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ABSTRACT
This paper addresses the problem of identifying the value of infor-
mation held by a teammate on a distributed, multi-agent team. It
focuses on a distributed scheduling task in which computer agents
support people who are carrying out complex tasks in a dynamic
environment. The paper presents a decision-theoretic algorithm for
determining the value of information that is potentially relevant to
schedule revisions, but is directly available only to the person and
not the computer agent. The design of a “coordination autonomy”
(CA) module within a coordination-manager system provided the
empirical setting for this work. By design, the CA module depends
on an external scheduler module to determine the specific effect of
additional information on overall system performance. The paper
describes two methods for reducing the number of queries the CA
issues to the scheduler, enabling it to satisfy computational resource
constraints placed on it. Experimental results indicate the algo-
rithm improves system performance and establish the exceptional
efficiency—measured in terms of the number of queries required
for estimating the value of information—that can be achieved by
the query-reducing methods.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search—Scheduling; H.1.1 [Information Systems]: Systems
and Information Theory—Value of information

General Terms
Algorithms, Experimentation

1. INTRODUCTION
Incorporating autonomous-agents capabilities into planning and

scheduling systems can significantly increase their power, espe-
cially in highly dynamic environments and settings in which mul-
tiple agents’ schedules are being coordinated [19; 22, inter alia].
Agents can suggest alternative courses of action as well as nego-
tiate conflicts. They can help achieve team objectives more effec-
tively in such highly dynamic environments as first-response situa-
tions [21, 13], exploration of remote planets, cleanup of hazardous
sites, and military conflicts [11], because they have the ability to ef-
ficiently process the rich set of information affecting the problem.
By taking responsibility for changes in task schedules, they can free
people involved in doing tasks from being unnecessarily overbur-
dened, especially in times of crisis when plans need to be adapted
to new circumstances [13, 11]. Situations characterized by agents
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being separated geographically, coordinating groups having limited
communication bandwidth, and changes in events and physical en-
vironment being complex, dynamic and stochastic in nature typi-
cally preclude a complete global view of the problem. They thus
require localized, but coordinated, planning and scheduling deci-
sions [20, 21]. In the remainder of this paper, we use the term
“automated scheduling agent” (ASA) to refer to autonomous-agent
systems that support multi-agent coordinated scheduling.

ASAs must take into account various external facts that may in-
fluence choice of scheduling changes significantly. These include
changes in the environment in which tasks are being carried out and
the state of the people or other agents working on a distributed, co-
ordinated task. Information beyond the system’s limited knowledge
of the environment may affect constraints, either relaxing them or
imposing new ones that better reflect the actual situation. For ex-
ample, a driver will see changes in weather conditions that may
affect route selection when they occur, while an automated nav-
igation system does not. A scientist can induce that a colleague
will be going to the school play and thus be unavailable to meet
simply because their children go to the same school. Human-agent
interaction must be managed appropriately for the system to obtain
such information without overburdening other participants, espe-
cially people [13, 19]. Obtaining system-external information is as-
sociated with costs, including communication costs and the degra-
dation in task performance of the person being interrupted [5, 8, 10,
22]. An ASA needs to plan its interactions to maximize the differ-
ence between the value of the information being obtained (taking
into account the probability the person being queried has this in-
formation) and the costs, deploying appropriate decision-making
mechanisms [9, 4].

This paper addresses the problem of identifying the value of in-
formation held by a teammate on a distributed, multi-agent, mixed
human and computer team. We focus on a scheduling task in which
the computer agents are ASAs supporting people who are carrying
out complex tasks in a dynamic environment. The ASA is respon-
sible for coordinating modifications to the task schedule as the en-
vironment changes with as few interruptions of the person as pos-
sible, thus enabling the person to focus on actual task performance.

Although coordination itself is domain independent, determin-
ing the value of information requires scheduling knowledge; in-
formation is valuable to the extent it influences schedule changes,
but that influence cannot be determined without task and schedule
knowledge. The design of a “coordination autonomy” (CA) mod-
ule within a coordination-manager system (as part of the DARPA
Coordinators project, which aims to construct intelligent cognitive
software agents able to assist fielded military units adapt their mis-
sion plans and schedules as their situations change) provided the
empirical setting for this work, including both constraints on sys-
tem design and a testbed environment. The overall coordination-
system design separates the CA module from the scheduler which
encapsulates all the scheduling-related expertise. As a result, the
CA must consider not only interruptions of the person, but also



resource demands it makes on the scheduler through querying for
schedule-expertise. Thus, a key challenge to CA-module design
was to develop methods that would obtain information from the
(human) participants in a distributed, coordinated task without in-
terrupting them too frequently or at the wrong times, while simul-
taneously not consuming too many scheduler, communication or
other coordination system resources.

The paper makes two major contributions. First, it presents a
decision-theoretic algorithm for determining the value of informa-
tion in a multi-agent context in which a person rather than a com-
puter agent has the information in question and in a systems context
in which the calculation of information-value is complicated by the
need to invoke a separate systems module (in this case, the sched-
uler).1 Second, it describes two novel methods for dealing with
the computational resource constraints on the CA. The first method
filters queries depending on whether there has been a change in rel-
evant tasks in the schedule. The second translates the problem of
generating queries into a game and then attempts to minimize the
score. Experimental results demonstrate the effectiveness of the
algorithm and that these two methods increase efficiency by sig-
nificantly decreasing the number of queries required for estimating
the value of information.

To provide context for the empirical results as well as for the
methods we designed for determining information value, the next
section of the paper briefly describes the Coordinators application
domain and the basic architecture of the CA module. Section 3 dis-
cusses the principles on which the process of estimating the value
of information is based, and Section 4 presents mechanisms for
improving the efficiency of the scheduler-querying process. Exper-
imental results are given in Section 5. Section 6 discusses related
work, and Section 7 contains our conclusions.

2. IMPLEMENTATION BACKGROUND
The CA module and algorithms we describe in this paper were

developed and tested in the Coordinators’ application domain [21].
In this domain, the ASAs, called “coordinators”, operate in a rapidly
changing environment and are intended to help maximize an over-
all team-objective which is measured using a hierarchical objec-
tive function. Each ASA operates on behalf of its owner (e.g., the
team leader of a first-response team or a unit commander) whose
schedule it manages. The actual tasks being scheduled are executed
either by owners or by units they oversee, and the ASAs’ responsi-
bility is limited to scheduling these tasks.

The quality of ASAs’ schedules depends on knowledge of the en-
vironments in which their owners are operating, and in many cases
the owners of ASAs may have more accurate information about the
state of the environment. Owners in this domain may acquire rele-
vant external information through various communication channels
(formal and informal) they maintain with other owners. Typical
sources of such information are occasional coordination meetings
(e.g., used for reporting status of task execution), open communi-
cation the owner overhears (e.g. when leaving the radio open, one
gets to listen to messages associated with other teams in the area)
and direct communication used for coordination with other people
acting on a joint task (throughout which an individual often learns
informally about the status and existence of actions being executed
by others). An additional source of task-outcome related informa-
tion is an owner’s accumulated experience.

In this domain, scheduling information and constraints are dis-

1The algorithm focuses on the “benefits” side of the decision making pro-
cess that determines when to interact with a user. Specifically, we focus
on estimating the expected value of the information the user may have. A
complete decision-making mechanism would combine the work described
in this paper with a method for determining the cost of interrupting the user
and the probability the user has the necessary information [17, 4, 5].

tributed. Each agent receives a different view of the tasks and struc-
tures that constitute the full multi-agent problem—typically only a
partial, local one. Thus, the intended context of use of coordina-
tors precludes central management. Scheduling problems must be
solved distributively. As a result, each ASA needs to reason about
changes in the timings of tasks with regard to their correlation with
other ASAs’ tasks and to adapt its owner’s schedule accordingly.
The time pressure of the intended applications (e.g., emergency re-
sponse) requires that ASAs make decisions in real time, concur-
rently with their owner’s (or their units) execution of tasks.

The ASA-owner relationship is a collaborative one, with the ASA
needing to interact with its owner to obtain task- and environment
information relevant to scheduling. The CA module is responsi-
ble for deciding intelligently when and how to interact with the
owner for improving the ASA’s distributed scheduling. It interacts
primarily with a metacognition component of the ASA, which con-
trols computational resources allocated to the CA and other ASA
modules, and with the scheduler model of the ASA.2

The scheduler, which is the locus of the ASA’s scheduling exper-
tise, is responsible for task analysis, and thus is a resource when-
ever scheduling reasoning is required for evaluating the effect of
changes in scheduling-problem settings on the system’s expected
performance. The separation of scheduling expertise in its own
module is generally good system design, because many other ASA
modules need to reason about similar aspects of the schedule. Fur-
thermore, unlike such user-focused problems as estimating the prob-
ability a user knows relevant information, the user’s confidence
level in the information, and the costs associated user-interactions,
which are naturally part of the CA, this scheduling expertise is
system-focused. However, the mechanisms described in this paper
are useful even in environments in which a CA would have schedul-
ing expertise. In such settings, the CA could also deploy heuristics
that take advantage of its knowledge of the problem structure.

The CA initiates interaction with the ASA when it requires sched-
uler resources or after interacting with the owner (for the purpose
of transferring the information received to the ASA). Our basic CA
architecture includes components that track the owner’s interrupt-
ibility preferences and costs as well as managing interactions with
the owner [17, 18]. The module is able to determine (future) times
at which there is a high probability the owner will have new in-
formation that may affect system performance. For example, an
owner is more likely to know the probability of success of a task
to be done in the future shortly prior to the task’s execution than
further from its execution time. If the CA evaluates the expected
benefit to be positive, then an interaction with the owner will be
initiated. The mechanism and algorithms presented below enable
the CA to efficiently activate the scheduler to estimate the value of
a specific piece of task or environment information the owner has.
The benefit of interrupting the owner is based on a comparison of
this latter value multiplied by the (estimated) probability an owner
has this specific information with the CA’s estimation of the cost
such an interaction will incur.

Coordinators ASAs represent planning and scheduling problems
in cTAEMS structures [2] defining multi-agent hierarchical tasks
with probabilistic expectations on their outcomes. For this paper
the relevant elements of cTAEMS are methods, quality measures
and inter-action dependency links, which we describe briefly.

Methods, which are actions executed by a single agent, are the
atomic elements in cTAEMS. Figure 1 provides an example of a
method definition. As shown, a method has multiple possible dis-
crete outcomes that determine its possible durations and quality.

2Several different architectures have been suggested for ASAs in the Co-
ordinators domain [14, 12, 20]. All of them share the same core set of
modules, including the scheduler and metacognition components.



Methods are usually constrained by “release times” (earliest possi-
ble start) and deadlines that are set by tasks higher in the cTAEMS
hierarchy to which a method belongs, and inherited hierarchically.
If a method violates its temporal constraint, it is considered to have
failed and yields a zero quality. The probability of zero quality
and the duration distributions are given in the “failure” portion of
the method definition, as shown in Figure 1. The quality of exe-
cution of a method contributes to the quality of its parent task by
means of a quality accumulation function (QAF), which defines
how the qualities are aggregated up the hierarchy. For example,
a qmin QAF for a task results in a quality equal to the minimum
achieved by its subtasks. The functions qmax and qsum are de-
fined analogously. Only methods that are executed within their
constraints accrue quality, and the overall objective is to maximize
quality. The non-local effects links (NLEs) in cTAEMS indicate
inter-node relationships such as enablement and facilitation. These
abstract cTAEMS structures are used to represent real-world situ-
ations. For example, the situation in Figure 1 might represent a
plan to go the store to buy wine as part of a larger plan for a dinner
party. The time required for this activity might be 16, 20 or 24 min-
utes (depending, for instance, on the probability of running into a
neighbor who wants to talk or the conditions of the sidewalk after a
snowstorm). The quality of the schedule (12 or 15) depends on the
brand of wine obtained. The zero quality might result if the shop-
per forgets his or her wallet, which may have a low probability, but
will affect the rest of the dinner plan.

The hierarchial outcomes of cTAEMS structures may be trans-
lated into a simple tabular representation of outcomes and their
probability, as given in the table to the right of Figure 1. Each cell
in the table contains the probability associated with the outcome
described by its row quality and column duration. This tabular pre-
sentation is particularly useful when we investigate methods for
increasing the CA mechanism’s efficiency in Section 4.

(spec_method

(label method2A)

(agent agent2)

(outcomes

(default

(density 0.8)

(quality_distribution 12 0.25 15 0.75)

(duration_distribution 16 0.25 20 0.5 24 0.25)

)

(failure

(density 0.2)

(quality_distribution 0.0 1.0)

(duration_distribution 16 0.25 20 0.5 24 0.25)

)

)

)

cTAEMS Method Outcome Matrix

.8*.25*.25

=0.05
.8*.25*.5

=0.1
.8*.25*.25

=0.05

.2*.25

=0.05
.2*.5

=0.1
.2*.25

=0.05

.8*.25*.75

=0.15
.8*. 5*.75

=0.3
.8*.25*.75

=0.15

12

15

16 20 24

duration

quality

0
First set of outcomes

Second set of outcomes

probabilityvalue

Figure 1: A typical method in cTAEMS
cTAEMS problems are known to be difficult scheduling prob-

lems and are not easily modeled and solved by traditional solvers
for planning and scheduling [6]. In Coordinators, a variety of tech-
niques for scheduler implementations have been used [6, 12, 20].
The value-of-information methods we present do not depend on
the particular scheduler technology. The only functionality they re-
quire is the ability to produce a feasible schedule given changes in
the cTAEMS problem and to be consistent (i.e., if the same problem
arrives again then the same solution is supplied).

3. INFORMATION VALUE
In cTAEMS, the outcome of a method after it has been executed

(or has failed) represents the contribution of performance of that
action (its “quality”) to the overall team effort weighted according
to the method’s NLEs and QAFs. Because execution outcome is
probabilistic, if the CA can obtain more accurate information about
the probability distribution of a method’s outcomes before method
execution is completed, it can help increase solution quality signif-
icantly. Environmental information relevant to method outcomes
may be helpful in deciding among possible schedules. For instance,

if an owner can tell ahead of time that the method its ASA has
scheduled to be executed next will definitely fail (e.g., because the
weather has changed and will prevent success), early notification of
the ASA will allow it to change the schedule before the owner even
begins executing this method. If the ASA notifies other owners’
ASAs of this change, then the schedules of any other owners whose
tasks are affected by this method’s outcome (because their methods
either are part of common QAFs or are enabled by NLE links orig-
inating from this method) also can be changed earlier, rather than
waiting for the failure to occur. Without such external information,
the ASAs may lose flexibility in choosing alternative schedules as
well as valuable task-execution time, because they will only know
method outcome at the end of execution.

In this section, we describe a Bayesian-decision-theoretic [16,
1, 3] algorithm for estimating the value of information an owner
may have. The algorithm calculates possible method outcomes
and associated consequences resulting from getting this informa-
tion at different times; it weighs each possibility’s contribution by
the probability it will occur. The algorithm queries the scheduler it-
eratively to determine the value of information an owner may have.
The CA does not know what information the owner has, only that
the owner has (or may have) relevant information. Thus, unlike
prior approaches that use decision theory to calculate the value of
information [8, 10, 22], the algorithm must compute the value of
information without knowing the actual piece of information (i.e.,
without knowing a priori which value the owner will provide). Fur-
thermore, the algorithm handles the overall changes in schedule
that may result when new information is obtained (essentially emu-
lating the re-scheduling that would result), and it considers all pos-
sible outcomes of a method, not simply success or failure. This
functionality is not included in the scheduler and is essential for
updating the value-of-information appropriately.

3.1 Querying Principles
Throughout this section we will consider a scenario in which the

ASA has scheduled method M to be executed next, and the poten-
tial outcomes of this M are given by the duration vector DM =
{dM

1 , . . . , dM
k } and the quality vector QM = {qM

1 , . . . , qM
l }. The

owner may be able to reveal (with some probability) that the actual
outcome of M is (dM

i , qM
j ), information not directly available to

the CA. That is, prior to interacting with the owner, the CA has
only the a priori probability P (dM , qM ) for each potential out-
come as given in the method’s definition (as illustrated in Figure
1). The value of the information (dM

i , qM
j ) is the marginal im-

provement in the quality of the schedule after it is changed as a re-
sult of obtaining this information (at query time). That is, the value
of information (dM

i , qM
j ) is the difference between performance of

the ASA with this information “a priori” (i.e., when it queries the
owner), denoted E[Q/access owner], and its performance when
it obtains this information only at the end of execution of a method,
denoted E[Q/¬access owner]. The value is positive only if the
system changes its action depending on (dM

i , qM
j ), but is always

non-negative.
In the ASA setting, to estimate the value of an interaction with

the owner (i.e., to calculate E[Q/access owner]), the CA needs
to weigh the value of each possible specific outcome according
to the probability of this outcome, because (as noted above) even
when the CA knows that the owner has certain information about a
method’s outcome, it does not know the outcome-value the owner
knows. The algorithm presented below uses hypothetical (“what-
if”) queries, which include the original cTAEMS problem settings
and the potential new information from the owner, to the scheduler
to determine the value of a specific piece of information.

We will use the notation St(T, I) to denote the best schedule
the scheduler can produce at time t, given a cTAEMS problem



T and the additional information I (known at time t). The struc-
ture I may be empty, indicate a specific outcome (dM

i , qM
j ) of the

method M , or eliminate a specific outcome from the distribution
of possible outcomes. We denote the value (quality) of a schedule
St(T, I) by St(T, I).quality. The expected quality of a schedule
given updated-method-status information from an interaction with
the owner is given by

E[Q/access owner]=
kX

i=1

lX

j=1

S(T, (dM
i , qM

j )).qualityP (dM
i , qM

j ). (1)

Calculating the value E[Q/¬access owner] is a non-trivial task.
Although the owner is operating according to some schedule, the
quality associated with this schedule cannot be used as a baseline,
because it does not reflect the re-scheduling that can occur after a
method’s actual outcomes are known (or other outcomes are elimi-
nated). This rescheduling may alter significantly the actual quality
that is achieved. As an example, we consider a method M planned
to be executed at time t, that a priori has four duration outcomes
{dM

1 , . . . , dM
4 }, with probability P (dM

i ) = 0.25 ∀1 ≤ i ≤ 4,
and its actual duration outcome is dM

3 . In Coordinators, each agent
receives an execution completion method at the time the method
successfully completed its execution.3. At time t + dM

1 the ASA
will realize that the method did not complete execution yet be-
cause it did not receive an execution completion (EC) message;
thus, outcome dM

1 is no longer valid for this method. As a result,
the ASA and all other relevant ASAs can update their expectations
for method M using Bayesian update; the method will now have
three possible duration outcomes {dM

2 , . . . , dM
4 } with probability

P (dM
i ) = 0.33 ∀2 ≤ i ≤ 4. The ASAs can then re-analyze

the problem and re-schedule methods that do not start execution
prior to time t + dM

1 . Similar re-scheduling can be performed at
time t + dM

2 . Finally, at time t + dM
3 the ASA receives the com-

pletion message and all agents can re-schedule any methods that
have not yet (i.e., prior to time t + dM

3 ) started execution. This
final rescheduling is based on the actual duration and quality out-
come of method M . The quality achieved at the end of this ”re-
scheduling” process may be very different from the expected qual-
ity of the schedule the ASAs had at the beginning of the process.

Thus, to calculate the expected quality, it is necessary to cap-
ture the effect of the re-scheduling of events that occurs whenever
a method’s execution time exceeds one of the possible durations
defined for the method and no EC message has been sent, or when
the method completes execution. Generally, if a method is still
executing at time t + dM

j , then its outcome distribution can be
updated to {dM

j+1, . . . , d
M
|DM |} where P ′(dM

i ) = P (dM
i )/(1 −Pj

k=1 P (dM
k )) ∀j < |DM |, j < i ≤ |DM |.

Thus, the schedule that will be used at future time t′ (t′ > t)
should be constructed incrementally, based on the last re-scheduling
event that would have occurred. For exposition purposes, we as-
sume that method M is supposed to start execution at time t. Hence,

St′ (T, (dM
i , qM

j )) = St′ (Tc(St+dM
i′

),¬dM
i′ ) , t′ < t + dM

i (2)

where Tc is the constrained problem generated by the re-scheduling
process that occurs at the time t+ dM

i′ (i′ = argmaxi{dM
i < t′})

when the ASA learns that duration dM
i′ is no longer a valid outcome.

Finally, the expected value of the information the owner may
have can be calculated as:

V =
kX

i=1

lX

j=1

`
St(T, (dM

i , qM
j )).quality− (3)

−St+dM
i

(T , (dM
i , qM

j )).quality
´
P (dM

i , qM
j )

3This has many equivalents in other domains, e.g., a UPS scheduling as-
sistant can be updated based on events recorded in the standard tracking
system.

Thus, the estimation of the improvement in quality that results from
learning each possible outcome requires two types of queries of
the scheduler, (1) a non-constrained query using the new informa-
tion, and (2) a constrained query that incorporates the results of
re-scheduling processes that occur until an EC message is received.

3.2 The Querying Algorithm
Algorithm 1, given in pseudo-code below, embodies the princi-

ples just described to estimate the value of getting the actual out-
come of a method from the owner (before the method completes
execution). The core functionality it supports is: (a) the calcu-
lation of the differences in the expected quality with and without
the owner’s information for the outcomes associated with the first
(shortest) duration; and, (b) if execution exceeds the first possible
duration outcome, recursive execution of the algorithm on the new
schedule to obtain the revised quality for the reduced problem.
Algorithm 1 GetV alue(T, M) - Evaluating the benefit in inter-
acting with the owner
Input: T - a cTAEMS problem; M - The method we are working on; t -

the time when method M starts executing;
Output: V - the expected additional utility if receiving the actual outcome

from the owner.
1: if DM .length = 0 then
2: return 0
3: end if
4: Set S = GetSch(T ); V alue = 0;
5: Remove schedule S from cTAEMS T
6: for j = 1 to QM .length do
7: Set Tc = T.clone(); Tnc = T.clone(); M ′ = M.clone()

8: Set DM′
= (dM

1 ); QM′
= (qM

j ); P (dM
1 ) = P (qM

j ) = 1.0

9: Replace method M in Tc and Tnc with method M ′
10: for i = 1 to S.length do
11: if S[i].start time < t + dM

1 then
12: Add S[i] to Tc

13: end if
14: end for
15: Set V alue = V alue +P (dM

1 )P (qM
j )(GetSch(Tnc).quality−

GetSch(Tc).quality)
16: end for
17: for j = 2 to DM .length do
18: Set P (dM

j ) = P (dM
j )/(1− P (dM

1 ))

19: end for
20: Set Premain = 1− P (dM

1 )

21: Remove dM
1 from DM

22: Replace method M ′ from Tc with method M
23: return V alue + Premain ∗GetV alue(Tc, M)

The input to the algorithm is a cTAEMS problem, T , which in-
cludes a partial schedule and a method M (with an updated out-
come distribution). M ’s actual outcome is what the CA is consid-
ering asking the user about. The recursive implementation (step 23)
allows the algorithm to emulate the re-scheduling process used by
the ASA, as described above. The algorithm first queries the sched-
uler for the best schedule that can be produced given the initial
problem settings (represented by S (in step 4)). The variable value
accumulates value over the recursion. The main loop (steps 6-16)
weighs the differences in expected quality of the schedules for the
first possible duration outcome, of the method M , by creating two
new cTAEMS problems (step 7) in which method M has that dura-
tion outcome and one of the quality possible outcomes with prob-
ability 1.0 (steps 8-9). In the first problem, Tnc, no scheduling
constraints are imposed, whereas in the second problem, Tc all
the ASAs’ methods that were scheduled to start executing before
the ASA learns the actual outcome of method M are included in
the problem settings as an initial schedule that cannot be changed
(steps 10-14). By removing any re-scheduling flexibility up to time
t + dM

1 , the cTAEMS problem Tc emulates the scenario in which
the ASAs adjust to information about method M ’s outcomes only



when the actual outcome is determined by the environment (i.e.,
when the method has completed execution or failed). Similarly, the
cTAEMS problem Tnc emulates the scenario in which the infor-
mation is received a priori and the ASAs are free to re-plan at this
earlier time using this information.

Step 15 uses the function GetSch(T ) to query the scheduler so
that it returns the optimal schedule that can be generated for the
problem T (taking the schedule elements it contains as a constraint
for scheduling). A comparison of the quality of the schedule re-
ceived for the non-constrained problem Tnc and that for the con-
strained problem Tc yields the incremental quality improvement
that can be obtained by knowing the outcome (dM

i , qM
j ) a priori.

The result is multiplied by the probability of getting this outcome
from the owner (step 15).

Therefore, upon the completion of steps 6-16 the algorithm has
the weighted expected utility of outcomes associated with duration
dM
1 . To complete the process (i.e., for adding the weighted utility

for methods with dM
i > dM

1 ), the algorithm creates a new problem
in which the outcome dM

1 is removed from M , and it updates the
probabilities of the remaining outcomes (steps 17-22). The new
problem (Tc) contains the scheduling constraints imposed by the
inability to change any of the methods that are scheduled to start
their execution prior to time t + dM

1 . This problem is the input for
the recursive execution of the algorithm, which stops when there
are no more duration outcomes for M .

Once the CA module calculates this gain, it can multiply it by the
probability representing its estimation that the owner knows the ac-
tual outcome (as detailed by Sarne and Grosz [17]) and if the result
is greater than its estimated cost associated with the interruption
then the interaction is being initiated.

The total number of queries sent to the scheduler throughout the
recursive executions of the algorithm is (2 ∗ |QM | + 1) ∗ |DM |,
which is derived as follows: (a) two queries (constrained and non-
constrained) for each outcome (making a total of 2∗|QM |∗|DM |),
used for calculating the outcome’s marginal utility (see step 15);
and (b) one query for generating the schedule evolvement due to
realizing the elimination of each duration outcome, as time goes by
(step 4) (i.e., a total of |DM |).
4. IMPROVING EFFICIENCY

The (2 ∗ |QM |+1) ∗ |DM | scheduler queries required by Algo-
rithm 1 is a significant overhead, because querying the scheduler is
a resource-intensive task. As a result, techniques that enable mini-
mizing the number of queries the CA uses for its benefit estimation
process can significantly improve ASA performance. In this sec-
tion, we show how to reduce significantly the number of queries
used for estimating the information value without compromising
the accuracy of the obtained result. This decrease is achieved by an
intelligent selection of the sequence of outcomes for which queries
are generated.

As shown in Equation 3, the expected value of information can
be represented as a weighted sum of the differences between the
quality associated with the non-constrained problem, Tnc, and the
constrained one, Tc. By identifying outcomes for which the differ-
ence is zero, it is possible to eliminate the need for generating the
two queries in such cases. Information has value at a specific time
only if its receipt at that time leads an agent to change its owner’s
schedule in a way that it could not have if it only received this in-
formation in an EC message or induced it from not receiving an
EC message at the end of a possible method duration. Thus a zero
difference occurs when no agent in the environment changes its
owner’s schedule in comparison to EC-messages based schedule.
We use the term “relevant change” to refer to a scheduling change
the existence of which indicates that the ASA’s learning about a
method’s outcome before that method finishes executing will yield

positive value for the ASA. Formally, the definition of a relevant
change is as follows:

DEFINITION 1. Consider an initial problem T and a specific
outcome (dM

i , qM
j ) of method M . Any change between the sched-

ules St(T, (dM
i , qM

j )) and St+dM
i

(T ) over the interval (t, t+dM
i )

is a “relevant” change associated with receiving the true outcome
(dM

i , qM
j ) at time t.

The basic idea of the first query-reduction method is that the ex-
istence of relevant changes is the only thing that matters for iden-
tifying zero value differences, because these changes determine
whether knowing the outcome (dM

i , qM
j ) before the completion

message occurs contributes value or not. The difference in quality
due knowing this information prior to time t + dM

i is necessarily
positive if relevant changes between the non-constrained schedule
and the EC-based schedule are found at time prior to t + dM

i . Oth-
erwise, the difference is necessarily zero.

Thus, the CA should first send the scheduler all its non-constrained
queries ((Tnc)-based) and should initiate a constrained query ((Tc)-
based) only for those outcomes (qM

i , dM
j ), qM

i ∈ QM , dM
j ∈ DM ,

for which a relevant change was identified by inspecting the sched-
ule sent back for the constrained query. If the number of outcomes
that result with relevant changes is N (N < |QM | ∗ |DM |), then
the number of queries required using this technique is (|QM |+1)∗
|DM |+N , derived as follows: (a) |DM | queries for generating the
schedule changes resulting from the elimination of duration out-
comes as in the original Algorithm 1; (b) |QM |∗|DM | for obtaining
the non-constrained schedules; and (c) N constrained queries for
calculating the quality differences for those scenarios which yield
relevant changes. Although this approach significantly lessens the
number of queries, it is still far from the theoretical minimum num-
ber of queries that need to be used, which is 2 ∗N + |DM |, where
the |DM | additional constrained queries are required for following
the re-planning procedure and the 2∗N queries (N constrained and
N non-constrained) are required for calculating the quality differ-
ences for those scenarios which yield relevant changes.

A further significant reduction in the number of queries sent to
the scheduler may be obtained by analyzing the possible-outcomes
space. Figure 2 illustrates this space of outcomes (and is an ana-
logue of the table given in Figure 1) for a method M with 5 possible
duration outcomes and 4 quality outcomes. We begin our analysis
with an arbitrary outcome o=(di, qj) that is not associated with
relevant changes. Though this outcome is not associated with rele-
vant changes, its neighboring outcomes in the outcomes space (i.e.,
(di, qj+k) or (di+k, qj), k∈{+1,−1}) may be associated with rele-
vant schedule changes. Table 1 gives examples of ways an increase
or a decrease in the duration or quality results in relevant schedule
changes (both in a particular ASA’s and other ASAs’ schedules).

quality

Duration

q1

q2

q3

q4

d1 d2 d3 d4 d5

Figure 2: A method’s outcome space
If a method o′ which is a neighbor of method o and has relevant

changes can be found, then relevant changes appear in any other
outcome in that direction of movement in the outcomes space. For
example, if no relevant changes are found for outcome o=(di, qj),



Self changes Changes in other ASAs
D ↑ Method M exceeds deadline thus

replaced by method M ′
Method M1 (enabled by M ) cannot start
on time, and thus is replaced with M2

D ↓ The execution of method M can
now be delayed and a new method
M ′ can be scheduled before it

Method M1 enabled by M is added to
the schedule, and consequently method
M2 that facilitates M1 is added at time
t′ < dM + t

Q ↑ Not applicable Method M1 facilitated by M is added
to the schedule, and consequently method
M2 that enables M1 is added at time
t′ < dM + t

Q ↓ Method M is replaced by method
M ′ (which has a better quality)

A method M1 under a qmin QAF along
with M is replaced by method M2

Table 1: Relevant schedule changes due to a new information
concerning method M ’s quality and duration (Mj denotes a
method that is currently non-scheduled)

and a relevant change is found for outcome o′=(di−1, qj), then rel-
evant changes exist also in any outcome o∗=(di−k, qj), ∀0<k<i−1.
This property may be explained by the fact that the same arguments
used for changing the schedule when moving from outcome o to a
neighbor outcome o′, remain valid in the transition to o∗.4 There-
fore, typically, the area representing the outcomes for which rele-
vant schedule changes occur partially wrap around the area repre-
senting the outcomes for which no relevant schedule changes occur.
This characteristic is illustrated in Figure 2 where those outcomes
in which relevant schedule changes occur are marked with a gray
background. An immediate implication of this result is that for any
fixed duration di, if there are outcomes (di, qj), 1 ≤ j ≤ |QM | not
associated with relevant schedule changes, then these outcomes ap-
pear in a sequence along the quality axis (and similarly when set-
ting a fixed quality).

This regularity suggests an algorithm for solving the problem as
a “game” defined by the following rules: (a) given a matrix of size
|QM |∗|DM | representing the space of possible outcomes, in which
each of the elements can be either associated with relevant changes
or not; (b) the goal is to identify the matrix elements that are as-
sociated with relevant changes (marked in gray in Figure 2); (c) at
each game stage, determine which element of the matrix to query
next; (d) for each element queried, receive an indication of whether
it is associated with relevant schedule changes; (e) if two matrix
elements within the same row (alternatively, column) are found to
be not associated with relevant changes, then all outcomes between
them at that row (alternatively, column) are also not associated with
schedule changes. The goal is to query all the elements associated
with relevant changes while querying as few elements as possible
not associated with relevant changes.

A simple implementation of an efficient algorithm for playing
this “game” would start with the lowest duration and quality out-
come (i.e., the lowest left corner in Figure 2) and would check
the matrix elements by moving upward. Upon hitting an outcome
that does not involve relevant schedule changes (or scanning all
elements of a column in this direction), the process moves to the
next column (next duration value), moving upward again in the
same manner. This process will continue until it either has cov-
ered all duration columns or the first outcome of a scanned col-
umn reveals no relevant schedule changes. In this latter case, the
process will continue in the same manner, but starting with the
rightmost column and switching to lower duration columns when-
ever it hits an outcome that does not involve relevant schedule
changes (or it scans all columns in this direction). When the pro-

4This is based on the existence of enables and facilitates NLEs in the cur-
rent version of TAEMS in Coordinators (both influence the same way). If
future implementations add conflicting NLEs (such as disables and hin-
ders), then theoretically there could exist extremely rare scenarios where a
change in a method’s outcome will create several conflicting effects. How-
ever, it is very difficult to find an example of such a scenario.

cess reaches a column that has already been scanned, or if the
first method in the scanned column reveals no relevant schedule
changes, then the process is repeated from the top of the columns
down the quality scale. (Depending on the dimensions of the prob-
lem, it may be better to scan rows instead of columns, but that pro-
cess is analogous.) This method guarantees a maximum overhead
of 2 ∗min(|D|, |Q|) unnecessary queries to the scheduler, since at
most it will go over all columns and will stop once while moving
upward and once while moving downward in each column. There-
fore, the number of queries generated using this method is bounded
by 2 ∗N + 2 ∗min(|DM |, |QM |) + |DM |.
5. EXPERIMENTS AND RESULTS

Our CA module implementation was successfully integrated in
a Coordinators ASA and evaluated in a real-time simulation envi-
ronment created for the Coordinators project. In a series of tests
comparing performance of a Coordinators ASA, with and without
the CA module described in this paper, for cTAEMS problems that
were part of the Coordinators test suite, the CA module was shown
to lead to significant performance improvements.5 For those sce-
narios in which the information supplied by the (simulated) owner
benefitted the ASAs, the quality improved tremendously. For those
scenarios for which the CA initiated an interaction with the (sim-
ulated) owner, but the information provided by the owner left the
plan unchanged, there was a decrease in quality as a result of the
interaction cost. This result was common, because the decision
whether to interrupt the user or not is based on the expected benefit
which may differ from the actual benefit. However, despite the fact
that such scenarios resulted in a quality decrease, the overall im-
provement was positive, because of the far larger benefit obtained
for those cases in which the owner’s information led to schedule
changes.

We also tested the CA module with a constraint-based scheduler
[6] which allowed us to execute extensive tests without the over-
head of the full Coordinators simulation system. It thus enabled
us to test query-reduction performance (as described in Section 4)
more thoroughly. These experiments used the test suite that the Co-
ordinators project used to evaluate different ASA architectures.6

For each test case, the CA picked a random snapshot of the
schedule being executed and activated its utility estimation mecha-
nism for the specific method being executed at that time, with the
following different techniques (from Section 4): (a) evaluating all
outcomes (denoted “Naive”); (b) sending a non-constrained query
for each outcome and then sending constrained queries as neces-
sary (denoted “Improved”); and, (c) using the game-based algo-
rithm described in Section 4 (denoted “Improved+”). In addition,
we calculated the theoretical minimum number of queries needed
(2 ∗ N + |DM |) for each problem. The graphs below depict the
average number of queries used by the CA for estimating the value
of information using each of these methods, and the average theo-
retical minimum (denoted “Theoretical”). The results are based on
2093 problems from the test suite. These problems were divided
into types following a classification based on parameters such as
the scale of the required scheduling task, the number of agents, and
the interdependencies between tasks. Each type represents differ-
ent problem characteristics and complexity.

The left graph in Figure 3 depicts performance by problem type
in terms of number of queries (y-axis). For this set of experiments,
there were 5 quality outcomes and 3 duration outcomes for each
5We do not give quantitative results, because space limitations preclude
providing the test environment parameters that would make those meaning-
ful.
6The only change we made was to augment the outcome distribution in
order to increase the number of outcome values for experimental purposes
(but without changing the original mean and edges values).



evaluated method. As shown in the graph, the Improved+ approach
provides the greatest improvement and is very close to the theo-
retical minimum. For problem types 5 and 6, both the theoretical
minimum and the Improved+ approach produce very few queries.
This result is correlated with the relatively low level of dependen-
cies between methods in these problem types, leading to a relatively
small effect of external information on the optimal schedule.

The right graph in Figure 3 depicts the additional overhead (in
percentages) generated by each of the different methods in compar-
ison to the theoretical minimum number of queries. In this graph,
each group (represented on the horizontal axis) is distinguished by
the number of quality outcomes used for each method (the number
of duration outcomes was set to be 3) and includes all the prob-
lems, regardless of their type (i.e., each group includes all the prob-
lems used in the left graph). The theoretical minimum number of
queries is the baseline (100%) against which the overhead of all
other methods is calculated. This graph shows that while the over-
head of the “Naive” and “Improved” methods modestly increases
as the number of possible outcomes increases, the Improved+ algo-
rithm exhibits a constant improvement as a function of the number
of outcomes; it has only a 23% average overhead in comparison to
the theoretical minimum number of queries for 9 quality outcomes.
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6. RELATED WORK
The research reported in this paper is within the broad category

of AI research that uses decision-theoretic techniques to address
problems of agent decision making in dynamic environments with
incomplete information [9, 5]. It relates most directly to work on
interruption management, autonomous agents to support planning,
and information gathering.

Most work on interruption management is concerned with the
question of determining when to interrupt users to provide help or
information relevant to their work [8, 10]. For instance, the Noti-
fication Platform system [8] modulates the flow of messages from
multiple sources to devices by performing ongoing decision anal-
ysis. As in the CA problem, the agent is uncertain about a user’s
workload and focus of attention as well as about the value of the
alternative actions a user will undertake as a result of receiving
new information. The primary goal of such work is to balance the
expected value of information with the attention-related costs of
disruption. It typically uses probabilistic models (often Bayesian
network models) of a user’s future actions to infer the probabil-
ity of alternative feasible actions as a function of actions the agent
has observed, using that context to determine the cost of interrup-
tion. Although this problem domain has much in common with
the ASA domain, work in this area differs from our work in three
ways. First, it focuses almost entirely on modeling the user’s at-
tentional state and avoiding unnecessary or unhelpful interruptions
and the ensuing frustration they cause [10, inter alia]. Second, it
commonly makes two assumptions that do not hold in the ASA do-

main: (1) that users will change their actions in a pre-determined
manner when they receive the new information, and (2) that it is
straightforward to calculate the benefit from performing the alter-
native action. Third, in prior work on interruption management, it
is the agent that has information needed by the person rather than
the reverse. As a result, the question is determining the effect of
having this information on the user’s performance, and there is no
need to deal with uncertainty about the information (i.e., to con-
sider different types of information the user has). One exception is
the work of Fleming and Cohen [4, 5] who use a utility-based quan-
titative approach to designing systems that are capable of making
decisions about when to ask a user to provide additional informa-
tion to improve problem solving. However, their work emphasizes
modeling the cost of “bothering” the user repeatedly. A related dif-
ference between our work and prior work is that in prior work, the
information is not principally probabilistic (as in the CA’s case), so
systems do not need to reason about how users will change their
actions in situations analogous to not receiving an EC message.

Research on autonomous agents providing assistance to human
planners [15; 22, interalia] by providing information alerts at ap-
propriate times also focuses mainly on the person side of the human-
computer interaction, considering such human aspects as the cog-
nitive load created on the person providing information or alerting
the person to important events. In this domain, the value of alert-
ing users with new information derives from its usefulness for their
decision making.

Research on value-driven information gathering systems [7] fo-
cuses on the development of autonomous agents operating in an
information rich domain under time and monetary resource restric-
tions. It considers decisions about the information to collect based
on an explicit representation of the user’s decision model and a
database of information sources. Queries are activated based on
the marginal query value, i.e., by considering the current informa-
tion known by the system and the set of queries that have been sent
but have yielded answers. Query-values are derived from a utility
function based on the user’s preferences in combination with infor-
mation provided by the expert who constructed the decision model.

Our work differs from all this prior work in two ways. First, it
considers the problem of efficiently obtaining the value of informa-
tion, which prior efforts have not needed to do, because the value
of information either was assumed known or could be calculated
simply. Furthermore, even in cases where the information value-
estimation process required more complex calculation, the system’s
goal is assisting the user so the systems-resource problems that we
faced do not arise. Second, because schedule-expertise is external
to CA, it needs to interact effectively with another ASA module
to calculate information value whereas prior work has presumed
all systems-available information related to the information-value
problem is internal to the component making this calculation.

7. DISCUSSION AND CONCLUSIONS
This paper addresses the problem of computing the value of in-

formation for multi-agent coordinated scheduling in situations in
which the (human) users of an autonomous agent system (ASA)
have access to information that is not directly available to the ASA.
It considers this problem in the context of developing a coordina-
tion autonomy module (CA) within a coordination-manager sys-
tem. Unlike other problem domains in which value-of-information
must be determined, this setting presents the challenge of comput-
ing the value of information when the expertise needed for reason-
ing about alternative schedules is not contained within the CA itself
but rather in a separate scheduler module. Furthermore, the fact that
scheduling problems require the value of information be computed
in an environment in which the schedule is dynamically (and often,



continuously) being revised, poses a great challenge with respect to
the computation of the effect of not getting this information a priori.
As earlier sections of this paper elaborate, even when the ASAs do
not receive method-related information from the user at the current
time, they will sometime later be able to improve their schedules
based on the elimination of different duration outcomes of the ex-
ecuted method (as time goes by) or the receipt, eventually, of the
execution completion message of this method. The CA thus must
emulate those dynamics in order to accurately infer the system per-
formance for the case in which it does not receive this information
from the user. These demands combined with strong constraints on
ASA resources raise significant efficiency issues, issues which are
normally not addressed in applications for estimating the value of
information in other domains. The need for systems to have ade-
quate planning and scheduling capabilities permeates autonomous
agents and multi-agent systems applications, making mechanisms
such as those described in this paper important for a wide-range of
multi-agent systems operating in uncertain dynamic environments.

The paper presents an algorithm that determines the value of in-
formation that is directly available only to the person being sup-
ported by the ASA, but is potentially relevant to scheduling revi-
sions. The empirical results described in Section 5 provide strong
support for the usefulness of the algorithm. In addition, the paper
presents two methods for reducing queries to the scheduler to ad-
dress the strong resource constraints on the ASA. These methods
were extensively tested, and the results of these experiments estab-
lish that a significant decrease can be achieved in terms of the num-
ber of queries the CA module sends by adopting these methods.
The implementation of the algorithm and query-reduction methods
within an ASA developed in the context of the Coordinators pro-
vided an environment for validating assumptions in system design
and enabled testing of the mechanisms we developed based on an
externally developed test suite of experiments. Furthermore, these
mechanisms are scheduler-independent and thus can be used for
any ASA implementation.

Although the algorithm and query reduction methods developed
in this paper were motivated in part by the separation of CA from
the scheduler, these mechanisms are also applicable in systems in
which scheduling and value-of-information expertise are contained
within a single module. Although such a unified module has the po-
tential for using heuristics to filter queries based on knowledge of
scheduling constraints, the use of our approach guarantees obtain-
ing the actual value of information, while such heuristic approaches
can provide only estimations.

Possible extensions of this work include addressing the problem
of determining the methods to focus on in a given schedule, as-
suming the CA is constrained with respect to the total number of
scheduler queries it can initiate.
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