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ABSTRACT

Decentralized MDPs provide powerful models of interactions
in multi-agent environments, but are often very difficult or
even computationally infeasible to solve optimally. Here we
develop a hierarchical approach to solving a restricted set of
decentralized MDPs. By forming commitments with other
agents and modeling these concisely in their local MDPs,
agents effectively, efficiently, and distributively formulate co-
ordinated local policies. We introduce a novel construction
that captures commitments as constraints on local policies
and show how Linear Programming can be used to achieve
local optimality subject to these constraints. In contrast to
other commitment enforcement approaches, we show ours
to be more robust in capturing the intended commitment
semantics while maximizing local utility. We also describe
a commitment-space heuristic search algorithm that can be
used to approximate optimal joint policies. A preliminary
empirical evaluation suggests that our approach yields faster
approximate solutions than the conventional encoding of
the problem as a multiagent MDP would allow and, when
wrapped in an exhaustive commitment-space search, will
find the optimal global solution.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; I.2.11 [Artificial Intelligence]: Dis-
tributed Artificial Intelligence—Multiagent systems

General Terms

Algorithms, Design, Performance

Keywords

Coordination, Negotiation, Agent Modeling
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It is now well-established that finding joint policies for
agents that are acting and interacting in a stochastic envi-
ronment is a hard problem. Because in its general form the
decentralized MDP problem is NEXP-complete [2], a variety
of techniques have been proposed and developed for solving
restricted varieties of the problem [1] [7] and for finding only
approximately optimal solutions [10].

Our work described in this paper similarly considers re-
strictions and approximations, but adds to the arsenal of
techniques a hierarchical approach that breaks the overall
problem into a pair of coupled subproblems. One subprob-
lem is the familiar one in which an agent formulates an opti-
mal policy for its own local MDP. But paired with this is the
subproblem of configuring the manner in which agents will
handle their interactions such that the agents adopt appro-
priate inter-agent commitments and capture these in their
local MDPs. Solving these subproblems in tandem can, in
principle, enable agents to find effective and even optimal
joint policies without explicitly searching the (huge) joint
policy space.

In this paper, we investigate the viability of this new ap-
proach, with a particular eye on answering questions about
how agents should model commitments among themselves
and how these commitments can be folded into each agent’s
local policy-finding process. A key contribution that we
make is in developing a novel construction of the agents’ lo-
cal MDPs that concisely captures inter-agent commitments
as constraints on overall policies, in contrast to modeling
commitments as rewards/penalties over states. Our eval-
uations show that our approach to incorporating commit-
ments into local MDPs permits an efficient and semantically-
accurate local encoding of commitments. Further, through
this capability, we are able to empirically demonstrate that
our approach supports an iterative, co-routining approach
to joint policy formulation that can trade off joint policy
quality for fast joint policy formulation.

The remainder of this paper is as follows. In the next sec-
tion we briefly review the general decentralized MDP prob-
lem, and present the restricting assumptions (along with
their rationales) that should hold in problems where our
approach will be applicable. In Section 3, we examine the
pitfalls of an existing solution method which motivates our
novel approach. We next present the details, and evaluate
the efficacy of the approach by contrasting it with encoding
commitments as rewards/penalties, showing it to be much
less error-prone in capturing the intended semantics. We
also describe strategies for searching over the commitment
space. In Section 4, we offer preliminary results suggesting
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the efficiency and “anytime” behavior that our approach
engenders, in contrast to solving a more straightforward en-
coding of the problem as a multi-agent MDP.

2. PROBLEM DESCRIPTION
Our approach addresses coordination problems that arise

among loosely-coupled agents that interact through features
in their shared environment, where the nature of these in-
teractions are known ahead of time to the agents. The kinds
of problems where this and the assumptions described be-
low hold arise in the DARPA Coordinators [13] application
domain where one agent might establish the preconditions
for another agent’s action, or where successful achievement
of objectives requires the simultaneous execution of actions
by multiple agents. These types of multiagent coordination
problems can be represented in the TAEMS language [3].

In this domain, the agents are attempting to maximize
their collective rewards, which here for simplicity we will
consider to be the sum of their individual rewards. Thus,
it is rational for one agent to take actions that reduce its
own reward if in doing so it sufficiently increases the lo-
cal rewards of other agents. Because the agents are only
loosely-coupled through the environment, the agents’ tran-
sition models are semi-dependent, in that one agent’s tran-
sition can affect special non-local features of another agent’s
state, thus affecting the other agents trajectory through its
state space. These non-local features are separate from other
local features changed through actions taken by the other
agent, so that the effects of the two acting agents are inde-
pendent from one another. That is, the effects of an agent’s
action are stochastically determined based on the agents’
collective state, regardless of the contemporaneous actions
being taken by other agents.

Furthermore, in this paper, we will assume that in car-
rying out its policy an agent will know all of the relevant
features of the collective state, such as whether another
agent has succeeded in a hoped-for enabling (precondition-
establishing) action, or whether another agent has also be-
gun the execution of a hoped-for simultaneous action. In
other words, for now we take it for granted that inter-agent
communication is sufficiently fast, cheap, and reliable that
agents can maintain nonlocal awareness about the small
subset of nonlocal world features that condition their (in-
ter)actions. We will also assume that agents must reach
terminal states in finite time: that due to (for example)
utilities being associated with accomplishing (or failing to
accomplish) a mission by some deadline, agents are working
with finite horizons.

Finally, we assume that transitions are stochastic. This
means that even if there is some state of the world that an
agent wants to bring about, its actions might not reliably
coerce the world into the desired state. Because of this un-
certainty, an agent will formulate a policy that considers all
of the possible state trajectories, and what action the agent
should take depending on what state is reached. Stochas-
tic transitions not only complicate the local planning of an
agent, but also complicate what agents can expect from (or
promise to) each other. Specifically, even if an agent has ev-

ery intention of acting in support of another agent, it might

not be able to guarantee to successfully complete the support-

ing action.

2.1 Related Work

The study of various flavors of multiagent, decentralized
MDPs and POMDPs has burgeoned over the last several
years, and a survey of the entire area cannot fit within the
space limitations of this paper. The reader interested in the
area is encouraged to read more comprehensive treatments
given in recent articles in this area such as [7].

Practical strategies for developing effective joint policies
have been developed for particular problem subclasses that
provide structure that can be exploited. Becker and col-
leagues groundbreaking Coverage Set algorithm [1] exploits
independence among transitions (or rewards) whereby each
agent can identify its optimal policy for the different poli-
cies that could be adopted by other agents (where the space
of alternative policies is compactly represented), and then
the joint optimal policy can be derived from these. Gold-
man and Zilberstein have developed a suite of techniques
that exploit goal-oriented behavior in decentralized MDPs
(and POMDPs) under different communication regimes [7].
Nair and colleagues, working in the realm of POMDPs,
have explored the use of local search in their family of joint
equilibrium-based search for policies (JESP) techniques, in
which agents exchange local policy information and itera-
tively construct local policies that are the best responses to
the policies currently subscribed to by others [10].

Our work has a flavor of each of the above. Like the
work of Becker and colleagues, our inspiration is in reduc-
ing the search space for each agent in finding a local policy
using a compact model of the space of policies that agents
with whom it potentially interacts might adopt. The com-
pact model we use is based on the specification of com-
mitments, which as we show restrict the space of possible
policies in ways that matter when it comes to interactions.
Like Goldman and Zilberstein, our work exploits a notion
of goal-oriented behavior, in the sense that different agents
have control over establishing different features of the col-
lective state, and that rewards accrue from reaching “final”
states where the agents have together established impor-
tant conditions. Like those introduced by Nair et al, our
techniques conduct a local search, incrementally adjusting
commitments to ascend a gradient up the global rewards,
though we can also prune infeasible portions of the com-
mitment configuration space. What distinguishes our work
is our use of a local search through the space of commit-
ment configurations rather than through policies, and our
LP techniques for mapping commitment configurations into
constraints on the local policy search.

The idea of forming commitments to interactions first, and
then locally working around them, has a rich history in the
multiagent systems literature, including work on (General-
ized) Partial Global Planning [6] and on team planning [12]
just to name a few. Compared to that work, our contribu-
tion is in applying these ideas in goal-oriented decentralized
MDPs. More recently, commitment-based techniques for co-
ordinating local MDP policies have been developed where
commitments are enforced in local models by injecting addi-
tional rewards and penalties to particular (classes of) states
[9]. As shown in this paper, such techniques do not always
capture the semantics of the commitments as effectively as
our approach.

2.2 Single-Agent MDPs
Each agent models its interactions with the system using

a Markov Decision Process. We now briefly review the basic
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MDP model and describe an extension that allows agents
to coordinate through the use of commitments. A classical
single-agent Markov Decision Process can be described by a
4-tuple 〈S, A, P, R〉 whose contents are as follows:

• S is a finite set of world states, over which there is a
probability distribution α that specifies the start state.
Each world state accounts for all features of the agent’s
local view of its environment.

• A is a finite set of actions available to the agent.

• The dynamics of the world are represented by a transi-
tion probability function P : S×A×S → [0, 1]. Given
that the agent performs action a ∈ A in state s, it will
transition to state s′ with probability P (s′|s, a).

• The reward function R : S × A → R defines a local
reward R (s, a) given to the agent upon taking action
a in state s.

The solution of an MDP comes in the form of a policy π,
which may be described as a mapping of states to probability
distributions over actions (π : S × A → [0, 1]). An optimal
policy π∗ is defined as one that maximizes the agent’s total
expected discounted reward U :

Uγ (π, α) =

∞X

t=0

X

i

X

a

γ
t
ϕi (t) πiaR (i, a) , (1)

where ϕi (t) refers to the probability of being in state i at
time t, γ ∈ [0, 1) is the discount factor, and α is the agent’s
start state distribution.

There are several common approaches for computing the
optimal policy π∗ of an MDP [11]. These include Dynamic
Programming (i.e. policy iteration, value iteration), Monte
Carlo methods, and reinforcement learning. In this paper,
we find it convenient to discuss a Linear Programming (LP)
approach. An MDP as described above can be formulated
as a Linear Program:

max
X

i,a

xiaR (i, a)

˛̨
˛̨
˛̨
∀j,

X

a

xja − γ
X

i,a

xiaP (j|i, a) = αj

∀i∀a, xia ≥ 0
(2)

where αj denotes to the probability of starting in state
j and the xia variables, often called occupancy measures,
denote the total expected discounted number of times action
a is performed in state i [4] [8]. Upon solving this LP, we
can easily compute the optimal policy π∗ from the computed
optimal occupancy measures:

π
∗

i,a =
xiaP
b
xib

(3)

It is also very easy to compute the expected utility of
this policy. This is accomplished by a dot product of the
occupancy measures with the MDP reward model:

EU =
X

i

X

a

xiaR (i, a) (4)

It may be desirable for optimal deterministic policies to
be computed. This can be achieved by adding integer and
linear constraints to the LP in Equation 9 and solving the
resulting mixed-integer linear program (MILP). [5]

2.3 Modeling Peers
The conventional MDP is appropriate for a single agent

acting alone in its environment. Here, however, we concern
ourselves with a cooperative system of agents sharing an en-
vironment and interacting with one another as they interact
with the environment. That is, both the state transitions
and rewards for a given agent may vary depending on the
actions of its peers. Even if the agent is rigidly following a
deterministic policy and all state transitions are determin-
istic, the outcome may be affected by other agents. These
transition and reward dependencies can be referred to as
non-local effects [3].

We assume that, before constructing a policy, each agent
is aware of its potential interactions with other agents. Fur-
thermore, we seek to capture these non-local effects explic-
itly in the agents’ local MDP models. Consider a decom-
position of the agents fully-observable state space S into lo-
cal features and non-local features affected solely by actions
performed by other agents:

S = SLocal × SNLE1 × SNLE2 × ... (5)

The features represented by SNLEx may be changed by
actions performed by other agents at specified times, but
may not be changed by actions performed by the local agent.
The initial value of a features is known to both the local
agent and the agent that may affect its value. And, when
the value changes, so does the effective state of the local
agent. Subsequently, the transition and reward models (P
and R) must also capture the affected transitions through
the factored state space and affected rewards, respectively.
Although the agent’s MDP model grows exponentially with
the number of non-local commitments, as long as the system
is loosely-coupled (i.e. exhibiting a low degree of inter-agent
dependence), this representation is much more compact and
efficient to solve than the full joint state and action space.
In the evaluation section below, we contrast this approach
with solving the full multi-agent MDP.

Figure 1 shows a graphical representation of 2 agents mod-
eling non-local effects between each other. Here, there are
two binary features (x and y) that are changed through ac-
tions taken by agent 1. Agent 2 models these in its state
space as non-local features. Upon taking initial action a6,
agent 2’s transition is dependent solely on whether or not
agent 1 sets bit x. The “ghost” state 01?0 represents agent
2’s certainty that its local feature bit d will be set, but its
uncertainty about whether or not it will enter a state in
which x is set. Similarly, bit y is affected by agent 1 during
the next transition. In forming a policy, it is useful for agent
2 to know what actions agent 1 will take. In state s22, for
example, if agent 1 is likely to set y, then the best action
for agent 2 is a9. But if agent 1 will most surely not set y,
agent 2 will be better rewarded if it takes action a8. Agent
2 models uncertainty of the non-local effects (from agent 1’s
actions) through transition probabilities in the MDP tran-
sition model. Knowing the true values of the probabilities
will allow agent 2 to maximize its expected local utility by
coordinating its behavior with agent 1.

2.4 Explicitly Modeling Commitments
So that agent 1 and agent 2 can coordinate effectively, we

define the notion of a commitment :

Definition 1. A commitment Cix(s) = ρ is a guaran-
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Figure 1: Simple local MDP models with non-local effects and commitments between 2 agents.

tee that agent i involved in non-local effect x will perform
actions thereby affecting other agents such that the NLE
feature value is effectively SNLEx = s with probability no
less than ρ.

For every non-local effect, such a commitment may be
formed by each supporting agent. The commitment can be
thought of as a promise to enter with probability at least
ρ some part of the state space whose feature values (s) are
desirable to the dependent agents involved in the non-local
effect. To a dependent agent, the commitment is a promise
that its transitions and rewards will be restricted to some
part of its state space with probability ρ or greater. Thus,
from a practical standpoint, this information of commit-
ments made by other agents effectively dictates the MDP
transition probabilities for those non-locally dependent fea-
tures. In this way, policies can be formed with adequate
consideration taken of the expected behavior of the other
agents in the system. For agent 2 in Figure 1, ρ1 and ρ2

model the probabilities with which agent 1 commits to set-
ting bits x and y respectively, and hence agent 2’s effective
transition probabilities.

A strong assumption of this methodology is that the non-
local effects of the system are known. This allows for an
explicit representation of the commitment space (such as
is shown in Figure 1). We know that agent 1 setting bit
x affects the transition probabilities of agent 2. Further-
more, the compactness of the commitment space and effi-
ciency of our commitment-based solution methods depend
on the level of inter-agent dependency. For the general class

of multi-agent MDP problems, the number of possible com-
mitments can range from 0 to n×|S|×|A|, each of the these
taking on a ρ value between 0 and 1. Discretizing ρ into ρ̄

possible values then yields a commitment space as large as
ρ̄n×|S|×|A|. Explicit modeling of commitments is thus most
effective for weakly-coupled systems in which the space of
possible commitment values is smaller.

3. SOLUTION METHODS

We seek to use the commitment methodology defined in
the previous section to guide an agent to build a policy that
coordinate its behavior with other agents. Toward this pur-
pose, it is important that agents build policies that strictly
adhere to their promised commitments.

3.1 Extra Rewards and Penalties

Let us first turn to a technique described by Musliner
and colleagues [9] to enforce commitments in decentralized
MDPs. Here, an extra reward r ≥ 0 is added to for transi-
tions into states in which a commitment is first satisfied and
an extra penalty p ≤ 0 is added for transition into states in
which it can first be determined that the commitment will
not be satisfied. That is, the local MDP reward model is
tweaked so as to bias the MDP solver to find a policy that
satisfies the commitment.

For the problem shown in Figure 1, let agent 1 commit to
setting bit x with probability ρ1 = 1. The reward/penalty
approach will then add extra reward value r to states 0011
and 1010 (since these are the states that agent 1 enters right
after setting bit x). A penalty p will then be added to the
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reward values of states 1100 and 1001, since these are the
states at agent 1’s time horizon for which arrival means that
bit x has never and will never be set. Notice that if r > 10
or if p < −10, action a1 will be strictly preferred by agent
1. Running an MDP solver on this augmented MDP will
invariably yield a1 as the optimal action choice for agent
1 in state 0000. And so agent 1 will be able to satisfy its
commitment whilst maximizing its local utility.

The reward/penalty methodology may be effective in some
situations, but it is often difficult to set r and p appropri-
ately. Consider commitment set {ρ1 = 0.4, ρ2 = 0.4}, indi-
cating that agent 1 commits to setting x with probability
0.4 and y with probability 0.4. In order to help us select
appropriate values for r and p, let us write the expected
utility equations for the three policies, adding in r and p

where appropriate:

EUrp[a1] = r + p + 10
EUrp[a2] = 0.4(2r + 5) + 0.6(2p + 5) = 0.8r + 1.2p + 5
EUrp[a3] = r + p + 10

(6)
Puzzling over these equations should lead the reader to

the inevitable conclusion drawn in Claim 1.

Claim 1. There exists an MDP and a set of commit-
ments for which

1. There exists a deterministic local policy that satisfies
these commitments.

2. Using the reward/penalty methodology along with stan-
dard deterministic MDP solution techniques, no pair
of the form {r > 0, p < 0} will yield a policy that both
adheres to the commitments and achieves optimal local
utility (with respect to the commitment set).

First, notice that a policy does exist which will satisfy the
commitment set {ρ1 = 0.4, ρ2 = 0.4}. The deterministic
local policy which does this is simply to perform action a2

in state 0000. With probability 0.4, the agent will transi-
tion into 0010, satisfying the first half of its commitment
and then into 0011, satisfying the second half of its commit-
ment. The problem is that we cannot compute such a policy
by adding extra rewards and penalties. One can prove that
not only does there not exist an {r, p} pair, but there does
not even exist a {r1, p1, r2, p2} tuple (giving the two com-
mitments unique reward and penalty weights) that yields
the desired policy.1 It turns out that the optimal joint pol-
icy dictates that agent 2 should select action a2 in order to
maximize global utility.

This simple example shows the difficulties of setting r and
p. Semantically, we are forced to assign value to satisfying
the commitment vs. failing to satisfy it. This value is in-
herently tied to local policy values dictated by the MDP
reward model. If r and p are too close to zero, a policy may
be formulated that doesn’t satisfy the commitment. But if r

and p are too large (and small, respectively), then the agent
may sacrifice some of its local quality so as to build a policy
that will satisfy the commitment to a higher probabilistic
degree than is required. Or still worse, as in our example,
there may be no r and p values that can be used to compute
a policy that satisfies the commitments even though such a
policy exists.
1Due to space limitations, we omit this proof.

3.2 A Linear Programming Solution
To address the pitfalls of the rewards/penalties approach

to commitment enforcement, we propose a novel alternative.
Using extra rewards and penalties means manipulating the
local rewards and utility visible to the agent, making some
states and actions seem more appealing than others. But
satisfaction of a commitment has nothing directly to do with
local utility or local rewards. Agreeing to satisfy a commit-
ment means, more accurately, constraining an agent’s be-
havior. This is the basis for our new approach.

Let agent i assert commitment Cix(s) = ρ. This commit-
ment is fulfilled if and only if, upon termination, agent i has,
with probability no less than ρ, reached a state for which,
feature SNLEx has value s. Assuming that the agent is exe-
cuting a finite-time policy, checking that this commitment is
fulfilled requires only checking that the probability distribu-
tion over states on the agent’s finite-time horizon meets this
commitment criterion. The Linear Programming methodol-
ogy discussed in Section 2.2 is particularly obliging in this
respect. Referring to the notation in Equation 2, we can
calculate an expected count of the number of times state i

is visited by summing over occupancy measures:

xi =
X

a

xia (7)

Moreover, we can constrain the occupancy measures in
such a way that states (on the time horizon) with desired
feature values are reached with the desired probability. The
following constraint will ensure that the linear program com-
putes a policy that fulfills commitment Cix(sx) = ρ:

X

{i|SNLEx(i)=sx}

X

a

xia ≥ ρ (8)

So, by adding one additional constraint per outgoing NLE
commitment, we can formulate a new linear program for
computing optimal local policies that adhere to a given set
of commitments:

max
X

i

X

a

xiaR (i, a)

˛̨
˛̨
˛̨
˛̨
˛̨

∀j,
X

a

xja − γ
X

a,i

xiaP (j|i, a) = αj

∀x
X

{i|SNLEx(i)=sx}

X

a

xia ≥ ρ

∀i∀a, xia ≥ 0
(9)

A benefit of this LP approach is its ability to construct
policies that capture commitments perfectly while still main-
taining optimality. This makes our approach extremely ro-
bust when compared to the reward/penalty method. For the
example in the previous section, our approach returns the
optimal local policy which enforces the desired commitment.

It is possible that a certain set of commitments is infeasi-
ble for an agent. That is, there does not exist a local policy
that will satisfy all commitments. In this case the LP solver
will return “no solution” and the agent will know that it is
overcommitted. Otherwise, the returned policy is guaran-
teed to satisfy the commitments. For the rewards/penalties
methodology, on the other hand, if there does not exist a
policy that satisfies all commitments, this methodology will
nevertheless return a policy. Some post-processing of the
policy is then needed to determine that not all of the com-
mitments were satisfied.
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3.3 Computing Near-optimal Joint Policies
We have shown how to compute optimal local policies

given a set of commitments. The task of computing the op-
timal joint policy is now reduced to searching the space of
commitments for the optimal commitment set. The para-
graphs that follow describe a general strategy for searching
over this space.

We envision an iterative heuristic search algorithm that
selects a set of commitments, builds local policies around
those commitments, estimates global quality, and repeats.
As more iterations are performed, the goal is to achieve
higher expected global quality through better sets of com-
mitments. The building of local policies can be done us-
ing constrained Linear Programming as described in Section
3.2. We assume that global quality of the joint policy can
be closely-approximated by some function of agents’ local
policy qualities.

The search algorithm begins by initializing the commit-
ment set. One simple approach is to assign random ρ values
to each commitment. This initialization may, however, start
the search in a very strange part of the commitment space
with ρ values that have no relation to probabilities in the
agents’ MDP models. A slightly more sophisticated method
by which to initialize commitments is to allow agents to act
greedily. That is, set all ρ values to 0 and build local policies.
Next, inspect each local policy, computing what the actual
probabilities of satisfying various commitments turned out
to be.2 Let these probabilities form the initial commitment
set. In this way, we determine what agents can accomplish
if they are alone in the world, and then search for potential
interactions that the agents missed out on by acting alone.

On subsequent iterations of our search algorithm, we con-
struct the next commitment set by modifying the previous
commitment set. This can be accomplished by random per-
turbation of the ρ values biased by heuristics such as sus-
pected agent overcommitment or undercommitment. Upon
estimating the global quality, one may find that the agents
took a step down the hill, achieving a lower overall expected
utility than on the previous iteration. Furthermore, a com-
mitment set may be reached that is infeasible. That is, an
agent may be overcommitted to the point that no matter
how much local utility is sacrificed, it is impossible to sat-
isfy the agent’s outgoing commitments. Schemes may be
devised for deciding when to step back to a previous set of
commitments.

4. EMPIRICAL EVALUATION
This section presents some preliminary empirical results

from using our constrained local policy formulation approach
within the larger context of searching the joint policy space.
As shown in Figure 2, we devised a scalable problem to
test the commitment methodology. This problem involves
n agents linked together by transition-dependent non-local
effects. As shown, agent 1 affects what agent 2 “senses” via
a transition that changes the value of a local feature. In turn
agent 2 affects agent 3 when it changes one of its features.
And agent 3 affects agent 4; and so on, forming a chain of
possible enablements all the way to agent n. Notice that the
relevant actions {A, B, C} of an intermediate agent i corre-
spond to how it can interact with the agent i + 1. A is the

2This is accomplished by a simple summation of appropriate
occupancy measures computed by the linear program.

greedy action and may only help the agent to achieve high
local utility. B and C, on the other hand, are enabling ac-
tions. With high probability, B and C respectively continue
or start a chain of enablements, allowing the next agent to
achieve higher utility (R = 10i as opposed to R = 0). Due
to stochasticity of the environment, the enablement only oc-
curs with with probability 0.9.

Notice that the reward structure is designed so that agents
further along in the potential chain get a larger payoff for
being enabled than do earlier ones. The same sequential in-
crease is prescribed for the reward received by agents that
choose to continue an enablement chain (by performing B

in state 0001). These increasing rewards reflect the general
cooperative paradigm that it is in the agents’ best inter-
ests to work together and to form enablement chains with
other agents. The MDPs shown in Figure 2 define the local
views of each agent. Note, however that the MDPs for in-
termediate agents vary slightly from one another due to the
randomly initialized reward variables gi and ei. For each
agent, these values are redrawn randomly from uniform dis-
tributions [1, 10] and [1, 5] respectively. This causes some
agents to be more self-centered and some to be more ac-
commodating to their peers. These MDPs may define an
arbitrarily large system of agents. The global utility of the
system can be calculated as the sum of local utilities, equal
to the sum of rewards that all agents receive.

We begin by examining a 3-agent commitment chain prob-
lem in which the reward variables are set as follows:
{g1 = 10, g2 = 5, e1 = 1, e2 = 3}.
This problem is small enough that we can fully explore the
joint policy space. Agent 1 has 2 possible policies:
{〈perform A1〉 , 〈perform C1〉}.
Agent 2 has 4 possible policies:
{〈perform A2|state = 0001, perform A2|state = 0000〉 ,
〈perform A2|state = 0001, perform C2|state = 0000〉,
〈perform B2|state = 0001, perform A2|state = 0000〉,
〈perform B2|state = 0001, perform C2|state = 0000〉}.
Agent 3 has only one possible policy, since it has only one
action. Out of the 2×4 = 8 joint policies, the optimal can be
calculated to be: π∗ = 〈C1, B2|0001, C2|0000〉.3 The global
expected utility of this joint policy is calculated below in
Equation 10:

U1 (π∗) = 0.9e0

U2 (π∗) = 0.9(10 · 2 + 0.9(2 · 2)) + 0.1(0.9(e2))
U3 (π∗) = 0.9(10 · 3)

EU (π∗) =
X

i

Ui (π∗) = 0.9 + 21.51 + 27 = 49.41

(10)

This joint policy corresponds to the commitment set C∗ =
〈ρ1 = 0.9, ρ2 = 0.9〉, indicating that both agent 1 and agent
2 will perform the necessary enabling actions with the high-
est probability, thereby forming a full enablement chain.
Applying the constrained Linear Programming approach to
compute deterministic local policies given optimal commit-
ment set C∗yields local policies 〈C1〉 and 〈B2|0001, C2|0000〉.
Together, these thus form the optimal joint policy π∗. As
shown, given the optimal set of commitments, our LP algo-
rithm computes for each agent its contribution to the opti-
mal joint policy. This is because all interactions are captured
via commitments and our approach computes optimal local

3This joint policy dictates that agent 1 perform action C in
its initial state and that agent 2 perform action B in state
0001 and C in state 0000.
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Figure 2: n-agent Commitment Chain problem.

policies given a set of commitments. So, given that the op-
timal set of commitments can be found, our methodology is
capable of producing the optimal joint policies as would be
computed by solving the full multiagent MDP (MMDP).

A benefit of this distributed approach is that computing
local policies is much less computationally intensive. The
Commitment Chain problem has n agents, n − 2 of which
each have 3 actions and 4 state features. So the joint state
and action spaces for the full multiagent MDP are on the
order of 24n and 3n respectively. As the number of agents
grows, formulating and solving the multiagent MDP rapidly
becomes intractable. However, our distributed approach can
be used to compute a joint policy relatively quickly by solv-
ing n local MDPs with 24 states and 3 actions each. The
optimality of such a joint policy is dependent, however, on
the set of commitments, of course. Even if the commitments
are suboptimal, our techniques can quickly enable agents to
formulate a joint policy that realizes the commitments (if
they can all be realized), making our approach useful in
time-limited domains.

Using a heuristic search algorithm that searches through
the space of commitments, one can take advantage of the
trade-off of time versus optimality that our methodology
provides. We show the results of one such joint policy search
experiment in Figure 3. This plot shows joint policy ex-
pected utility values for 25 iterations of commitment-space
search (averaged over 50 runs) as described in Section 3.3,
using an iterative algorithm similar to simulated annealing.4

4The line marked “agent-estimated” utility is computed us-
ing the estimated utility over which the algorithm is per-
forming its hill-climbing. As shown, this generally under-
estimates the actual expected joint policy value (“effective
utility”), since the effective commitment probability values
are typically higher than those promised by the agents.

Here we apply heuristic search strategies to an instance of

Figure 3: 5-agent Commitment Chain Results

the Commitment Chain problem with 5 agents, which has
a commitment space containing commitments of the form
〈ρ1, ρ2, ρ3, ρ4〉. The commitments are initialized by first lo-
cally optimizing under the assumption that no other agent
will perform the desirable enablement. On each subsequent
iteration of search, one of the commitment values is ran-
domly selected, and perturbed randomly according to an
overcommitment heuristic5. The random perturbations de-

5We use a simple heuristic that estimates an overcommit-
ment level based on how high the ρ value is, whether or not
the agent’s local utility has gone up or down from the pre-
vious iteration, and if it was able to compute a policy at all.
The overcommitment level is then used to set the direction
and magnitude of the random value perturbations.
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crease in intensity across the 25 iterations by use of an in-
verse exponential cooling schedule. Notice that as the algo-
rithm progresses, expected global utility tends to increase.
And after just 25 iterations, the average joint utility has
come very close to the optimal value of 144.63. 6

5. DISCUSSION AND FUTURE WORK

Our research addresses the difficult task of developing co-
ordinated policies for systems of interacting agents. By im-
posing reasonable restrictions on the problem domain such
as loose-coupling, agent awareness of non-local effects, finite
horizons, and additive global utility, we have presented a
commitment-based methodology for approximating the op-
timal joint policy. In particular, we have introduced a novel
approach to commitment enforcement using constrained Lin-
ear Programming. We have shown our approach to be more
robust than others in capturing the intended commitment
semantics while maintaining local optimality. While con-
strained Linear Programming is guaranteed to produce op-
timal local polices that satisfy a set of commitments (if such
policies exist), we have shown that standard MDP solution
methods with extra rewards and penalties do not have such
guarantees.

We have described how our constrained local policy for-
mulation method can form an inner loop to an iterative ex-
ploration over the space of commitments. We shown em-
pirically that given a limited amount of time, such a search
may be used to approximate optimal joint policies. Itera-
tive commitment-space search has the added benefit of being
able to be run for arbitrary amounts of time. The longer it
is run, the better policies that we expect to be computed.
This “anytime” feature allows for a trade-off of time and
solution quality that is particularly useful for domains with
computational limitations.

Our empirical results suggest that locally-constrained com-
mitment-based search is an efficient and effective methodol-
ogy for computing joint policies. Although the limited data
presented here demonstrates only that commitment-based
search may be applied to a scalable, structured problem,
we strive for stronger claims concerning the efficacy of our
approach as well as understanding better the applicability
of alternative approaches (such as extra rewards/penalties).
To this end, ongoing work includes a more thorough empiri-
cal study, the development of alternative commitment-space
search strategies, and specification of a wider range of test
problems. We are concurrently developing algorithms for a
large-scale multiagent domain which may serve as a testbed
for the methodologies presented here.
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