
Speeding up Moving-Target Search

Sven Koenig
USC

CS Department
skoenig@usc.edu

Maxim Likhachev
CMU

Robotics Institute
maxim+@cs.cmu.edu

Xiaoxun Sun
USC

CS Department
xiaoxuns@usc.edu

ABSTRACT
In this paper, we study moving-target search, where an agent (=
hunter) has to catch a moving target (= prey). The agent does not
necessarily know the terrain initially but can observe it within a
certain sensor range around itself. It uses the strategy to always
move on a shortest presumed unblocked path toward the target,
which is a reasonable strategy for computer-controlled characters
in video games. We study how the agent can find such paths
faster by exploiting the fact that it performs A* searches repeat-
edly. To this end, we extend Adaptive A*, an incremental heuristic
search method, to moving-target search and demonstrate experi-
mentally that the resulting MT-Adaptive A* is faster than isolated
A* searches and, in many situations, also D* Lite, a state-of-the-art
incremental heuristic search method. In particular, it is faster than
D* Lite by about one order of magnitude for moving-target search
in known and initially unknown mazes if both search methods use
the same informed heuristics.

Categories and Subject Descriptors
I.2 [Artifical Intelligence ]: Problem Solving, Control Methods,
and Search

General Terms
Algorithms, Performance, Experimentation, Theory

Keywords
D* Lite, Hunter, Incremental Heuristic Search, Moving-Target
Search, MT-Adaptive A*, Planning with the Freespace Assump-
tion, Target, Unknown Terrain, Video Games

1. INTRODUCTION
Moving-target search is the problem of catching a moving target

in known or initially unknown terrain [1]. For example, computer-
controlled characters in video games often need to chase other char-
acters, including characters of the human players, despite having

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’07May 14–18 2007, Honolulu, Hawai’i, USA.
Copyright 2007 IFAAMAS .

3

1

6

6
2

3

35

1 32

E

D

C

B

A

4 5

4

6

F

A

T

Figure 1: Gridworld

incomplete knowledge of the terrain. They always observe the ter-
rain within their limited field of view and then remember it for fu-
ture use but do not necessarily know the terrain initially or how
it changes over time. The movement strategies of the computer
have to satisfy several properties for moving-target search: 1) They
should look believable. 2) They need to be challenging. 3) They
should not be so good that the human players have no chance of
escaping. 4) It must be possible to calculate them fast to enable
the computer to move smoothly and without delay. A minimax
strategy would allow the computer to corner its target, if possi-
ble, but might be too challenging for the human players and, most
importantly, is time-consuming to compute. One possible strat-
egy is the following one: The computer always moves on a short-
est presumed unblocked path toward its target. This movement
strategy looks believable, is challenging but not too challenging
and can be calculated reasonably fast. It also applies to following
(and catching up) with friendly characters in video games. Many
computer-controlled characters can chase their targets at the same
time in video games and each computer-controlled character needs
to search repeatedly. It is therefore important for the searches to
be as fast as possible since the computer needs to move smoothly
and without delay even if it has a slow processor and the other
game components use most of the available processor cycles. We
study how the computer can find shortest paths faster by exploiting
the fact that it performs A* searches repeatedly. We extend Adap-
tive A* [7], an incremental heuristic search method, to moving-
target search and demonstrate experimentally that the resulting MT-
Adaptive A* is faster than isolated A* searches and, in many sit-
uations, also D* Lite [5], a state-of-the-art incremental heuristic
search method.

2. MOVING-TARGET SEARCH
We study a version of moving-target search in which an agent

and a target move around in a gridworld. A gridworld is a dis-
cretization of terrain into square cells that are each either blocked
or unblocked. The agent and the target can both move from their
current cell to any one of the four adjacent cells, as long as that



3

1

6

6
2

3

35

1 32

E

D

C

B

A

4 5

4

6

F

A

T
3

1

6

6
2

3

35

1 32

E

D

C

B

A

4 5

4

6

F

A

T
3

1

6

6
2

3

35

1 32

E

D

C

B

A

4 5

4

6

F

A T
3

1

6

6
2

3

35

1 32

E

D

C

B

A

4 5

4

6

F

A

T
3

1

6

6
2

3

35

1 32

E

D

C

B

A

4 5

4

6

F

A

T

Figure 2: Moving-Target Search

cell is unblocked and still part of the gridworld. The agent always
knows which (unblocked) cell it is in and which (unblocked) cell
the target is in. Initially, the agent does not necessarily know which
cells are blocked but it can always sense the blockage status of its
four adjacent cells. Every move takes one time step for the agent
and thus has cost one. The goal of the agent is to occupy the same
cell as the target (“catch the target”). The agent always moves on
a shortest presumed unblocked path (= a path that is not known to
be blocked according to its current knowledge) from its current cell
toward the current cell of the target (freespace assumption). If this
path turns out to be blocked during execution or the target moves,
then the agent stops following its path, finds another shortest pre-
sumed unblocked path from its current cell to the current cell of
the target, taking into account the blockages that it knows about,
and then moves along the new path, until it either catches the tar-
get or determines that it cannot catch the target because there is no
shortest presumed unblocked path and it is thus separated from the
target by blockages. An agent with this optimistic movement strat-
egy is guaranteed to catch the target if it is not separated from it by
blockages and the target either moves more slowly than the agent
(for example, does not move from time to time) or moves subop-
timally from time to time. Consider the gridworld from Figure 1.
Black cells are blocked, and white cells are unblocked. The current
cell of the agent is marked A, and the current cell of the target is
marked T. Figure 2 illustrates the movement strategy of the agent
in this gridworld. (The target does not move much in this exam-
ple, different from our experiments.) Black cells are known to be
blocked by the agent. White cells are either known to be unblocked
or not known to be blocked and thus presumed to be unblocked.
The arrow shows a shortest presumed unblocked path from the cur-
rent cell of the agent (marked A) to the current cell of the target
(marked T). In the first figure, the agent finds a shortest presumed
unblocked path and then follows it for three movements. In the
fourth figure, the agent finds a new shortest presumed unblocked
path (since it observed its previous path to be blocked and the target
to move) and then follows it for one movement. In the fifth figure,
the agent finds another shortest presumed unblocked path (since it
observed the target to move), and so on. We assume here for sim-
plicity that the border of the gridworld is known to be blocked, and
that the agent and the target have sensor range one, move in the four
main compass directions, move by at most one cell and that every
move has cost one, although these assumptions are not necessary.
It is crucial, however, that blockages cannot change and the agent
cannot forget about them.

3. EXISTING APPROACHES
Incremental heuristic search can be used to speed up the calcu-

lation of the paths. Incremental search methods reuse information
from previous searches to find solutions to series of similar search
problems potentially faster than isolated searches (which is impor-
tant if the world or the agent’s knowledge of the world change over

time), while heuristic search methods - such as A* [13] - use heuris-
tic knowledge in form of approximations of the goal distances to
focus the search and solve search problems potentially faster than
uninformed search methods. Incremental heuristic search methods
combine these two approaches. The dominant line of incremen-
tal heuristic search methods, we call them LPA* variants, trans-
forms the search tree of the previous (= immediately preceeding)
A* search into the search tree of the current A* search, which re-
quires the root of the search trees to remain unchanged in order for
the A* search tree of the previous search to be re-usable. The over-
head of LPA* variants over A* is substantial but they can decrease
the number of state expansions dramatically and are then faster than
A*. In particular, transforming the search tree of the previous A*
search into the search tree of the current search can be faster than
constructing the A* search tree of the current search from scratch
if the two search trees are similar, which tends to be the case in our
examples if only a small number of cells change their blockage sta-
tus and these cells are close to the goal state. It can also be slower
than constructing the search tree of the current search from scratch
if the two search trees are different. In this case, LPA* variants
should not be used since isolated A* searches are faster. A more
detailed discussion of LPA* variants can be found in [10]. Some
moving-target search methods use an amount of memory that is
super-linear in the size of the gridworlds or implement navigation
strategies different from ours, including navigation strategies that
do not find complete paths [4]. We are not interested in them in this
paper since they are based on different assumptions.

3.1 Stationary-Target Search
The first LPA* variant, D* [14], was originally developed in the

context of a version of our moving-target search problem where
the target does not move (stationary-target search). D* Lite [5]
was later developed as an extension of LPA* [6] that results in a
simple version of D* that is as fast as D* but easier to implement,
understand and extend. We therefore use D* Lite in this paper. D*
Lite repeatedly finds shortest paths in state spaces with the same
start state but possibly different goal states whose action costs can
increase or decrease between searches. It searches from the target
to the current cell of the agent for stationary-target search since the
agent moves but the target remains stationary. This way, the root
of the search trees remains unchanged and the search tree of the
previous search is re-usable. D* Lite is typically faster than isolated
A* searches for stationary-target search since the agent observes
blockages only around its current cell, which is the goal state. Thus,
the search trees of the previous and current search are similar and
the transformation of the search tree of the previous search into the
search tree of the current search is fast.

3.2 Moving-Target Search
It is not straight-forward to apply D* Lite to moving-target

search since both the agent and the target move but the root of
the search trees needs to remain unchanged. D* Lite can search



3

1 32

E

D

C

B

A

4 5 6

F

3 6
3 4

G

H

I

7 8 9

3

1

6

6
2

3

35

4A

T 3

1 32

E

D

C

B

A

4 5 6

F

3 6
3 4

G

H

I

7 8 9

3

1

6

6
2

3

35

4A

T 3

1 32

E

D

C

B

A

4 5 6

F

3 6
3 4

G

H

I

7 8 9

3

1

6

6
2

3

35

4

A T

3

1 32

E

D

C

B

A

4 5 6

F

3 6
3 4

G

H

I

7 8 9

3

1

6

6
2

3

35

4

A

T

3

1 32

E

D

C

B

A

4 5 6

F

3 6
3 4

G

H

I

7 8 9

3

1

6

6
2

3

35

4

A

T

Figure 3: Agent-Centric Map of the Gridworld

3

1 32

E

D

C

B

A

4 5 6

F

3 6
3 4

G

H

I

7 8 9

3

1

6

6
2

3

35

4A

T

3

1 32

E

D

C

B

A

4 5 6

F

3 6
3 4

G

H

I

7 8 9

3

1

6

6
2

3

35

4A

T

3

1 32

E

D

C

B

A

4 5 6

F

3 6
3 4

G

H

I

7 8 9

3

1

6

6
2

3

35

4

A T

3

1 32

E

D

C

B

A

4 5 6

F

3 6
3 4

G

H

I

7 8 9

3

1

6

6
2

3

35

4

A

T

3

1 32

E

D

C

B

A

4 5 6

F

3 6
3 4

G

H

I

7 8 9

3

1

6

6
2

3

35

4

A

T

Figure 4: Target-Centric Map of the Gridworld

neither from the current cell of the target to the current cell of the
agent nor from the current cell of the agent to the current cell of
the target. However, it can solve moving-target search problems
by using an agent-centric or target-centric map of the gridworld
(as demonstrated by Anthony Stentz in his AAAI-02 Tutorial on
Greedy On-Line Planning). An agent-centric map, for example,
always has the agent in its center, as shown in Figure 3 for our
example from Figure 2. D* Lite searches from the agent to the cur-
rent cell of the target since the target moves but the agent remains
stationary on the agent-centric map and thus needs to be the root
of the search trees. Similarly, a target-centric map always has the
target in its center, as shown in Figure 4 for our example from Fig-
ure 2. D* Lite searches from the target to the current cell of the
agent since the agent moves but the target remains stationary on
the target-centric map and thus needs to be the root of the search
trees. We expect a target-centric version of D* Lite to be faster than
an agent-centric version of D* Lite for stationary-target search, for
two reasons: First, the map then does not need to be shifted repeat-
edly to keep the target in its center. Second, the changes in the map
then occur only close to the current cell of the agent, which is the
goal state. Thus, the search trees of the previous and current search
are similar, and the transformation of the search tree of the previous
search into the search tree of the current search is fast. However, we
expect the runtime advantage of D* Lite over isolated A* searches
to be smaller or even non-existent for moving-target search rather
than stationary-target search because many cells can change their
blockage status on a target-centric map when the target moves since
the map then needs to be shifted repeatedly to keep the target in its
center. In this case, many cells on the map can change their block-
age status, including cells close to the start state. From the third
to the fourth figure in Figure 4, for example, cells C6, D6, E3, E6,
F4, and F6 become unblocked and cells B7, C2, C7, D2, D4, D7,
E2, E4, E7, F2, F5, F7, and G7 become blocked. This slows down
D* Lite since it needs to perform bookkeeping operations for each
cell that changes its blockage status. Furthermore, this makes the
search trees of the previous and current search different. The trans-
formation of the search tree of the previous search into the search
tree of the current one is thus slow. We therefore develop a different

incremental heuristic search approach to moving-target search.

4. NEW APPROACH: MT-ADAPTIVE A*
Instead of building on LPA* variants, we build on Adaptive A*,

an incremental heuristic search method that works according to a
completely different principle. Adaptive A* [7] repeatedly finds
shortest paths in state spaces with possibly different start states but
the same goal state whose action costs can increase (but not de-
crease) between searches. It uses A* searches to find the shortest
paths. However, it updates the h-values after each search to make
them more informed and thus future searches more focused.

4.1 Notation
We use the following notation to describe Adaptive A* in ar-

bitrary state spaces rather than the special case of gridworlds:S

denotes the finite set of states.sstart denotes the start state, andstarget

denotes the goal state.A(s) denotes the finite set of actions that
can be executed in states. c(s, a) > 0 denotes the cost of execut-
ing actiona ∈ A(s) in states, andsucc(s, a) denotes the resulting
successor state. The start state can change from search to search,
and the action costs can increase (but not decrease) from search
to search. Each search of Adaptive A* finds a shortest path from
the current start state to the goal state according to the current ac-
tion costs. The user-supplied initial h-valuesH(s, s′) estimate the
distance from any states to any states′ and need to be consis-
tent [13], that is, satisfy the triangle inequality:H(s′, s′) = 0
and H(s, s′) ≤ c(s, s′′) + H(s′′, s′) for every successor state
s′′ of states. For Lazy MT-Adaptive A*, the user-supplied ini-
tial h-values also need to satisfy the additional triangle inequality:
H(s, s′′) ≤ H(s, s′) + H(s′, s′′) for all statess, s′ ands′′. (We
use the Manhattan distances in our examples.)

4.2 Review of A*
Adaptive A* performs A* searches. A* [2] is a heuristic search

method for finding shortest paths in state spaces. For every state
s, the user supplies a consistent h-valueh(s) := H(s, starget) that
estimates the goal distance of states. For every states encountered
during the search, A* maintains three values: a g-valueg(s) (which



is infinity initially), which is the length of the shortest discovered
path from the start state to states; an f-valuef(s) := g(s) + h(s),
which estimates the distance from the start state via states to the
goal state; and a tree-pointertree(s) (which is undefined initially),
which is used to identify a shortest path after the search. A* then
operates as follows: It maintains a priority queue, calledOPENlist
(which contains only the start state initially). A* removes a states

with the smallest f-value from theOPENlist. If the f-value of state
s is no smaller than the f-value (or, equivalently, the g-value) of the
goal state, it terminates. Otherwise, it expands states, meaning that
it inserts states into theCLOSEDlist (which is empty initially) and
then performs the following operations for each action that can be
executed in states and results in a successor state whose g-value is
larger than the g-value of states plus the action cost: First, it sets
the g-value of the successor state to the g-value of states plus the
action cost. Second, it sets the tree-pointer of the successor state
to point to states. Finally, it inserts the successor state into the
OPEN list if it was not there already. (We say that it generates a
state when it inserts the state for the first time into theOPENlist.)
It then repeats the process. After termination, the g-value of every
expanded state (= state in theCLOSEDlist) is equal to the distance
from the start state to the state, and following the tree-pointers from
the goal state to the start state identifies a shortest path from the start
state to the goal state in reverse.

4.3 Principle of Adaptive A*
The principle behind Adaptive A* is easy to describe. Lets de-

note any state that was expanded during an A* search andg(s)
denote its g-value after the search. Then,g(s) is the distance from
the start state to states, andg(starget) is the distance from the start
state to the goal state, that is, the length of the shortest discovered
path from the start state to the goal state. Adaptive A* updates
the h-values of all statess that were expanded during the search as
follows:

h(s) := g(starget) − g(s). (1)

It has to update the h-values after the search rather than during
the search because it needs to know the length of the shortest dis-
covered path, which is only known after the search. It turns out
that the new h-values are consistent and dominate the previous h-
values at least weakly [8], that is, cannot be smaller for any state.
Thus, any A* search with the new h-values cannot expand more
states than an otherwise identical A* search with any of the earlier
h-values, including the user-supplied initial h-values. It therefore
cannot be slower (except possibly for the small amount of over-
head introduced by the bookkeeping actions), but will often expand
fewer states and thus be faster. This principle has been used in [3]
and later resulted in the independent development of Adaptive A*.
The overhead of Adaptive A* over A* is small. In particular, it is
smaller than the one of LPA* but Adaptive A* typically does not
decrease the number of state expansions as much as LPA*. A more
detailed discussion of Adaptive A* can be found in [8].

4.4 Stationary-Target Search
Adaptive A* applies in a straight-forward way to stationary-

target search since it applies to search problems with changing start
states and increasing action costs [7]. It searches from the current
cell of the agent to the target since the agent moves but the target re-
mains stationary and thus needs to be the goal since the goal needs
to remain unchanged. Initially, all action costs are one. Whenever
the agent discovers a blockage, it increases the costs of all actions
that enter or leave the blocked cell from one to infinity.

4.5 Eager MT-Adaptive A*
Adaptive A* has not been applied to moving-target search since

then both the agent and the target move but the goal needs to remain
unchanged. We apply it to moving-target search by extending it to
the case where the goal state changes between searches. This is not
straight-forward since the h-values estimate the goal distances and
thus need to be corrected when the goal state changes. Adaptive
A* could attempt to calculate (over time) the distances between
any two states but we only want to use an amount of memory that
is linear in the size of the state space. We therefore continue to use
a version of Adaptive A* that uses only the results of the previous
search. MT-Adaptive A* (= Adaptive A* for moving-target search)
continuously updates the h-values to make them more informed but
now also corrects them to maintain their consistency with respect
to the goal state whenever the goal state changes. To explain how it
corrects the h-values when the goal state changes, assume that the
h-values are consistent with respect to the previous goal statestarget

after MT-Adaptive A* updated them after a search. Leth(s) be the
h-value of any states at this point in time. MT-Adaptive A* then
corrects the h-values for the new goal states′target with s′target 6= starget

by assigning

h
′(s) := max(H(s, s′target), h(s) − h(s′target)) (2)

for all statess.

THEOREM 1. The h-valuesh′(s) are consistent with respect to
goal states′target.

Proof: We consider three cases to prove that the trian-
gle inequality holds with respect to goal states′target for the
h-valuesh′(s). In each case, we use the fact that the trian-
gle inequality holds with respect to goal states′target for the
user-supplied initial h-valuesH(s, s′target) and with respect to
goal statestarget for the h-valuesh(s). First, if s = s′target,
then h′(s′target) = max(H(s′target, s

′

target), h(s′target) − h(s′target)) =
max(0, 0) = 0. Second, if s = starget and thus
s 6= s′target, then h′(starget) = max(H(starget, s

′

target), h(starget) −

h(s′target)) = max(H(starget, s
′

target), 0 − h(s′target)) =
H(starget, s

′

target) ≤ H(succ(starget, a), s′target) + c(starget, a) ≤

max(H(succ(starget, a), s′target), h(succ(starget, a)) − h(s′target)) +
c(starget, a) = h′(succ(starget, a)) + c(starget, a) for all a ∈ A(starget).
Finally, if s 6= starget and s 6= s′target, then H(s, s′target) ≤

H(succ(s, a), s′target) + c(s, a) andh(s) ≤ h(succ(s, a)) + c(s, a).
Thus, h′(s) = max(H(s, s′target), h(s) − h(s′target)) ≤

max(H(succ(s, a), s′target), h(succ(s, a)) − h(s′target)) + c(s, a) =
h′(succ(s, a)) + c(s, a) for all a ∈ A(s).

MT-Adaptive A* uses this insight in a straight-forward way by
performing an A* search, thenupdating the h-valuesof all states
that were expanded during the search by executing Assignments
(1), wherestarget is the previous goal state, and finallycorrecting the
h-valuesof all states (not just the expanded states) by executing As-
signments (2), wheres′target is the new goal state. (In the following,
we refer to “updating the h-values” and “correcting the h-values” to
distinguish the two steps.) Taking the maximum ofh(s)−h(s′target)
and the user-supplied initial h-valuesH(s, s′target) ensures that the h-
values used by MT-Adaptive A* dominate the user-supplied initial
h-values at least weakly. Thus, it is still the case that MT-Adaptive
A* with the new h-values cannot expand more states than an oth-
erwise identical A* search with the user-supplied initial h-values.
The main advantage of MT-Adaptive A* over D* Lite for moving-
target search is that it does not need to shift the map repeatedly to
keep the agent or target in its center.



1 procedure InitializeState(s)
2 if search(s) 6= counterAND search(s) 6= 0
3 g(s) := ∞;
4 search(s) := counter;

5 procedure ComputePath()
6 whileg(starget) > min

s
′∈OPEN(g(s′) + h(s′))

7 delete a cells with the smallest f-valueg(s) + h(s) from OPEN;
8 CLOSED:= CLOSED∪ {s};
9 for eacha ∈ A(s)

10 InitializeState(succ(s, a));
11 if g(succ(s, a)) > g(s) + c(s, a)
12 g(succ(s, a)) := g(s) + c(s, a);
13 tree(succ(s, a)) := s;
14 if succ(s, a) is in OPENthen delete it fromOPEN;
15 insertsucc(s, a) into OPENwith f-valueg(succ(s, a)) + h(succ(s, a));

16 procedure Main()
17 counter:= 0;
18 for every cells ∈ S
19 h(s) := H(s, starget);
20 search(s) := 0;
21 g(s) := ∞;
22 whilesstart 6= starget

23 counter:= counter+ 1;
24 InitializeState(sstart);
25 InitializeState(starget);
26 g(sstart) := 0;
27 OPEN := CLOSED:= ∅;
28 insertsstart into OPENwith f-valueg(sstart) + h(sstart);
29 ComputePath();
30 if OPEN= ∅
31 stop;
32 for eachs ∈ CLOSED
33 h(s) := g(starget) − g(s);
34 move the agent along the path identified by the tree-pointers

until it reachesstarget, the current cell of the target changes or action costs increase;
35 setsstart to the current cell of the agent (if changed);
36 setsnewtargetto the current cell of the target;
37 update the increased action costs (if any);
38 if starget 6= snewtarget

39 old := h(newtarget);
40 for eachs ∈ S
41 h(s) := max(H(s, newtarget), h(s) − old);
42 starget := snewtarget;

Figure 5: Eager MT-Adaptive A*

MT-Adaptive A* can search from the current cell of the agent to
the current cell of the target or from the current cell of the target
to the current cell of the agent. Figure 5 contains the pseudo code
of Eager MT-Adaptive A* that searches from the current cell of
the agent to the current cell of the target. (We explain below why
we consider Eager MT-Adaptive A* to be eager.) ComputePath()
implements an A* search to find a shortest path from the current
cell of the agent (sstart) to the current cell of the target (starget). (The
minimum of an empty set on Line 6 is infinity.) Lines 32-33 up-
date the h-values of all expanded cells, and Lines 39-41 correct the
h-values of all cells for the new cell of the target. The pseudo code
is a bit clumsy but this allows us to transform Eager MT-Adaptive
A* into Lazy MT-Adaptive A* (which is more efficient) in the next
section. It is possible to optimize our pseudo code further. For ex-
ample, the path from the agent to the target needs to be recomputed
only if the previous path turns out to be blocked or the target moves
and leaves this path because otherwise the previous path remains a
shortest path. Also, the h-value of a cell does not need to be ini-
tialized up front on Line 19 but can be initialized when it is first
needed. We use an optimized version of MT-Adaptive A* in our
experiments that implements these and other optimizations.

Figure 6 shows how Eager MT-Adaptive A* updates the h-values
for our example from Figure 2 when it searches from the current
cell of the agent to the current cell of the target. The first figure
shows the user-supplied initial h-values, namely the (consistent)
Manhattan distances, to the current cell of the target. The sec-

32

51

540

4321

55

53

753

7555

23

02

213

3234

1 32

E

D

C

B

A

4 5 6

F

A

1T

2

Figure 7: A*

ond figure shows the first A* search. All cells have their h-value
(from the first figure) in the lower left corner. Generated cells also
have their g-value in the upper left corner, their f-value in the upper
right corner and their tree-pointer visualized as arrow pointing to
their parent in the search tree. Expanded cells are shown in grey.
(The current cell of the target does not count as expanded since
the search stops immediate before expanding it.) The length of
the shortest discovered path is seven. The third figure shows the
updated h-values after the h-values of all grey cells in the second
figure have been updated to seven minus their g-values. The fourth
figure shows the corrected h-values after the target moved. The h-
values of all cells are corrected to the maximum of their Manhattan
distances to the new cell of the target and their current h-values de-
creased by one. The fifth figure shows the second A* search. Note
that cells D2, E2 and E3 have more informed h-values than their
Manhattan distances to the current cell of the target. MT-Adaptive
A* therefore expands two cells (namely, cells E2 and E3) less than
an A* search with the Manhattan distances, as shown in Figure 7,
demonstrating the advantage of MT-Adaptive A* over isolated A*
searches. (We broke ties for both heuristic search methods in the
same way.) Finally, the sixth figure shows the updated h-values
after the search.

4.6 Lazy MT-Adaptive A*
Eager MT-Adaptive A* can update the h-values of states that are

not needed during future searches, which explains its name. This
can be time-consuming if the number of expanded states is large
(and Eager MT-Adaptive A* then needs to update the h-values of all
expanded states) or the target moves (and Eager MT-Adaptive A*
then needs to correct the h-values of all states). Lazy MT-Adaptive
A* remembers some information when a state is expanded during
a search (such as its g-value) and some information after the search
(such as the length of the shortest discovered path) and then uses
that information to compute its h-value only when it is needed dur-
ing a future search. Lazy and Eager MT-Adaptive A* perform the
same searches and find the same paths. They differ only in when
they calculate the h-values.

Figure 8 contains the pseudo code of Lazy MT-Adaptive A* that
searches from the current cell of the agent to the current cell of the
target. As before, ComputePath() implements an A* search to find
a shortest path from the current cell of the agent (sstart) to the current
cell of the target (starget). Whenever a cells is about to be generated
for the first time on Line 20 and thus its h-value is needed for the
first time, then InitializeState(s) is called on Line 15. If the cell was
not generated during any previous search (search(s) = 0), then it
initializes its h-value on Line 9. Otherwise, it first checks on Lines
3-4 whether it needs to update the h-value of the cell (Step 1) and
then corrects the h-value of the cell on Lines 5-6 for the new cell of
the target (Step 2). We now explain these two steps in detail:



1234

13

1234

2345

1 32

E

D

C

B

A

4 5 6

F

0 T

A
01

762

6543

7654

35

775

7777

9999

1234

13

1234

2345

1 32

E

D

C

B

A

4 5 6

F

A

0 T

1276

15

1234

2345

1 32

E

D

C

B

A

4 5 6

F

0 T

A

2265

04

2133

3234

1 32

E

D

C

B

A

4 5 6

F

1T

A

2

51

540

4321

7

55

753

7555

65

04

213

3234

1 32

E

D

C

B

A

4 5 6

F

A

1T

2 2265

04

2135

3234

1 32

E

D

C

B

A

4 5 6

F

1T

A

Figure 6: Eager MT-Adaptive A*

• Step 1 (Updating the H-Values): The value ofcounteris x

during thexth invocation of ComputePath(), that is, thexth
A* search. The value ofpathcost(x) is the length of the
shortest discovered path during thexth search. The value
of search(s) is x if cell x was generated last during thexth
search. If the cell was generated during a previous search
(search(s) 6= 0) and then expanded during the same search
(g(s) + h(s) < pathcost(search(s))) but not yet gener-
ated during the current search (search(s) 6= counter), then
InitializeState(s) updates the h-value of the cell by setting it
to the difference of the length of the shortest discovered path
after the search when the cell was generated and expanded
(pathcost(search(s))) and the g-value of the cell after the
same search (g(s)).

• Step 2 (Correcting the H-Values): The correction for the new
cell of the target decreases the h-values of all cells every
time the target moves by the h-value of the new cell of the
target with respect to the previous cell of the target. This
h-value is computed on Lines 44-45 and then added to a
running sum of all corrections on Line 46. In particular,
deltah(x) is the running sum of all corrections up to the be-
ginning of thexth search. If a cells was generated during
a previous search but not yet generated during the current
search, then InitializeState(s) corrects its h-value by the sum
of all corrections between the search when cells was gen-
erated last and the current search, which is the same as the
difference of the value ofdeltah during the current search
(deltah(counter)) and the search when cells was generated
last (deltah(search(s))).

5. EXPERIMENTS
We now compare Lazy MT-Adaptive A* against A* and a heav-

ily optimized version of D* Lite for moving-target search.

5.1 Test Cases
We perform our experiments in randomly generated four-

neighbor torus-shaped mazes of size100× 100 in which the agent

can catch the target, see Figure 9. Their corridor structure is gener-
ated with depth-first search. The initial cells of the agent and target
are chosen randomly. We use the Manhattan distances as (consis-
tent) informed user-supplied initial h-values and the zero h-values
as (consistent) uninformed user-supplied initial h-values. We vary
the experimental conditions by either keeping the target stationary
or moving it randomly (with the restriction that it does not move
every tenth time step and, if it moves, returns to the adjacent cell
that it came from only if this is the only possible move in its cur-
rent cell) and by either providing a-priori information to the agent
about which cells are blocked or not, resulting in four different ex-
perimental conditions. A stationary target in an initially known
maze does not require repeated searches. Consequently, this exper-
imental condition is not interesting to us. A stationary target in an
initially unknown maze corresponds to the search problems that D*
Lite was developed for, namely search problems where the agent’s
knowledge of the world (namely, its knowledge about blockages)
changes. A moving target in an initially unknown maze combines
both reasons for re-planning since both the world (namely, the po-
sition of the target) and the agent’s knowledge of the world change.

5.2 Search Methods
We compare Lazy MT-Adaptive A* (forward search), that

searches forward from the current cell of the agent to the current
cell of the target, and Lazy MT-Adaptive A* (backward search),
that searches backward from the current cell of the target to the
current cell of the agent, against A* (forward search), A* (back-
ward search), D* Lite with an agent-centric map and D* Lite with
a target-centric map. To be fair, we optimized D* Lite heavily for
moving-target search, for example, by performing bookkeeping op-
erations for only those cells on the map that change their blockage
status when the map is shifted, which makes this version of D*
Lite fast in initially unknown mazes as long as only a small number
of the blockages have been discovered by the agent. Lazy MT-
Adaptive A*, A* and D* Lite do not differ in how the agents move
(if they could break ties in the exact same way) but only in their
runtime, which depends on low-level implementation and machine
details, such as the instruction set of the processor, the optimiza-
tions performed by the compiler, and the data structures used for



1 procedure InitializeState(s)
2 if search(s) 6= counterAND search(s) 6= 0
3 if g(s) + h(s) < pathcost(search(s))
4 h(s) := pathcost(search(s)) − g(s);
5 h(s) := h(s) − (deltah(counter) − deltah(search(s)));
6 h(s) := max(h(s), H(s, starget));
7 g(s) := ∞;
8 else ifsearch(s) = 0
9 h(s) := H(s, starget);

10 search(s) := counter;

11 procedure ComputePath()
12 whileg(starget) > min

s
′∈OPEN(g(s′) + h(s′))

13 delete a cells with the smallest f-valueg(s) + h(s) from OPEN;
14 for eacha ∈ A(s)
15 InitializeState(succ(s, a));
16 if g(succ(s, a)) > g(s) + c(s, a)
17 g(succ(s, a)) := g(s) + c(s, a);
18 tree(succ(s, a)) := s;
19 if succ(s, a) is in OPENthen delete it fromOPEN;
20 insertsucc(s, a) into OPENwith f-valueg(succ(s, a)) + h(succ(s, a));

21 procedure Main()
22 counter:= 0;
23 deltah(1) := 0;
24 for every cells ∈ S
25 search(s) := 0;
26 g(s) := ∞;
27 whilesstart 6= starget

28 counter:= counter+ 1;
29 InitializeState(sstart);
30 InitializeState(starget);
31 g(sstart) := 0;
32 OPEN := ∅;
33 insertsstart into OPENwith f-valueg(sstart) + h(sstart);
34 ComputePath();
35 if OPEN= ∅
36 stop;
37 pathcost(counter) := g(starget);
38 move the agent along the path identified by the tree-pointers

until it reachesstarget, the current cell of the target changes or action costs increase;
39 setsstart to the current cell of the agent (if changed);
40 setsnewtargetto the current cell of the target;
41 update the increased action costs (if any);
42 if starget 6= snewtarget

43 InitializeState(snewtarget);
44 if g(snewtarget) + h(snewtarget) < pathcost(counter)
45 h(snewtarget) := pathcost(counter) − g(snewtarget);
46 deltah(counter+ 1) := deltah(counter) + h(snewtarget);
47 starget := snewtarget;

Figure 8: Lazy MT-Adaptive A*

the priority queues. This point is especially important since mazes
for moving-target search typically fit into memory and thus are rel-
atively small search domains. However, we do not know of any
better method for evaluating heuristic search methods than to im-
plement them as best as possible, publish their runtimes, and let
other researchers validate them with their own and thus potentially
slightly different implementations. For fairness, we use compara-
ble implementations. For example, Lazy MT-Adaptive A*, A* and
D* Lite all use binary heaps as priority queues, break ties among
cells with the same f-values in favor of cells with larger g-values
(which is known to be a good tie-breaking strategy) and do not
search again as long as the goal remains on the previous path.

5.3 Experimental Results
The performance measures in Table 1 are averaged over the

same 1000 mazes. We report two measures for the difficulty of
the moving-target search problems, namely the average number
of moves of the agent until it catches the target and the average
number of searches required to find these moves. We report two
measures for the efficiency of the heuristic search methods, namely
the number of expanded cells per search and the total runtime per
search in microseconds on a Pentium D 3.0 GHz PC with 2 GByte
of RAM. (We show the standard deviation of the mean for the num-

Figure 9: A Maze

ber of expanded cells in parentheses to demonstrate the statistical
significance of our results.) Table 1 shows the following relation-
ships:

• Lazy MT-Adaptive A* (forward) has sometimes a smaller
and sometimes a larger runtime than Lazy MT-Adaptive A*
(backward).

• Lazy MT-Adaptive A* always has a smaller runtime than A*
with the same search direction for moving-target search.

• D* Lite with a target-centric map always has a smaller run-
time than D* Lite with an agent-centric map.

• D* Lite with a target-centric map always has a smaller run-
time than both Lazy MT-Adaptive A* (forward) and Lazy
MT-Adaptive A* (backward) for stationary-target search (as
already explained), but both Lazy MT-Adaptive A* (for-
ward) and Lazy MT-Adaptive A* (backward) have smaller
runtimes than D* Lite with a target-centric map (and thus
also than D* Lite with an agent-centric map) for moving-
target search.

In general, D* Lite has either uninformed h-values available
(which do not focus its search) or informed h-values (which are
rather misleading in our mazes). Lazy MT-Adaptive A*, on the
other hand, updates the h-values to make them more informed or
less misleading. In the case of known mazes, it is time-consuming
for D* Lite to shift the map repeatedly because many blockages
are known right from the beginning and thus need to be shifted.
Lazy MT-Adaptive A*, on the other hand, does not need to shift
the map at all. Overall, one can safely use Lazy MT-Adaptive
A* for moving-target search. For example, Lazy MT-Adaptive
A* (forward) and Lazy MT-Adaptive A* (backward) is faster than
D* Lite with a target-centric map by about one order of magni-
tude for moving-target search in initially unknown mazes (factors
of 13.5 and 6.5, respectively) and known mazes (factors of 31.6 and
35.0, respectively) if both search methods use the same informed
h-values.

6. CONCLUSIONS
We studied a moving-target search strategy that always moves

the agent on a shortest presumed unblocked path toward the target.
Thus, the agent has to find shortest paths repeatedly until it catches
the target. We studied how the agent can solve these determinis-
tic search problems faster by exploiting the fact that it performs
A* searches repeatedly. To this end, we extended Adaptive A*,
an incremental heuristic search method, to moving-target search.



Moving-Target Search in Initially Unknown Mazes

informed h-values uninformed h-values
searches until moves until expansions runtime searches until moves until expansions runtime
target caught target caught per search per search target caught target caught per search per search

A* (Forward Search) 1997 2605 500 (0.7) 75 1966 2575 3703 (5.4) 570
A* (Backward Search) 1980 2582 1528 (1.5) 255 1894 2454 4519 (5.9) 722
Lazy MT-Adaptive A* (Forward Search) 1993 2598 342 (0.5) 63 1957 2551 2334 (4.5) 465
Lazy MT-Adaptive A* (Backward Search) 1908 2560 663 (0.7) 131 1814 2434 2025 (4.6) 411
D* Lite (Agent-Centric Map) 1951 2526 501 (0.7) 941 1974 2542 2229 (5.8) 1481
D* Lite (Target-Centric Map) 1974 2387 511 (1.2) 848 1840 2365 806 (3.0) 833

Stationary-Target Search in Initially Unknown Mazes

informed h-values uninformed h-values
searches until moves until expansions runtime searches until moves until expansions runtime
target caught target caught per search per search target caught target caught per search per search

A* (Forward Search) 886 2555 389 (6.1) 69 867 2525 3711 (8.4) 581
A* (Backward Search) 889 2527 830 (3.6) 146 847 2442 4104 (8.7) 644
Lazy MT-Adaptive A* (Forward Search) 878 2546 136 (2.6) 31 882 2580 391 (2.8) 81
Lazy MT-Adaptive A* (Backward Search) 879 2533 796 (3.4) 157 865 2494 3410 (8.8) 729
D* Lite (Agent-Centric Map) 877 2564 363 (3.4) 836 878 2516 2467 (9.8) 1655
D* Lite (Target-Centric Map) 842 2437 22 (0.6) 21 844 2448 31 (0.9) 15

Moving-Target Search in Known Mazes

informed h-values uninformed h-values
searches until moves until expansions runtime searches until moves until expansions runtime
target caught target caught per search per search target caught target caught per search per search

A* (Forward Search) 340 764 1978 (8.1) 221 340 764 2120 (7.3) 215
A* (Backward Search) 340 764 1640 (6.8) 170 340 764 1740 (6.8) 159
Lazy MT-Adaptive A* (Forward Search) 340 764 1182 (5.5) 143 340 764 1245 (5.6) 144
Lazy MT-Adaptive A* (Backward Search) 340 764 1087 (5.1) 129 340 764 1133 (5.2) 128
D* Lite (Agent-Centric Map) 341 764 3131 (13.0) 4834 341 764 2945 (11.5) 4243
D* Lite (Target-Centric Map) 341 764 2679 (11.4) 4516 341 764 2531 (10.1) 4036

Table 1: Experimental Results

We then demonstrated experimentally that the resulting (Lazy) MT-
Adaptive A* is faster than isolated A* searches. It is also faster than
D* Lite by about one order of magnitude for moving-target search
in known or initially unknown mazes if both search methods use
the same informed heuristics. We claimed in our previous papers
that the principle behind Adaptive A* is simple, which makes it
easy to extend Adaptive A* to new applications. MT-Adaptive A*
backs up this claim, as did our earlier extension of Adaptive A* to
real-time heuristic search [9]. In future work, we intend to explore
different movement strategies for moving-target search, including
one that tries to “corner” the target [11]. We intend to study how
the agent can perform these minimax (AND/OR) searches faster by
exploiting the fact that it performs minimax searches repeatedly, by
adapting Adaptive A* to minimax searches, perhaps in a way sim-
ilar to how we have already adapted LPA* to minimax searches
[12].

Acknowledgments
All experimental results are the responsibility of Xiaoxun Sun.
This research has been partly supported by an NSF award to Sven
Koenig under contract IIS-0350584. The views and conclusions
contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed
or implied, of the sponsoring organizations, agencies, companies
or the U.S. government.

7. REFERENCES
[1] M. Goldenberg, A. Kovarksy, X. Wu, and J. Schaeffer. Multiple

agents moving target search. InProceedings of the International
Joint Conference on Artificial Intelligence, pages 1538–1538, 2003.

[2] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths.IEEE Transactions on Systems
Science and Cybernetics, 2:100–107, 1968.

[3] R. Holte, T. Mkadmi, R. Zimmer, and A. MacDonald. Speeding up
problem solving by abstraction: A graph oriented approach.Artificial
Intelligence, 85(1–2):321–361, 1996.

[4] T. Ishida and R. Korf. Moving target search. InProceedings of the
International Joint Conference on Artificial Intelligence, pages
204–210, 1991.

[5] S. Koenig and M. Likhachev. D* Lite. InProceedings of the National
Conference on Artificial Intelligence, pages 476–483, 2002.

[6] S. Koenig and M. Likhachev. Incremental A*. In T. Dietterich,
S. Becker, and Z. Ghahramani, editors,Advances in Neural
Information Processing Systems 14, pages 1539–1546, Cambridge,
MA, 2002. MIT Press.

[7] S. Koenig and M. Likhachev. Adaptive A*. InProceedings of the
International Joint Conference on Autonomous Agents and
Multi-Agent Systems, pages 1311–1312, 2005.

[8] S. Koenig and M. Likhachev. A new principle for incremental
heuristic search: Theoretical results. InProceedings of the
International Conference on Automated Planning and Scheduling,
pages 410–413, 2006.

[9] S. Koenig and M. Likhachev. Real-Time Adaptive A*. In
Proceedings of the International Joint Conference on Autonomous
Agents and Multi-Agent Systems, pages 281–288, 2006.

[10] S. Koenig, M. Likhachev, and D. Furcy. Lifelong Planning A*.
Artificial Intelligence, 155(1-2):93–146, 2004.

[11] S. Koenig and R. Simmons. Real-time search in non-deterministic
domains. InProceedings of the International Joint Conference on
Artificial Intelligence, pages 1660–1667, 1995.

[12] M. Likhachev and S. Koenig. Speeding up the Parti-Game algorithm.
In S. Becker, S. Thrun, and K. Obermayer, editors,Advances in
Neural Information Processing Systems 15, pages 1563–1570,
Cambridge, MA, 2002. MIT Press.

[13] J. Pearl.Heuristics: Intelligent Search Strategies for Computer



Problem Solving. Addison-Wesley, 1985.
[14] A. Stentz. The focussed D* algorithm for real-time replanning. In

Proceedings of the International Joint Conference on Artificial
Intelligence, pages 1652–1659, 1995.


