all branches in order for the branches to be enlarged.

By combining the rules (DEPTHEXT), (WEAKENING), and
(EXTCHOICE) it is easy to derive a further rule, which formalises
widthextension of contracts:

(WIDTHEXT)

Iσ ∧ Iτ 6 0

Iσ : σ ≤ σ + τ

Basically (WIDTHEXT) states that a service can be extended so
that it provides more capabilities, provided that such capabilities
are disjoint from those that were available before the extension.

3.2.2 Properties

The deduction system we devised in the previous section is sound
and complete with respect to� and the set of filters, in the sense
that it proves all and only the pair of contracts that are related
according to Definition 3.1, and for any such pair it deduces all
and only the filters that validate the pair according to Theorem 3.6.

While the soundness of the deduction system can be easily
established, its completeness is less immediate, but the proof of
this fact follows a standard pattern: completeness is proved for a
restricted class of contracts which are said to be in some normal
form and then it is shown that it is always possible to transform an
arbitrary contract to an equivalent one which is in normal form by
using the axioms.

As regards the actual definition of the normal form, we can
notice that it is always possible to add new ready sets to a given
contractσ without altering its semantics (according to≃), so long
asIσ does not change and the new ready sets contain older ones:
for example,σ ⊕ τ ≃ σ ⊕ τ ⊕ (σ + τ). Now we can see that,
if we saturate the set of ready sets of a contract by adding to it
every possible ready set meeting the conditions above, we can build
a unique (up to commutativity and associativity) normal form for
each equivalence class. This normal form is defined as follows:

DEFINITION 3.10 (NORMAL FORM [20]). For any contractσ, we
define its saturated set of ready sets:

R(σ)
def
= {R ⊆

S

σ⇓S S | ∃S, σ ⇓ S∧ S ⊆ R}

The normal form ofσ is then defined up to associativity and
commutativity of the choices by the following recursive expression:

nf(σ)
def
=

L

R∈R(σ)

P

α∈R
α.nf(σ(α))

the empty external choice being defined as0 (it is not necessary to
define the empty internal choice, because any contract has atleast
one ready set).

Normal forms can be used as the canonical representations of
classes of the equivalence relation≃:

PROPOSITION3.11. σ ≃ nf(σ).

The normal form enjoys also the following important properties:
(1) In a given mix of internal and external choices (either attop-
level or under a given sequence of prefixes), a prefixα is always
followed by the exact same continuation. (2) Ifσ and τ are two
normal form contracts such thatσ ⊑ τ , condition (1) of the
strong subcontract relation holds if and only if every readyset
of τ is also a ready set ofσ. These two properties lead to the
fact that two equivalent normal forms are syntactically equal up
to commutativity and associativity of the choice operators.

We now possess all the technical tools to prove that the deduc-
tion system shown in Table 1 is sound and complete for� and the
sets of filters that prove it.

THEOREM 3.12. f : σ ≤ τ if and only ifσ ⊑ f(τ).

PROOF. (⇒) We only show the most interesting inequalities, since
the other rules are trivial. We proceed by induction on the structure
of the derivation tree forf : σ ≤ τ and by cases on the last rule
applied. If the last rule was (MUST), thenσ ⊕ τ ⊑ σ = (Iσ ∨
Iτ)(σ). If the last rule was (DEPTHEXT), then0 ⊑ 0(σ). If the last
rule was (WEAKENING), then by induction hypothesisσ ⊑ f(τ)
and(f ∨ g)(τ) = (f ∨ (g ∧ Iτ))(τ) = f(τ) becauseg ∧ Iτ 6 f .
Now σ ⊑ f(τ) = (f∨g)(τ). If the last rule was (TRANSITIVITY),
then by induction hypothesis we haveσ ⊑ f(σ′) and σ′ ⊑
g(σ′′). Since filter application is monotone with respect to⊑ (see
Proposition 3.5) we obtainσ ⊑ f(σ′) ⊑ f(g(σ′′)) = (f ∧
g)(σ′′). If the last rule was (PREFIX), then by induction hypothesis
σ ⊑ f(τ). Then α.σ ⊑ α.(f(τ)) = (α.f)(α.τ) because⊑
is a precongruence with respect to prefixing and by definition
of filter application. If the last rule was (INTCHOICE), then by
induction hypothesisσ ⊑ f(σ′) andτ ⊑ f(τ ′). Thenσ ⊕ τ ⊑
f(σ′) ⊕ f(τ ′) = f(σ′ ⊕ τ ′) by precongruence of⊑ with respect
to ⊕ and by definition of filter application. If the last rule was
(EXTCHOICE), then we can reason as for the (INTCHOICE) rule,
except that we conclude by precongruence of⊑ with respect to+.

(⇐) The conversion of a contract to an equivalent one in normal
form is not detailed in here because it can be carried over in exactly
the same way as done in [20]. Assumeσ and τ in normal form
such thatσ ⊑ f(τ). Notice thatf(τ) is also in normal form. We
show by induction on the depth ofσ and τ that f : σ ≤ τ . If
σ = 0, thenf(τ) ≃ 0 and we conclude by idempotency of⊕
and reflexivity of≤. If τ = 0, thenσ must have an empty ready
set hence by (MUST) we haveIσ : σ ≤ 0, by (DEPTHEXT) we
have0 : 0 ≤ τ , by (TRANSITIVITY) we have0 : σ ≤ τ and we
conclude by (WEAKENING) so that the resulting filter isf (since
Iτ = 0 we havef ∧ Iτ = 0). For the remaining cases, assume

σ =
L

i∈I

P

α∈Ri
α.σα τ =

L

j∈J

P

α∈Sj
α.τα

and assumeτ ⇓ R. Fromσ ⊑ f(τ) and the fact thatσ andτ are
in normal form we haveσ ⇓ f(R). For everyα ∈ f(R) we have

σα ⊑ fα(τα) wheref
α

7−→ fα, hence by induction hypothesis we
obtain

fα : σα ≤ τα

then, by (PREFIX),

α.fα : α.σα ≤ α.τα

then, by (WEAKENING),

fR : α.σα ≤ α.τα

wherefR
def
=

‘

α∈f(R) α.fα. IndeedfR ∧ α.Iτα 6 α.fα follows
immediately from the definition offR. Now, by (EXTCHOICE),

fR :
P

α∈f(R) α.σα ≤
P

α∈f(R) α.τα .

Fromf(R) ⊆ R and by applying (WIDTHEXT),

fR :
P

α∈f(R) α.σα ≤
P

α∈R
α.τα .

Let f ′ def
=

W

τ⇓R
fR. From

S

τ⇓R′
f(R′) ∩ R = f(

S

τ⇓R′ R′) ∩
R ⊆ f(R) we observe thatf ′ ∧

‘

α∈R
α.Iτα 6 fR. Hence, by

(WEAKENING), by iterating over all the ready sets ofτ , and by
(INTCHOICE), we obtain

f ′ :
L

τ⇓R

P

α∈f(R) α.σα ≤ τ

Now

Iσ : σ ≤
L

τ⇓R

P

α∈f(R) α.σα

by possibly applying (MUST) for removing all the ready sets of
σ that have disappeared inf(τ) hence, by (TRANSITIVITY), we
concludef ′ : σ ≤ τ becausef ′

6 Iσ since eachf(R) is a ready
set ofσ andIσ∧f ′ = f ′. In order to provef : σ ≤ τ it is sufficient
to apply (WEAKENING). This is possible becausef ∧ Iτ 6 f ′.
Indeed, assumef(τ)

α
7−→. Thenα ∈ R for someτ ⇓ R, hence

σ ⇓ f(R) and nowα ∈ f(R). So, it must befR
α

7−→ from which
we concludef ′ α

7−→. �

As we did for the weak subcontract relation, the weak com-
pliance relation can be decomposed in terms of filters and strong
relation:

COROLLARY 3.13.

ρ ⊣⊣ σ ⇐⇒ ∃τ � σ, ρ ⊣ τ (4)

⇐⇒ ∃f, ρ ⊣ f(σ) (5)

Finally filters have an operational meaning, since they allow
us to state the soundness of our type system. This can be roughly
expressed as the fact that given a service and a weakly compliant
client, every interaction between them mediated by the filter that
proves the weak compliance (Theorem 3.13(2)) will be successful
(the client terminates). This will be formally stated in§3.4.

3.3 Algorithmic deduction system

We introduced a device, filters, that allows us to transform aweak
subcontract or compliance relation into a strong one by shielding
the incompatible actions. The next step is to infer filters algorith-
mically, so that the weak relations can be used in practice.

As usual the process of finding a decision algorithm for a con-
tainment relation corresponds to a cut-elimination process (the cut
here being the (TRANSITIVITY) rule in Table 1), which amounts to
finding a canonical proof for each provable relation. In other terms,
we have to associate every provable weak subcontracting relation
with a canonical filter that represents all other possible proofs. In
order to choose a canonical filter, we have to solve two potential
problems. First, there usually are several filters that workwith a

given relation. For example, to show thata ⊕ b � a + b, we can
either let pass onlya, only b, or both. The best solution here is to let
pass both, because we do not want to shield out actions that cannot
cause any harm. This example suggests the definition of a notion
of “better filter”, that is, of a partial order on filters that determines
which filter is better to use, and such partial order is exactly 6

(Definition 3.9). The second problem is that in the example above a
filter that letsa, b, and, say,c pass will work as well. The intuition
here is that the filter that letsjusta andb pass is better since allow-
ing any action besidesa andb to pass is useless. This suggests the
definitions of a notion of “filter relevance”, to single out filters that
do not contain useless actions.

The subcontracting algorithm will pick up, among all the pos-
sible filter for a given relation, the “best relevant” filter that proves
it.

3.3.1 Filter relevance

In order to determine the property of “relevance” we have to better
understand the role played by the identity filters. It may be noted
that the identity filter of a given contract is exactly the tree of
all possible sequences of actions that the contract can do before
reducing to0, without distinguishing between internal and external
choices. This is embodied by the∨ operator on filters which is a
unique choice operator representing both kinds of choice, as the
following relation shows:

Iσ⊕τ = Iσ+τ = Iσ ∨ Iτ (6)

Note that ifσ andτ share common actions in their outermost pre-
fixes, the continuations of both filters after this action arecorrectly
merged by the disjunction operator.

The tree of an identity filter accurately represents the ideawe
mentioned in the introduction of a contract’s “world”: the sets of
actions the contract knows of at each step of an interaction.A
filter f : σ ≤ τ embedsτ services into the “world” ofσ: then
the intuition is that to be relevantf must be defined (only) on the
“world” of τ , world that is represented byIτ . Indeed, applying toτ
the filterf or the filterf ∧Iτ give the same result, thus the part off

that is not inf ∧Iτ is irrelevant (and this is why there is no greatest
filter corresponding to a given relation in the absolute). Thus we
will say that a filterf is relevantwith respect to a relationσ � τ if
it is smaller thanIτ .

Now if we restrict ourselves to relevant filters we can have
another interesting upper bound: if we look at condition (2)of
the strong subcontract relation, we see that, at each step, every
action available to the greater contract has to be availablealso to
the smaller one. This exactly means that the greater contract has a
smaller tree, and thus we have (by noticing thatIf(σ) = f ∧ Iσ):

if σ ⊑ f(τ) andf 6 Iτ thenf 6 Iσ (7)

Thus relevant filters that prove a relation have to be smallerthan
the identity filters ofbothcontracts.

We now would like to find the greatest relevant filter that proves
a given relation. Note that projecting onIσ ∧ Iτ itself is not
necessarily enough to make the relation work, because of ready
sets: it might be necessary to project on something smaller to
prevent a wrong branch to be taken, for example ina⊕ b.(a+ b) �
a + b.(a ⊕ b), the initial b has to be filtered out even if the trees
are the same, because its continuation in the right contracthas
incompatible ready sets. However, the following importantrelation

holds:

if σ ⊑ f(τ) andσ ⊑ g(τ) thenσ ⊑ (f ∨ g)(τ) (8)

meaning that if we can make the relation work either by selecting
some branches or by selecting some other branches, then it will
still work if we take all these branches at once. This shows that, if
σ � τ holds, there will be a greatestsubtreeof τ that makes the
relation work: even if there is no greatest filter in the absolute, we
can take the disjunction of all filters less thanIτ that work (there
are a finitely many). This filter, which is the least upper bound of all
relevant filters that proveσ � τ , is the one we choose as canonical.

3.3.2 Algorithm

The last step is to define an algorithm for building the canonical
filter of a relation. The monotonicity of filters (Proposition 3.5) and
the soundness and completeness of the deduction system (Theo-
rem 3.12) ensure that filters prove subcontracting modulo equiva-
lence, that is iff : σ ≤ τ , thenf : σ′ ≤ τ ′, for any σ′ ≃ σ,
τ ′ ≃ τ . Since a contract is equivalent to its normal form (Propo-
sition 3.11), then the set of filters that proveσ � τ is the same as
the set of those that provenf(σ) � nf(τ). Therefore in order to
choose in this set a canonical filter forσ � τ , it suffices to choose it
for their normal forms. Hence, we define the following algorithm:

DEFINITION 3.14. We define the ternary relationf : σ P τ

between a filter and two contracts in normal form by the inference
rule

A = {α ∈ (
S

R∈R
R) ∩ (

S

S∈S
S) | ∃fα, fα : σα P τα}

A = {A′ ⊆ A | ∀S ∈ S , S∩ A′ ∈ R} A 6= ∅
W

A′∈A

‘

α∈A′

α.fα :
L

R∈R

P

α∈R

α.σα P
L

S∈S

P

α∈S

α.τα

We then extend the relation to arbitrary contracts by the follow-
ing definition:

f : σ P τ
def

⇐⇒ f : nf(σ) P nf(τ) .

Although it is not immediate, the definition above describesan
algorithm to check whether two contracts are in relation: first the
two contracts are put in normal form; then for every actionα that
can be immediately emitted by both normal forms, the algorithm is
recursively called on the two continuations of the action. The setA
represents the largest set of actions leading to continuations which
are in the relation and the recursion basis occurs whenA = ∅. The
setA contains the subsetsA′ ⊆ A such that, by restricting each
ready set of the larger contract to the actions inA′, this is a ready
set of the smaller contract (recall that for any two contractsσ andτ

in normal form such thatσ ⊑ τ , every ready set ofτ is also a ready
set ofσ). If there is at least one suchA′ set of actions (A 6= ∅), then
σ andτ can be related. The filter defined in the conclusion is the
disjunction of the filters corresponding to all these sets ofactions:
it uses Equation (8) to compute the greatest relevant filter.

3.3.3 Properties

The algorithm described in Definition 3.14 enjoys fundamental
properties, namely(i) it proves only (soundness) and all (complete-
ness) weak subcontract relations,(ii) in case of success it returns
the largest relevant filter that proves the relation and(iii) it always
terminates, which implies the decidability of the weak subcontract
relation.

LEMMA 3.15 (FILTER RELEVANCE). If f : σ P τ , thenf 6 Iτ .

PROOF. A trivial induction on the derivation off : σ P τ , where
the base case is whenA in the premise of the rule is empty. This
eventually happens asσ andτ are finite. �

THEOREM 3.16 (SOUNDNESS). If f : σ P τ thenσ ⊑ f(τ).

PROOF. By Proposition 3.11 it is sufficient to prove the result
on contracts in normal form. We do an induction on the proof of
f : σ P τ . Let A andf be as determined by the rule. As regards
condition (1) in the definition of strong subcontract relation, let
τ ⇓ S, and A′ ∈ A . Thenσ ⇓ S ∩ A′ and S ∩ A′ ⊆ f(S) by
definition off . As regards condition (2), assumef(τ)

α
7−→. From

f
α

7−→ we derive that there existsA′ ∈ A such thatα ∈ A′ and a
ready setS such thatτ ⇓ S andα ∈ S. By the hypotheses of the
rule we haveσ ⇓ S∩A′ andα ∈ S∩A′, henceσ

α
7−→. Furthermore,

there existsfα such thatfα : σα P τα. By induction hypothesis
we deriveσα ⊑ fα(τα). We conclude by observing thatf

α
7−→ fα.

�

THEOREM 3.17 (COMPLETENESS). If σ ⊑ g(τ), then there exists
a filter f such thatf : σ P τ , andf > g ∧ Iτ .

PROOF. First note that ifσ ⊑ g(τ), then alsoσ ⊑ (g ∧ Iτ)(τ)
(applying the conjunction of two filters is like applying onethen
the other, it projects on the part of the tree common to both),thus
we can assumeg 6 Iτ without loss of generality, and we also have
g 6 Iσ by (7). By Proposition 3.11, we can also assume thatσ and
τ are in normal form.

We proceed by induction on the depth ofσ andτ . If the depth
of σ is 0, then it has only one ready set, which is empty,A = {∅}
and we conclude by takingf = 0. If the depth ofτ is 0, thenσ ⇓ ∅
andA = {∅}. Again we conclude by takingf = 0. If the depths
of σ andτ are positive, then fromσ ⊑ g(τ) and the fact thatσ
andτ are in normal form we derive that (1)g(τ) is in normal form,
(2) {g(S) | τ ⇓ S} ⊆ {R | σ ⇓ R}, and (3) ifg

α
7−→ gα, then

τ
α

7−→ τα andσα ⊑ gα(τα). Let A′ = {α | g
α

7−→}. By induction
hypothesis, for everyα ∈ A′ there existsfα such thatfα : σα ≤ τα

andgα 6 fα. Let A be as defined in the premises of the rule. Since
g 6 Iσ ∧ Iτ we know thatA′ ⊆ A. HenceA′ ∈ A . We conclude
by takingf as defined in the rule, and observing thatg 6 f . �

COROLLARY 3.18. If σ and τ are two contracts, there exists at
most one filterf such thatf : σ P τ . Furthermore, iff : σ P τ ,
then

f = max{g 6 Iτ | σ ⊑ g(τ)} = max{g 6 Iτ | g : σ ≤ τ} .

The corollary above describes the logical interpretation of the al-
gorithm as the result of a cut-elimination process. The “cut” in the
system of Table 1 is given by the rule (TRANSITIVITY). This rule
intersects filters, that is it minimises the proofs: therefore in order
to eliminate cuts we have to find a proof with a maximum filter.
However we have also to avoid useless applications of the (WEAK-
ENING) rule, which instead maximises proofs: therefore we have to
set an upper bound to filter maximisation, upper bound embodied
by the definition of relevance (therefore it would be more precise
to speak of a cut-weakening-elimination process).

PROPOSITION3.19 (DECIDABILITY). Given two contractsσ and
τ , we can decide whether there exists a filterf such thatf : σ P τ

and compute this filter.

PROOF. The first step is to putσ and τ into normal form. For
this, if the contract is of depth0 there is nothing to do, else we

have to compute its ready sets, which can be done in finite time
because the contract only contains a finite number of+ and ⊕
operators, then the union of those ready sets is finite, so we can
compute the saturated ready sets in finite time too. Then we have
to compute the normal forms of all theσ(α), of which there is
a finite number and whose depths are strictly smaller. So these
normal forms are computable. Then we prove that the relationis
decidable by induction on the depth ofτ . If this depth is0, thenτ

is 0 andA has to be the empty set. The only thing to check is if one
of the ready sets on the left is empty (∅ ∈ R); there is only a finite
number of them so we can conclude.

If the depth isn > 0, then the setA is computable becauseR
andS are finite sets of finite sets, so there are a finite number of
elements, and by induction hypothesis the condition is decidable
for each of them. ThenA is computable becauseA is finite and so
is S . �

3.4 Language

The final step of our investigation is to relate contracts (which
are behavioural types) with processes that implement clients and
services. We do not consider any particular process language, nor
do we require that clients and services be implemented usingthe
same language. We just require that the observable behaviour of
such language(s) be described by a labelled transition system and
abstracted by a static type system, so that we can reason about their
programs. More precisely we assume that a process language is
equipped with a labelled transition system so that

P
µ

−→ P
′

describes the evolution of a processP that performs aµ action
thus becoming the processP ′. Here, µ can either be a visible
action of the forma or a, which is meant to synchronise with
the corresponding co-action in the processP is interacting with,
or it can be an internal, invisible actionτ (not to be confused
with τ that we used to range over contracts) that the processP

executes autonomously. It is understood that the relation
µ

−→ is
not necessarily deterministic. As usual, we letα range over visible
actions and we writeP

µ
−→ if P

µ
−→ P ′ for some processP ′.

DEFINITION 3.20 (STRONG PROCESS COMPLIANCE). Let
P ‖Q −→ P ′ ‖Q′ be the least relation defined by the rules:

P
τ

−→ P ′

P ‖Q −→ P ′ ‖Q

Q
τ

−→ Q′

P ‖Q −→ P ‖Q′

P
α

−→ P ′ Q
α

−→ Q′

P ‖Q −→ P ′ ‖Q′

We write=⇒ for the reflexive, transitive closure of−→; we write
P ‖Q −→ if P ‖Q −→ P ′ ‖Q′ for someP ′ and Q′; we write
P ‖Q X−→ if not P ‖Q −→.

The clientP is strongly compliantwith the serviceQ, written
P ⊣ Q, if wheneverP ‖Q =⇒ P ′ ‖Q′

X−→ we haveP
e

−→.

The intuition of this definition is thatP ‖Q represents a client
P and a serviceQ interacting with each other. WhenP ⊣ Q every
interaction betweenP andQ terminates withP being able to emit
e, denoting the successful completion ofP ’s task.

We also assume that a type system is given to check that a
processP implementsthe contractσ. This is expressed by the

judgement

⊢ P : σ

While we do not give details on the particular typing rules, we
require typing and the reduction relation to satisfy some basic
properties: essentially, contracts must describe the observational
behaviour of processes and the reduction must decrease non-
determinism (entropy must always increase). In this respect, it
makes sense to be able to apply the strong subcontract relation
to client contracts too, where the actione is treated like any other
action (recall that, according to Theorem 2.8, the relation⊑ can be
defined without any notion of “successful action”e).

DEFINITION 3.21. The type system isconsistentif, whenever ⊢
P : σ and P

µ
−→ P ′, then ⊢ P ′ : σ′ and (1) if µ = τ, then

σ ⊑ σ′; (2) if µ = α, thenσ
α

7−→ and σ(α) ⊑ σ′. Also, the
type system isinformative if, whenever⊢ P : σ andσ

α
7−→, then

P
α

−→.

Intuitively, condition (1) states that a process performing inter-
nal actions can only make its contract more deterministic. Condi-
tion (2) states that if a process performs a visible actionα, then
its contract must account for that action and the contract ofthe re-
sulting processP ′ is (more deterministic than) the contractσ(α),
which accounts for all the possible behaviours ofP afterα. An in-
formative type system does not deduce capabilities that a process
does not have.

The following lemma states that it is possible to replace a
client contractρ with another one which is more deterministic, still
preserving the compliance property. The lemma is fundamental in
proving the soundness of the type system.

LEMMA 3.22. If ρ ⊣ σ andρ ⊑ ρ′ thenρ′ ⊣ σ.

PROOF. Let C be a compliance relation such that(ρ, σ) ∈ C and
let S be a strong subcontract relation such that(ρ, ρ′) ∈ S . It is
sufficient to prove that

C
′ def

= {(ρ′
, σ) | ∃ρ, (ρ, σ) ∈ C ∧ (ρ, ρ

′) ∈ S }

is a strong compliance relation since(ρ′, σ) ∈ C
′. Assume

(ρ′, σ) ∈ C
′. Then there existsρ such that(ρ, σ) ∈ C and

(ρ, ρ′) ∈ S . As regards condition (1) in Definition 2.5, assume
ρ′ ⇓ R andσ ⇓ S. If e ∈ R the condition is satisfied. Assume
e 6∈ R. From (ρ, ρ′) ∈ S there existsR′ ⊆ R such thatρ ⇓ R′.
In particular,e 6∈ R′. From(ρ, σ) ∈ C we haveco(R′) ∩ S 6= ∅,
henceco(R) ∩ S 6= ∅.

As regards condition (2) in Definition 2.5, assumeρ′ α
7−→ and

σ
α

7−→. From(ρ, ρ′) ∈ S we deriveρ
α

7−→ and(ρ(α), ρ′(α)) ∈
S . From (ρ, σ) ∈ C we derive(ρ(α), σ(α)) ∈ C . Hence we
conclude(ρ′(α), σ(α)) ∈ C

′ by definition ofC ′. �

Given a consistent type system, the following result statesthat,
given a pair of processesP ‖Q whose respective contracts comply,
and given any two residual processesP ′ ‖Q′ resulting fromP ‖Q,
the respective contracts ofP ′ andQ′ comply as well.

LEMMA 3.23 (SUBJECT REDUCTION). If ⊢ P : ρ and ⊢ Q : σ

andρ ⊣ σ andP ‖Q −→ P ′ ‖Q′, then ⊢ P ′ : ρ′ and⊢ Q′ : σ′

andρ′ ⊣ σ′.

PROOF. We need to consider all the possibilities by whichP ‖Q

reduces toP ′ ‖Q′, namelyP ‖Q −→ P ′ ‖Q′. If P
τ

−→ P ′, then
from consistency condition (1) we have⊢ P ′ : ρ′ and ρ ⊑ ρ′

and by Lemma 3.22 we concludeρ′ ⊣ σ. If Q
τ

−→ Q′, then

from consistency condition (1) we have⊢ Q′ : σ′ andσ ⊑ σ′

and by definition of⊑ we concludeρ ⊣ σ′. Finally, if P
α

−→ P ′

andQ
α

−→ Q′, then from consistency condition (2) we have that
⊢ P ′ : ρ′ and⊢ Q′ : σ′ andρ(α) ⊑ ρ′ and σ(α) ⊑ σ′. By
Lemma 3.22 and by definition of⊑ we concludeρ′ ⊣ σ′. �

The soundness of a consistent and informative type system is
ensured by the following result, stating that if the contracts of two
processes comply, the corresponding processes comply as well,
guaranteeing termination on the client side.

THEOREM3.24. If ⊢ P : ρ and ⊢ Q : σ andρ ⊣ σ thenP ⊣ Q.

PROOF. Because of Lemma 3.23 we only need to consider the
caseP ‖Q X−→. Assume, by contradiction, thatP X

e
−→. From

P ‖Q X−→ we have that wheneverP
α

−→ we haveQ X
α

−→. Since
⊢ P : ρ and⊢ Q : σ and since the type system is informative,
this means that for any ready setR of ρ there is no ready setS of σ

such thatco(R)∩ S 6= ∅, but this is absurd from the hypothesis that
ρ ⊣ σ. HenceP

e
−→. �

Notice that the soundness theorem holds when the client’s con-
tract and the service’s contract are strongly compliant. Tobe able
to use a service for which we only have a weakly compliant client,
we need to shield potentially dangerous service actions by means
of a filter. Thus, we enrich the process language with an operator

f [P]

that applies a filterf to a processP , the idea being that the filter
constraints the set of visible actions ofP , that is its capabilities to
interact with the environment, still not altering its behaviour. The
labelled transition system of the language is consequentlyenriched
with the following two inference rules:

(FILTER1)

P
α

−→ P ′ f
α

7−→ f ′

f [P]
α

−→ f ′[P ′]

(FILTER2)

P
τ

−→ P ′

f [P]
τ

−→ f [P ′]

The introduction of filters into the process language has conse-
quences on the type system as well. Since our discussion is para-
metric in the process language and in the type system, we onlyneed
to show that the typing rule

(TYPEFILTER)

⊢ P : σ

⊢ f [P] : f(σ)

does not jeopardise the type system.

PROPOSITION3.25. A consistent and informative type system en-
riched with rule(TYPEFILTER) results in another consistent and
informative type system.

PROOF. As regards consistency condition (1), assumeP
τ

−→
P ′ and ⊢ P : σ′. Then σ ⊑ σ′ implies f(σ) ⊑ f(σ′) by
Proposition 3.5. As regards consistency condition (2), assume that
P

α
−→ P ′ and⊢ P ′ : σ′. There are two possibilities: iff X

α
7−→,

thenf [P] X
α

−→ and there is nothing to prove. Iff
α

7−→ f ′, then
σ(α) ⊑ σ′. Now we concludef(σ)(α) = f ′(σ(α)) ⊑ f ′(σ′).
Finally, if σ

α
7−→ andf X

α
7−→, thenf(σ) X

α
7−→ andf [P] X

α
−→, wher

eas iff
α

7−→ f ′, thenf(σ)
α

7−→ andf [P]
α

−→ f ′[P ′], so the type
system is still informative. �

The following result summarises the contribution of our work:
the adoption of filters enlarges the number of possible services that
can be used to let a client terminate.

COROLLARY 3.26. If ⊢ P : ρ, ⊢ Q : σ, andρ ⊣ f(σ), then
P ⊣ f [Q].

4. Conclusion and Future Work
This paper provides a foundation for behavioural typing of Web
services and it promotes service reuse and/or redefinition by the
introduction of a subcontract relation.

Our approach reconciles two hitherto apparently incompatible
requirements. On the one hand a subcontract relation must allow
a service to be replaced or upgraded by offering more operations
(width subtyping), longer interaction patterns (depth subtyping)
and/or more deterministic ones. On the other hand this must be
done without disrupting the behaviour of clients.

Filters provide the technical device that makes it possible.
Although we initially defined filters essentially as technological
mechanism to couple clients and services, filters turn out tohave
an elegant logical justification: they are explicit coercions between
related contracts. Following the Curry-Howard isomorphism filters
can be interpreted as proofs of a sound and complete deduction
system for the subcontract relation. Such deduction systemsimul-
taneously refines and extends Hennessy’s classical axiomatisation
of the must testing preorder. Its algorithmic counterpart is obtained
as a cut elimination process, which proves the coherence of subcon-
tracting as a logical system. The canonical proof, the one produced
by the algorithmic deduction system, is characterised in terms of
an order relation on filters, and the algorithmic presentation allows
us to show the decidability both of the subcontracting relation and
of filter inference.

The theory of subcontracting is independent of the language
used to implement services and clients. We do not rely on a par-
ticular language nor on a particular paradigm (objects, process al-
gebrae, functions, . . .). By defining some minimal requirements on
the language (in a nut-shell, the observable behaviour of its pro-
grams must be faithfully captured by contracts), we establish the
soundness of our contract system: clients always terminateinterac-
tions with any, possibly filtered, compliant service.

Filters thus play the double role of a proof tool and of pro-
gramming glue between clients and services. As an aside it isnice
to notice that filters can encodeCCS and π-calculus restrictions:
(νa)P = faP [P] where

faP =
‘

α∈(fn(P)∪co(fn(P))\{a,a} α.faP .

Even if in this presentation we applied filters to services, in prac-
tice it is the client’s responsibility to apply them. A client searching
for a service with a given contract will receive as answer to its query
the reference of a service together with a filter that allows the client
to use the service. Thus the filter must be computed by the query
engine, which is why the algorithmic inference of filters is crucial
for a practical application.

Actually, it is more realistic to imagine that a query will receive
not one but several different answers, each one containing filters
that may be unrelated one to each other. Therefore a second use of
filters could be that of refining the search space, by specifying in
a query a minimum acceptable filter. In this way the client could
specify which of the possible behaviours of its “canonical”service
are considered mandatory and not to be filtered out.

Several future research directions stem from this work. The
following is a non-exhaustive list:

Recursion and higher-order: The contracts and filters we dis-
cussed in this work are finite. The next step of this research is the

introduction of recursion both in contracts and, consequently, in fil-
ters. Actually, most of the proofs use coinduction and they can be
applied with minor changes to the recursive case. Also, for the time
being synchronisation does not carry any information. Thusa fur-
ther natural step is the introduction of higher order channels à la
π-calculus.

Asymmetric choices: The choice operators are commutative. We
could try to relax this property in order to give the summands
different priorities, which is impossible with the currentdefinitions.
For instance, there is no way for a client that has to use a service
with contract(a + b) ⊕ a to specify that it wants to connect with
b if this action is available, and witha otherwise (in order to be
compliant it must accept a possible synchronisation witha). It is
unclear to which extent such constructs would affect the� preorder
over contracts.

Security: There exists a rich literature on security forCCS. We
want to check whether it is possible to reuse or adapt some of
the techniques already developed to state security resultsfor Web
service interactions and choreographies.

Contract isomorphisms: The only morphisms between contracts
we have considered are filters. Since filters are coercions, then by
definition they essentially do not alter the semantics of objects. One
could try to consider more expressive morphisms (e.g. renaming
and/or reordering of actions) and to completely characterise the
isomorphisms of contracts. This would allow us to perform service
discovery modulo isomorphisms: when searching for services of a
given contract a client could be returned a service and two conver-
sion functions, one to call the service, the other to convertresults
(see [27, 16]).

This could later be extended to richer query/discovery lan-
guages obtained by adding union, intersection and negationtypes
on the basis of the set-theoretic interpretation presentedhere and
the work on semantic subtyping [10].

Relation with other formalisms: Finally, connection with other
formalisms such as linear logic, session types, and game seman-
tics must surely be deeply investigated. In particular, as regards the
semantic aspects, it is interesting to notice that clients and services
introduce a notion of orthogonality which suggests that a realisabil-
ity semantics for contracts is worth to be explored.

References
[1] A. Alves, A. Arkin, S. Askary, C. Barreto, et al.Web Ser-

vices Business Process Execution Language Version 2.0, January
2007. http://docs.oasis-open.org/wsbpel/2.0/CS01/
wsbpel-v2.0-CS01.html.

[2] A. Banerji, C. Bartolini, D. Beringer, V. Chopella, et al. Web
Services Conversation Language (WSCL) 1.0, March 2002.http:
//www.w3.org/TR/2002/NOTE-wscl10-20020314.

[3] D. Beringer, H. Kuno, and M. Lemon.Using WSCL in a UDDI

Registry 1.0, 2001. UDDI Working Draft Best Practices Document,
http://xml.coverpages.org/HP-UDDI-wscl-5-16-01.pdf.

[4] D. Booth and C. Kevin Liu. Web Services Description Language
(WSDL) Version 2.0 Part 0: Primer, March 2006.http://www.w3.
org/TR/2006/CR-wsdl20-primer-20060327.

[5] K. Bruce and G. Longo. A modest model of records, inheritance and
bounded quantification.Information and Computation, 87(1/2):196–
240, 1990.

[6] M. Carbone, K. Honda, and N. Yoshida. A calculus of global
interaction based on session types.Electronic Notes in Theoretical
Computer Science, 171(3):127–151, 2007.

[7] M. Carbone, K. Honda, and N. Yoshida. Structured communication-
centred programming for web services. In16th European Symposium
on Programming, ESOP 2007, number 4421 in LNCS, pages 2–17.
Springer, 2007.

[8] L. Cardelli. A semantics of multiple inheritance.Information and
Computation, 76:138–164, 1988. A previous version can be found in
Semantics of Data Types, LNCS 173, 51-67, Springer, 1984.

[9] S. Carpineti, G. Castagna, C. Laneve, and L. Padovani. A formal
account of contracts for Web Services. InWS-FM, 3rd Int. Workshop
on Web Services and Formal Methods, number 4184 in LNCS, pages
148–162. Springer, 2006.

[10] G. Castagna and A. Frisch. A gentle introduction to semantic
subtyping. In Proc. ofPPDP ’05 ACM Press (full version) and
ICALP ’05,LNCS n. 3580, Springer (summary), 2005. Joint ICALP-
PPDP keynote talk.

[11] G. Chen. Soundness of coercion in the calculus of constructions.
Journal of Logic and Computation, 14(3):405–427, 2004.

[12] R. Chinnici, H. Haas, A. Lewis, J.-J. Moreau, et al.Web
Services Description Language (WSDL) Version 2.0 Part 2:
Adjuncts, March 2006. http://www.w3.org/TR/2006/
CR-wsdl20-adjuncts-20060327.

[13] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana.
Web Services Description Language (WSDL) Version 2.0 Part
1: Core Language, 2006. http://www.w3.org/TR/2006/
CR-wsdl20-20060327.

[14] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana.
Web Services Description Language (WSDL) 1.1, 2001. http:
//www.w3.org/TR/2001/NOTE-wsdl-20010315.

[15] J. Colgrave and K. Januszewski. UsingWSDL in a UDDI reg-
istry, version 2.0.2. Technical note, OASIS, 2004.http:
//www.oasis-open.org/committees/uddi-spec/doc/tn/
uddi-spec-tc-tn-wsdl-v2.htm.

[16] R. Di Cosmo. Isomorphisms of Types: from Lambda Calculus to
Information Retrieval and Language Desig. Birkhauser, 1995. ISBN-
0-8176-3763-X.

[17] D. C. Fallside and P. Walmsley.XML Schema Part 0: Primer Second
Edition, October 2004.http://www.w3.org/TR/xmlschema-0/.

[18] S. Gay and M. Hole. Subtyping for session types in theπ-calculus.
Acta Informatica, 42(2-3):191–225, 2005.

[19] M. Hennessy. Acceptance trees.JACM: Journal of the ACM,
32(4):896–928, 1985.

[20] M. Hennessy. Algebraic Theory of Processes. Foundation of
Computing. MIT Press, 1988.

[21] K. Honda. Types for dyadic interaction. InCONCUR’93, number
715 in LNCS, pages 509–523. Springer, 1993.

[22] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and
type discipline for structured communication-based programming. In
European Symposium on Programming (ESOP’98), number 1381 in
LNCS, pages 122–138, 1998.

[23] C. Laneve and L. Padovani. Themustpreorder revisited – An
algebraic theory for web services contracts. InCONCUR ’07. LNCS,
Springer, 2007.

[24] R. Milner. A Calculus of Communicating Systems. Springer, 1982.

[25] R. De Nicola and M. Hennessy. Testing equivalences for processes.
Theor. Comput. Sci, 34:83–133, 1984.

[26] R. De Nicola and M. Hennessy. CCS withoutτ ’s. In TAPSOFT/CAAP
’87, number 249 in LNCS, pages 138–152. Springer, 1987.

[27] M. Rittri. Retrieving library functions by unifying types modulo linear
isomorphism. RAIRO Theoretical Informatics and Applications,
27(6):523–540, 1993.

[28] S. Soloviev, A. Jones, and Z. Luo. Some Algorithmic and Proof-
Theoretical Aspects of Coercive Subtyping. InTYPES’ 96. LNCS
1512, 173–196, Springer, 1996.

[29] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language
and its typing system. InParallel Architectures and Languages
Europe, pages 398–413, 1994.

	citation_temp.pdf
	0Bhttp://eprints.gla.ac.uk/47889/

