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ABSTRACT
Determining theprovenanceof data, i.e. the process that led to that
data, is vital in many disciplines. For example, in science, the pro-
cess that produced a given result must be demonstrably rigorous for
the result to be deemed reliable. Aprovenance systemsupports ap-
plications in recording adequate documentation about process exe-
cutions to answer queries regarding provenance, and provides func-
tionality to perform those queries. Several provenance systems are
being developed, but all focus on systems in which the compo-
nents arereactive, for example Web Services that act on the basis
of a request, job submission system, etc. This limitation means that
questions regarding the motives of autonomous actors, oragents, in
such systems remain unanswerable in the general case. Such ques-
tions include: who was ultimately responsible for a given effect,
what was their reason for initiating the process and does the effect
of a process match what was intended to occur by those initiating
the process? In this paper, we address this limitation by integrat-
ing two solutions: a generic, re-usable framework for represent-
ing the provenance of data in service-oriented architectures and a
model for describing the goal-oriented delegation and engagement
of agents in multi-agent systems. Using these solutions, we present
algorithms to answer common questions regarding responsibility
and success of a process and evaluate the approach with a simu-
lated healthcare example.

Categories and Subject Descriptors
Computing Methodologies [ARTIFICIAL INTELLIGENCE ]: Prob-
lem Solving, Control Methods, and SearchBacktracking; Comput-
ing Methodologies [ARTIFICIAL INTELLIGENCE ]: Distributed
Artificial IntelligenceMultiagent systems
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Algorithms, Standardization
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1. INTRODUCTION
In many fields, including both business and science, there is a

need among users, regulators and others to be able to determine the
provenanceof application results, i.e. the process that led to those
results. The provenance of a data item can be used to gain a better
understanding of the way that item was produced and to check its
reliability from the qualities of the process that produced it. Dis-
tributed, electronic applications, such as those in agent-based e-
Science, which involve multiple collaborating organisations, have
an even stronger requirement for provenance, because results are
produced in processes not wholly controlled by any one party. How-
ever, in these applications, determining the provenance of results
depends on the components of the application collectively record-
ing adequatedocumentationfrom which the provenance can be de-
termined, and significant efforts have been made to develop sys-
tems and data models to support this [2, 19]. While these efforts
are generating valuable results, they only addresswhat has hap-
pened rather thanwhy it has happened. Indeed, determining and
understanding why a particular result has come about is especially
important when autonomous entities are involved in an application
because, in such systems, the intent behind any process that takes
place is not fixed in the original design of the application and so
cannot be understood solely by examining that design.

We argue that, to be able to answer questions that arise in au-
tonomous systems, we need to consider not just the actions per-
formed by agents in those systems but also thegoals they are at-
tempting to achieve. This allows us to address questions such as
the following.

• Who was responsible for effectE?

• Does the effectE match what was intended to happen?

• What is the reason (both causal and intentional) of effectE?

Being able to answer such questions allows developers to take
account of the intentions of participating agents when auditing an
application, assessing the reliability of agents or checking whether
the application is being used for conflicting purposes by multiple
users. While absent from current Grid computing approaches, the
modelling of autonomy has been addressed in the context of agent-
based systems. Therefore, to address the above limitations, we
adapt an existing provenance model [8] and augment it with notions
of autonomy and goals in multi-agent engagement and cooperation
[11]. In this paper, we present the integrated data representation of
provenance and autonomous action, specify algorithms for deter-
mining the answers to questions such as those above and evaluate
the approach in a healthcare example.



1.1 Provenance
It is essential to know the provenance of entities when answering

questions in many domains, whether it is in judging the authenticity
of a piece of art, assessing the validity of scientific results, deter-
mining where a fault originated in a manufacturing process, and so
on (see [14] for a survey of requirements for provenance). To deter-
mine the provenance of an item in a system, adequate documenta-
tion must have been recorded regarding the processes in which the
item was involved, which we callprocess documentation. In fact,
if we were to answerall questions about an entity’s provenance
we would need access to records of all events and entities that had
causedthe entity to be as it is.

With complete knowledge, all information about a process in a
system can be represented as data exchanged between agents in that
process and causal relationships between those exchanges, i.e. one
message was sent because another message was received. How-
ever, when it comes to representing the internalvolition for an au-
tonomous agent performing an action, this model in itself does not
provide the mostusefulaccount of what occurred. Moreover, where
people are involved in processes, it is not feasible to determine and
record the source of information that ultimately caused them to act
in a certain way. For example, to describe the cause of a person
eating an orange as a reaction to the trigger of hunger is correct but
misses crucial information that is not easily encoded as receipt of
information: that the person likes oranges, that they are not eating
meat because they are on a diet, and so on. While we can document
thecauseof a person’s action, we cannot determine thereasonfor
it (a distinction made in [20]).

The concept of causality has been used in a range of ways, in
particular in distributed systems literature [13, 18]. For our pur-
poses, we distinguish between causes and reasons as follows. If
E was caused by C, thenE would not have occurred ifC had not
occurred, all else being equal. IfE had reason R, thenR was the
intention behindE occurring. To take a simple software example,
if running a program displays the time, then thecausesof a time
being displayed include the current local clock time of the machine
on which the program is run and the fact that the program was run.
On the other hand, thereasonsfor a time being displayed include
the program author’s intention that the program display the current
time and the program executor’s intention to determine the current
time. In many cases, the reason behind something is also a cause
of it: if the intention had not existed, there would be no trigger for
the effect.

The reasonswhya process is initiated are critical in understand-
ing whya particular result has come about, and are especially im-
portant in situations in which autonomous agents are involved. While
humans are clearly autonomous, it is also increasingly relevant to
consider autonomy of machines, especially in emerging computa-
tional environments like the Grid [6, 7], in which large numbers of
different and sometimes unknown entities co-operate across multi-
ple organisations to deliver services, or achieve results, that would
not otherwise be possible. Indeed, the notion of autonomy has been
identified as a characterising feature of intelligent agents, which are
increasingly being deployed across the range of computational sys-
tems. Existing provenance models, such as Buneman et al.’s model
for determining provenance of database query results [4], do not
consider autonomy, they merely model the actions involved once a
process has been started.

1.2 Autonomy
To address this problem, we propose allowing thegoalsof au-

tonomous agents, and the connections of such goals to the pro-
cesses they trigger, to be made explicit inprocess documentation.

To do this, we require a model of autonomy and of the relationships
between autonomous and non-autonomous actors, and to integrate
it with our model of process documentation. Notions of autonomy
have been considered elsewhere [10, 11], and the agent relation-
ships that underlie the kinds of interactions we envisage have been
addressed in theengagement chainsapproach [11]. Here, an en-
gagement chain refers to a sequence of interactions between agents,
starting with the autonomous agent that initiated a process, going
through to those agents undertaking specific activities to achieve
the result, and all those agents and interactions between them.

To clarify the explanation and make the benefits more concrete,
we introduce a motivating running example from the medical do-
main. This example is a simplified version of a process presented
in work by Vazquez and Willmott [9, 15], and is detailed further in
later sections as we use it.

On it being recorded that a patient is near death, a donor data
collector, which may be a doctor or a software agent acting on a
doctor’s behalf, can decide to start the process of assessing the pa-
tient for donation of organs. This process involves testing blood
for diseases, retrieving the electronic medical history of the patient
and, on death, asking the patient’s family for consent. All these ac-
tions may be carried out by different and disparate organisations.
The output of the process is a decision on the suitability of the pa-
tient for donation.

In considering autonomy in relation to provenance, this paper
makes three key contributions. First, it integrates the complemen-
tary models for process documentation and engagement chains, in-
volving a mapping of concepts between approaches. Second, it
defines how the goals of autonomous agents can be represented in
XML, and how this then can be integrated into the schema defined
for the process documentation model. Third, it provides an algo-
rithm over data in the integrated model, allowing the responsibility
and reason for effects in an application to be determined. In par-
ticular, we discuss how this can be used to determine whether the
application is successfully fulfilling the intentions of those using it,
and whether the way in which it is done is desirable.

In Section 2, we introduce conceptual and data models for doc-
umenting application processes. Then, in Section 3, we show how
this can be integrated with the engagement chain model for rep-
resenting autonomous agents, and define a common, generic data
format to support this in Section 4. In Section 5, we present al-
gorithms which apply to the integrated model and determine the
responsibility, reason, success and desirability of process results.
These are applied to a simulation of the example application above,
for which we describe the implementation and results in Section 6.
We discuss the wider applicability and practical issues in using the
approach and conclude in Section 7.

2. PROCESS DOCUMENTATION
The process documentation modelis used for representing past

processes. By documenting processes in a generic, well-specified
way, questions about the provenance of data, decisions and other
outcomes of processes can be answered. The primary concept in
the process documentation model is theinteractionof actors, which
are merely entities that perform actions (an autonomous agent is,
therefore, a kind of actor). An interaction is the exchange of data
and/or control between actors, corresponding to a single message
in a distributed system. In the hospital example, we can identify
several actors described by their roles in the process below.

• The donor data collectoris the actor that initiates the pro-
cess of obtaining a decision on a donor’s suitability for organ
donation.



• Theblood testeris the actor that tests the donor’s blood for
diseases.

• Theconsent obtaineris the actor that obtains consent for do-
nation from the patient’s family.

• Thedecison makeris the actor that makes the final decision
on donation.

Between these actors is a series of interactions. The donor data
collector contacts the blood tester and the consent obtainer to re-
quest they perform their respective duties. On obtaining blood
test results or a family consent decision respectively, the latter ac-
tors send these to the decision maker. The final decision is sent
by the decision maker to the doctor responsible for the potential
donor. This view of the process that takes place is simplified for
brevity, and many other actors and interactions could be modelled
(the methodology by which the most suitable model can be ob-
tained is not covered in this paper but is available elsewhere [17]).

Process documentation comprises ofp-assertions, which are as-
sertions by actors about the processes they were involved in. As the
process takes place, the actors involved record p-assertions regard-
ing their activities in aprovenance store. While the assertions that
may be made by an actor depend on how that actor functions, we
have specified aprocess documentation data modelthat acts as a
common framework for p-assertions, allowing questions to be an-
swered regarding whole processes spanning many actors and their
supporting organisations. The data model is expressed in XML
Schema, and we give snippets for the most significant parts later.

The data model is targeted at open or semi-open systems, where
it is essential for independent actors to record documentation using
the same model in order for that documentation to be collectively
traversed afterwards. In such an environment, there is an increased
possibility of incorrect documentation being accidentally or mali-
ciously recorded. While there is no way to force independently
deployed software to behave in a particular way, the data model
allows those recording documentation to be held to account by re-
quiring every p-assertion to be digitally signed by its asserter.

There are three types of p-assertion: interaction, actor state and
relationship. We describe each in turn.

2.1 Interaction P-Assertions
The data contents of an interaction are apparent in process docu-

mentation as aninteraction p-assertion. Here, either actor in the in-
teraction, sender or receiver, can assert the data sent between them.
For example, the donor data collector may assert that they sent a
blood test request for a particular patient to the blood tester. The
blood tester may assert that they received that request. Thecontent
of an interaction p-assertion is the data sent between actors and can
be any XML element, as such data is application-specific and all
formats need to be accommodated.

2.2 Actor State P-Assertions
The state of an actor at the time that it sent or received a message

is documented in anactor state p-assertion. For example, the blood
tester may assert the identities of those people allocated to perform
the blood tests when a request is received, or the donor data collec-
tor may document the time (on their local clock) that they request a
blood test, so that the duration taken for the process to complete can
later be determined. Again, the content of an actor state p-assertion
is application dependent and so can be any XML fragment.

2.3 Relationship P-Assertions
Finally, the causal relationships between events and data in the

system, such as the sending and receiving of messages, is docu-
mented inrelationship p-assertions. If documenting the causal re-
lationship between two interactions, this will be an assertion by an
actor that “I sent this message because I received that message”. If
between an interaction and an actor state, it will be an assertion by
an actor that “I sent this message because this was my state.”

In the example, there are three causal relationships between in-
teractions to document (and, as with actors and interactions, causal
relationships may be modelled at different levels of detail to best
suit an application).

• The blood test results are produced (effect) because there
was a request from the donor data collector to perform them
(cause).

• The family consent decision was obtained (effect) because
there was a request from the donor data collector to obtain it
(cause).

• The decision on the suitability of the patient for donation (ef-
fect) was because of the blood test results and the family con-
sent decision (causes).

2.4 P-Assertions in the Example
The three types of p-assertion can be seen in Figure 1, where we

show the interaction of the four example actors. For every inter-
action between actors, there is an interaction p-assertion recording
the message sent. For every causal relationship between one in-
teraction and another, there is a relationship p-assertion connecting
theeffectwith its cause. Finally, each of the four actors may assert
something about its state during the process.

Figure 1: Process and p-assertions

Using process documentation, it is possible to determine theprove-
nanceof a result, i.e. the process that led to it. In the example, we
can determine, from relationship p-assertions, that the donation de-
cision was caused by the blood test results and the family consent
decision, each of which were caused by a request from the donor
data collector. The details of the data in the process, such as the
actual donation decision and blood test results, are documented in
interaction and p-assertions.

However, there are limitations with this model. In particular, it
assumes that everything an actor does is a reaction to an explicit
prior cause and so theautonomyof actors is not taken into account.
Moreover, while it documents thecauseof any event in the system,
there is no specification of theintentionbehind an action.



3. INTENTIONS IN PROVENANCE
Given the limitations of the model described above, and our de-

sire to account forwhy certain courses of action have been fol-
lowed, we require a model in which intentionality can be explicitly
represented and combined with the descriptions ofwhat has oc-
curred provided by the provenance model. It would then become
possible to account for two different, yet complementary descrip-
tions of past events:

• Reactive: what happened, how it came to happen.

• Intentional: why it happened, what was the reason for it hap-
pening.

As discussed, the reactive description can already be captured
by the provenance model. However, the intentional description re-
quires that we can represent thereasonswhy a particular course of
action was taken. This kind of representation is naturally captured
by computational notions ofgoals: descriptions of desired states
that guide action. In turn, the ability to generate goals and use
them as instigators of action captures our view ofautonomy[12],
which has been defined in computational systems as the ability to
“operate without the direct intervention of others, and have some
kind of control over one’s actions and internal state”[21]. While
some have argued for adjustable autonomy that can be increased
or decreased depending on circumstances [1], or for different di-
mensions of autonomy [3], we see goal generation as absolute and
defined in terms ofmotivation, or the ability to generate goals as
result of internal drives.

Adopting such a model allows for a greater range of queries
about systems. For example, if we restrict ourselves to entirely
reactive descriptions of events in the hospital scenario, we can only
answer queries that relate to what happened, e.g. that a decision
was made on a patient’s donor suitability. We cannot, however, an-
swer queries relating towhya particular patient was submitted for
screening in the first place. That is, we cannot ask for thereasons
why a particular screening process was begun. To do this, we need
intentionaldescriptions of events, which allow us to answer such a
query by discovering the goal of the doctor or system in the hospital
that initiated the screening process, of which there may be several.
For example, a doctor may initiate the process in order to satisfy
her goal to comply with hospital procedures, or to satisfy a goal to
source an organ for a transplant patient, or to satisfy a combination
of such goals.

In order that autonomy can be used within the model of prove-
nance and not just remain theoretical abstractions, we require an
explicit model of autonomy and goals. We consider this next.

3.1 Engagement Chains
The engagement chain model [11] presents a view of agent in-

teraction asgoal drivenandintentional. Agents interact to satisfy
goals that originate fromautonomous agents, agents that possess
the capability to generate goals. Such agents generate goals when
an intentionis formed for their satisfaction, where such intentions
are controlled by higher level, non-derivativemotivations[16]. For
example, an agent may have a motivation for hunger which, when
active, may cause the agent to generate a goal to eat. Once gen-
erated, the goal is met by performingactionsdependent upon the
agent’scapabilities, e.g. seeking out a source of food. In many
cases, however, an autonomous agent may generate a goal that it
cannot meet alone, when the actions required are not part of the
agent’s capabilities. Here, the agent must obtain assistance from
other agents,server agents, possessing the capabilities necessary.

In this model, adirect engagementis formed when a server agent
adopts a goal from an agent possessing some goals, aclient agent.
While server agents are defined as non-autonomous, there is no re-
striction on client agents.1 An engagement chainis a sequence
of server agents each of which has been directly engaged by the
preceding agent. At the head of the chain there must exist an au-
tonomous agent, since only these agents can begin the formation of
a chain by generating and passing on a goal.

Figure 2: An example engagement chain

An engagement chain is shown in Figure 2, which shows adonor
data collectorinitiating a donor screening process in order to sat-
isfy one of its operational goals, to enter a dying patient into the or-
gan donation process. To satisfy this goal, the donor data collector
directly engages theblood testersending it a message requesting a
blood test for the patient as well as directly engaging theconsent
obtainer, directing it to ask for the patient’s family’s consent for or-
gan harvesting. Both blood tester and consent obtainer then directly
engage thedecision maker, passing along the information each has
collected. The decision maker makes the final decision about the
patient’s suitability for donation based on this information. In this
example, the donor data collector is the autonomous agent generat-
ing and issuing a goal into the engagement chain. The blood tester,
the consent obtainer and the decision maker are the server agents
acting within their capabilities to satisfy the donor data collector’s
goal.

The provenance of an item in a system in which processes are
triggered by an autonomous agent engagement is includes the di-
rect engagements of server agents, where each satisfies a part of the
autonomous agent’s goal. For each of these agents, the goals they
are attempting to achieve in performing their actions can be explic-
itly asserted, and so can be included in the answers to provenance
related questions.

3.2 Limitations
While each of the models, process documentation and engage-

ment chains, addresses aspects of the problem we are concerned
with, they are distinct, come from very different perspectives, and

1In an extension [11], server agents are allowed to be modelled
as autonomous so that, instead of direct engagements, a case of
cooperationarises, since the autonomous server agent must be per-
suaded to adopt the goal. In this paper we restrict our analyses
to situations in which server agents are strictly modelled as non-
autonomous and leave the more complex analyses of cooperation
between autonomous agents for future work.



have several limitations. By combining them, we can overcome
these limitations and allow richer queries to be answered.

For process documentation, the primary limitation is that no no-
tion of intention of the actors involved is present in the model. This
means that it is not possible, in a generic, re-usable way, to answer
questions of responsibility for effects in the world, nor whether the
effects of processes match their intent.

For engagement chains, there are two limitations. First, there
is no explicit notion of causality. This is apparent in that if two
agents,A andB, have both engaged a third agent,C, at a particu-
lar point in time, then a querier cannot determine for which client
C ’s engagements are made. That is, multiple engagement chains
become indistinguishable in a system to anyone trying to determine
the causes of engagements.

Second, server agents in a real system may not be able to adopt
goals exactly as their client would express them. For example, a
Web Service interface only allows requests of particular forms to
be made to the service, and these may not exactly articulate the
goals of the client. Therefore, an engagement chain may involve
agents further down the chain receiving modified versions of goals,
and it may not be possible for a querier to determine from the agent
itself which goals it has been engaged to achieve.

3.3 Integration of Models
To combine approaches, and overcome the above limitations, we

first perform a mapping between concepts in the two models, as
shown in Table 1. An actor in process documentation is something
that has acted on its own or another’s behalf, so corresponds to an
entity in an engagement chain. An interaction between actors in
process documentation is an event in which control, and usually
data, is passed between actors, so corresponds to the creation of a
direct engagement, or the conclusion of an engagement, where the
server agent ceases to be engaged. For an engagement to be cre-
ated, or for an agent to be freed from an engagement, we assume
that some information must pass between agents. Documentation
of this information maps to an interaction p-assertion and, on cre-
ation of an engagement, includes some representation of the goal
for which the agent is engaged. The state of an actor at the time
it engages another includes its goals, motivations, capabilities and
other attributes. Process documentation documents the past, while
engagement chains are models of the current state of a system, but
records of past engagement chains can be seen in process documen-
tation. In fact, the set of process documentation about a system can
be seen as documenting all the engagement chains that were present
in the system. An individual engagement chain is thus apparent in
a sequence of connected relationship p-assertions, connecting the
actions that fulfil a goal back to the autonomous agent that initiated
the engagement.

Relationship p-assertions are not apparent in the engagement
chain model, but there are two kinds of causal relationship that can
be recorded about engagement chains:

• The relationship of a direct engagement to the goal that the
engaging (client) agent was trying to fulfil.

• The relationship of a direct engagement to a preceding en-
gagement that caused it to be made, i.e. the delegation of a
goal or sub-goal.

The first is a relationship between an interaction (the engagement
of one agent by another) and the state of an agent (the goal of an
agent that the engagement aims to fulfil). Goals are represented in
the model by actor state p-assertions. The second relationship is
between two interactions, where one led to the other.

Consent 
Obtainer

Donor Data Collector

Blood 
Tester

Decision 
Maker

Decision

Goals
one of (Decision, {Yes, No})
equal (Consent, Decision)

Results Consent

Test Request Consent Request

actionToAchieveactionToAchieve

resultsOf responseTo

basedOn basedOn

Figure 3: Goals and reason-specifying relationships in the ex-
ample scenario process documentation.

By making explicit the relationships between actions of agents
and the goals that were being fulfilled by performing them, we
complete the graph of relationships, allowing us to connect an ef-
fect with the reason for it. This is depicted in Figure 3 where, in
addition to the p-assertions shown in Figure 1, the donor data col-
lector’s goals have been made explicit as actor state p-assertions,
and the test and consent request messages have been related to the
goals that were a reason for them being sent. Every relationship
p-assertion is marked with its specific type. Two relationships are
of the first kind listed above, relating an engagement to the goal it
is intended to fulfil, and are of type ‘actionToAchieve’. The other
relationships are of the second kind above, relating interactions,
and are of varying, application-specific types: the test Results are
the ‘resultsOf’ the Test Request, the family Consent is the ‘respon-
seTo’ the Consent Request, and the final Decision on organ dona-
tion is ‘basedOn’ the Results and Consent.

Because they are all directly or indirectly connected via relation-
hips to an initiating goal, the interactions can be seen asengage-
mentsof one agent by another to achieve that goal. Where the
engagement of an agent to achieve one goal causes the engagement
of another agent to achieve another goal, then the second can be
said to be asub-goalof the first (it is being attempted to partially
achieve the first). Therefore, causal relationships in the integrated
model can be seen as relating sub-goals to their parents.

Ideally, whenever an autonomous agent performs an action, it
should assert the goal that caused the action and the ‘actionToAchieve’
relationship between goal and action. There may be constraints on
this ideal in reality, due to the volume of data recorded or security
issues, but these are application specific and so addressed in our
methodology [17].

4. REPRESENTING GOALS IN PROCESS
DOCUMENTATION

Given the mapping between provenance and engagement chains
above, we now proceed to show how process documentation can be
modified to include goals. The process documentation model has
an XML format, and to query programmatically over the contents
of a provenance store, the additions to the model should also have
a well-defined XML format.

A goal is represented in XML by agoal element. This ele-
ment contains a set ofstatement elements, each describing one
property of the world that must be true for the goal to have been
achieved. The goal is a conjunction of the statements contained.
A statement element contains a singlepredicate , which is



Process Documentation Concept Engagement Chain Concept
Actor Entity
Interaction Creation of direct engagement

Conclusion of direct engagement
Interaction p-assertion Content of above with representation of exchanged goal
Actor state p-assertion Goals, capabilities, attributes, motivations
Process documentation Record of world engagement chain
Provenance query results Record of engagement chain

Table 1: Mapping of Process Documentation and Engagement Chain Concepts

<goal>
<statement>

<predicate> oneOf </predicate>
<parameter> <name> variable </name> <value> Decision </value> </parameter>
<parameter> <name> choices </name> <value> Yes, No </value> </parameter>

</statement>
</goal>

Figure 4: An XML representation of a goal

<actorStatePAssertion>
<localPAssertionID>...</localPAssertionID>
<content>

<goal>...</goal>
</content>

</actorStatePAssertion

Figure 5: An XML snippet of an actor state p-assertion con-
taining a goal

the type of check on world state expressed by the statement, and 0
or moreparameter elements which make the statement specific.
Every parameter has aname, denoting its role in the state described
by the statement, and avalue .

In the example in Figure 4, the goal contains a single statement
with two parameters. It describes a state of the world where a de-
cision,Decision, has been made about the suitability for donation
of a patient’s organs, and states that the acceptable values of that
decision areY es or No.

A sequence of goals can be recorded in actor state p-assertions,
according to the model described in the previous section. An actor
state p-assertion has a well-defined schema [8], in which the con-
tent of the actor’s state, such as one or more goals, is embedded.
A snippet in which a goal is inserted in the actor state p-assertion
model is in Figure 5. This is the format apparent in a provenance
store when using our approach to document the goals of agents.

By defining a generic, well-specified representation of goals in
actor state p-assertions, we allow independent agents in an appli-
cation to all assert their goals in this same format, and then allow
queriers of the process documentation to determine the intentions
behind agents’ actions without having prior knowledge of those
agents. This representation of goals is designed explicitly for goals
as they occurred in the past, i.e. for use in determining provenance.
This allows them to be a lot simpler and more general than would
be required to represent arbitrary goal-based plans, which could
include details such as priorities of goal achievement, conflicts be-
tween goals etc.

5. ALGORITHMS
In this section, we give algorithms to answer the questions posed

in the introduction regarding the responsibility for, the reason for,
the success of and desirability of an effect in an application.

5.1 Reason and Responsibility

• To find those agents ultimately responsible for resultX and
their reasons for causingX:

• For each relationship p-assertionR of whichX is the effect:

– For each causeC in R:

∗ If C is the goal of an autonomous agent,A, then
A is one of those ultimately responsible forX and
C is A’s reason (or one of them) for causingX.

∗ Otherwise, all those agents found ultimately re-
sponsible forC by this algorithm are also ulti-
mately responsible forX and their reasons forC
are also reasons forX.

Figure 6: An algorithm to determine those agents ultimately
responsible for causing an outcome and their reasons

In particular, we can ask, with regard to the result of a process,
who wasultimately responsiblefor a result and what was thereason
they initiated the process that led to the result. Here, we consider
responsibility to be held only by agents that had a choice not to
perform the actions they did, i.e. those that are autonomous. By
following relationship p-assertions backwards in time, we can es-
tablish both of these properties.

In Figure 6 we show the algorithm for determining those agents
ultimately responsible for a result, and the reasons that they initi-
ated the process that led to it, i.e. the goals that caused the agents
to engage other agents to produce the result.

5.2 Success and Desirability
Once the reasons for the result of process are found, additional

questions can be asked about whether the result truly reflected what
those initiating the process wanted. If not, this could suggest that
there is a problem in the application processes that should be recti-
fied.

We consider a result,X, to besuccessfulwith regard to one of
the reasons for it (goals that ultimately caused it),G, if X implies
G. That is, ifX at least fulfils the goalG, thenX is a successful
outcome of the process. We consider a result,X, to bedesirable
for an agent,A, ultimately responsible forX, if none of the goals
held byA at the time they initiated the process that led toX is
contradicted by or inconsistent withX.

6. EXAMPLE
We simulated the healthcare process in a Java application, using

the tools provided by the PASOA project. Each agent recorded
p-assertions into a Web Service provenance store (available from
www.pasoa.org ). The set of p-assertions for a simulation run is



#1 Goal:
oneOf (

variable = Decision,
choices = {Yes, No}

)
#2 Goal:

equal (
first = Consent,
second = Decision

)
#3 Interaction:

actors: donorDataCollector -> bloodTester
content: testRequest

#4 Relationship:
#3 actionToAchieve #1

#5 Interaction:
actors: donorDataCollector -> consentObtainer
content: consentRequest

#6 Relationship:
#5 actionToAchieve #1

#7 Interaction:
actors: bloodTester -> decisionMaker
content: testResults

#8 Relationship:
#7 resultsOf #3

#9 Interaction:
actors: consentObtainer -> decisionMaker
content: consent

#10 Relationship:
#9 responseTo #5

#11 Interaction:
actors: decisionMaker -> doctor
content: decision

#12 Relationship:
#11 basedOn #7, #9

Figure 7: P-assertions produced by simulation

shown in Figure 7. For brevity, we use a more succinct and human-
readable format than the original XML, defined as follows.

• For an interaction p-assertion, such as #3, this format appears
on three lines. The first gives a number (local identifier) to
the p-assertion and identifies it as an interaction p-assertion,
the second states which actors sent and received the message
in the interaction, and the third states the (abbreviated) con-
tent of the message.

• For relationship p-assertions, such as #4, this format appears
on two lines. The first gives the numerical identifier of the
p-assertion and identifies it as a relationship p-assertion. The
second states the effect, type of relationship and (one or more)
causes of the relationship. The effect and causes are refer-
ences to other p-assertions.

• For a goal actor state p-assertion, such as #1, this format ap-
pears on multiple lines. The first gives the numeric identifier
of the p-assertion and identifies it as a goal actor state p-
assertion. The second gives the predicate. Remaining lines
specify parameters.

Applying the algorithm in Figure 6 to the hospital example, we
follow the relationship p-assertions (as depicted in Figures 1 and
7) back from the final decision on donation to all the data, events
and goals causing that decision. This is summarised in Figure 8,
in which each line represents an effect in the application and is
followed by the cause or causes of that effect. We find that the
actor ultimately responsible for the decision on donation was the
donor data collector, which initiated the process, and the reason
for doing so was the collector’s goal to get a yes/no answer on the
patient’s suitability for donation. The intermediate steps of the pro-
cess, testing blood and obtaining consent, were merely reactions to

#11 decision basedOn
- #7 testResults resultsOf
- - #3 testRequest actionToAchieve
- - - #1 oneOf (variable=Decision, choices={Yes,No})
- #9 consent responseTo
- - #5 consentRequest actionToAchieve
- - - #1 oneOf (variable=Decision, choices={Yes,No})

Figure 8: Provenance of decision produced by querying process
documentation

the collector’s initial engagement of actors to perform those tasks.
If modelling were extended to include the patient’s family as an
actor, we might also determine that they had responsibility for the
decision and their desires would be additional reasons for the final
decision.

To determine the success of the outcome, we can see that the
donor data collector initiates the process that leads to a donation
decision because of the goal to get a yes/no answer on the patient’s
suitability. If the final decision is ‘yes’ or ‘no’, then the goal is
clearly met. If, however, the decision is undecided or inconclusive
then the goal has not been met. The latter would suggest that ei-
ther the decision making process is inadequate or that the goal is
unrealistic.

Finally, with regard to the desirability of the outcome, the donor
data collector holds the goal that the family’s wishes are always
respected (theDecision and theConsent are equal as seen in the
process documentation). If the decision on donation contradicts the
family’s decision on consent, the outcome is not desirable. Again,
this suggests that the decision making process needs to be repaired.

Given that different agents may initiate organ donation assess-
ments then, without process documentation, there would be no way
of connecting the result of a process to the agents that originated it:
the decision maker may be unaware of the donor data collector that
initiated the process. In addition, without including goals in our
model to represent the intentions of agents, the success and desir-
ability of a process in terms of the agents initiating it could not be
judged. With the approach presented in this paper, we have been
able to ask questions about an application process which can help
identify inconsistencies between the intended and actual effects of
those processes.

7. CONCLUSIONS
As systems become ever more complex in support of grand vi-

sions of computing, with large-scale distributed systems being ap-
plied to solve challenging and important problems, the notion of
provenance, to track and trace data and processes is becoming in-
creasingly more important. At one level, significant results have
already been achieved, and good progress is being made. However,
capturing intentional notions in such frameworks has, until now, not
been considered. Yet if provenance is to be useful in tracing more
than justwhatwas done, and considerwhy it was done, then this is
vital. In this paper we have developed the first model for addressing
just this concern, by mapping existing models of intentional inter-
active behaviour on the one hand, and provenance on the other, to
derive a new model for representing autonomy in provenance.

While the example presented in this paper is small, most real
applications include complex processes that span multiple compo-
nents and, in an increasing number of cases, multiple sites and or-
ganisations. The provenance architecture, its extension to include
representation of autonomy and the algorithm presented in this pa-
per all apply equally well to small or large processes. This facil-
ity comes from thelocalisation of the recording of p-assertions,



whereby actors record what is occurring locally to themselves only,
and the iterative following of relationships, which means that only
one p-assertion needs to be evaluated at once and the execution of
the algorithm can be distributed.

The value of this initial model is clear, but there is still more work
that remains to be done. For instance, in this paper we have only
considered processes initiated by one agent, rather than by multi-
ple co-operating agents. Furthermore, we envisage that, if a system
includes multiple autonomous agents that document their coopera-
tion and the engagement chains they initiate, and if that documen-
tation includes the goals that they are attempting to fulfil by these
processes, then another agent,A, can later come along and use the
described processes as aplan to fulfil its own goals. Because the
goals of the agents involved in past processes are made explicit,A
can determine whether the plan will exactly suit its requirements
or needs to be adapted. From a software-engineering perspective,
the methodology by which developers determine what process doc-
umentation should be recorded by their application could be inte-
grated with existing agent-oriented methodologies to ease the de-
velopment of provenance-aware multi-agent system applications.
Finally, in systems in which the autonomous agents of interest are
people, rather than software, we cannot expect p-assertions regard-
ing their goals to be recorded directly. Instead, we can, in some cir-
cumstances,infer their goals from their interaction with software
that does record p-assertions.

In this paper, we have extended a concrete system, which is being
deployed in multiple domains, for capturing the provenance of data,
so that the intentions behind the actions of application actors can
be generically documented in a well-specified format. This allows
agents to record their actions, interactions and intentions without
needing to know of each other’s existence, an important character-
istic in large, dynamic systems. Because of the common data struc-
ture and semantics of that recorded, a querier can then combine the
disparate documentation to answer important questions regarding
whether the application is fulfilling the goals of those using it, the
algorithm presented in this paper being an example of such a query.
Future work will expand on this basis to consider asking questions
regarding the provenance of data in systems in which agents co-
operate and compete.
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