The Collective Memory of Amnesic Processes*

Rachid Guerraoui, Ron R Levy! Bastian Pochon and Jim Pugh
School of Computer and Communication Sciences, EPFL

December 14, 2006

Abstract

This paper considers the problem of robustly emulating a shared atomic memory over a
distributed message passing system where processes can fail by crashing and possibly recover.
We revisit the notion of atomicity in the crash-recovery context and introduce a generic algorithm
that emulates an atomic memory. The algorithm is instantiated for various settings according
to whether processes have access to local stable storage, and whether, in every execution of
the algorithm, a sufficient number of processes are assumed not to crash. We establish the
optimality of specific instances of our algorithm in terms of resilience, log-complezxity (number
of stable storage accesses needed in every read or write operation), as well as time-complexity
(number of communication steps needed in every read or write operation). The paper also
discusses the impact of considering a multi-writer versus a single-writer memory, as well as
the impact of weakening the consistency of the memory, by providing safe or regular semantics
instead of atomicity.

1 Introduction

1.1 Motivation

An atomic shared memory provides abstractions, usually called atomic registers, that can be ac-
cessed by several processes with the guarantee that, despite concurrent invocations, processes have
the illusion of instantaneous read or write executions, i.e., as if they were accessing every variable
sequentially one after the other [8,9]. Not surprisingly, distributed programming with an atomic
shared memory is usually considered easier than with message passing. Hence, when no hardware
shared memory is available, it is appealing to emulate a virtual one at the software level by imple-
menting read and write operations of the virtual shared memory, using underlying message passing
channels between the processes.

In an asynchronous message passing system where processes can fail by crashing and are sup-
posed to never recover (crash-stop model), robust (fault-tolerant) atomic memory emulations [2, 3,
13,14] have typically assumed that, in every execution of the algorithm, a majority of the processes
do not crash: robustness [3] means here that any read or write operation, invoked by a process p
which does not subsequently crash, eventually returns.

*Elements of this paper appeared in the paper “Robust Emulations of Shared Memory in a Crash-Recovery Model”
(Rachid Guerraoui and Ron Levy) in the proceedings of the IEEE 24th International Conference on Distributed
Computing Systems (ICDCS’04)

TContact author: Ron.Levy@epfl.ch Postal address: EPFL-I&C-IIF-LPD, INR 314 (Batiment INR), Station 14,
CH-1015 Lausanne, Switzerland. Telephone:+41-21-6937502



Crash-stop:

W(vr) Complete W(v;)
P1 - o
| o
Crash-recovery:
W(vr) W(vs) Complete W(v;)
p1 [ [ B
L L J I

Figure 1: Completing write invocations

Obviously, in most distributed systems, computers that crash are not thrown away, but are
restarted after being fixed; sometimes they automatically recover without manual intervention.
Forcing such recovered processes to remain out of the computation is not natural. Especially in
long running applications, it can indeed be advantageous to take this recovery capacity into account,
hopefully providing higher resilience for the overall system. However, when processes recover, they
lose all information present in their local volatile memory: they are in this sense amnesic. A
process can indeed “cure” its amnesia by using stable storage, or by communicating with other
processes upon recovery, but this adds a non negligible overhead that algorithms need to minimize.
Maybe more fundamentally, the possibility of recovery requires to revisit some basic reasoning tools
underlying the very notion of atomicity.

It is thus appealing to study the actual meaning and the cost of emulating an atomic memory
in a practical model where processes may crash and recover. As we discuss below, several questions
underpin such a study.

1.2 Atomicity and Histories

As we already pointed out, an atomic memory is convenient because it provides the illusion of
instantaneous execution despite concurrency: every read or write operation appears to take effect
at some individual instant within the time interval between the invocation and reply events of
these operations. A robust atomic shared memory emulation provides this illusion despite failures.
Ideally, to the developer of a shared memory program, the fact that the underlying model is crash-
stop or crash-recovery should not make any difference: atomicity semantics should stay intact.

Nevertheless, and as we elaborate in this paper, the notion of history, key to defining atomic-
ity [10], needs to be revisited in a crash-recovery model. In simple terms, a history is a sequence
of invocation and reply events depicting an actual interaction between a process and a register
abstraction. Atomicity is traditionally defined with respect to complete histories where every in-
vocation has a matching reply! [10]. As processes might crash, some replies can be missing: their
matching invocations are in this sense incomplete. It is convenient to complete the histories by
removing incomplete read invocations, and adding hypothetical missing replies to incomplete write
invocations. In a crash-stop model, we simply append specific replies at the end of the history: in a
sense, we assume that the process received the actual reply right before crashing and this is feasible
because a crash event can only be the last event at a given process. In the crash-recovery model,
appending replies at the end would make processes internally concurrent, as a process might have
recovered in the meantime and invoked further operations: this is depicted in Figure 1. In this case
atomicity becomes meaningless.

We propose in the paper a specific way of completing histories which allows us to keep the
traditional notion of atomicity intact from the perspective of the user of the memory. Intuitively,

The goal is indeed to provide the illusion of a failure-free and sequential behavior where every invocation is
immediately followed by a matching reply.



this means that crashes and recoveries are transparent to the user. However, as we will see when
establishing complexity bounds, this desirable transparency comes at a cost.

1.3 Quorums and Resilience

To get an idea of the ramifications underlying emulating an atomic shared memory over a crash-
recovery message passing system, consider the emulation algorithm over a crash-stop message pass-
ing system described in [13]. (This algorithm is basically the same as the seminal single-writer
algorithm of [3] with the addition of id’s for multiple writers.)

Monotonically increasing timestamps are used to order the values written in any atomic register
of the memory: every process holds copies of the register value, presumably the latest written value
in the register, with an associated timestamp. The emulation of a write operation goes as follows.
First, the writer process requests the highest timestamp from a majority of processes. The writer
then increments this timestamp and broadcasts it, together with the value to be written, to all
processes. Every process that receives this message updates its variable with the new value and
timestamp,? then sends back an acknowledgment (ack) to the writer. Once the writer receives a
majority of acks, it returns from the write operation (i.e. returns an “ok” indication). A read oper-
ation consists in selecting the value with the highest timestamp among a majority, and imposing it
at a majority. The assumption of a correct majority ensures the robustness of the emulation. Writ-
ers and readers always access a correct process, and this ensures the persistence of the information
and guarantees atomicity.

Intuitively, one would require in a crash-recovery model that such majorities always intersect
at a process that is not amnesic, i.e., that could ensure the persistence of a written value. This can
be achieved by equipping a number of processes with stable storage. Even without stable storage it
is possible to ensure persistence throughout crashes. In practice, the probability that all processes
fail at the same time during a given emulation is usually quite small. This can be used to our
advantage by making the hypothesis that a certain number of processes never crash during the
duration of the emulation. In this paper, we precisely capture this notion by introducing a general
notion of amnesia masking storage, of which we give different examples according to the underlying
settings, i.e., whether processes have access to stable storage or not, and whether it is reasonable
to assume that, in every execution of the emulation, some of the processes do not crash.

We prove resilience lower bounds for each of those settings. More precisely, assuming that f
(faulty) processes may crash permanently or keep crashing and recovering forever, we prove that
in a system of n processes, emulating an atomic memory requires that there is a number s > 2f
of processes that have stable storage, or the number of processes u that never crash must be such
that u > f (in practice, it is enough that u processes are not crashed at the same time).

1.4 Complexity

In a crash-stop message passing model, the usual way to measure time-complexity is to count the
number of inter-process communication steps needed for every read or write operation to complete
(the local computation is neglected and the time to broadcast is assumed to be the same as the
time to send a message to some process). In a crash-recovery model, processes might want to store
(log) information in stable storage and any such logging has a significant cost. In our local area
network of Pentium IV workstations for instance, it takes around 0.1ms for a message to transit
between two processes located at different workstations, whereas logging a single byte on a local

ZNote that timestamps are sequence numbers (integers) associated with process ids, and these ids help order
timestamps with the same sequence number.



disk might take twice as long; comparatively, it costs almost nothing for a process to execute a local
operation that accesses only its volatile memory. But how do we take into account log-complexity?
To illustrate this question, consider the implementation of a write operation using two algorithms
Aand A’:3

1. In algorithm A, the writer process first logs some information, then sends a message to all
processes. Every server process that gets the message also logs some information, except the
writer, before sending back an acknowledgment (ack). Once the writer gets back all acks, it
returns from the write.

2. In algorithm A’, the writer directly sends a message to all server processes. Every server
process that gets the message logs some information before sending back an ack. Once the
writer gets back all acks, it returns from the write.

In both algorithms, a write operation requires 2 communication steps, i.e., 1 round-trip between
the writer and the rest of the processes. But how many logs are used in each algorithm? At first
glance, it might appear that both algorithms use the same number of logs. Indeed, in both cases,
all processes must log to terminate the write. However, a closer look at the algorithms reveals that
logs are not used in the same manner. In A, the log of the writer causally precedes [9] the log of
the other processes, whereas in A’, there is no such causal precedence: all logs can be performed in
parallel. We say that a write operation costs 2 causally related logs (or simply logs) in algorithm
A and 1 log in algorithm A’. In practice, even if shared memory emulation algorithms are devised
in an asynchronous model, the most frequent case for which they need to be optimized is when the
message transmission delay is within a reasonable time period (0.1 ms in our network). If we define
the communication delay as § and the log delay as A, a write with A costs 20 4+ 2\, whereas a write
with A" only costs 26 + .

In the paper, we introduce this notion of log-complexity and we prove a tight bound on the
number of logs needed to emulate a write and a read operation of an atomic shared memory over
a crash-recovery message passing system when stable storage is available. We also prove that the
number of processes that may crash in every execution is equal to or higher than the number of
faulty processes. We show that emulating an atomic shared memory in a crash-recovery model with
stable storage requires at least 2 logs for a write and 1 log for a read. These lower bounds hold even
for a single-writer/single-reader atomic register, no matter how many messages or communication
steps are used among processes.

To illustrate the issues underlying our tight bound on log complexity, consider the crash-stop
emulation from [13]. In fact, by making some drastic adaptations, we could transform the emulation
to a crash-recovery model. We could for instance require from every process that it logs each of
its updates in stable storage. The resulting algorithm would be very expensive in terms of logs
(clearly not optimal). Let us discuss below the necessity of some of the underlying logs:

1. Before a write completes, a certain number of processes must have logged the new value and
its associated timestamp so that a subsequent reader will be able to contact one of those
processes. In other words, a write needs at least 1 log. Otherwise there might be no way for
a written value to persist in the system and be eventually read (forgotten-value).

2. But do we need 2 logs? For instance, does the writer need to log the timestamp it associates
with a value, before asking a majority of the processes to adopt the value with this timestamp?

3None of these algorithms robustly emulate an atomic shared memory, but this is irrelevant for explaining the
notion of log-complexity



This seems desirable to prevent the case where the writer crashes and a single process adopts
the new value and timestamp. Upon recovery, the writer might otherwise use the very same
timestamp to write a different value, leading to two different values with the same timestamp
(confused-values).

3. Furthermore, does the writer need to log the very fact that it is about to start writing some
value v7 Again, this seems desirable because, if the writer crashes during a write and recovers,
it might start a new operation without finishing the previous write (orphan-value). We say
that a write of value v is finished if no subsequent read can return a value written before v.

When not enough processes have access to stable storage, we need to assume that a sufficient
number of processes do not crash at the same time. More precisely, the number of processes that do
not crash should be such that v > f. Coming up with an algorithm in this setting that minimizes
the number of communication steps is also not trivial: before a write completes, enough process
must be aware of the new value and associated timestamp in order to ensure persistence. Processes
that crash and recover must be informed of the latest value. How do we ensure that no two different
values are written using the same timestamp? How does the writer “remember” that it started a
write without logging?

1.5 Summary of Contributions

This paper revisits the reasoning tools underlying atomicity in a crash-recovery model and gives
a generic algorithm that emulates a multi-writer /multi-reader atomic shared memory in a crash-
recovery message passing model. Our algorithm is generic in the sense that it uses an abstract
notion of amnesia masking storage which can be instantiated for several kinds of crash-recovery
systems according to whether or not processes have access to stable storage and whether we can
assume that a subset of processes do not crash in every execution. Considering a system with n
processes, including s processes with stable storage, a maximum of f faulty processes that can
crash permanently or keep crashing and recovering forever, and u processes that do not crash, we
establish the optimality of specific instances of our algorithm by proving the following bounds:

1. Resilience: f <n/2 and u > f if s < 2f.

2. Log-complezity: If s > 2f and u < f, 2 logs per write and 1 per read are necessary for a single
writer /single reader and sufficient for a multi reader/multi writer register algorithm.

3. Time-complezity: If s = 0, more than 1 round trip per write is necessary for a single writer
and multi reader register algorithm®. If s # 0 then 1 round-trip per write is sufficient for a
single writer register algorithm.

We also discuss the impact on these results of weakening the semantics of the shared memory.
In particular, we discuss safety and regularity as two alternatives to atomicity [10].

1.6 Road-Map

Section 2 describes the basic elements of a crash-recovery model. Section 3 revisits the essential tools
needed to reason about atomicity in that model. Section 4 defines the notion of amnesia masking
storage. Section 5 presents our generic emulation algorithm based on that notion. Section 6 proves
bounds on the resilience, log- and time-complexity of atomic shared memory emulations and derives

4The time-complexity of a read can be derived from existing results in crash-stop model [3,6].



the optimality of specific instances of our generic emulation algorithm. Finally Section 7 revisits
our assumptions and discusses the impact of weakening the memory emulations.

2 Model

We consider an asynchronous message passing model, without any assumptions on communication
delay or relative process speeds. To simplify the presentation of our algorithms, we assume the
existence of a global clock. This clock however is a fictional device outside of the control of the
processes.

The set of processes N, |N| = n, is static and every process executes a deterministic algorithm
assigned to it, unless it crashes. The process does not behave maliciously. If it crashes, the process
simply stops executing any computation, unless it possibly recovers, in which case the process
executes a recovery procedure which is part of the algorithm assigned to it. Note that in this case
we assume that the process is aware that it had crashed and recovered.

Every process has a volatile storage and some processes may also have a stable storage. If a
process crashes and recovers, the content of its volatile storage is lost but not the content of its
stable storage. Each process has a local clock which provides an interface for retrieving a timestamp.
The clock guarantees that each timestamp is unique and that the sequence of timestamps are
monotonically increasing despite crashes and recoveries.”

By default, whenever a process updates one of its variables, it does so in its volatile storage. The
process can decide to store information in its stable storage (if it has one) using a specific primitive
store: we also say that the process logs the information. The process retrieves the information
logged using the primitive retrieve. The processes with stable storage belong to a set denoted .5,
S C N. There are a total number of 0 < |S| = s < n processes with stable storage.

Whereas the sets NV and S are static for all executions, the sets of processes that we will define
now are not: they might be different for each execution (and unknown in advance). These sets are
defined for an infinite execution, i.e. the sets can only be evaluated by an external observer of the
system looking at infinite executions. The sets are defined in the same way as in [1]. Processes that
crash at least once, always recover after a crash and eventually do not crash are eventually-up and
belong to a set denoted C, |C| = ¢. These might crash (and recover) a large (but finite) number of
times. A process is faulty (the process belongs to a set denoted F', |F'| = f) if there is a time after
which the process crashes and never recovers or it crashes infinitely many times. We also consider a
set of processes that are always-up U, |U| = u (in that given execution). Considering n = c+ f +u,
a number ¢ + f processes can crash and c¢ eventually recover.

We assume underlying fair-lossy channels [12], which are defined as follows: if a process p; sends
a message m to a non-faulty process p; an infinite number of times, then p; receives m an infinite
number of times. Furthermore, if a process p; receives some message m, then some process p; has
sent m. On top of these channels we can easily implement more useful stubborn communication
procedures which are used to send and receive messages reliably [5]. More precisely, if a process p;
calls the procedure s-send to send a message m to a process p;, then p; will eventually s-receive m
if p; and p; are non-faulty. We assume in this paper that processes communicate using s-send and
s-receive.

An algorithm that emulates a shared memory actually emulates the read and write operations
of its registers. Any read or write invocation of a register is translated into messages exchanged
between processes. We say that an operation (read or write) invoked by a process p contacts a

5 Almost all modern computers are equipped with a battery powered clock that keeps time even when the computer
is switched off.



set of processes @ if, in the algorithm implementing the operation in our crash-recovery message
passing model, p sends messages to at least |Q| processes after the invocation of the operation
and subsequently receives |@Q| causally dependent [9] responses, from |Q| different processes, before
returning from the operation.

All proofs in this paper use the formalism introduced in [11]. Although not as easy to follow,
hierarchically structured proofs should be easier to verify than traditional proofs.

3 Atomicity

Roughly speaking, atomicity provides the illusion that the shared register appears to be accessed in
a failure-free and sequential way. We consider robust emulations of shared memory where a process
that invokes a read or write operation, and does not crash after that invocation, eventually returns
from the operation [3,7].

In the following section, we extend the traditional tools used to reason about the notion of
atomic shared memory in the crash-stop model to encompass the crash-recovery model. Ideally, to
the user of an atomic shared memory, it should make no difference if the model is crash-stop or
crash-recovery. Formally however, and as we discuss below, we need to reason about histories to
define atomicity and the concept of a history needs to be revisited in a crash-recovery model.

We first introduce basic elements underlying this concept. A history is a total order of events
of four kinds: invocations, replies, crashes and recoveries. Every such event is modelled to take
place at a given time of the global clock, and no two events are supposed to take place at the same
time. Every invocation and every reply is associated with exactly one process and one object. A
reply is said to match an invocation if both are associated with the same process and the same
object: such a pair defines an operation execution (sometimes we simply say operation when there
is no ambiguity). Invocations and replies are called object events. In our context, operations are
either read or write. An invocation with no matching reply in a history is said to be pending in that
history. An operation op is said to precede an operation op’ in a history if the reply of op precedes
the invocation of op’ in that history. An operation op is said to immediately precede an operation
op’ in a history if the reply of op precedes the invocation of op’ in that history and such that no
operation op” precedes op’ where op precedes op”.

A local history is a sequence of events associated with the same process. A local history is said
to be well-formed if: (a) its first event is either an invocation or a crash, (b) a crash is followed by a
matching recovery event or is not followed by any event, and (c) an invocation is followed by a crash
or a reply event. A history is said to be well-formed if all its local histories are well-formed. Two
histories H and H’ are said to be equivalent if, for every process p, the local history H restricted
to p has the same object events as the local history H' restricted to p.

To define atomicity, we reason about histories that are complete. These are histories without
any crash or recovery events where every invocation has a matching reply. In a crash-stop model,
pending invocations are completed by appending a matching reply at the end of the history [7].
In a crash-recovery model however, a pending invocation can be followed immediately by another
invocation (i.e. if the process has recovered in the meantime), thus the need for changing the way
histories are completed. In our crash-recovery model, given any well-formed history H;, we say
that Hy completes Hy if Ho does not contain any crash or recovery events and is made of the very
same object events in the same order as in Hp, with one exception: any pending invocation in H;
is either absent in Hs, or has a matching reply that appears in Hs before the subsequent invocation
of the same process. A completed operation has a pending invocation in H; that has a matching
reply that appears in Hy before the subsequent invocation of the same process. A history is said



W(v;) W(vy)
History H;: D [ [ ]
R() R() v R() U2
D — [ 1~ |
L L 1 L ]
W(vy) W(vs)
History Hy completes Hy: b1 [ ] [ ]
R() vy R() Ua
Do [ 1~ ]
L 1 L ]
W(vy) W(vs)
Sequential history Hs equivalent to Hy:  py [ ] [ ]
R() U1 R() U2
P2 [ -1 [ .
[ 1 [ |

Figure 2: Completing and sequentializing a history

to be sequential if it is complete and every invocation is followed by a matching reply.

Every shared object has a sequential specification, defined by a set of sequential histories involv-
ing only events associated with that object. Roughly speaking, the sequential specification captures
the acceptable behavior of the object in the absence of concurrency and failures. In our context,
we are concerned with register objects whose sequential specifications simply stipulate that a read
returns the last written value. A sequential history is said to be legal if each of its restrictions to
any object involved in the history belongs to the sequential specification of that object. A history
H is said to be atomic if it can be completed to a history that is equivalent to some legal sequential
history. An example is shown in Figure 2. We say that an algorithm emulates an atomic memory
if every history generated by the algorithm is atomic.

Our definition of atomicity ensures that all operations are linearized and that the linearization
point is always in between the operation invocation and the response.

4 Amnesia Masking Storage

In this section we define the amnesia masking storage abstraction (AMS). Our generic atomic
shared memory emulation algorithm presented in the subsequent section builds on this abstraction.

4.1 Properties

Our storage abstraction is shared by all processes and exports two procedures: WriteAMS(v, ts) that
takes as input a value-timestamp pair and simply returns ”ok” upon completion, and ReadAMS()
that returns a set of value-timestamp pairs V. The notation X.WriteAMS(v, ts) and X.ReadAMS()
means that the amnesia masking storage instance X is accessed. The WriteAMS() and ReadAMS()
procedures satisfy the following properties:

e Property P;: consider a set of value-timestamp pairs [v;, ts;], each value v; being associated
with a timestamp ts;. If ReadAMS() successfully completes and returns a set V' of value-
timestamp pairs, then V' includes the value-timestamp pair [vy, tsy], where tsy, is the highest



timestamp among all WriteAMS(v;,ts;) invocations that successfully completed before the
ReadAMS() invocation.

e Property P>: when a process invokes a WriteAMS() or ReadAMS() procedure, a matching
reply is eventually returned unless the invoking process crashes.

Intuitively, to satisfy property Pi, any implementation of the storage abstraction must ensure
that the information v; is stored at enough processes such that it will persist through crashes. If
every WriteAMS() and ReadAMS() invocation contacts a set of processes that overlap at least one
process, which is furthermore not amnesic, we can satisfy P;. This means that every WriteAMS()
invocation must contact either enough processes with stable storage or enough processes that do
not crash. We denote the set of processes contacted by a WriteAMS() invocation by Qw and the
set of processes contacted by ReadAMS() by Qr.

Figure 3 describes WriteAMS() and ReadAMS() implementations. We give two implementations,
they both share the top level Initialize, WriteAMS() and ReadAMS() procedures. However, they have
separate low level subroutines for processes with stable storage and without. During an execution,
some process might have access to stable storage and others not, therefore each process executes
the appropriate subroutine depending on whether it has access to stable storage or not.

The basic idea is to write a value by sending the value-timestamp to all processes and waiting
for a number of replies that is equal to |Qw|. Upon receiving such a WriteAMS() message, the
other processes locally store the value-timestamp pair (in stable storage or volatile memory) if the
received timestamp is higher than the one currently stored. During the recovery phase, the value-
timestamp pairs are retrieved from stable storage. When a process without stable storage recovers,
it sets its amnesic variable to true, which means that the process does not reply to any ReadAMS()
request until after it has stored a new value-timestamp using WriteAMS().

We make the following assumptions on Qw and Qg:
1. |Qw|>n—worif s>2f then [Qw|>n—s+ f
2. |Qwl<n—f

. |Qr[>0

4. |Qr| <n—f—corifs>2f then |Qr| <s—f

w

t

- Qwl +1Qr| >n

We will show in Section 6 that these bounds are tight.

Lemma 1 Qw always contains at least one eventually-up process with stable storage or one process
that is always-up if |Qw| >n—u or |Qw| >n— s+ f when s > 2f.

PRrROOF: There are two cases to consider:

e s <2f. In this case |Qw| > n — u and thus Qw will always contain at least one process that
is always-up.

e s > 2f. In this case |Qw| > n — s+ f. At worst we have v = 0 and therefore Qu can
at worst contain n — s eventually-up processes without stable storage and f faulty processes
with stable storage. The remaining processes in Qs are therefore eventually-up with stable
storage.



Amnesia masking storage procedures:

1: procedure Initialize
2 ts:=0,v:=1,lts:=0
3:  amnesic := false

4: end

function WriteAMS([v, ts]) at py,
s-send(W, [v, ts]) to all processes

return ok

9: function ReadAMS() at p,
10:  lts:= getTime()
11:  s-send(R,lts) to all processes

{ Variable is set to true if a process loses the contents of its volatile memory by crashing.}

wait until received (W.ACK, [v,ts]) from |Qw| processes

{returns the local time}

12:  wait until received (R.ACK, [v,ts], p;, lts;) from |Qr| processes where p; = p,. Alts; = lts

13:  V « {m]p, received (R.ACK, [v,ts])}
14: return V

{return the set of all received value timestamp pairs}

Reception and recovery with stable storage:

upon s-receive(W, [v/, ts']) from p,, do
if ¢ts’ > ts then
[v,ts] := [V, t5']
store([v, ts])
end if
s-send(W.ACK, [v/,t5]) to Py
end upon

: upon s-receive(R,Its) from p; do
s-send(R.ACK, [v, ts], p;, Its) to p;
10: end upon

©

11: procedure Recovery
12 [v,ts] := retrieve()
13: end

Reception and recovery without stable storage:

1: upon s-receive(W, [v/,ts]) from p,, do
2:  if ts’ > ts then

3: [v,ts] := [V, ts']

4: amnesic := false

5. end if

6:  s-send(W.ACK, [v/,ts]) to py

7: end upon

8: upon s-receive(R,Its) from p; do

9: if —amnesic then
10: s-send(R.ACK, [v, ts], p;, Its) to p;
11: end if

12: end upon

13: procedure Recovery
14:  amnesic := true

15: ts:=0
16:  v:=1
17: end

10

Figure 3: Amnesia masking storage implementations




|

Lemma 2 Qw and Qg always overlap in at least one eventually-up process with stable storage or
one process that is always-up.

PROOF: Because of Lemma 1, Qw always contains at least one eventually-up process with stable
storage or one process that is always-up. In our implementation, processes without stable storage
that crash do not reply to read requests (Figure 3, last box, line 9) and since by assumption Qw
and Qg overlap in at least one process and |@Qr| > 0 the lemma is satisfied. O

Lemma 3 The wait statement of line 7 eventually ends if |Qw| <n — f.

PrOOF: All processes in the implementation of Figure 3 reply when contacted and there are no
wait statements (second and third box). Since |Qw| < n — f all eventually-up processes that crash
eventually recover (by hypothesis, see Section 2) and all processes in Qu eventually reply when
contacted. O

Lemma 4 The wait statements of line 12 eventually ends if |Qr| < u or |Qgr| < s—f when s > 2f.

PRrROOF: All processes that do not have their amnesic variable to true in the implementation of
Figure 3 reply when contacted and there are no wait statements (second and third box). There are
two cases to consider:

e If |QRr| < u at least u always-up processes in () eventually reply when contacted.

o If |Qr| < s— f when s > 2f then there are at least s — f eventually-up processes with stable
storage in Qg that eventually reply when contacted.

a

We now show that the implementation in Figure 3 satisfies properties P; and Ps.
Lemma 5 The amnesia masking storage implementation in Figure 3 satisfies property P;.

PROOF: We must show that in any execution, given a sequence of k complete WriteAMS(v;, ts;)
invocations (with 1 < i < k), any ReadAMS() that comes after the response of WriteAMS(uvg, tsi)
returns {[vp, tsp] € V|ts, = max (ts)Vis € V'}.

When WriteAMS(v;, ts;) is invoked, [v;,ts;] is sent to all processes (Figure 3, first box, line 6)
and acknowledged by |Qw| processes (first box, line 7). The processes that receive this value-
timestamp pair store it only if the timestamp is higher than the currently stored timestamp. The
processes with stable storage log the value. This mechanism ensures that after a sequence of
k complete WriteAMS(v;,ts;) invocations, at least |Quw | processes have the timestamp-value pair
with the highest timestamp stored locally. Because of Lemma 1, at least one process in Qw
will preserve this information indefinitely. The ReadAMS() that comes after the sequence of k
complete WriteAMS(v;, ts;) invocations reads the value-timestamp pairs from |Qg| processes (first
box, line 12). Because each ReadAMS() request is uniquely identified by a local timestamp and the
id of the reader, no “old messages” can be returned by such a request. Furthermore, because of
Lemma 2 we know that Qw and @ always overlap in at least one eventually-up process with stable
storage or one process that is always-up. It will therefore return a set of value-timestamp pairs V'
which includes [vp, tsp], where tsy, is the highest timestamp among the k& complete WriteAMS(v;, ts;)
invocations. O

11



D00 R
OO0 PR
OO IROG

Figure 4: Example of amnesia masking storage configurations

Lemma 6 The amnesia masking storage implementation in Figure 3 satisfies property Ps.

PRrROOF: The implementation for the WriteAMS() procedure (first box, Figure 3) sends write mes-
sages to all processes and waits for |Qyw | responses, therefore contacting all processes in set Qyy .
The ReadAMS() procedure (first box, Figure 3) sends read messages to all processes and waits for
|@R| responses, therefore contacting all processes in set Qr. The implementation contains no other
wait statements or loops and due to Lemmas 3 and 4 it satisfies property Ps. O

4.2 Instantiation Examples

The implementation of Figure 3 is very general and many different instantiations are possible, some
of which we illustrate here. For all examples below, we consider a system with 9 processes (n = 9)
and up to 3 faulty processes (f = 3).

o If we take u = n — f = 6 (processes that do not crash), s = 0 (no stable storage) and
|Qw| = |Qr| = 6, we revert to a normal crash-stop model [3].

e With s =0 and u = 4, we have |Qw| = 6 and |Qr| = 4. The advantage of this setup is that
despite possible crashes and recoveries, no stable storage accesses are needed at all.

e On the other hand, if we consider a system where all processes can potentially crash (u = 0), it
is possible to implement the amnesia masking storage when all processes have stable storage:
s =9 and |Qw| = |Qr| = 5 for instance.

e Illustrated in Figure 4 is the case where not all processes have access to stable storage (s = 6)
and four processes do not crash (u = 4). The size of Qw must be bounded by: n —u <
Qw|<n—f <= 9-4<|Qw|<9-3 <= 5<|Qw| <6 < |Qw]| = 6. Since Qr
must overlap with Qu we can take |Qgr| = 4. By looking at the left drawing of Figure 4, it
is easy to see why u must be bigger than 3: Qy contains the top six processes, the top three
can crash permanently and the middle three have no stable storage. In Section 6, we prove a
lower bound on the minimum number of processes that must not crash.

5 The Generic Emulation Algorithm

5.1 Description

We now describe an algorithm that robustly emulates an atomic memory, i.e. that implements the
Read() and Write() operations of our atomic register. For clarity of presentation, we first focus on
the single-writer /multi-reader version.

12



Our algorithm, given in Figure 6 is generic in the sense that it relies on the amnesia masking
storage abstraction, defined in Section 4. The advantage of using this abstraction is that, on the
surface, our memory emulation algorithm looks similar to the one used for the crash-stop model [13].
The technical issues that are related to the crash-recovery model are encapsulated within specific
PreRead(), PreWrite() and Recovery() procedures that we discuss later.

In Figure 6, the writer labels values with timestamps. In a first phase, value-timestamp pair is
pre-written by the PreWrite() procedure and in a second phase they are stored using the WriteAMS()
procedure. Two different amnesia masking storage instances are used in the implementation: one
for the prewrites (and prereads) and one for the writes (and reads).

The Read() implementation is also divided in two phases: a first phase, which invokes ReadAMS()
to obtain value-timestamp pairs, and a second phase, where the reader writes back the value with
the highest timestamp collected in the previous phase by invoking WriteAMS().

We describe below the technicalities related to the crash-recovery model and highlight the
differences between our algorithm and a crash-stop algorithm [13]:

1. A PreWrite() procedure is invoked before the WriteAMS() call. The goal of the PreWrite()
is to enable the writer to “remember” to finish the Write() upon recovery in case it crashed.
We describe two implementations of PreWrite() depending on whether the writer has stable
storage or not. If stable storage is used (Figure 7), the PreWrite() requires a single log; without
stable storage (Figure 8), a WriteAMS() invocation is needed.

2. A PreRead() procedure is invoked during the Recovery() procedure. The PreRead() returns
the latest prewritten value. If stable storage is used (Figure 7), the PreRead() reads from
stable storage, otherwise (Figure 8) a ReadAMS() invocation is needed.

3. A timestamp mechanism provides monotonically increasing values despite writer crashes:
before each new Write(), a local variable ts,, is incremented and used as the new timestamp.
During the Recovery() procedure, the writer must ensure that ts,, is at least as great as it
was before the crash. If stable storage is available to the writer, the latest timestamp stored
by the last PreWrite() can be retrieved by calling a PreRead().

Without stable storage at the writer, the mechanism is more complicated: the writer cannot
be sure that the values returned by a PreRead() contain the latest value stored by a previous
PreWrite() that was interrupted by a crash. If the writer would start a new Write() with
the same timestamp, two different PreWrite() values would have the same timestamp. This
is problematic, because when the writer crashes and recovers again, it cannot know which
value to complete. The way we solve this problem is as follows. The value returned by the
PreRead() is first stored by a PreWrite(), then incremented by 2 and then stored again by a
PreWrite(). The first PreWrite() ensures that the next PreRead() will always return a value
with a timestamp at least equal to the one returned by the current PreRead(). The reason
for incrementing the timestamp by 2 is best illustrated by an example. Imagine that the
timestamp at the writer is 0. The writer starts a Write(v) and increments the timestamp
by one. Then the writer crashes while PreWrite([v,1]) is being invoked. Even though few
processes are aware of the timestamp 1, when the writer recovers the PreRead() only returns
0 as the highest timestamp. By incrementing 0 by 2 the algorithm ensures that the timestamp
is higher than 1. The incremented timestamp is then again stored by a PreWrite() to ensure
that any consecutive PreRead() will return at least 2 as the highest timestamp. Figure 5
illustrates with another example why the timestamp needs to be incremented by 2. It contains
three runs: in the first run the timestamp is not incremented, in the second it is incremented
by one and in the last it is incremented by 2.

13



Recovery procedure without incrementing the timestamp: values vy and v are prewritten with the same timestamp.

W (v1) W(vg) W(UJ)
\f\/JLEr \/ \/ \/ \
PW(vy,1 )< PW (v3,2 / (v1,1) PW(uy,1) W(wy, 1 PW(vg,Q)\:)

Recovery procedure with incremented timestamp ts = ts 4 1: values v; and vy are prewritten with the same timestamp.

W ’Ul W UQ W(U3)
W(v,1)  W(oy, \ PVV (v9,2 / = (v1,1) PW(vy,1 ( PW (v1, ) )W (v1,2 PW(vs,3)

Recovery procedure with incremented timestamp ts = ts + 2: no conflicting timestamps.

VV(U ) W UQ VV(’Ug)
[
\f\f § \f YARY/ \f \
W(vy, 1 W(v,1) PW(vg,2 (v1,1) PW(vy,1) PW(vy,3 PW(vs,4)

Figure 5: Illustration of why the timestamp needs to be incremented by 2 during the recovery
phase. In all three runs W(wvy) is not complete and the prewrite messages are not received by all
processes. Legend: W = write, PW = prewrite, PR = preread.

5.2 Correctness

We now address the correctness of our atomic memory emulation. In short, we use Lemma 13.16
of [12] to prove atomicity (remember that we consider the single-writer/multi-reader case: the
multi-writer case is discussed in Section 5.3) as well as the properties (P, and P») of our amnesia
masking storage abstraction. The lemma is as follows:

Lemma 13.16 Let 8 be a (finite or infinite) sequence of actions of a read/write atomic object
external interface. Suppose that 3 is well-formed for each i, and contains no incomplete operations.
Let 11 be the set of all operations in (3.

Suppose that < is an irreflexive partial ordering of all the operations in 11, satisfying the following
properties:

1. For any operation w € 11, there are only finitely many operations ¢ such that ¢ < m.

2. If the response event for w precedes the invocation event for ¢ in 3, then it cannot be the case
that ¢ < .

3. If mis a WRITE operation in 11 and ¢ is any operation in 11, then either m < ¢ or ¢ < .

4. The value returned by each READ operation is the value written by the last preceding WRITE
operation according to < (or vy, if there is no such WRITE).

Then (B satisfies the atomicity property.

14



10:

11:
12:
13:
14:
15:

procedure Initialize
if writer then
tSyw =0
end if
end

function Write(v) at p,,
1Sy =18y + 1
PreWrite([v, t$4])
W.WriteAMS([v, ts,,])

return

function Read() at p;
V := W.ReadAMS()
[vn, tsp] := highest(V)
W.WriteAMS([vp,, tsp])

return vy

{V is the set of value timestamp pairs}
{ “highest(V')” returns the value timestamp pair with the highest timestamp in V'}

Figure 6: Generic emulation of a single-writer/multi-reader atomic memory

o

: function PreWrite([v, ts])

preW.store([v, ts])
return

function PreRead()
[vr, tsy] = preW.retrieve()

6: return [v,,ts,]

10:

12:
13:

procedure Recovery()
if writer then
[V, ts,] := PreRead()
W.WriteAMS([v,, ts,])
tSy =18,
end if
end

Figure 7: Configuration with stable storage

15




1: procedure PreWrite([v, ts])
preW.WriteAMS([v, ts])
end

function PreRead()
V:=preW.ReadAMS()
[vr, tsy] = highest(V)

return [v,,ts,]

: procedure Recovery

if writer then

10: [V, ts,] := PreRead()
11: PreWrite([v,., ts,])

12: ts, :=ts, +2

13: PreWrite([vy., ts;])

14: W.WriteAMS([v,, ts,])
15:  end if

16: end

©

Figure 8: Configuration without stable storage

For a well-formed history H, the lemma lists four conditions involving a partial order on op-
erations in H. It states that if there is a partial order relation on events satisfying these four
conditions then the atomicity property is satisfied. Although the lemma has been proven correct in
the crash-stop model, it directly applies to the crash-recovery model if we only consider well-formed
and complete histories (thus in fact abstracting crashes and recoveries away). For this proof, we
assume that all histories generated by A are well-formed and complete and we later prove that this
is actually the case (Lemma 9).

Assume that H is a well-formed and complete history. Let O be the set of operations in H, and
7 be the timestamp associated with the value written or returned by each operation. We define
the partial order PO = (O, <) on the operations by letting: op; < ops for opj,ops € O, if (a)
T(0p1) <iex T(0p2), or if (b) op; is a Write(), opa is a Read(), and 7(op1) =jer 7(0p2).

We give three lemmas that are sufficient to show that PO satisfies the required properties of
Lemma 13.16.

Lemma 7 If opy precedes ops, then
(i) if opa is a Read(), then 1(op1) <iex T(0p2), and
(ii) if opa is a Write(), then T(op1) <iex T(0p2).

PROOF:
(1)1. if opy is a Read(), then 7(op1) <jex 7(0p2)
(2)1. True when op; is a Write()
PROOF: opy is a Read(), therefore 7(op3) is obtained by the reader by gathering timestamps
from a ReadAMS() invocation and computing the maximum timestamp. The algorithm en-
sures that the value together with 7(op1) has been stored using WriteAMS() before returning.
Because of property Pi, 7(op1) <iex T(0p2).
(2)2. True when op; is a Read()
PROOF: The algorithm ensures that the value that is returned by the Read() has been stored
using the WriteAMS() procedure during the second round of the Read(), this implies 7(op1) <jex

16



T(op2).
(2)3. Q.E.D.
(1)2. ops is a Write(), then 7(op1) <jex 7(0p2).
(2)1. True when op; is a Write()
PROOF: 7(op1) is stored using WriteAMS(). Since in a subsequent Write() the writer process
obtains 7(op2) by incrementing the previous timestamp by one, we have 7(op1) <iex 7(0p2).
(2)2. True when op; is a Read()
PROOF: No value smaller than 7(op;) has been written by WriteAMS(). Because the writer
increments the timestamp before sending it to all other processes, we have 7(op1) <jer 7(0p2).
(1)3. Q.E.D.

Lemma 8 For a Read() operation op, let the PO imposed on H give the set of Write() operations
{op1,0pa,...,0p,} such that Vi € [1,k] : op; < op. Then op returns the value written by op; such

that T(op;j) =iex MAT e[l k] (1(ops)).

PRrROOF: Every Write() op; stores the value-timestamp pair using WriteAMS(). Any consecutive
Read() op invokes ReadAMS and therefore receives at least one timestamp from a process written
by WriteAMS(). Because of Lemma 7 we know that the timestamps impose a partial ordering on
the writes such that the last Write() according to < has the highest timestamp. Therefore the
Read() op returns the value written by op; such that 7(op;) =je. maz;c1 1) (7(0pi))- O

Lemma 9 The set of possible histories H generated by A are well-formed and complete.

ASSUME: Amnesia masking storage property P, and P» are satisfied.
(1)1. H is well-formed.
(2)1. The first event is either an invocation or a crash.
PROOF: A process can only start by invoking a Read() or Write() event.
(2)2. A crash can only be followed by a matching recovery event.
PROOF: The system model states that a crashed process cannot perform any operations.
(2)3. An invocation can only be followed by a crash or a reply event.
PROOF: The algorithm only allows the execution of one operation at the same time.
(2)4. Q.E.D.
PROOF: By definition.
(1)2. Every history in H can be completed.
PrROVE: Every incomplete Writero(vy,) is completed before the start of the next Write(vy,41) or
Writero (vy,) is removed from H.
(2)1. If Writesco(vy,) is completed, it will be completed before the start of Write(v,,+1) or Writero (vy,)
will never be completed.
(3)1. A recovery procedure is executed after Write;c(vy,), before the start of Write(vy,41).
PrOOF: Upon recovery all operations are delayed until the end of the recovery procedure.
(3)2. Upon recovery a PreRead() is executed that returns the last prewritten value.
(4)1. The values written by PreWrite() are totally ordered by their associated timestamp ts.
(5)1. Each value written by PreWrite() has an associated timestamp.
PRrROOF: Line 2 of Figure 7 with stable storage and line 2 of Figure 8 without.
(5)2. The timestamps associated with the values written by PreWrite() increase monoton-
ically.

17



(6)1. True when the writer uses stable storage.
PRrOOF: The timestamp is stored locally at line 2 of Figure 7 during the PreWrite()
(before actually writing the value). Upon recovery this value is restored (line 5 of
Figure 7) and incremented by one (Line 7 Figure 6). Hence, timestamps increase
monotonically.
(6)2. True when the writer does not use stable storage.
PROVE: ts) <...<ts, for all n > 2, where tsq,...,ts, are the timestamps associ-
ated with values vy, ..., vy, each written consecutively by a PreWritey, ([vg, tsk]).
(7)1. True for n = 1.
PROVE: ts1 < tss.
(8)1. If no crash occurred between PreWrite; ([v1, ts1]) and PreWritea([va, ts2]), then
ts1 < tsa.
PRroOF: The local variable ts is incremented before each PreWrite() (line 7 of
Figure 6), since no crashes occurred, tso = ts1 + 1 and therefore ts; < tso.
(8)2. If one or more crashes occurred between PreWrite; ([v1,ts1]) (which might be
incomplete) and PreWritea([va, ts2]), then ts1 < tso.
(9)1. Initially, the local timestamp ts is equal to 0.
PROOF: Line 3 of Figure 6.

<9>2 ts; = 1.
PROOF: Step (9)1 and line 7 of Figure 6.
<9>3 tso 2 2.

(10)1. Before the invocation of PreWritey([v,ts2]), at least one recovery pro-
cedure is executed.
PROOF: There is at least one crash in between PreWrite; ([v1, ts1]) and PreWritea([ve, ts2])
the system model ensures that a recovery procedure is executed upon recov-
ery before the start of the next operation, and the PreWrite() is at the
beginning of a Write() operation.
(10)2. During this recovery procedure, a PreRead() is executed which returns
the highest timestamp from a ReadAMS() invocation.
PRrROOF: The PreRead() is executed at line 10 of Figure 8. The ReadAMS()
procedure is invoked on line 5 and the highest value is selected on line 6.
(10)3. The lowest timestamp which can be read by the PreRead() is 0.
PROOF: Step (9)1.
(10)4. During the recovery procedure, the highest timestamp read from the
processes is incremented by 2.
PRrROOF: Line 12 of Figure 8.
(10)5. Q.E.D.
(9)4. Q.E.D.
(8)3. Q.E.D.
AssuME: True for n = 1.
(7)2. True for n =1+ 1.
PrOVE: By assumption ts; < ... < ts;, we must therefore prove that ts; < ts;11.
(8)1. If no crash occurred in between PreWrite;(v;) and PreWrite;1(v;41), then
ts; < tSp41.

PRrROOF: The local variable ts is incremented before each PreWrite() (line 7 of
Figure 6), since no crashes occurred, ts;11 = ts; + 1 and therefore ts; < ts; 1.
(8)2. If one or more crashes occur in between PreWrite;(v;) (which might be incom-

plete) and PreWrite;1(v;41), then ts; < ts;qq.

18



(9)1. Before the invocation of PreWrite; 1 (v;41), at least one recovery procedure
is executed.
PROOF: There is at least one crash in between PreWrite;(v;) and PreWrite; 1 (vj41):
by the network model of assumption, a recovery procedure is executed upon
recovery before the start of the next operation, and the PreWrite() is at the
beginning of a Write() operation.
(9)2. During this recovery procedure, a PreRead() is executed which returns the
highest timestamp from a ReadAMS() invocation.
PRrROOF: The PreRead() is executed at line 10 of Figure 8. It selects the highest
timestamp at line 6.
(9)3. The lowest timestamp which can be read by the PreRead() is ts; — 1.
PROOF: Before PreWrite;([v;, ts;]) starts, ts;—1 or a bigger timestamp is stored
using WriteAMS(): before each PreWrite(), the local timestamp is incremented
by one (Line 7 of Figure 6). This increment is preceded by another PreWrite()
which stores ts; — 1 using WriteAMS().
(9)4. During the recovery procedure, the highest timestamp read from a ReadAMS()
invocation is incremented by 2.
PROOF: Line 12 of Figure 8.
(9)5. Q.E.D.
PROOF:the minimum possible timestamp ts;1 is such that ts;41 = (ts; — 1) +
241 =1ts;+ 2, thus ts;41 > ts;.
(8)3. Q.E.D.
(7)3. Q.E.D.
PRrooOF: By induction.
(6)3. Q.E.D.
(5)3. PreWrite([v, ts]) stores [v, ts] using WriteAMS() without stable storage or store() with
stable storage.
PRrROOF: Property P;.
(5)4. PreRead() returns a value using ReadAMS() without stable storage or retrieve() with
stable storage.
PROOF: Line 5 of Figures 6 and 7.
(5)5. Q.E.D.
(4)2. Q.E.D.
(3)3. If, during the recovery phase, PreRead() returns v prewritten by incomplete Write;c(vy, ),
Writero(vy,) will be completed before the start of the next Write(vy,+1).
PRrROOF: Line 10 of Figure 7 and Line 14 of Figure 8 show that during the recovery procedure
the value v returned by PreRead() is written using a WriteAMS() invocation, thus completing
Writere (vy,).
(3)4. Q.E.D.
PROOF: Step (3)2 shows that upon recovery, a PreRead() is executed before the start of the
next Writero(vy,) that returns the last prewritten value. This value is either written, thus
completing the Write;c(vy,) (step (3)3) or will never be completed in the future. This implies
that if an incomplete Write;o (v, ) is completed, it will be completed before the start of the
next Write().
(2)2. Q.E.D.
(1)3. Q.E.D.

19



1: function Write(v) at p;

2:  V := W.ReadAMS()

3:  tsp := highest_ts(V) {highest_ts(V') returns the highest timestamp in the set V'}
4:  tsy i=tsy +1

5: PreWrite([v, ts,)])

6:  W.WriteAMS([v, ts4, 1))

7: return

Figure 9: Modifications to the single-writer algorithm to support the multi-writer case

5.3 Multi-writer Case

Adapting the algorithm of Figure 6 to the multi-writer case requires only minor changes; the main
difference being that the writer first needs to contact the processes in order to determine the latest
timestamp. As in [13] the timestamp is tagged with the writer’s process id in order to distinguish
between writers using the same timestamp. The PreWrite() procedures (Figures 7 and 8) do not
need to be changed: the mechanism is local to each writer in the sense that a writer can only
PreRead() its own PreWrite(). The specific changes to the algorithm are shown in Figure 9.

The proof of correctness is almost the same as for the single-writer algorithm, modulo the
addition of the following Lemma:

Lemma 10 If op1 and opy are concurrent, then if opy is a Write(), either opy < opa or ops < op;.

PROOF: because the writer appends its process id to the sequence number, other processes can
distinguish between two simultaneous writes when both writers use the same sequence numbers.
These timestamps are compared lexicographically, thus ensuring that two concurrent writes do not
have the same timestamp. |

6 Complexity

In this section we give lower bounds on the resilience, log- and time-complexity of robustly emulating
atomic memory in a crash-recovery model. We also point out instances of our algorithms that match
these bounds, showing that they are thus tight.

6.1 Resilience

The following bound determines the maximum number of faulty processes f that an atomic shared
memory emulation can tolerate. The first bound (which our algorithms match) is trivial and is a
simple rephrasing in the crash-recovery case of the one in [3] which states that a majority of correct
processes are needed to emulate shared memory in a message passing model:

Resilience Bound 1: An atomic read/write shared memory requires that f < 3.

AssUME: Possible with f = [§].

PROVE: False.
PRrROOF: Imagine an execution with a write followed by a read. During the write operation only
| 5] processes can be contacted because f = [§] can be permanently crashed and robustness
can be violated if a process contacts more than n — f processes. If all the processes that were

20



contacted during the write crash permanently (possible since |§] < f) then the subsequent read
cannot return the latest written value: this contradicts the atomicity requirement. O

The next bound relates the number of processes that need stable storage to the number w
of processes that do not crash. Our generic shared memory emulation algorithm is correct with
u = f 4 1 and the bound is therefore tight.

Resilience Bound 2: An atomic read/write shared memory requires that v > f if s < 2f.

ASSUME: Possible with u = f and s < 2f.

Prove: False.

(1)1. A write can contact a maximum of n — f processes, we call this set Q.
PROOF: Robustness can be violated if a process waits for more than n — f responses because f
processes can be permanently crashed.

(1)2. Tt is possible that |Qw N S| < f
PROOF: Because of s < 2f and step (1)1.

(1)3. Tt is possible that F' C Qw and (SNQw) C F.
PROOF: Because of f < |Qw| and step (1)2.

(1)4. Tt is possible that Qw NU = 0.
PROOF: Because of step (1)1 and the assumption that u = f.

(1)5. It is possible that all processes in Q- crash at the same time
PROOF: By step (1)4 and the fact that all processes not in U can crash.

(1)6. Q.E.D.
PRrOOF: Consider an execution with a write followed by a read. The write contacts the processes
in Qw. It is possible that all processes in Qyw crash and only processes without stable storage
eventually recover (step (1)3). A subsequent read will not return the latest written value: a
contradiction.

6.2 Log-Complexity

In this section we give bounds on the log-complexity of emulating an atomic shared memory.
We only consider the case where u < f, because otherwise stable storage is not necessary at all
(resilience bound 2 above). Resilience bound 2 also states that s > 2f, because otherwise it is
impossible to emulate atomic shared memory with v < f. We first show that with these system
assumptions, it is impossible to write a value without logging.

Log-Complexity Bound 1: Any algorithm A, robustly emulating a single-writer/single-
reader atomic shared memory, where s > 2f and v < f, has an execution in which a write needs
at least 1 log.

ASSUME: possible to write without logging with s > 2f and u < f.
PrOVE: False.
(1)1. Consider an execution with a write followed by a read.
(1)2. During the write operation only n — f processes can be contacted.
PrROOF: Robustness requirement.
(1)3. The n — f processes that are aware of the new write value cannot log.
PRrROOF: Due to assumption.
(1)4. If among these n — f processes, f crash permanently, then only n — 2f processes are aware
of the latest value.

21



(1)5. Q.E.D.
Since v < f, all n — 2f process can crash and recover thus losing the content of their volatile
memory. Since none of them logged, the subsequent read cannot return the latest written value:
a contradiction.

When there are not enough processes that do not crash during the execution of the emulation,
stable storage must be used. The following bound uses the notion of causal logs to refer to stable
storage accesses. We say that two logs are causal if there is a causal precedence between the two
logs, i.e. not all logs can be performed in parallel.

In a configuration with stable storage, our shared memory emulation algorithm uses 2 causal
logs per write. The following bound states that in fact more than 1 log is indeed necessary, therefore
the bound is tight and our algorithm is optimal in that configuration.

Log-Complexity Bound 2: Any algorithm A, robustly emulating a single-writer/single-
reader atomic shared memory where s > 2f and v < f, has an execution in which a write needs
more than 1 log.

PROOF SKETCH: We consider the case of n processes where n > 3. We construct an execution
that violates atomicity and is inevitable if only 1 log per write is allowed. Figure 10 depicts this
execution, denoted p;. Process p; is the writer and po is the reader. In p; the writer successfully
writes the value v; but crashes while writing vo. After the crash, the writer recovers and starts a
new write operation. There are two reads (R; and Rs) by po that are concurrent with the third
write. We will show that it is impossible to complete the second write, thus making it possible for
R; to return v, and for Ry to return ve. This execution then violates atomicity.

ASSUME: e 1 causal log per write is enough for every execution.

e n processes where n > 3.
ProvEe: False
(1)1. The history H; associated with execution p; is not complete.
PROOF: the invocation W(vy) has no matching reply.
(1)2. H; can be completed to obtain H| by removing W(vz) from the history or by completing the
write by adding a matching reply event to H;.
PRrROOF: By definition.
(1)3. If a reply event is added to Hy, it must be placed before the invocation event W (v3) at process
p1.
PROOF: The resulting history must be completed. By definition this implies that W (v2) must be
completed before the start of the next write at the same process.
(1)4. The following property cannot be satisfied: if a read invoked after the invocation of W(v3)
returns vq, then no subsequent read returns vs.
(2)1. Tt is impossible to guarantee that no read returns vy after the start of W(vs).
In the considered model, a recovering process can initiate a recovery phase that is not limited
by the number of communication steps, messages or logs it is allowed to perform. There are
two cases to consider:
(3)1. It is impossible to “Cancel” v;: no subsequent read can return vj.
PRrOOF: Consider a read R; that is invoked after the invocation of W(vs). Since W(v2) was
not completed, R; may not return vy. Because R is concurrent with W(vs), it may not
return vs. This implies that R; can return an old value, written before W(v;). This violates
atomicity because W(v1) is a complete write: A cannot cancel v;.
(3)2. It is impossible to complete W(wvy) such that a subsequent read will only return v or vs.
ASSUME: Possible

22



W(wr) W(v2) W(v3)
r r

r | |
o o T o=
R0 Ry()
A [l r
P2 ®  E— T o=
P3 — Pn P —

Figure 10: Execution p; (Proof of Log-Complexity Bound 2)

PrOVE: False
PRrOOF: Consider execution po which is the same as p1, but where p; contacts only a single
processes from Qs before crashing. Since only a single log is allowed, p; could not have
logged the fact that it started W(vg): if it did, no other process could log and it would be
easy to contradict atomicity. Now consider execution ps which is the same as p;, except that
there is no W(v2) invocation. After the crash, executions py and ps are indistinguishable if
the single process that was contacted by p; in po is never contacted in p3. In p3 R; can only
return v; and therefore too in po. This is a contradiction.
(3)3. Q.E.D.
(2)2. It is impossible to guarantee that no read returns vy after the start of W(vs)
The only way to do this is to cancel vo so that all subsequent reads only return vy or v3. But
v9 can only be cancelled if v has not yet been read by some other process. Upon recovery, the
writer process (i.e. p1) must initiate a recovery phase that first tests if vy has been read (say
this phase is initiated at time 77) and if not the recovery phase ensures that vy will never be
read (from time T3). If T} is not equal to T», then the reader could still read ve in between T}
and Ty. Since a read initiated after T5 can return vy, atomicity can be violated. A completely
asynchronous model is assumed and since the writer process must contact other processes to
know if vg has been read, 717 cannot be equal to T5.
(2)3. Q.E.D.
(1)5. Q.E.D.

In a configuration with stable storage our generic shared memory emulation algorithm uses 1
log per read. The following bound states when a read cannot do without logging;:

Log-Complexity Bound 3: No algorithm A, robustly emulating a single-writer /single-reader
atomic shared memory where s > 2f and u < f has an execution in which a read does not log.

PROOF SKETCH: We prove our result using indistinguishability arguments among three executions
displayed in Figure 11. Let p; be the writer and py be the reader with a total of n > 3 processes
in the system.
AssUME: There exists such an algorithm that never logs during a read.
ProvE: False.
(1)1. Each execution p; has an associated history H;,i € 1,2,3,4.
PRrOOF: By definition.
(1)2. Execution ps is atomic.
PRrROOF: The writer p; writes value v; followed by we. The reader process crashes and reads wv;
after recovering. Execution po satisfies atomicity because H» is equivalent to the legal sequential
history made of the following ordered object events: W(v1),R(v1),W(v2).
(1)3. Execution ps is atomic.
PROOF: Process py reads before crashing and returns vs. Execution ps satisfies atomicity because

23



W(w1) W(wz)
-

P - |
[ I _
RO v
b2 I 7
L _
P3 — Pn
Run py
W(v1) W(va)
P - - |
| . |
RO V2
P2 - |
L _
P3 —Pn
Run p3
T
W(w1) W(ws) 5
P - - . |
C o ' J
R0 V2 . RO U1
P2 [ | I |
C | v |
D3 — Pn :
Run py

Figure 11: Executions ps, p3 and p4 (Proof of Theorem 6.2)

Hj is equivalent to the legal sequential history made of the following ordered object events:
W(U1),W(U2),R(U2).

(1)4. For process py, the execution p4 is indistinguishable from execution ps up to time 7'
PROOF: In both executions up to time 7', po and the other processes perform exactly the same
operations.

(1)5. After time T', the execution p4 is indistinguishable from execution ps for po.

PRrROOF: In both executions after time T, p2 and the other processes perform the exact same
operations. Furthermore, because of the initial assumption that no process can log, process po
cannot “remember” anything about its previous state after it recovers from a crash.

(1)6. Q.E.D.

PROOF: Because of steps (1)4 and (1)5 execution p4 is inevitable. This contradicts the assump-
tion that the emulation guarantees atomicity, since there is no legal sequential history which is
equivalent to H, and that respects its operation precedence. Therefore it is impossible to emulate
atomic memory that does not log during a read.

Intuitively, the previous bound makes sense considering that, in the crash-stop model, Theorem
10.4 of [4] states that every reader must “write” to emulate a single-writer/multi-reader memory.

When s > 2f and u < f, the shared memory algorithm presented in this paper uses 2 causal
logs per write and 1 causal log per read (whether the reader and writer have stable storage or not)
and therefore the previous bounds are tight.

24



6.3 Time-Complexity

The way we measure time-complexity is the traditional counting of the number of round-trips [13]
needed for an operation to complete. If a process p sends messages to k different processes after
the invocation of the operation and subsequently receives r < k causally dependent [9] responses
from r different processes before returning from the operation, we say that the time-complexity of
the operation is 1 round-trip.

When the writer uses stable storage, our algorithm shows that only 1 round-trip is needed per
write. It is obvious that it cannot be done in less. However, when no stable storage is available to the
writer, our algorithm uses 2 round-trips. The following bound shows that, in such a configuration,
more than 1 round-trip is always necessary. Our algorithm is thus optimal and the bound is tight.

Time-Complexity Bound 1: Any algorithm A, robustly emulating a single-writer /single-
reader atomic shared memory where s = 0 has an execution in which a write needs more than 1
round-trip.

PRrROOF SkKETCH: We consider the case of n processes where n > 3. We construct an execution that
violates atomicity and is inevitable if only 1 round trip per write is allowed. Figure 10 displays this
execution, denoted p;. Process p; is the writer and ps is the reader. In p; the writer successfully
writes the value v; but crashes while writing vo. After the crash, the writer recovers and starts a
new write operation. There are two reads (R; and Ry) by ps that are concurrent with the third
write. We will show that it is impossible to complete the second write, thus making it possible for
Ry to return v; and for Ro to return ve. This execution then violates atomicity.

ASSUME: e 1 round trip per write is enough for every execution.

e n processes where n > 3.
Prove: False.
(1)1. The history H; associated with execution p; is not complete.
PROOF: The invocation W(v2) has no matching reply.
(1)2. Hj can be completed to obtain Hj by removing W(vz) from the history or by completing the
write by adding a matching reply event to H;.
PROOF: By definition.
(1)3. If a reply event is added to Hy, it must be placed before the invocation event W (v3) at process
p1.
PROOF: The resulting history must be completed. By definition this implies that W (v2) must be
completed before the start of the next write at the same process.
(1)4. The following property cannot be satisfied: if a read invoked after the invocation of W(w3)
returns vy, then no subsequent read returns vs.
(2)1. It is impossible to guarantee that no read returns vy after the start of W(ws).
In the crash-recovery model, a recovering process can initiate a recovery phase that is not
limited by the number of communication steps or messages it is allowed to perform. There are
two cases to consider:
(3)1. It is impossible to “Cancel” v;: no subsequent read can return vj.
PRrOOF: Consider a read Ry that is invoked after the invocation of W(vs). Since W(vy) was
not completed, R; may not return vy. Because R; is concurrent with W(vs), it may not
return v3. This implies that R; can return an old value, written before W(v;). This violates
atomicity because W(v1) is a complete write: A cannot cancel vy.
(3)2. It is impossible to complete W(wvz) such that a subsequent read will only return v or vs.
ASSUME: Possible.
ProvE: False.

25



PRrOOF: Consider execution po which is the same as p1, but where p; contacts only a single
processes from Qs before crashing. Since only a single round trip is allowed, p; could not
have stored the fact that it started W(vy) at other processes. Now consider execution ps
which is the same as p1, except that there is no W(vz) invocation. After the crash, executions
p2 and p3 are indistinguishable if the single process that was contacted by p; in po is never
contacted in ps. In p3 Ry can only return vy and therefore too in po. This is a contradiction.
(3)3. Q.E.D.
(2)2. It is impossible to guarantee that no read returns v after the start of W(vs).
The only way to do this is to cancel vo so that all subsequent reads only return vy or v3. But
v9 can only be cancelled if vy has not yet been read by some other process. Upon recovery, the
writer process (i.e. pj) must initiate a recovery phase that first tests if vo has been read (say
this phase is initiated at time T}) and if not the recovery phase ensures that vy will never be
read (from time T%). If T} is not equal to T3, then the reader could still read vy in between T;
and T5. Since a read initiated after T5 can return vy, atomicity can be violated. A completely
asynchronous model is assumed and since the writer process must contact other processes to
know if v has been read, 17 cannot be equal to T5.
(2)3. Q.E.D.
(1)5. Q.E.D.

7 Discussion

7.1 Revisiting the assumptions

Throughout the paper we assumed that besides an id, a process maintains a local clock that
persists upon crashes and recoveries. This assumption is very realistic, for most machines we know
off typically have battery powered clocks. One might wonder however whether the assumption of
a local clock is actually needed; i.e., whether we cannot assume that the local clock is stored in
volatile memory. The answer is no, and intuitively, this is because the clock is a key mechanism
to uniquely identify requests. Assume by contradiction that a process does only remember its id
upon recovery. We argue below that even a safe register cannot be implemented if all but one
process (the reader) is always up. Assume a system with n processes in which we emulate a single
reader, single writer safe register SR. Out of the n processes, only the reader p, is eventually up
(i.e. can crash and recover), all other processes are always-up (i.e. they never crash). Assume that
upon recovery, the reader has no information about its state before crashing and has no local clock.
Consider the run « of SR as follows:

1. The reader p, crashes and recovers.

2. Upon recovery p, executes a recovery procedure followed by a read. The read returns vg.
3. p, crashes again.

4. The writer p,, invokes and completes the write of v;.

5. pr recovers and executes a recovery procedure followed by a read.

Remember that the channels we assume, fair-lossy channels, need to duplicate messages in order
to ensure reliable delivery. Thus in run « after p,’s first crash and recovery (2), all messages sent
in reply to p,’s requests can be duplicated. Because the algorithm is deterministic and p, has no

26



stable storage, the first message that is sent by p, after the second recovery (3) is exactly the same
as after the first recovery (2). Since p, has no way of distinguishing the old duplicate messages
from the new messages, it receives the same messages in (2) as in (3) due to asynchrony. Since the
algorithm is deterministic, the value returned by the second read will be the same as in the first
read: vg, thus violating safety.

Maybe surprisingly, it was shown in [1] that consensus can be solved with processes that do not
maintain any local clock, and yet tolerate crashes. The difference is that consensus is a one shot
problem. Processes that crash and recover do not actively participate in the algorithm (they only
wait for the decided value) and cannot initiate new requests.

7.2 Strong vs. Weak Completion

Because atomic memory is the strongest form of memory, it is also the most expensive to emulate.
In this section we discuss how by weakening the consistency requirements of the read and write
operations, we allow faster implementations in terms of log and time-complexity.

We first introduce in the following a notion of weak completion. Remember that the atomicity
criterion we consider in the crash-recovery model guarantees that crashes and recoveries are invis-
ible to the user of the memory. To provide the illusion of transparency, we require that any write
operation be completed before any new one from the same process is invoked. Weak completion
differs from such a strong completion property in that the full illusion of hiding crashes and recov-
eries can be temporarily broken when a process recovers after a failure. More precisely, with weak
completion, when a writer p,, crashes in the middle of executing a write operation, recovers and
invokes a new write operation, other processes might have the impression that the two operations
from the same process are invoked concurrently: the present write, as well as the write that p,, had
invoked but not terminated prior to its last crash.

To illustrate the difference between the two forms of completion, we depict two executions in
Figure 12: one of a memory that ensures atomicity and one that ensures weakly complete atomicity.
The execution of the weakly complete atomic memory exhibits an “overlapping write behavior”.
What happens is that, during the third write (W(v3)) at p1, the other processes do not know if the
second write (W (v2)) was successful or not, and can still return the value written by the first write.
The main difference is that the end of the second write can in fact be delayed until the end of a
consecutive write. The writer itself would not be affected by the “overlapping” writes.

Strong completion relies on the completion of writes. Intuitively, this means that incomplete
writes do not “overlap” with any consecutive writes at the same process, something that weak
completion does not prevent. Although weak completion allows “strange” behavior after crashes,
it is actually quite useful: in periods without crashes, the weakly complete emulation will behave
exactly the same as its stronger counter part. The advantage with weak completion is that it is
cheaper to emulate, as we will discuss now.

Indeed, if we consider weakly complete atomicity, our second log-complexity bound (Section 6.2)

W(vy) W(v3) W(vs) W(v1) W(v2) W(vs)
n—+—3+ = += 3+ = +=
RO v1 RO v RO w2 RO wvs
P2 ——+t—3F— ——+t—3F—
D3 = =
Weakly Complete Atomicity Atomicity

Figure 12: Atomic vs. weakly complete atomic memory emulations

27



and the first time-complexity bound (Section 6.3) do not hold: both lower bounds result from the
need of completing writes. In fact it is therefore possible to emulate a single-writer/single-reader
weakly complete atomic shared memory where s > 2f and v < f with only 1 log per write, or
without stable storage using only 1 round-trip per write.

7.3 Safety and Regularity Semantics

Several alternatives to atomicity have been defined in the literature. The weakest possible shared
memory semantics are referred to as safety, in which inconsistent values can be returned in the
case of concurrent access to the memory [10]: a read that is concurrent with a write can return any
arbitrary value. A stronger form, called regularity, restricts reads that are concurrent with writes
to return either the value being currently written, or the previously written value [10]. The original
specification of regularity only considers single writer scenarios, but the specification has recently
been extended to include multiple writers [15]. In order to emulate a strongly complete regular
shared memory, our second log-complexity lower bound (Section 6.2) and first time-complexity
lower bound (Section 6.3) apply (also to the multi-writer case) and thus, if s > 2f and u < f, 2
causal logs per write are necessary, or 2 round-trips without stable storage.

Acknowledgments

We are very grateful to the reviewers for their significant help to improve the presentation of this
paper and highlight fundamental assumptions underlying our algorithm.

References

[1] M.K. Aguilera, W. Chen, and S. Toueg. Failure detection and consensus in the crash-recovery
model. In Proceedings of the 12th International Symposium on Distributed Computing (DISC),
pages 231-245, 1998.

[2] H. Attiya. Efficient and robust sharing of memory in message-passing systems. Journal of
Algorithms, 34(1):109-127, 2000.

[3] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in a message passing system.
Journal of the ACM, 42(1):124-142, 1995.

[4] H. Attiya and J. Welch. Distributed Computing, Fundamentals, Simulations and Advanced
Topics. McGraw-Hill International (UK), 1998.

[5] R. Boichat and R. Guerraoui. Reliable and total order broadcast in a crash-recovery model.
Journal of Parallel and Distributed Computing, to appear, 2005.

[6] P. Dutta, R. Guerraoui, R. R. Levy, and A. Chakraborty. How fast can a distributed atomic
read be? In Proceedings of the twenty-third annual ACM symposium on Principles of dis-
tributed computing (PODC), pages 236-245. ACM Press, 2004.

[7] M.P. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and
Systems, 11(1):124-149, 1991.

[8] M.P. Herlihy and J.M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems, 12(3):463-492, 1990.

28



[9]

[10]

L. Lamport. Time, clocks and the ordering of events in a distributed system. Communications
of the ACM, 21(7):558-565, 1978.

L. Lamport. On interprocess communication - part i: Basic formalism, part ii: Algorithms.
DEC SRC Report, 8, 1985. Also in Distributed Computing, 1, 1986, 77-101.

L. Lamport. How to write a proof. American Mathematical Monthly, 102(7):600-608, /1995.
N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo, CA, 1996.

N.A. Lynch and A.A. Shvartsman. Robust emulation of shared memory using dynamic quorum-
acknowledged broadcasts. Proceedings of the 27th International Symposium on Fault-Tolerant
Computing Systems (FTCS’97), 1997.

N.A. Lynch and A.A. Shvartsman. Rambo: A reconfigurable atomic memory service for
dynamic networks. Proceedings of the 16th International Symposium on Distributed Computing
(DISC), 2002.

C. Shao, E. Pierce, and J. Welch. Multi-writer consistency conditions for shared memory
objects. Proceedings of the 17th International Symposium on Distributed Computing (DISC),
2003.

29



