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ABSTRACT

The Shapley value is one of the key solution concepts for coali-
tion games. Its main advantage is that it provides a unique and fair
solution, but its main problem is that, for many coalition games,
the Shapley value cannot be determined in polynomial time. In
particular, the problem of finding this value for the voting game is
known to be #pP-complete in the general case. However, in this pa-
per, we show that there are some specific voting games for which
the problem is computationally tractable. For other general voting
games, we overcome the problem of computational complexity by
presenting a new randomized method for determining the approxi-
mate Shapley value. The time complexity of this method is linear
in the number of players. We also show, through empirical studies,
that the percentage error for the proposed method is always less
than 20% and, in most cases, less than 5%.

Categories and Subject Descriptors
1.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Algorithms, Design, Theory
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1. INTRODUCTION

Coalition formation, a key form of interaction in multi-agent sys-
tems, is the process of joining together two or more agents so as
to achieve goals that individuals on their own cannot, or to achieve
them more efficiently [1, 11, 14, 13]. Often, in such situations,
there is more than one possible coalition and a player’s payoff de-
pends on which one it joins. Given this, a key problem is to ensure
that none of the parties in a coalition has any incentive to break
away from it and join another coalition (i.e., the coalitions should
be stable). However, in many cases there may be more than one
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solution (i.e., a stable coalition). In such cases, it becomes difficult
to select a single solution from among the possible ones, especially
if the parties are self-interested (i.e., they have different preferences
over stable coalitions).

In this context, cooperative game theory deals with the prob-
lem of coalition formation and offers a number of solution con-
cepts that possess desirable properties like stability, fair division
of joint gains, and uniqueness [16, 14]. Cooperative game theory
differs from its non-cooperative counterpart in that for the former
the players are allowed to form binding agreements and so there is
a strong incentive to work together to receive the largest total pay-
off. Also, unlike non-cooperative game theory, cooperative game
theory does not specify a game through a description of the strate-
gic environment (including the order of players’ moves and the set
of actions at each move) and the resulting payoffs, but, instead, it
reduces this collection of data to the coalitional form where each
coalition is represented by a single real number: there are no ac-
tions, moves, or individual payoffs. The chief advantage of this
approach, at least in multiple-player environments, is its practical
usefulness. Thus, many more real-life situations fit more easily into
a coalitional form game, whose structure is more tractable than that
of a non-cooperative game, whether that be in normal or extensive
form and it is for this reason that we focus on such forms in this
paper.

Given these observations, a number of multiagent systems re-
searchers have used and extended cooperative game-theoretic solu-
tions to facilitate automated coalition formation [20, 21, 18]. More-
over, in this work, one of the most extensively studied solution con-
cepts is the Shapley value [19]. A player’s Shapley value gives an
indication of its prospects of playing the game — the higher the
Shapley value, the better its prospects. The main advantage of the
Shapley value is that it provides a solution that is both unique and
fair (see Section 2.1 for a discussion of the property of fairness).

However, while these are both desirable properties, the Shapley
value has one major drawback: for many coalition games, it can-
not be determined in polynomial time. For instance, finding this
value for the weighted voting game is, in general, #P-complete [6].
A problem is #pP-hard if solving it is as hard as counting satisfy-
ing assignments of propositional logic formulae [15, p442]. Since
#P-completeness thus subsumes NP-completeness, this implies that
computing the Shapley value for the weighted voting game will be
intractable in general. In other words, it is practically infeasible to
try to compute the exact Shapley value. However, the voting game
has practical relevance to multi-agent systems as it is an important
means of reaching consensus between multiple agents. Hence, our
objective is to overcome the computational complexity of finding
the Shapley value for this game. Specifically, we first show that
there are some specific voting games for which the exact value can



be computed in polynomial time. By identifying such games, we
show, for the first tme, when it is feasible to find the exact value and
when it is not. For the computationally complex voting games, we
present a new randomised method, along the lines of Monte-Carlo
simulation, for computing the approximate Shapley value.

The computational complexity of such games has typically been
tackled using two main approaches. The first is to use generat-
ing functions [3]. This method trades time complexity for stor-
age space. The second uses an approximation technique based on
Monte Carlo simulation [12, 7]. However the method we propose is
more general than either of these (see Section 6 for details). More-
over, no work has previously analysed the approximation error. The
approximation error relates to how close the approximate is to the
true Shapley value. Specifically, it is the difference between the true
and the approximate Shapley value. It is important to determine
this error because the performance of an approximation method is
evaluated in terms of two criteria: its time complexity, and its ap-
proximation error. Thus, our contribution lies in also in providing,
for the first time, an analysis of the percentage error in the approx-
imate Shapley value. This analysis is carried out empirically.

Our experiments show that the error is always less than 20%,
and in most cases it is under 5%. Finally, our method has time
complexity linear in the number of players and it does not require
any arrays (i.e., it is economical in terms of both computing time
and storage space). Given this, and the fact that software agents
have limited computational resources and therefore cannot com-
pute the true Shapley value, our results are especially relevant to
such resource bounded agents.

The rest of the paper is organised as follows. Section 2 defines
the Shapley value and describes the weighted voting game. In Sec-
tion 3 we describe voting games whose Shapley value can be found
in polynomial time. In Section 4, we present a randomized method
for finding the approximate Shapley value and analyse its perfor-
mance in Section 5. Section 6 discusses related literature. Finally,
Section 7 concludes.

2. BACKGROUND

We begin by introducing coalition games and the Shapley value and
then define the weighted voting game. A coalition game is a game
where groups of players (“coalitions™) may enforce cooperative be-
haviour between their members. Hence the game is a competition
between coalitions of players, rather than between individual play-
ers.

Depending on how the players measure utility, coalition game
theory is split into two parts. If the players measure utility or the
payoff in the same units and there is a means of exchange of utility
such as side payments, we say the game has transferable utility;
otherwise it has non-transferable utility. More formally, a coalition
game with transferable utility, (V, v), consists of:

1. afinite set (NV = {1,2,...,n}) of players and

2. afunction (v) that associates with every non-empty subset .S
of N (i.e., a coalition) a real number v(.S) (the worth of S).

For each coalition S, the number v(S) is the total payoff that is
available for division among the members of S (i.e., the set of joint
actions that coalition S can take consists of all possible divisions
of v(S) among the members of S). Coalition games with non-
transferable payoffs differ from ones with transferable payoffs in
the following way. For the former, each coalition is associated with
a set of payoff vectors that is not necessarily the set of all possible
divisions of some fixed amount. The focus of this paper is on the

weighted voting game (described in Section 2.1) which is a game
with transferable payoffs.

Thus, in either case, the players will only join a coalition if they
expect to gain from it. Here, the players are allowed to form bind-
ing agreements, and so there is strong incentive to work together to
receive the largest total payoff. The problem then is how to split the
total payoff between or among the players. In this context, Shapley
[19] constructed a solution using an axiomatic approach. Shapley
defined a value for games to be a function that assigns to a game
(N, v), anumber o; (N, v) for each 4 in N. This function satisfies
three axioms [17]:

1. Symmetry. This axiom requires that the names of players
play no role in determining the value.

2. Carrier. This axiom requires that the sum of ¢; (N, v) for all
players i in any carrier C equal v(C'). A carrier C'is a subset
of IV such that v(S) = v(S N C) for any subset of players
S CN.

3. Additivity. This axiom specifies how the values of different
games must be related to one another. It requires that for
any games @Z(Nv U) and @Z(Nv ’U/), SO’L(Nv U) +502(Nv ’U/) =
wi(N,v+v') forall iin N.

Shapley showed that there is a unique function that satisfies these
three axioms.

Shapley viewed this value as an index for measuring the power
of players in a game. Like a price index or other market indices, the
value uses averages (or weighted averages in some of its generaliza-
tions) to aggregate the power of players in their various cooperation
opportunities. Alternatively, one can think of the Shapley value as
a measure of the utility of risk neutral players in a game.

We first introduce some notation and then define the Shapley
value. Let S denote the set N — {i} and f; : S — 2V ~{% be
a random variable that takes its values in the set of all subsets of
N — {4}, and has the probability distribution function (g) defined
as:

I(n—15] = 1)!

o8 =) = BBz

The random variable f; is interpreted as the random choice of a
coalition that player ¢ joins. Then, a player’s Shapley value is de-
fined in terms of its marginal contribution. Thus, the marginal con-
tribution of player ¢ to coalition S with 7 ¢ S is a function A;v that
is defined as follows:

Aiv(S) = v(SU{i}) —v(S)

Thus a player’s marginal contribution to a coalition S is the in-
crease in the value of S as a result of 4 joining it.

DEFINITION 1. The Shapley value (y;) of the game (N, v) for
player i is the expectation (FE) of its marginal contribution to a
coalition that is chosen randomly:

0i(N,v) = E[Ajvo fi] (1)

The Shapley value is interpreted as follows. Suppose that all
the players are arranged in some order, all orderings being equally
likely. Then o; (N, v) is the expected marginal contribution, over
all orderings, of player 7 to the set of players who precede him.

The method for finding a player’s Shapley value depends on the
definition of the value function (v). This function is different for
different games, but here we focus specifically on the weighted vot-
ing game for the reasons outlined in Section 1.



2.1 Theweighted voting game

We adopt the definition of the voting game given in [6]. Thus, there
is a set of n players that may, for example, represent shareholders
in a company or members in a parliament. The weighted voting
game is then a game G = (N, v) in which:

1 ifw(S)>gq
v(8) = { 0 otherwise

for some ¢ € IR and w; € RY , where:

w(S) = Zwi
=r
for any coalition S. Thus w; is the number of votes that player 4
has and ¢ is the number of votes needed to win the game (i.e., the
quota).

Note that for this game (denoted (g;ws, ..., w,)), a player’s
marginal contribution is either zero or one. This is because the
value of any coalition is either zero or one. A coalition with value
zero is called a “losing coalition” and with value one a “winning
coalition”. Ifa player’s entry to a coalition changes it from losing to
winning, then the player’s marginal contribution for that coalition
is one; otherwise it is zero.

The main advantage of the Shapley value is that it gives a so-
lution that is both unique and fair. The property of uniqueness
is desirable because it leaves no ambiguity. The property of fair-
ness relates to how the gains from cooperation are split between
the members of a coalition. In this case, a player’s Shapley value
is proportional to the contribution it makes as a member of a coali-
tion; the more contribution it makes, the higher its value. Thus,
from a player’s perspective, both uniqueness and fairness are desir-
able properties.

3. VOTING GAMESWITH POLYNOMIAL
TIME SOLUTIONS

Here we describe those voting games for which the Shapley value
can be determined in polynomial time. This is achieved using the
direct enumeration approach (i.e., listing all possible coalitions and
finding a player’s marginal contribution to each of them). We char-
acterise such games in terms of the number of players and their
weights.

3.1 All playershave equal weight

Consider the game (g; 7, ..., 7) with m parties. Each party has j
votes. If ¢ < 7, then there would be no need for the players to form
a coalition. On the other hand, if ¢ = mj (m = |N| is the number
of players), only the grand coalition is possible. The interesting
games are those for which the quota (g) satisfies the constraint:
(7 +1) < g <j(m—1). For these games, the value of a coalition
is one if the weight of the coalition is greater than or equal to g,
otherwise it is zero.

Let ¢ denote the Shapley value for a player. Consider any one
player. This player can join a coalition as the ith member where
1 < i < m. However, the marginal contribution of the player is 1
only if it joins a coalition as the [¢/jth member. In all other cases,
its marginal contribution is zero. Thus, the Shapley value for each
player o = 1/m. Since ¢ requires one division operation, it can
be found in constant time (i.e., O(1)).

3.2 Asinglelargeparty
Consider a game in which there are two types of players: large

(with weight w; > w,) and small (with weight w). There is one
large player and m small ones. The quota for this game is q; i.e., we

have a game of the form {(q; w;, ws, ws, . . ., ws). The total number
of players is (m + 1). The value of a coalition is one if the weight
of the coalition is greater than or equal to ¢, otherwise it is zero.
Let ; denote the Shapley value for the large player and ¢ that for
each small player.

We first consider ws = 1 and then ws > 1. The smallest pos-
sible value for ¢ is w; + 1. This is because, if ¢ < wy, then the
large party can win the election on its own without the need for
a coalition. Thus, the quota for the game satisfies the constraint
w; + 1< qg <m+ w — 1. Also, the lower and upper limits for
wy are 2 and (¢ — 1) respectively. The lower limit is 2 because
the weight of the large party has to be greater than each small one.
Furthermore, the weight of the large party cannot be greater than
q, since in that case, there would be no need for the large party
to form a coalition. Recall that for our voting game, a player’s
marginal contribution to a coalition can only be zero or one.

Consider the large party. This party can join a coalition as the
ith member where 1 < ¢ < (m 4+ 1). However, the marginal
contribution of the large party is one if it joins a coalition as the
1th member where (¢ — w;) < ¢ < g. Inall the remaining cases,
its marginal contribution is zero. Thus, out of the total (m + 1)
possible cases, its marginal contribution is one in w; cases. Hence,
the Shapley value of the large party is: ¢; = w;/(m + 1). In the
same way, we obtain the Shapley value of the large party for the
general case where w, > 1 as:

oo = [wi/ws]/(m+1)

Now consider a small player. We know that the sum of the Shap-
ley values of all the m + 1 players is one. Also, since the small par-
ties have equal weights, their Shapley values are the same. Hence,
we get:

].—(pl
m

Ps =

Thus, both ¢; and ¢, can be computed in constant time. This
is because both require a constant number of basic operations (ad-
dition, subtraction, multiplication, and division). In the same way,
the Shapley value for a voting game with a single large party and
multiple small parties can be determined in constant time.

3.3 Multiplelarge and small parties

We now consider a voting game that has two player types: large
and small (as in Section 3.2), but now there are multiple large and
multiple small parties. The set of parties consists of m; large par-
ties and m s small parties. The weight of each large party is w; and
that of each small one is ws, where ws < w;. We show the compu-
tational tractability for this game by considering the following four
possible scenarios:

S1 g <muw;and ¢ < msws
S g < myw;and ¢ > msws
S3 g > muw; and ¢ > msws
S1 g > muw;and ¢ < msws

For the first scenario, consider a large player. In order to determine
the Shapley value for this player, we need to consider the number
of all possible coalitions that give it a marginal contribution of one.
Itis possible for the marginal contribution of this player to be one if
it joins a coalition in which the number of large players is between
zero and (¢ — 1) /w;. In other words, there are (¢ — 1) /w; + 1 such
cases and we now consider each of them.



Consider a coalition such that when the large player joins in,
there are i large players and (¢ — iw; — 1)/ws small players al-
ready in it, and the remaining players join after the large player.
Such a coalition gives the large player unit marginal contribution.
Let C7(4, q) denote the number of all such coalitions. To begin,

consider the case i = 0:
-1 -1
4 ) X FACTORIAL(q ) X
Ws Ws

qg—1
FACTORIAL| m; +ms — -1
Ws

Ci(0,9) = c(ms,

where C(y, z) denotes the number of possible combinations of x
items from a set of y items. For i = 1, we get:

C(lq) = c<ml,1>xc(ms,w)x

Ws

q—w; —1
FACTORIAL| —————— | X
Ws

—aw — 1
FACTOR.AL<W LWl 1)
W

In general, for i > 1, we get:

C2(i,q) = Clmy, i) x C’<ms, w) «

Ws

q—i1w; —1
FACTORIAL| —— | X
Ws

—awy — 1
FACTOR.ALQW P el Al 1)
W

Thus the large player’s Shapley value is:

g=1
w;

@1 = > CP(i,q)/FACTORIAL(m; + m)
1=0

For a given i, the time to find CZ (i, ¢) is O(T') where
T = (mums(q—iw —1)(mi+ms))/ws
Hence, the time to find the Shapley value is O(T'q/w;).
In the same way, a small player’s Shapley value is:

qg—1
wWs

@s = > C3(i,q)/FACTORIAL(m; + ms)
=0

and can be found in time O(T'q/ws). Likewise, the remaining three
scenarios (S2 to S4) can be shown to have the same time complex-

ity.
3.4 Threeplayer types

We now consider a voting game that has three player types: 1, 2,
and 3. The set of parties consists of m; players of type 1 (each
with weight w1 ), m2 players of type 2 (each with weight w-), and
ms players of type 3 (each with weight w3).

For this voting game, consider a player of type 1. It is possible
for the marginal contribution of this player to be one if it joins a
coalition in which the number of type 1 players is between zero
and (¢ — 1)/wi. In other words, there are (¢ — 1) /w1 + 1 such
cases and we now consider each of them.

Consider a coalition such that when the type 1 player joins in,
there are 4 type 1 players already in it. The remaining players join
after the type 1 player. Let C} (i, ¢) denote the number of all such

coalitions that give a marginal contribution of one to the type 1
player where:

g—1 g—iw;—1

1 amiwg

. 2,. .

Cili,q) = Ci(j, q — iwr)
j=0

1=0 J
Therefore the Shapley value of the type 1 player is:

g—1
w1

@1 = Y Ci(i,q)/FACTORIAL(m1 + ma + ms)
1=0

The time complexity of finding this value is O(T'q? /w1 w2 ) Where:

T = (Hmi)(q—iwz—1)(Zmi)/(w2+ws)

Likewise, for the other two player types (2 and 3).

Thus, we have identified games for which the exact Shapley
value can be easily determined. However, the computational com-
plexity of the above direct enumeration method increases with the
number of player types. For a voting game with more than three
player types, the time complexity of the above method is a polyno-
mial of degree four or more. To deal with such situations, therefore,
the following section presents a faster randomised method for find-
ing the approximate Shapley value.

4. FINDING THE APPROXIMATE SHAPLEY

VALUE

We first give a brief introduction to randomized algorithms and
then present our randomized method for finding the approximate
Shapley value. Randomized algorithms are the most commonly
used approach for finding approximate solutions to computation-
ally hard problems. A randomized algorithm is an algorithm that,
during some of its steps, performs random choices [2]. The ran-
dom steps performed by the algorithm imply that by executing the
algorithm several times with the same input we are not guaranteed
to find the same solution. Now, since such algorithms generate ap-
proximate solutions, their performance is evaluated in terms of two
criteria: their time complexity, and their error of approximation.
The approximation error refers to the difference between the ex-
act solution and its approximation. Against this background, we
present a randomized method for finding the approximate Shapley
value and empirically evaluate its error.

We first describe the general voting game and then present our
randomized algorithm. In its general form, a voting game has more
than two types of players. Let w; denote the weight of player
1. Thus, for m players and for quota ¢ the game is of the form
(g; w1, wa, ..., wn). The weights are specified in terms of a prob-
ability distribution function. For such a game, we want to find the
approximate Shapley value.

We let P denote a population of players. The players’ weights
in this population are defined by a probability distribution function.
Irrespective of the actual probability distribution function, let 1 be
the mean weight for the population of players and v the variance in
the players’ weights. From this population of players we randomly
draw samples and find the sum of the players’ weights in the sample
using the following rule from Sampling Theory (see [8] p425):

If w1, wa, ..., w, isarandom sample of size n drawn
from any distribution with mean p and variance v, then
the sample sum has an approximate Normal distribu-
tion with mean ny and variance Z (the larger the n the
better the approximation).



R-SHAPLEYVALUE (P, u, v, q, w;)

P: Population of players

w: Mean weight of the population P

v: Variance in the weights for poulation P
q: Quota for the voting game

w;: Player i’s weight

1LT; 0, a~—qg—wi; b—gqg—e

2. For X from 1 to m repeatedly do the following

2.1. Select a random sample Sx of size X from the
population P

2.2. Evaluate expected marginal contribution (A;)
of player i to Sx as:
b _x <:c—2Xu>2

AX -t
- \/E2TI'V/X) fa

dx

3. Evaluate Shapley value of player i as:

@i — Ti/m

Table 1: Randomized algorithm to find the Shapley value for
player 1.

We know from Definition 1, that the Shapley value for a player is
the expectation () of its marginal contribution to a coalition that is
chosen randomly. We use this rule to determine the Shapley value
as follows.

For player ¢ with weight w;, let ; denote the Shapley value. Let
X denote the size of a random sample drawn from a population
in which the individual player weights have any distribution. The
marginal contribution of player ¢ to this random sample is one if the
total weight of the X players in the sample is greater than or equal
to a = ¢ —w; but less than b = ¢ — e (where € is an inifinitesimally
small quantity). Otherwise, its marginal contribution is zero. Thus,
the expected marginal contribution of player i (denoted AX) to the
sample coalition is the area under the curve defined by N (X, %)
in the interval [a, b]. This area is shown as the region B in Figure 1
(the dotted line in the figure is X 1). Hence we get:

AY = __ /b e_X(m_;imz dz (2)
‘ V@rv/X) Ja
and the Shapley value is:
1 & x
i = — Y A 3
m X=1

The above steps are described in Table 1. In more detail, Step
1 does the initialization. In Step 2, we vary X between 1 and m
and repeatedly do the following. In Step 2.1, we randomly select a
sample Sx of size X from the population P. Player i’s marginal
contribution to the random coalition Sx is found in Step 2.2. The
average marginal contribution is found in Step 3 — and this is the
Shapley value for player 1.

THEOREM 1. The time complexity of the proposed randomized
method is linear in the number of players.

PROOF. As per Equation 3, A must be computed m times.
This is done in the for loop of Step 2 in Table 1. Hence, the time
complexity of computing a player’s Shapley value is O(m). [

The following section analyses the approximation error for the pro-
posed method.

5. PERFORMANCE OF THE RANDOMIZED
METHOD

We first derive the formula for measuring the error in the approx-
imate Shapley value and then conduct experiments for evaluating
this error in a wide range of settings. However, before doing so, we
introduce the idea of error.

The concept of error relates to a measurement made of a quan-
tity which has an accepted value [22, 4]. Obviously, it cannot be
determined exactly how far off a measurement is from the accepted
value; if this could be done, it would be possible to just give a more
accurate, corrected value. Thus, error has to do with uncertainty in
measurements that nothing can be done about. If a measurement is
repeated, the values obtained will differ and none of the results can
be preferred over the others. However, although it is not possible
to do anything about such error, it can be characterized.

As described in Section 4, we make measurements on samples
that are drawn randomly from a given population (P) of players.
Now, there are statistical errors associated with sampling which
are unavoidable and must be lived with. Hence, if the result of a
measurement is to have meaning it cannot consist of the measured
value alone. An indication of how “accurate” the result is must be
included also. Thus, the result of any physical measurement has
two essential components:

1. a numerical value giving the best “estimate” possible of the
quantity measured, and

2. the degree of uncertainty associated with this estimated value.

For example, if the estimate of a quantity is = and the uncertainty
is e(z) the quantity would lie in z £ e(z).

For sampling experiments, the standard error is by far the most
common way of characterising uncertainty [22]. Given this, the
following section defines this error and uses it to evaluate the per-
formance of the proposed randomized method.

5.1 Approximation error
The accuracy of the above randomized method depends on its sam-
pling error which is defined as follows [22, 4]:

DEFINITION 2. The sampling error (or standard error) is de-
fined as the standard deviation for a set of measurements divided
by the square root of the number of measurements.

To this end, let e(c”) be the sampling error in the sum of the

weights for a sample of size X drawn from the distribution A" (X 1, %)

where:
) Vv/X)/V(X)
= V/x @)

Let e(A;") denote the error in the marginal contribution for player
¢ (given in Equation 2). This error is obtained by propagating the
error in Equation 4 to Equation 2. In Equation 2, a and b are the
lower and upper limits for the sum of the players’ weights for a

e(o
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b e (0 Sum of weights

Figure 1: A normal distribution for the sum of players’ weights
in a coalition of size X.
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Figure 2: Performance of the randomized method for m = 10
players.

coalition of size X. Since the error in this sum is e(c™), the actual
values of a and b lie in the interval a & e(c) and b & e(c™)
respectively. Hence, the error in Equation 2 is either the probability
that the sum lies between the limits  — e(c™) and a (i.e., the area
under the curve defined by N'(X i, £ ) between a — e(o) and a,
which is the shaded region A in Figure 1) or the probability that the
sum of weights lies between the limits b and b4-e(c) (i.e., the area
under the curve defined by A/ (X, £) between band b + e(o™),
which is the shaded region C' in Figure 1). More specifically, the
error is the maximum of these two probabilities:

@ 7X(w72Xu)2
v

e(AY) = m X MAX </a—e(o‘x) e dz,

bte(oX) ¢ @=xw)?
/ e 2v dx)
b

On the basis of the above error, we find the error in the Shapley
value by using the following standard error propagation rules [22]:

R1 If x and y are two random variables with errors e(x) and e(y)
respectively, then the error in the random variable z = z +y
is given by:

e(z) = e(z)+ely)

R2 If z is a random variable with error e(z) and z = kx where
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Figure 3: Performance of the randomized method for m = 50
players.

the constant &£ has no error, then the error in z is:
e(z) = [kle(z)

Using the above rules, the error in the Shapley value (given in
Equation 3) is obtained by propagating the error in Equation 4 to
all coalitions between the sizes X = 1and X = m. Let e(y;)
denote this error where:

ele) = =D e(ad)

We analyze the performance of our method in terms of the per-
centage error PE in the approximate Shapley value which is defined
as follows:

PE = 100 x e(pi)/wi (5)

5.2 Experimental Results

We now compute the percentage error in the Shapley value using
the above equation for PE. Since this error depends on the param-
eters of the voting game, we evaluate it in a range of settings by
systematically varying the parameters of the voting game.

In particular, we conduct experiments in the following setting.
For a player with weight w, the percentage error in a player’s Shap-
ley value depends on the following five parameters (see Equation 3):

1. The number of parties (m).

2. The mean weight (p).

3. The variance in the player’s weights (v).
4. The quota for the voting game (q).

5. The given player’s weight (w).

We fix 4 = 10 and v = 1. This is because, for the normal
distribution, ;. = 10 ensures that for almost all the players the
weight is positive, and v = 1 is used most commonly in statistical
experiments (v can be higher or lower but PE is increasing in v —
see Equations 4 and 5). We then vary m, ¢, and w as follows. We
vary m between 5 and 100 (since beyond 100 we found that the
error is close to zero), for each m we vary g between 4 and mpu
(we impose these limits because they ensure that the size of the
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Figure 4: Performance of the randomized method for m = 100
players.

winning coalition is more than one and less than m — see Section 3
for details), and for each ¢, we vary w between 1 and ¢— 1 (because
a winning coalition must contain at least two players). The results
of these experiments are shown in Figures 2, 3,and 4. Asseen in
the figures, the maximum PE is around 20% and in most cases it is
below 5%.

We now analyse the effect of the three parameters: w, ¢, and m
on the percentage error in more detail.

- Effect of w. The PE depends on e(c”) because, in Equa-
tion 5, the limits of integration depend on e(o). The inter-
val over which the first integration in Equation 5 is done is
a—a+e(0®) = e(c™), and the interval over which the
second one is done is b+ e(0X) —b = e(o™). Thus, the in-
terval is the same for both integrations and it is independent
of w;. Note that each of the two functions that are integrated
in Equation 5 are the same as the function that is integrated
in Equation 2. Only the limits of the integration are different.
Also, the interval over which the integration for the marginal
contribution of Equation 2 is done is b — a = w; — € (See
Figure 1). The error in the marginal contribution is either the
area of the shaded region A (between a — e(o) and a) in
Figure 1, or the shaded area C' (between b and b + e(a™)).
As per Equation 5, it is the maximum of these two areas.
Since e(c”) is independent of w;, as w; increases, e(c™)
remains unchanged. However, the area of the unshaded re-
gion B increases. Hence, as w; increases, the error in the
marginal contribution decreases and PE also decreases.

- Effect of ¢. For a given ¢, the Shapley value for player i is
as given in Equation 3. We know that, for a sample of size
X, the sum of the players’ weights is distributed normally
with mean Xy and variance v/X. Since 99% of a normal
distribution lies within two standard deviations of its mean
[8], player i’s marginal contribution to a sample of size X is
almost zero if:

a< Xp+2y/v/X or b>Xp—2/v/X

This is because the three regions A, B, and C (in Figure 1)
lie either to the right of Z2 or to the left of Z1. However,
player i’s marginal contribution is greater than zero for those

X for which the following constraint is satisfied:

Xp—2yv/X <a<b< Xp+2y/v/X

For this constraint, the three regions A, B, and C' lie some-
where between Z1 and Z2. Sincea = g—w; and b = g —e,
Equation 6 can also be written as:

Xp—2Vv/ X <q—wi<qg—e< Xp+2yv/X

The smallest X that satisfies the constraint in Equation 6
strictly increases with ¢. As X increases, the error in sum
of weights in a sample (i.e., e(c) = 1/(v)/X) decreases.
Consequently, the error in a player’s marginal contribution
(see Equation 5) also decreases. This implies that as ¢ in-
creases, the error in the marginal contribution (and conse-
quently the error in the Shapley value) decreases.

Effect of m. It is clear from Equation 4 that the error e(o ™)
is highest for X = 1 and it decreases with X. Hence, for
small m, e(c*) has a significant effect on PE. But as m in-
creases, the effect of e(o') on PE decreases and, as a result,
PE decreases.

6. RELATED WORK

In order to overcome the computational complexity of finding the
Shapley value, two main approaches have been proposed in the
literature. One approach is to use generating functions [3]. This
method is an exact procedure that overcomes the problem of time
complexity, but its storage requirements are substantial — it requires
huge arrays. It also has the limitation (not shared by other ap-
proaches) that it can only be applied to games with integer weights
and quotas.

The other method uses an approximation technique based on
Monte Carlo simulation. In [12], for instance, the Shapley value is
computed by considering a random sample from a large population
of players. The method we propose differs from this in that they de-
fine the Shapley value by treating a player’s number of swings (if a
player can change a losing coalition to a winning one, then, for the
player, the coalition is counted as a swing) as a random variable,
while we treat the players’ weights as random variables. In [12],
however, the question remains how to get the number of swings
from the definition of a voting game and what is the time complex-
ity of doing this. Since the voting game is defined in terms of the
players’ weights and the number of swings are obtained from these
weights, our method corresponds more closely to the definition of
the voting game. Our method also differs from [7] in that while [7]
presents a method for the case where all the players’ weights are
distributed normally, our method applies to any type of distribution
for these weights. Thus, as stated in Section 1, our method is more
general than [3, 12, 7]. Also, unlike all the above mentioned work,
we provide an analysis of the performance of our method in terms
of the percentage error in the approximate Shapley value.

A method for finding the Shapley value was also proposed in
[5]. This method gives the “exact” Shapley value, but its time com-
plexity is exponential. Furthermore, the method can be used only
if the game is represented in a specific form (viz., the “multi-issue
representation”), not otherwise. Finally, [9, 10] present a polyno-
mial time method for finding the Shapley value. This method can
be used if the coalition game is represented as a “marginal contri-
bution net”. Furthermore, they assume that the Shapley value of
a component of a given coalition game is given by an oracle, and
on the basis of this assumption aggregate these values to find the
value for the overall game. In contrast, our method is independent



of the representation and gives an approximate Shapley value in
linear time, without the need for an oracle.

7. CONCLUSIONSAND FUTURE WORK

Coalition formation is an important form of interaction in multi-
agent systems. An important issue in such work is for the agents to
decide how to split the gains from cooperation between the mem-
bers of a coalition. In this context, cooperative game theory offers
a solution concept called the Shapley value. The main advantage of
the Shapley value is that it provides a solution that is both unique
and fair. However, its main problem is that, for many coalition
games, the Shapley value cannot be determined in polynomial time.
In particular, the problem of finding this value for the voting game
is #P-complete. Although this problem is, in general #pP-complete,
we show that there are some specific voting games for which the
Shapley value can be determined in polynomial time and charac-
terise such games. By doing so, we have shown when it is computa-
tionally feasible to find the exact Shapley value. For other complex
voting games, we presented a new randomized method for deter-
mining the approximate Shapley value. The time complexity of the
proposed method is linear in the number of players. We analysed
the performance of this method in terms of the percentage error in
the approximate Shapley value.

Our experiments show that the percentage error in the Shapley
value is at most 20. Furthermore, in most cases, the error is less
than 5%. Finally, we analyse the effect of the different parameters
of the voting game on this error. Our study shows that the error
decreases as

1. aplayer’s weight increases,
2. the quota increases, and
3. the number of players increases.

Given the fact that software agents have limited computational re-
sources and therefore cannot compute the true Shapley value, our
results are especially relevant to such resource bounded agents. In
future, we will explore the problem of determining the Shapley
value for other commonly occurring coalition games like the “pro-
duction economy” and the “market economy”.
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