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ABSTRACT
In this paper we present an advanced bidding agent that partici-
pates in first-price sealed bid auctions to allocate advertising space
on BluScreen – an experimental public advertisement system that
detects users through the presence of their Bluetooth enabled de-
vices. Our bidding agent is able to build probabilistic models of
both the behaviour of users who view the adverts, and the auctions
that it participates within. It then uses these models to maximise the
exposure that its adverts receive. We evaluate the effectiveness of
this bidding agent through simulation against a range of alternative
selection mechanisms including a simple bidding strategy, random
allocation, and a centralised optimal allocation with perfect fore-
sight. Our bidding agent significantly outperforms both the simple
bidding strategy and the random allocation, and in a mixed popula-
tion of agents it is able to expose its adverts to 25% more users than
the simple bidding strategy. Moreover, its performance is within
7.5% of that of the centralised optimal allocation despite the highly
uncertain environment in which it must operate.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent agents

General Terms
Algorithms, Design, Theory

Keywords
bidding agent, auction, public display

1. INTRODUCTION
Electronic displays are increasingly being used within public envi-
ronments, such as airports, city centres and retail stores, in order to
advertise commercial products, or to entertain and inform passers-
by. Recently, researchers have begun to investigate how the con-
tent of such displays may be varied dynamically over time in order
to increase its variety, relevance and exposure [9]. Particular re-
search attention has focused on the need to take into account the
dynamic nature of the display’s audience, and to this end, a number
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of interactive public displays have been proposed. These displays
have typically addressed the needs of a closed set of known users
with pre-defined interests and requirements, and have facilitated
communication with these users through the active use of handheld
devices such as PDAs or phones [3, 7]. As such, these systems
assume prior knowledge about the target audience, and require ei-
ther that a single user has exclusive access to the display, or that
users carry specific tracking devices so that their presence can be
identified [6, 11]. However, these approaches fail to work in pub-
lic spaces, where no prior knowledge regarding the users who may
view the display exists, and where such displays need to react to
the presence of several users simultaneously.

By contrast, Payne et al. have developed an intelligent public
display system, named BluScreen, that detects and tracks users
through the Bluetooth enabled devices that they carry with them ev-
eryday [8]. Within this system, a decentralised multi-agent auction
mechanism is used to efficiently allocate advertising time on each
public display. Each advert is represented by an individual adver-
tising agent that maintains a history of users who have already been
exposed to the advert. This agent then seeks to acquire advertising
cycles (during which it can display its advert on the public displays)
by submitting bids to a marketplace agent who implements a sealed
bid auction. The value of these bids is based upon the number of
users who are currently present in front of the screen, the history
of these users, and an externally derived estimate of the value of
exposing an advert to a user.

In this paper, we present an advanced bidding agent that signif-
icantly extends the sophistication of this approach. In particular,
we consider the more general setting in which it is impossible to
determine an a priori valuation for exposing an advert to a user.
This is likely to be the case for BluScreen installations within pri-
vate organisations where the items being advertised are forthcom-
ing events or news items of interest to employees and visitors, and
thus have no direct monetary value (indeed in this case bidding is
likely to be conducted in some virtual currency). In addition, it
is also likely to be the case within new commercial installations
where limited market experience makes estimating a valuation im-
possible. In both cases, it is more appropriate to assume that an
advertising agents will be assigned a total advertising budget, and
that it will have a limited period of time in which to spend this bud-
get (particularly so where the adverts are for forthcoming events).
The advertising agent is then simply tasked with using this budget
to maximum effect (i.e. to achieve the maximum possible advert
exposure within this time period).

Now, in order to achieve this goal, the advertising agent must be
capable of modelling the behaviour of the users in order to predict
the number who will be present in any future advertising cycle. In
addition, it must also understand the auction environment in which
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it competes, in order that it may make best use of its limited budget.
Thus, in developing an advanced bidding agent that achieves this,
we advance the state of the art in four key ways:

1. We enable the advertising agents to model the arrival and
departure of users as independent Poisson processes, and to
make maximum likelihood estimates of the rates of these
processes based on their observations. We show how these
agents can then calculate the expected number of users who
will be present during any future advertising cycle.

2. Using a decision theoretic approach we enable the advertis-
ing agents to model the probability of winning any given auc-
tion when a specific amount is bid. The cumulative form of
the gamma distribution is used to represent this probability,
and its parameters are fitted using observations of both the
closing price of previous auctions, and the bids that that ad-
vertising agent itself submits.

3. We show that our explicit assumption that the advertising
agent derives no additional benefit by showing an advert to
a single user more than once, causes the expected utility of
each future advertising cycle to be dependent on the expected
outcome of all the auctions that precede it. We thus present a
stochastic optimisation algorithm based upon simulated an-
nealing that enables the advertising agent to calculate the op-
timal sequence of bids that maximises its expected utility.

4. Finally, we demonstrate that this advanced bidding strategy
outperforms a simple strategy with none of these features
(within an heterogenous population the advertising agents
who use the advanced bidding strategy are able to expose
their adverts to 25% more users than those using the simple
bidding strategy), and we show that it performs within 7.5%
of that of a centralised optimiser with perfect knowledge of
the number of users who will arrival and depart in all future
advertising cycles.

The remainder of this paper is organised as follows: Section 2 dis-
cusses related work where agents and auction-based marketplaces
are used to allocated advertising space. Section 3 describes the pro-
totype BluScreen system that motivates our work. In section 4 we
present a detailed description of the auction allocation mechanism,
and in section 5 we describe our advanced bidding strategy for the
advertising agents. In section 6 we present an empirical validation
of our approach, and finally, we conclude in section 7.

2. RELATED WORK
The commercial attractiveness of targeted advertising has been am-
ply demonstrated on the internet, where recommendation systems
and contextual banner adverts are the norm [1]. These systems typ-
ically select content based upon prior knowledge of the individual
viewing the material, and such systems work well on personal de-
vices where the owner’s preferences and interests can be gathered
and cached locally, or within interactive environments which utilise
some form of credential to identify the user (e.g. e-commerce sites
such as Amazon.com).

Attempts to apply these approaches within the real world have
been much more limited. Gerding et al. present a simulated system
(CASy) whereby a Vickrey auction mechanism is used to sell ad-
vertising space within a modelled electronic shopping mall [2]. The
auction is used to rank a set of possible advertisements provided by
different retail outlets, and the top ranking advertisements are se-
lected for presentation on public displays. Feedback is provided
through subsequent sales information, allowing the model to build
up a profile of a user’s preferences. However, unlike the BluScreen

Figure 1: A deployed BluScreen prototype.

system that we consider here, it is not suitable for advertising to
many individuals simultaneously, as it requires explicit interaction
with a single user to acquire the user’s preferences.

By contrast, McCarthy et al. have presented a prototype imple-
mentation of a system (GroupCast) that attempts to respond to a
group of individuals by assuming a priori profiles of several mem-
bers of the audience [7]. User identification is based on infrared
badges and embedded sensors within an office environment. When
several users pass by the display, a centralised system compares
the user’s profiles to identify common areas of interest, and content
that matches this common interest is shown.

Thus, whilst CASy is a simulated system that allows advertisers
to compete for the attention of single user, GroupCast is a proto-
type system that detects the presence of groups of users and selects
content to match their profiles. Despite their similarities, neither
system addresses the settings that interests us here: how to allocate
advertising space between competing advertisers who face an audi-
ence of multiple individuals about whom there is no a priori profile
information. Thus, in the next section we describe the prototype
BluScreen system that motivates our work.

3. THE BLUSCREEN PROTOTYPE
BluScreen is based on the notion of a scalable, extendable, adver-
tising framework whereby adverts can be efficiently displayed to
as many relevant users as possible, within a knowledge-poor envi-
ronment. To achieve these goals, several requirements have been
identified:

1. Adverts should be presented to as diverse an audience as pos-
sible, whilst minimising the number of times the advert is
presented to any single user.

2. Users should be identified by existing ubiquitous, consumer
devices, so that future deployments within public arenas will
not require uptake of new hardware.

3. The number of displays should be scalable, such that adverts
appear on different displays at different times.

4. Knowledge about observed behaviour and composition of the
audience should be exploited to facilitate inference of user
interests which can be exploited by the system.

To date, a prototype systems that addresses the first two goals has
been demonstrated [8]. This system uses a 23 inch flat-screen dis-
play deployed within an office environment to advertise events and
news items. Rather than requiring the deployment of specialised
hardware, such as active badges (see [11] for details), BluScreen
detects the presence of users in the vicinity of each display through
the Bluetooth-enabled devices that they carry with them everyday1.
1Devices must be in discovery mode to detectable.
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Device Type Unique Samples Devices
Occasional < 10 135
Frequent 10 − 1000 70
Persistent > 1000 6

Table 1: Number of Bluetooth devices observed at different fre-
quencies over a six month sample period.

This approach is attractive since the Bluetooth wireless protocol
is characterised by its relative maturity, market penetration, and
emphasis on short-range communication. Table 1 summarises the
number of devices detected by this prototype installation over a
six month period. Of the 212 Bluetooth devices detected, approxi-
mately 70 were detected regularly, showing that Bluetooth is a suit-
able proxy for detecting individuals in front of the screen.

In order to achieve a scalable and extendable solution a multi-
agent systems design philosophy is adopted whereby a number of
different agents types interact (see figure 2). The interactions of
these agents are implemented through a web services protocol2,
and they constitute a decentralised marketplace that allocates ad-
vertising space in an efficient and timely manner. In more detail,
the responsibilities of each agent types are:

Bluetooth Device Detection Agent: This agent monitors the en-
vironment in the vicinity of a BluScreen display and deter-
mines the number and identity of any Bluetooth devices that
are close by. It keeps historical records of the arrival and
departure of Bluetooth devices, and makes this information
available to advertising agents as requested.

Marketplace Agent: This agent facilitates the sale of advertising
space to the advertising agents. A single marketplace agent
represents each BluScreen display, and access to this screen
is divided into discrete advertising cycles of fixed duration.
Before the start of each advertising cycle, the marketplace
agent holds a sealed-bid auction (see section 4 for more de-
tails). The winner of this auction is allocated access to the
display during the next cycle.

Advertising Agent: This agent represents a single advert and is
responsible for submitting bids to the marketplace agent in
order that it may be allocated advertising cycles, and thus,
display its advert to users. It interacts with the device de-
tection agent in order to collect information regarding the
number and identity of users who are currently in front of
the display. On the basis of this information, its past experi-
ences, and its bidding strategy, it calculates the value of the
bid that it should submit to the marketplace agent.

Thus, having described the prototype BluScreen system, we next go
on to describe the details of the auction mechanism that we consider
in this work, and then the advanced bidding agent that operates bids
within this auction.

4. THE AUCTION MECHANISM
As described above, BluScreen is designed to efficiency allocate
advertising cycles in a distributed and timely manner. Thus, one-
shot sealed bid auctions are used for the market mechanism of the
marketplace agent. In previous work, each advertising agent was
assumed to have an externally derived estimate of the value of
exposing an advert to a user. Under this assumption, a second-
price sealed-bid auction was shown to be effective, since advertis-

2This is implemented on a distributed Mac OS X based system
using the Bonjour networking protocol for service discovery.
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Figure 2: The BluScreen agent architecture for a single display.

ing agents have a simple strategy of truthfully bidding their valua-
tion in each auction [8].

However, as described earlier, in this paper we consider the more
general setting in which it is impossible to determine an a priori val-
uation for exposing an advert to a single user. This may be because
the BluScreen installation is within a private organisation where
what is being advertised (e.g. news items or forthcoming events)
has no monetary value, or it may be a new commercial installation
where limited market experience makes estimating such a valuation
impossible. In the absence of such a valuation, the attractive eco-
nomic properties of the second-price auction can not be achieved
in practise, and thus, in our work there is no need to limit our atten-
tion to the second-price auction. Indeed, since these auctions are
actually extremely rare within real world settings [10], in this work
we consider the more widely adopted first-price auction since this
increases the applicability of our results.

Thus, in more detail, we consider an instance of a BluScreen in-
stallation with a single display screen that is managed by a single
marketplace agent3. We consider that access to the display screen
is divided into discrete advertising cycles, each of length tc, and a
first-price sealed bid auction is held immediately prior to the start of
each advertising cycle. The marketplace agent announces the start
and deadline of the auction, and collects sealed bids from each ad-
vertising agent. At the closing time of the auction the marketplace
agent announces to all participants and observers the amount of the
winning bid, and informs the winning advertising agent that it was
successful (the identity of the winning advertising agent is not an-
nounced to all observers). In the case that no bids are placed within
any auction, a default advert is displayed.

Having described the market mechanism that the marketplace
agent implements, we now go on to describe and evaluate an ad-
vanced bidding strategy for the advertising agents to adopt.

5. ADVANCED BIDDING STRATEGY
As described above, we consider the case that the advertising agents
do not have an externally derived estimate of the value of exposing
the advert to a single user. Rather, they have a constrained budget,
B, and a limited period of interest during which they wish to dis-
play their advert. Their goal is then to find the appropriate amount
to bid within each auction in this period, in order to maximise the
exposure of their advert.

In attempting to achieve this goal the advertising agent is faced
with a high level of uncertainty about future events. It will be un-
certain of the number of users who will be present during any ad-
vertising cycle since even if the number of users currently present

3This assumption of having a single BluScreen instance is made
to simplify our task of validating the correctness and the efficiency
of the proposed mechanism and strategy, and generalising these
results to the case of multiple screens is the aim of our future work.
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is known, some may leave before the advert commences, and oth-
ers may arrive. Moreover, the amount that must be bid to ensure
that an auction is won is uncertain since it depends on the number
and behaviour of the competing advertising agents.

Thus, we enable the agent to use its observations of the arrival
and departure of users to build a probabilistic model, based upon
independent Poisson processes, that describes the number of users
who are likely to be exposed to any advert. In addition, we enable
the agent to observe the outcome of previous advertising cycle auc-
tions, and use the observations of the closing price, and the success
or otherwise of the bids that it itself submitted, to build a probabilis-
tic model of the bid required to win the auction. The agent then uses
these two models to calculate its expected utility in each advertising
cycle, and in turn, determine the optimal sequence of bids that max-
imises this utility given its constrained budget. Having calculated
this sequence of bids, then the first bid in the sequence is actually
used in the auction for the next advertising cycle. However, at the
close of this cycle, the process is repeated with a new optimal se-
quence of bids being calculated in order take to account of what
actually happened in the preceding auction (i.e. whether the bid
was successful or not, and how many users arrived or departed).

Thus, in the next three subsections we describe these two proba-
bilistic models, and their application within the bidding strategy of
the advertising agent.

5.1 Predicting the Number of Users
In order to predict the number of users that will be present in any
future advertising cycle, it is necessary to propose a probabilistic
model for the behaviour of the users. Thus, our advanced bidding
strategy assumes that their arrival and departures are determined by
two independent Poisson processes4 with arrival rate, λa, and de-
parture rate, λd. This represents a simple model that is commonly
applied within queuing theory5 [5], yet is one that we believe well
describes the case where BluScreen displays are placed in commu-
nal areas where people meet and congregate. Given the history of
users’ arrivals and departures obtained from the device detection
agent, the advertising agent makes a maximum likelihood estima-
tion of the values of λa and λd.

In more detail, if the advertising agent has observed n users ar-
riving within a time period t, then the maximum likelihood estima-
tion for the arrival rate λa is simply given by:

λa =
n

t
(1)

Likewise, if an agent observes n users each with a duration of stay
of t1, t2, . . . , tn time periods, then the maximum likelihood esti-
mation for the departure rate λd is given by:

1

λd

=
1

n

n∑
i=1

ti (2)

4Given a Poisson distribution with rate parameter λ, the number of
events, n, within an interval of time t is given by:

P (n) =
e−λt (λt)n

n!

In addition, the probability of having to wait a period of time, t,
before the next event is determined by:

P (t) = λeλt

5Note however that in queuing theory it is typically the arrival rate
and service times of customers that are modelled as Poisson pro-
cesses. Our users are not actually modelled as a queue since the
duration of their stay is independent of that of the other users.

�

0 t t + tc
τ

(i)
n users

�

(iii)
λatc users

�

(ii)
λat users

�

Figure 3: Example showing how to predict the number of users
who see an advert shown in an advertising cycle of length tc,
commencing at time t in the future.

In environments where these rates are subject to change, the agent
can use a limited time window over which observations are used
to estimate these rates. Alternatively, in situations where cyclic
changes in these rates are likely to occur (i.e. changing arrival and
departure rates at different times of the day, as may be seen in areas
where commuters pass through), the agent can estimate separate
values over each hour long period.

Having estimated the arrival and departure rate of users, and
knowing the number of users who are present at the current time,
the advertising agent is then able to predict the number of users
who are likely to be present in any future advertising cycle6. Thus,
we consider the problem of predicting this number for an advertis-
ing cycle of duration tc that starts at a time t in the future, given
that n users are currently present (see figure 3). This number will
be composed of three factors: (i) the fraction of the n users that are
initially present who do not leave in the interval, 0 ≤ τ < t, before
the advertising cycle commences, (ii) users that actually arrive in
the interval, 0 ≤ τ < t, and are still present when the advertising
cycle actually commences, and finally, (iii) users that arrive during
the course of the advertising cycle, t ≤ τ < t + tc.

Now, considering case (i) above, the probability of one of the n
users still being present when the advertising cycle starts is given
by

∫
∞

t
λde−λdτdτ = e−λdt. Thus we expect ne−λdt of these

users to be present. In case (ii), we expect λat new users to ar-
rive before the advertising cycle commences, and the probability
that any of these will still be there when it actually does so is
given by 1

t

∫ t

0
e−λd(t−τ)dτ = 1

λdt

[
1 − e−λdt

]
. Thus we expect

λa

λd

[
1 − e−λdt

]
of these users to be present. Finally, in case (iii)

we expect λatc users to arrive during the course of the advertising
cycle. Thus, the combination of these three factors gives an expres-
sion for the expected number of users who will be present within
an advertising cycle of length tc, that commencing at time t in the
future, given that there are n users currently present:

Nn,t = ne−λdt +
λa

λd

[
1 − e−λdt

]
+ λatc (3)

Note that as t increases the results become less dependent upon the
initial number of users, n. The mean number of users present at
any time is simply λa/λd, and the mean number of users exposed

to an advert in any advertising cycle is given by λa

(
tc + 1

λd

)
.

5.2 Predicting the Probability of Winning
In addition to estimating the number of users who will be present
in any advertising cycle, an effective bidding agent must also be
able to predict the probability of it winning an auction given that it
submits any specified bid. This is a common problem within bid-
ding agents, and approaches can generally be classified as game
theoretic or decision theoretic. Since our advertising agents are
unaware of the number or identity of the competing advertising

6Note that we do not require a user to be present for the entire
advertising cycle in order to be counted as present.
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agents, the game theoretic approach is precluded. Thus, we take a
decision theoretic approach similar to that adopted within continu-
ous double auctions where bidding agents estimate the market price
of goods by observing transaction prices [4].

Thus, our advertising agents uses a parameterised function to
describe the probability of winning the auction given any submitted
bid, P (b). This function must have support [0,∞) since bids must
be positive. In addition, we expect it to exhibit by an ‘s’ shaped
curve whereby the probability of winning an auction is small when
the submitted bid is very low, the probability is close to one when
the bid is very high, and there is a transition point that characterises
the change from a losing to a wining bid. To this end, we use the
cumulative form of the gamma distribution for this function:

P (b) =
γ (k, b/θ)

Γ (k)
(4)

where Γ(k) is the standard gamma function, and γ (k, b/θ) is the
incomplete gamma function. This function has the necessary prop-
erties described above, and has two parameters, k and θ. The tran-
sition point where P (b) = 0.5 is given by kθ and the sharpness of
the transition is described by kθ2. In figure 4 we show examples of
this function for three different values of k and θ.

The advertising agent chooses the most appropriate values of k
and θ by fitting the probability function to observations of previous
auctions. An observation is a pair {bi, oi} consisting of the bid,
bi, and an auction outcome, oi. Each auction generates at least one
pair in which bi is equal to the closing price of the auction, and
oi = 1. In addition, another pair is generated for each unsuccessful
bid submitted by the advertising agent itself, and in this case oi =
0. Thus, having collected N such pairs7, the agent finds the values
of k and θ by evaluating:

arg min
k,θ

N∑
i=1

[
oi −

γ (k, bi/θ)

Γ (k)

]2

(5)

This expression can not be evaluated analytically, but can be simply
found using a numerical gradient descent method whereby the val-
ues of k and θ are initially estimated using their relationship to the
transition point described above. The gradient of this expression
is then numerically evaluated at these points, and new estimates of
k and θ calculated by making a fixed size move in the direction
of maximum gradient. This process is repeated until k and θ have
converged to an appropriate degree of accuracy.

5.3 Expected Utility of an Advertising Cycle
The goal of the advertising agent is to gain the maximum exposure
for its advert given its constrained budget. We define the utility
of any advertising cycle as the expected number of users who will
see the advert for the first time during that cycle, and hence, we
explicitly assume that no additional utility is derived by showing
the advert to any user more than once8. Thus, we can use the results
of the previous two sections to calculate the expected utility of each
advertising cycle remaining within the advertising agent’s period of

7In the case that no unsuccessful bids have been observed, there is
no evidence of where the transition point between successful and
unsuccessful bids is likely to occur. Thus, in this case, an addi-
tional pair with value {α min(b1 . . . bn), 0} is automatically cre-
ated. Here α ∈ [0, 1] determines how far below the lowest success-
ful bid the advertising agent believes the transition point to be. We
have typically used α = 0.5 within our experiments.
8As noted before, we assume that a user has seen the advert if they
are present during any part of the advertising cycle, and we do not
differentiate between users who see the entire advert, or users who
see a fraction of it.
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Figure 4: Cumulative gamma distribution representing the
probability of winning an auction (θ = 1 and k = 5,10 & 20).

interest. In the first advertising cycle this is simply determined by
the probability of the advertising agent winning the auction, given
that it submits a bid b1, and the number of users who are currently in
front of the BluScreen display, but have not seen the advert before,
is n. Thus, the expected utility of this advertising cycle is simply
described by:

u1 = P (b1)Nn,0 (6)

Now, in the second advertising cycle, the expected utility will clearly
depend on the outcome of the auction for the first. If the first auc-
tion was indeed won by the agent, then there will be no users who
have yet to see the advert present at the start of the second adver-
tising cycle. Thus, in this case, the expected number of new users
who will see the advert in the second advertising cycle is described
by N0,0 (i.e. only newly arriving users will contribute any utility).
By contrast, if the first auction was not won by the agent, then the
expected number of users who have yet to see the advert is given by
Nn,tc

where tc is the length of the preceding adverting cycle (i.e.
exactly the case described in section 5.1 where there are n users
initially present and the advertising cycle starts at a time tc in the
future). Thus, the expected utility of the second advertising cycle
is given by:

u2 = P (b2) [P (b1)N0,0 + (1 − P (b1))Nn,tc
] (7)

We can generalise this result by noting that the number of users ex-
pected to be present within any future advertising cycle will depend
on the number of cycles since an auction was last won (since at this
point the number of users who are present but have not seen the
advert must be equal to zero). Thus, we must sum over all possible
ways in which this can occur, and weight each by its probability.
Hence, the general case for any advertising cycle is described by
the rather complex expression:

ui = P (bi)
[ i−1∑

j=1

N0,(i−j−1)tc
P (bj)

i−1∏
m=j+1

(1 − P (bm))

+ Nn,(i−1)tc

i−1∏
m=1

(1 − P (bm))
]

(8)

Thus, given this expression, the goal of the advertising agent is to
calculate the sequence of bids over the c remaining auctions, such
that the total expected utility is maximised, whilst ensuring that the
remaining budget, B, is not exceeded:

arg max
b1...bc

c∑
i=1

ui such that
c∑

i=1

bi = B (9)
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Figure 5: Total expected utility of the advertising agent over a
continuous range of values of b1 for a number of discrete values
of budget, B, when there are just two auction cycles.

Having calculated this sequence, a bid of b1 is submitted in the next
auction. Once the outcome of this auction is known, the process
repeats with a new optimal sequence of bids being calculated for
the remaining advertising cycles of the agent’s period of interest.

5.4 Optimal Sequence of Bids
Solving for the optimal sequence of bids expressed in equation 9
can not be performed analytically. Instead we develop a numerical
routine to perform this maximisation. However, it is informative to
initially consider the simple case of just two auctions.

5.4.1 Two Auction Example
In this case the expected utility of the advertising agent is simply
given by u1 + u2 (as described in equations 6 and 7), and the bid-
ding sequence is solely dependent on b1 (since b2 = B−b1). Thus,
we can plot the total expected utility against b1 and graphically de-
termine the optimal value of b1 (and thus also b2).

To this end, figure 5 shows an example calculated using parame-
ter values λa = 1/120, λd = 1/480 and tc = 120. In this case, we
assume that k = 10 and θ = 1, and thus, given that kθ describes
the midpoint of the cumulative gamma distribution, a bid of 10 rep-
resents a 50% chance of winning any auction (i.e. P (10) = 0.5).
In addition, we assume that n = λa/λd = 4, and thus the initial
number of users present is equal to the mean number that we expect
to find present at any time. The plot indicates that when the budget
is small, then the maximum utility is achieved at the extreme values
of b1. This corresponds to bidding in just one of the two auctions
(i.e. b1 = 0 and b2 = B or b1 = B and b2 = 0). However, as the
budget increases, the plot passes through a transition whereby the
maximum utility occurs at the midpoint of the x-axis, correspond-
ing to bidding equally in both auctions (i.e. b1 = b2 = B/2).
This is simply understood by the fact that continuing to allocate
the budget to a single auction results in diminishing returns as the
probability of actually winning this auction approaches one.

In this case, the plot is completely symmetrical since the num-
ber of users present at the start is equal to its expected value (i.e.
n = λa/λd). If however, n < λa/λd the plot is skewed such that
when the budget is small, it should be allocated to the second auc-
tion (since more users are expected to arrive before this advertising
cycle commences). Conversely, when n > λa/λd the entire bud-
get should be allocated to the first auction (since the users who are
currently present are likely to depart in the near future). However,
in both cases, a transition occurs whereby given sufficient budget it
is preferable to allocate the budget evenly between both auctions9.
9In fact, one auction is still slightly preferred, but the difference in
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Figure 6: Stochastic optimisation algorithm to calculate the op-
timal sequence of bids in the general case of multiple auctions.

5.4.2 General Case
In general, the behaviour seen in the previous example charac-
terises the optimal bidding behaviour of the advertising agent. If
there is sufficient budget, bidding equally in all auctions results in
the maximum expected utility. However, typically this is not pos-
sible and thus utility is maximised by concentrating what budget
is available into a subset of the available auction. The choice of
this subset is determined by a number of factors. If there are very
few users currently present, it is optimal to allocate the budget to
later auctions in the expectation that more users will arrive. Con-
versely, if there are many users present, a significant proportion of
the budget should be allocated to the first auction to ensure that it is
indeed won, and these users see the advert. Finally, since no utility
is derived by showing the advert to a single user more than once,
the budget should be allocated such that there are intervals between
showings of the advert, in order that new users may arrive.

Now, due to the complex form of the expression for the expected
utility of the agent (shown in equation 8) it is not possible to analyt-
ically calculate the optimal sequence of bids. However, the inverse
problem (that of calculating the expected utility for any given se-
quence of bids) is easy. Thus, we can use a stochastic optimisation
routine based on simulated annealing to solve the maximisation
problem. This algorithm starts by assuming some initial random
allocation of bids (normalised such that the total of all the bids is
equal to the budget B). It then makes small adjustments to this al-
location by randomly transferring the budget from one auction to
another. If this transfer results in an increase in expected utility,
then it is accepted. If it results in a decrease in expected utility, it
might still be accepted, but with a probability that is determined by
a temperature parameter. This temperature parameter is annealed
such that the probability of accepting such transfers decreases over
time. In figure 6 we present this algorithm in pseudo-code.

6. EVALUATION
In order to evaluate the effectiveness of the advanced bidding strat-
egy developed within this paper we compare its performance to
three alternative mechanisms. One of these mechanisms represents
a simple alternative bidding strategy for the advertising agents, whilst
the other two are centralised allocation mechanisms that represent

expected utility between this and an even allocation is negliable.
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Figure 7: Comparison of four different allocation mechanisms for allocating advertising cycles to advertising agents. Results are
averaged over 50 simulation runs and error bars indicate the standard error in the mean.

the upper and lower bounds to the overall performance of the sys-
tem. In more detail, the four mechanisms that we compare are:

Random Allocation: Rather than implementing the auction mech-
anism, the advertising cycle is randomly allocated to one of
the advertising agents.

Simple Bidding Strategy: We implement the full auction mech-
anism but with a population of advertising agents that em-
ploy a simple bidding strategy. These advertising agents do
not attempt to model the users or the auction environment in
which they bid, but rather, they simply evenly allocate their
remaining budget over the remaining advertising cycles.

Advanced Bidding Strategy: We implement the full auction mech-
anism with a population of advertising agents using the prob-
abilistic models and the bidding strategy described here.

Optimal Allocation: Rather than implementing the auction mech-
anism, the advertising cycle is allocated to the advertising
agent that will derive the maximum utility from it, given per-
fect knowledge of the number of users who will arrive and
depart in all future advertising cycles.

Using these four alternative allocation mechanisms, we ran repeated
simulations of two hours of operation of the entire BluScreen en-
vironment for a default set of parameters whereby the arrival and
departure rate of the users are given by λa = 1/120s and λd =

1/480s, and the length of an advertising cycle is 120s. Each ad-
vertising agent is assigned an advert with a period of interest drawn
from a Poisson distribution with a mean of 8 advertising cycles, and
these agents are initially allocated a budget equal to 10 times their
period of interest. For each simulation run, we measure the mean
normalised exposure of each advert. That is, the fraction of users
who were detected by the BluScreen display during the period of
interest of the advertising agent who were actually exposed to the
agent’s advert. Thus a mean normalised exposure of 1 indicates
that the agent managed to expose its advert to all of the users who
were present during its period of interest (and a mean normalised
exposure of 0 means that no users were exposed to the advert).

Figure 7 shows the results of this experiments. We first observe
the general result that as the number of advertising agents increases,
and thus the competition between them increases, then the mean
normalised exposure of all allocation mechanisms decreases. We
then observe that in all cases, there is no statistically significant
improvement in using the simple bidding strategy compared to ran-
dom allocation (p > 0.25 in Student’s t-test). Since this simple bid-
ding strategy does not take account of the number of users present,
and in general, simply increases its bid price in each auction until it

does in fact win one, this is not unexpected. However, in all cases
the advanced bidding strategy does indeed significantly outperform
the simple bidding agent (p < 0.0005 in Student’s t-test), and its
performance is within 7.5% of that of the optimal allocation that
has perfect knowledge of the number of users who will arrival and
depart in all future advertising cycles.

In addition, we present results of experiments performed over a
range of parameter values, and also with a mixed population of ad-
vertising agents using both the advanced and simple bidding strate-
gies. This is an important scenario since advertisers may wish to
supply their own bidding agents, and thus, a homogeneous popula-
tion is not guaranteed. In each case, keeping all other parameters
fixed, we varied one parameter, and these results are shown in fig-
ure 8. In general, we see the similar trends as before. Increasing
the departure rate causes an decrease in the mean normalised ex-
posure since advertising agents have less opportunities to expose
users to their adverts. Increasing the period of interest of each
agent decreases the mean normalised exposure, since more adver-
tising agents are now competing for the same users. Finally, in-
creasing the arrival rate of the users causes the results of the simple
and advanced bidding strategies to approach one another, since the
variance in the number of users who are present during any adver-
tising cycle decreases, and thus, modelling their behaviour provides
less gain. However, in all cases, the advanced bidding strategy sig-
nificantly outperforms the simple one (p < 0.0005 in Student’s
t-test). On average, we observe that advertising agents who use the
advanced bidding strategy are able to expose their adverts to 25%
more users than those using the simple bidding strategy.

Finally, we show that a rational advertising agent, who has a
choice of bidding strategy, would always opt to use the advanced
bidding strategy over the simple bidding strategy, regardless of the
composition of the population that it finds itself in. Figure 9 shows
the average normalised exposure of the advertising agents when
the population is composed of different fractions of the two bid-
ding strategies. In each case, the advanced bidding strategy shows
a significant gain in performance compared to the simple bidding
strategy (p < 0.0005 in Student’s t-test), and thus, gains improved
exposure over all population compositions.

7. CONCLUSIONS
In this paper, we presented an advanced bidding strategy for use by
advertising agents within the BluScreen advertising system. This
bidding strategy enabled advertising agents to model and predict
the arrival and departure of users, and also to model their suc-
cess within a first-price sealed bid auction by observing both the
bids that they themselves submitted and the winning bid. The ex-
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Figure 8: Comparison of an evenly mixed population of advertising agents using simple and advanced bidding strategies over a range
of parameter settings. Results are averaged over 50 simulation runs and error bars indicate the standard error in the mean.
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Figure 9: Comparison of an unevenly mixed population of advertising agents using simple and advanced bidding strategies. Results
are averaged over 50 simulation runs and error bars indicate the standard error in the mean.

pected utility, measured as the number of users who the advertising
agent exposes its advert to, was shown to depend on these factors,
and resulted in a complex expression where the expected utility of
each auction depended on the success or otherwise of earlier auc-
tions. We presented an algorithm based upon simulated annealing
to solve for the optimal bidding strategy, and in simulation, this
bidding strategy was shown to significantly outperform a simple
bidding strategy that had none of these features. Its performance
closely approached that of a central optimal allocation, with per-
fect knowledge of the arrival and departure of users, despite the
uncertain environment in which the strategy must operate.

Our future work in this area consists of extending this bidding
strategy to richer environments where there are multiple interre-
lated display screens, where maintaining profiles of users allows
a richer matching of user to advert, and where alternative auction
mechanisms are applied (we a particularly interesting in introduc-
ing a ‘pay per user’ auction setting similar to the ‘pay per click’
auctions employed by internet search websites). This work will
continue to be done in conjunction with the deployment of more
BluScreen prototypes in order to gain further real world experience.
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