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ABSTRACT
Air traffic flow management is one of the fundamental chal-
lenges facing the Federal Aviation Administration (FAA)
today. The FAA estimates that in 2005 alone, there were
over 322,000 hours of delays at a cost to the industry in ex-
cess of three billion dollars. Finding reliable and adaptive
solutions to the flow management problem is of paramount
importance if the Next Generation Air Transportation Sys-
tems are to achieve the stated goal of accommodating three
times the current traffic volume. This problem is particu-
larly complex as it requires the integration and/or coordi-
nation of many factors including: new data (e.g., changing
weather info), potentially conflicting priorities (e.g., differ-
ent airlines), limited resources (e.g., air traffic controllers)
and very heavy traffic volume (e.g., over 40,000 flights over
the US airspace).

In this paper we use FACET – an air traffic flow simulator
developed at NASA and used extensively by the FAA and
industry – to test a multi-agent algorithm for traffic flow
management. An agent is associated with a fix (a specific
location in 2D space) and its action consists of setting the
separation required among the airplanes going though that
fix. Agents use reinforcement learning to set this separation
and their actions speed up or slow down traffic to manage
congestion. Our FACET based results show that agents re-
ceiving personalized rewards reduce congestion by up to 45%
over agents receiving a global reward and by up to 67% over
a current industry approach (Monte Carlo estimation).

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—
Multiagent systems
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Application, Algorithms, Performance
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1. INTRODUCTION
The efficient, safe and reliable management of our ever

increasing air traffic is one of the fundamental challenges
facing the aerospace industry today. On a typical day, more
than 40,000 commercial flights operate within the US airspace
[14]. In order to efficiently and safely route this air traffic,
current traffic flow control relies on a centralized, hierarchi-
cal routing strategy that performs flow projections ranging
from one to six hours. As a consequence, the system is
slow to respond to developing weather or airport conditions
leading potentially minor local delays to cascade into large
regional congestions. In 2005, weather, routing decisions
and airport conditions caused 437,667 delays, accounting for
322,272 hours of delays. The total cost of these delays was
estimated to exceed three billion dollars by industry [7].

Furthermore, as the traffic flow increases, the current pro-
cedures increase the load on the system, the airports, and
the air traffic controllers (more aircraft per region) with-
out providing any of them with means to shape the traffic
patterns beyond minor reroutes. The Next Generation Air
Transportation Systems (NGATS) initiative aims to address
this issues and, not only account for a threefold increase in
traffic, but also for the increasing heterogeneity of aircraft
and decreasing restrictions on flight paths. Unlike many
other flow problems where the increasing traffic is to some
extent absorbed by improved hardware (e.g., more servers
with larger memories and faster CPUs for internet routing)
the air traffic domain needs to find mainly algorithmic solu-
tions, as the infrastructure (e.g., number of the airports) will
not change significantly to impact the flow problem. There
is therefore a strong need to explore new, distributed and
adaptive solutions to the air flow control problem.

An adaptive, multi-agent approach is an ideal fit to this
naturally distributed problem where the complex interaction
among the aircraft, airports and traffic controllers renders a
pre-determined centralized solution severely suboptimal at
the first deviation from the expected plan. Though a truly
distributed and adaptive solution (e.g., free flight where air-
craft can choose almost any path) offers the most potential
in terms of optimizing flow, it also provides the most radi-
cal departure from the current system. As a consequence, a
shift to such a system presents tremendous difficulties both
in terms of implementation (e.g., scheduling and airport ca-
pacity) and political fallout (e.g., impact on air traffic con-



trollers). In this paper, we focus on agent based system that
can be implemented readily. In this approach, we assign an
agent to a “fix,” a specific location in 2D. Because aircraft
flight plans consist of a sequence of fixes, this representa-
tion allows localized fixes (or agents) to have direct impact
on the flow of air traffic1. In this approach, the agents’
actions are to set the separation that approaching aircraft
are required to keep. This simple agent-action pair allows
the agents to slow down or speed up local traffic and allows
agents to a have significant impact on the overall air traffic
flow. Agents learn the most appropriate separation for their
location using a reinforcement learning (RL) algorithm [15].

In a reinforcement learning approach, the selection of the
agent reward has a large impact on the performance of the
system. In this work, we explore four different agent reward
functions, and compare them to simulating various changes
to the system and selecting the best solution (e.g, equiva-
lent to a Monte-Carlo search). The first explored reward
consisted of the system reward. The second reward was a
personalized agent reward based on collectives [3, 17, 18].
The last two rewards were personalized rewards based on
estimations to lower the computational burden of the re-
ward computation. All three personalized rewards aim to
align agent rewards with the system reward and ensure that
the rewards remain sensitive to the agents’ actions.

Previous work in this domain fell into one of two distinct
categories: The first principles based modeling approaches
used by domain experts [5, 8, 10, 13] and the algorithmic
approaches explored by the learning and/or agents commu-
nity [6, 9, 12]. Though our approach comes from the second
category, we aim to bridge the gap by using FACET to test
our algorithms, a simulator introduced and widely used (i.e.,
over 40 organizations and 5000 users) by work in the first
category [4, 11].

The main contribution of this paper is to present a dis-
tributed adaptive air traffic flow management algorithm that
can be readily implemented and test that algorithm using
FACET. In Section 2, we describe the air traffic flow problem
and the simulation tool, FACET. In Section 3, we present
the agent-based approach, focusing on the selection of the
agents and their action space along with the agents’ learning
algorithms and reward structures. In Section 4 we present
results in domains with one and two congestions, explore
different trade-offs of the system objective function, discuss
the scaling properties of the different agent rewards and dis-
cuss the computational cost of achieving certain levels of
performance. Finally, in Section 5, we discuss the implica-
tions of these results and provide and map the required work
to enable the FAA to reach its stated goal of increasing the
traffic volume by threefold.

2. AIR TRAFFIC FLOW MANAGEMENT
With over 40,000 flights operating within the United States

airspace on an average day, the management of traffic flow
is a complex and demanding problem. Not only are there
concerns for the efficiency of the system, but also for fair-
ness (e.g., different airlines), adaptability (e.g., developing
weather patterns), reliability and safety (e.g., airport man-
agement). In order to address such issues, the management
of this traffic flow occurs over four hierarchical levels:

1We discuss how flight plans with few fixes can be handled
in more detail in Section 2.

1. Separation assurance (2-30 minute decisions);

2. Regional flow (20 minutes to 2 hours);

3. National flow (1-8 hours); and

4. Dynamic airspace configuration (6 hours to 1 year).

Because of the strict guidelines and safety concerns sur-
rounding aircraft separation, we will not address that control
level in this paper. Similarly, because of the business and
political impact of dynamic airspace configuration, we will
not address the outermost flow control level either. Instead,
we will focus on the regional and national flow management
problems, restricting our impact to decisions with time hori-
zons between twenty minutes and eight hours. The proposed
algorithm will fit between long term planning by the FAA
and the very short term decisions by air traffic controllers.

The continental US airspace consists of 20 regional centers
(handling 200-300 flights on a given day) and 830 sectors
(handling 10-40 flights). The flow control problem has to
address the integration of policies across these sectors and
centers, account for the complexity of the system (e.g., over
5200 public use airports and 16,000 air traffic controllers)
and handle changes to the policies caused by weather pat-
terns. Two of the fundamental problems in addressing the
flow problem are: (i) modeling and simulating such a large
complex system as the fidelity required to provide reliable re-
sults is difficult to achieve; and (ii) establishing the method
by which the flow management is evaluated, as directly min-
imizing the total delay may lead to inequities towards par-
ticular regions or commercial entities. Below, we discuss
how we addressed both issues, namely, we present FACET
a widely used simulation tool and discuss our system evalu-
ation function.

Figure 1: FACET screenshot displaying traffic
routes and air flow statistics.

2.1 FACET
FACET (Future ATM Concepts Evaluation Tool), a physics

based model of the US airspace was developed to accurately
model the complex air traffic flow problem [4]. It is based on
propagating the trajectories of proposed flights forward in
time. FACET can be used to either simulate and display air
traffic (a 24 hour slice with 60,000 flights takes 15 minutes to
simulate on a 3 GHz, 1 GB RAM computer) or provide rapid
statistics on recorded data (4D trajectories for 10,000 flights
including sectors, airports, and fix statistics in 10 seconds



on the same computer) [11]. FACET is extensively used by
the FAA, NASA and industry (over 40 organizations and
5000 users) [11].

FACET simulates air traffic based on flight plans and
through a graphical user interface allows the user to analyze
congestion patterns of different sectors and centers (Figure
1). FACET also allows the user to change the flow patterns
of the aircraft through a number of mechanisms, including
metering aircraft through fixes. The user can then observe
the effects of these changes to congestion. In this paper,
agents use FACET directly through “batch mode”, where
agents send scripts to FACET asking it to simulate air traf-
fic based on metering orders imposed by the agents. The
agents then produce their rewards based on receive feedback
from FACET about the impact of these meterings.

2.2 System Evaluation
The system performance evaluation function we selected

focuses on delay and congestion but does not account for
fairness impact on different commercial entities. Instead it
focuses on the amount of congestion in a particular sector
and on the amount of measured air traffic delay. The linear
combination of these two terms gives the full system evalu-
ation function, G(z) as a function of the full system state z.
More precisely, we have:

G(z) = −((1− α)B(z) + αC(z)) , (1)

where B(z) is the total delay penalty for all aircraft in the
system, and C(z) is the total congestion penalty. The rela-
tive importance of these two penalties is determined by the
value of α, and we explore various trade-offs based on α in
Section 4.

The total delay, B, is a sum of delays over a set of sectors
S and is given by:

B(z) =
X
s∈S

Bs(z) (2)

where

Bs(z) =
X

t

Θ(t− τs)kt,s(t− τs) , (3)

where ks,t is the number of aircraft in sector s at time t, τs

is a predetermined time, and Θ(·) is the step function that
equals 1 when its argument is greater or equal to zero, and
has a value of zero otherwise. Intuitively, Bs(z) provides
the total number of aircraft that remain in a sector s past
a predetermined time τs, and scales their contribution to
count by the amount by which they are late. In this manner
Bs(z) provides a delay factor that not only accounts for all
aircraft that are late, but also provides a scale to measure
their “lateness”. This definition is based on the assumption
that most aircraft should have reached the sector by time
τs and that aircraft arriving after this time are late. In
this paper the value of τs is determined by assessing aircraft
counts in the sector in the absence of any intervention or
any deviation from predicted paths.

Similarly, the total congestion penalty is a sum over the
congestion penalties over the sectors of observation, S:

C(z) =
X
s∈S

Cs(z) (4)

where

Cs(z) = a
X

t

Θ(ks,t − cs)e
b(ks,t−cs) , (5)

where a and b are normalizing constants, and cs is the ca-
pacity of sector s as defined by the FAA. Intuitively, Cs(z)
penalizes a system state where the number of aircraft in a
sector exceeds the FAAs official sector capacity. Each sector
capacity is computed using various metrics which include the
number of air traffic controllers available. The exponential
penalty is intended to provide strong feedback to return the
number of aircraft in a sector to below the FAA mandated
capacities.

3. AGENT BASED AIR TRAFFIC FLOW
The multi agent approach to air traffic flow management

we present is predicated on adaptive agents taking indepen-
dent actions that maximize the system evaluation function
discussed above. To that end, there are four critical deci-
sions that need to be made: agent selection, agent action
set selection, agent learning algorithm selection and agent
reward structure selection.

3.1 Agent Selection
Selecting the aircraft as agents is perhaps the most ob-

vious choice for defining an agent. That selection has the
advantage that agent actions can be intuitive (e.g., change
of flight plan, increase or decrease speed and altitude) and
offer a high level of granularity, in that each agent can have
its own policy. However, there are several problems with
that approach. First, there are in excess of 40,000 aircraft
in a given day, leading to a massively large multi-agent sys-
tem. Second, as the agents would not be able to sample their
state space sufficiently, learning would be prohibitively slow.
As an alternative, we assign agents to individual ground lo-
cations throughout the airspace called “fixes.” Each agent is
then responsible for any aircraft going through its fix. Fixes
offer many advantages as agents:

1. Their number can vary depending on need. The sys-
tem can have as many agents as required for a given sit-
uation(e.g., agents coming “live” around an area with
developing weather conditions).

2. Because fixes are stationary, collecting data and match-
ing behavior to reward is easier.

3. Because Aircraft flight plans consist of fixes, agent will
have the ability to affect traffic flow patterns.

4. They can be deployed within the current air traffic
routing procedures, and can be used as tools to help air
traffic controllers rather than compete with or replace
them.

Figure 2 shows a schematic of this agent based system.
Agents surrounding a congestion or weather condition affect
the flow of traffic to reduce the burden on particular regions.

3.2 Agent Actions
The second issue that needs to be addressed, is determin-

ing the action set of the agents. Again, an obvious choice
may be for fixes to “bid” on aircraft, affecting their flight
plans. Though appealing from a free flight perspective, that
approach makes the flight plans too unreliable and signifi-
cantly complicates the scheduling problem (e.g., arrival at
airports and the subsequent gate assignment process).

Instead, we set the actions of an agent to determining
the separation (distance between aircraft) that aircraft have



to maintain, when going through the agent’s fix. This is
known as setting the “Miles in Trail” or MIT. When an agent
sets the MIT value to d, aircraft going towards its fix are
instructed to line up and keep d miles of separation (though
aircraft will always keep a safe distance from each other
regardless of the value of d). When there are many aircraft
going through a fix, the effect of issuing higher MIT values
is to slow down the rate of aircraft that go through the fix.
By increasing the value of d, an agent can limit the amount
of air traffic downstream of its fix, reducing congestion at
the expense of increasing the delays upstream.

Sector

With

Possible 

Congestion

Agent

Agent

Agent

AgentAgent

Agent

Agent

Figure 2: Schematic of agent architecture. The
agents corresponding to fixes surrounding a possi-
ble congestion become “live” and start setting new
separation times.

3.3 Agent Learning
The objective of each agent is to learn the best values of

d that will lead to the best system performance, G. In this
paper we assume that each agent will have a reward func-
tion and will aim to maximize its reward using its own rein-
forcement learner [15] (though alternatives such as evolv-
ing neuro-controllers are also effective [1]). For complex
delayed-reward problems, relatively sophisticated reinforce-
ment learning systems such as temporal difference may have
to be used. However, due to our agent selection and agent
action set, the air traffic congestion domain modeled in this
paper only needs to utilize immediate rewards. As a con-
sequence, a simple table-based immediate reward reinforce-
ment learning is used. Our reinforcement learner is equiva-
lent to an ε-greedy Q-learner with a discount rate of 0 [15].
At every episode an agent takes an action and then receives
a reward evaluating that action. After taking action a and
receiving reward R an agent updates its Q table (which con-
tains its estimate of the value for taking that action [15]) as
follows:

Q′(a) = (1− l)Q(a) + l(R), (6)

where l is the learning rate. At every time step the agent
chooses the action with the highest table value with prob-
ability 1 − ε and chooses a random action with probability
ε. In the experiments described in this paper, α is equal
to 0.5 and ε is equal to 0.25. The parameters were chosen
experimentally, though system performance was not overly
sensitive to these parameters.

3.4 Agent Reward Structure
The final issue that needs to be addressed is selecting the

reward structure for the learning agents. The first and most
direct approach is to let each agent receive the system per-
formance as its reward. However, in many domains such
a reward structure leads to slow learning. We will there-
fore also set up a second set of reward structures based on
agent-specific rewards. Given that agents aim to maximize
their own rewards, a critical task is to create “good” agent
rewards, or rewards that when pursued by the agents lead
to good overall system performance. In this work we focus
on difference rewards which aim to provide a reward that is
both sensitive to that agent’s actions and aligned with the
overall system reward [2, 17, 18].

3.4.1 Difference Rewards
Consider difference rewards of the form [2, 17, 18]:

Di ≡ G(z)−G(z − zi + ci) , (7)

where zi is the action of agent i. All the components of
z that are affected by agent i are replaced with the fixed
constant ci

2.
In many situations it is possible to use a ci that is equiv-

alent to taking agent i out of the system. Intuitively this
causes the second term of the difference reward to evalu-
ate the performance of the system without i and therefore
D evaluates the agent’s contribution to the system perfor-
mance. There are two advantages to using D: First, because
the second term removes a significant portion of the impact
of other agents in the system, it provides an agent with
a “cleaner” signal than G. This benefit has been dubbed
“learnability” (agents have an easier time learning) in pre-
vious work [2, 17]. Second, because the second term does not
depend on the actions of agent i, any action by agent i that
improves D, also improves G. This term which measures the
amount of alignment between two rewards has been dubbed
“factoredness” in previous work [2, 17].

3.4.2 Estimates of Difference Rewards
Though providing a good compromise between aiming

for system performance and removing the impact of other
agents from an agent’s reward, one issue that may plague D
is computational cost. Because it relies on the computation
of the counterfactual term G(z − zi + ci) (i.e., the system
performance without agent i) it may be difficult or impos-
sible to compute, particularly when the exact mathematical
form of G is not known. Let us focus on G functions in the
following form:

G(z) = Gf (f(z)), (8)

where Gf () is non-linear with a known functional form and,

f(z) =
X

i

fi(zi) , (9)

where each fi is an unknown non-linear function. We as-
sume that we can sample values from f(z), enabling us to
compute G, but that we cannot sample from each fi(zi).

2This notation uses zero padding and vector addition rather
than concatenation to form full state vectors from partial
state vectors. The vector “zi” in our notation would be ziei

in standard vector notation, where ei is a vector with a value
of 1 in the ith component and is zero everywhere else.



In addition, we assume that Gf is much easier to compute
than f(z), or that we may not be able to even compute
f(z) directly and must sample it from a “black box” com-
putation. This form of G matches our system evaluation
in the air traffic domain. When we arrange agents so that
each aircraft is typically only affected by a single agent, each
agent’s impact of the counts of the number of aircraft in a
sector, kt,s, will be mostly independent of the other agents.
These values of kt,s are the “f(z)s” in our formulation and
the penalty functions form “Gf .” Note that given aircraft
counts, the penalty functions (Gf ) can be easily computed
in microseconds, while aircraft counts (f) can only be com-
puted by running FACET taking on the order of seconds.

To compute our counterfactual G(z − zi + ci) we need to
compute:

Gf (f(z − zi + ci)) = Gf

0@X
j 6=i

fj(zj) + fi(ci)

1A (10)

= Gf (f(z)− fi(zi) + fi(ci)) .(11)

Unfortunately, we cannot compute this directly as the values
of fi(zi) are unknown. However, if agents take actions inde-
pendently (it does not observe how other agents act before
taking its own action) we can take advantage of the linear
form of f(z) in the fis with the following equality:

E(f−i(z−i)|zi) = E(f−i(z−i)|ci) (12)

where E(f−i(z−i)|zi) is the expected value of all of the fs
other than fi given the value of zi and E(f−i(z−i)|ci) is the
expected value of all of the fs other than fi given the value
of zi is changed to ci. We can then estimate f(z − zi + ci):

f(z)− fi(zi) + fi(ci) = f(z)− fi(zi) + fi(ci)

+ E(f−i(z−i)|ci)− E(f−i(z−i)|zi)

= f(z)− E(fi(zi)|zi) + E(fi(ci)|ci)

+ E(f−i(z−i)|ci)− E(f−i(z−i)|zi)

= f(z)− E(f(z)|zi) + E(f(z)|ci) .

Therefore we can evaluate Di = G(z)−G(z − zi + ci) as:

Dest1
i = Gf (f(z))−Gf (f(z)− E(f(z)|zi) + E(f(z)|ci)) , (13)

leaving us with the task of estimating the values of E(f(z)|zi)
and E(f(z)|ci)). These estimates can be computed by keep-
ing a table of averages where we average the values of the ob-
served f(z) for each value of zi that we have seen. This esti-
mate should improve as the number of samples increases. To
improve our estimates, we can set ci = E(z) and if we make
the mean squared approximation of f(E(z)) ≈ E(f(z)) then
we can estimate G(z)−G(z − zi + ci) as:

Dest2
i = Gf (f(z))−Gf (f(z)− E(f(z)|zi) + E(f(z))) . (14)

This formulation has the advantage in that we have more
samples at our disposal to estimate E(f(z)) than we do to
estimate E(f(z)|ci)).

4. SIMULATION RESULTS
In this paper we test the performance of our agent based

air traffic optimization method on a series of simulations
using the FACET air traffic simulator. In all experiments
we test the performance of five different methods. The first
method is Monte Carlo estimation, where random policies
are created, with the best policy being chosen. The other

four methods are agent based methods where the agents are
maximizing one of the following rewards:

1. The system reward, G(z), as define in Equation 1.

2. The difference reward Di(z), assuming that agents can
calculate counterfactuals.

3. Estimation to the difference reward Dest1
i (z), where

agents estimate the counterfactual using E(f(z)|zi)
and E(f(z)|ci).

4. Estimation to the difference reward Dest1
i (z), where

agents estimate the counterfactual using E(f(z)|zi)
and E(f(z)).

These methods are first tested on an air traffic domain with
300 aircraft, where 200 of the aircraft are going through
a single point of congestion over a four hour simulation.
Agents are responsible for reducing congestion at this single
point, while trying to minimize delay. The methods are then
tested on a more difficult problem, where a second point of
congestion is added with the 100 remaining aircraft going
through this second point of congestion.

In all experiments the goal of the system is to maximize
the system performance given by G(z) with the parameters,
a = 50, b = 0.3, τs1 equal to 200 minutes and τs1 equal to
175 minutes. These values of τ are obtained by examining
the time at which most of the aircraft leave the sectors, when
no congestion control is being performed. Except where
noted, the trade-off between congestion and lateness, α is
set to 0.5. In all experiments to make the agent results
comparable to the Monte Carlo estimation, the best policies
chosen by the agents are used in the results. All results are
an average of thirty independent trials with the differences
in the mean (σ/

√
n) shown as error bars, though in most

cases the error bars are too small to see.
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Figure 3: Performance on single congestion prob-
lem, with 300 Aircraft , 20 Agents and α = .5.

4.1 Single Congestion
In the first experiment we test the performance of the five

methods when there is a single point of congestion, with
twenty agents. This point of congestion is created by setting
up a series of flight plans that cause the number of aircraft in



the sector of interest to be significantly more than the num-
ber allowed by the FAA. The results displayed in Figures
3 and 4 show the performance of all five algorithms on two
different system evaluations. In both cases, the agent based
methods significantly outperform the Monte Carlo method.
This result is not surprising since the agent based methods
intelligently explore their space, where as the Monte Carlo
method explores the space randomly.
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Figure 4: Performance on single congestion prob-
lem, with 300 Aircraft , 20 Agents and α = .75.

Among the agent based methods, agents using difference
rewards perform better than agents using the system re-
ward. Again this is not surprising, since with twenty agents,
an agent directly trying to maximize the system reward has
difficulty determining the effect of its actions on its own
reward. Even if an agent takes an action that reduces con-
gestion and lateness, other agents at the same time may
take actions that increase congestion and lateness, causing
the agent to wrongly believe that its action was poor. In
contrast agents using the difference reward have more influ-
ence over the value of their own reward, therefore when an
agent takes a good action, the value of this action is more
likely to be reflected in its reward.

This experiment also shows that estimating the difference
reward is not only possible, but also quite effective, when
the true value of the difference reward cannot be computed.
While agents using the estimates do not achieve as high of
results as agents using the true difference reward, they still
perform significantly better than agents using the system
reward. Note, however, that the benefit of the estimated
difference rewards are only present later in learning. Earlier
in learning, the estimates are poor, and agents using the
estimated difference rewards perform no better then agents
using the system reward.

4.2 Two Congestions
In the second experiment we test the performance of the

five methods on a more difficult problem with two points of
congestion. On this problem the first region of congestion is
the same as in the previous problem, and the second region
of congestion is added in a different part of the country.
The second congestion is less severe than the first one, so
agents have to form different policies depending which point
of congestion they are influencing.
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Figure 5: Performance on two congestion problem,
with 300 Aircraft, 20 Agents and α = .5.
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Figure 6: Performance on two congestion problem,
with 300 Aircraft, 50 Agents and α = .5.

The results displayed in Figure 5 show that the relative
performance of the five methods is similar to the single con-
gestion case. Again agent based methods perform better
than the Monte Carlo method and the agents using differ-
ence rewards perform better than agents using the system
reward. To verify that the performance improvement of our
methods is maintained when there are a different number of
agents, we perform additional experiments with 50 agents.
The results displayed in Figure 6 show that indeed the rela-
tive performances of the methods are comparable when the
number of agents is increased to 50. Figure 7 shows scaling
results and demonstrates that the conclusions hold over a
wide range of number of agents. Agents using Dest2 per-
form slightly better than agents using Dest1 in all cases but
for 50 agents. This slight advantage stems from Dest2 pro-
viding the agents with a cleaner signal, since its estimate
uses more data points.

4.3 Penalty Tradeoffs
The system evaluation function used in the experiments is

G(z) = −((1−α)D(z)+αC(z)), which comprises of penalties
for both congestion and lateness. This evaluation function
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Figure 7: Impact of number of agents on system per-
formance. Two congestion problem, with 300 Air-
craft and α = .5.

forces the agents to tradeoff these relative penalties depend-
ing on the value of α. With high α the optimization focuses
on reducing congestion, while with low α the system focuses
on reducing lateness. To verify that the results obtained
above are not specific to a particular value of α, we repeat
the experiment with 20 agents for α = .75. Figure 8 shows
that qualitatively the relative performance of the algorithms
remain the same.

Next, we perform a series of experiments where α ranges
from 0.0 to 1.0 . Figure 9 shows the results which lead to
three interesting observations:

• First, there is a zero congestion penalty solution. This
solution has agents enforce large MIT values to block
all air traffic, which appears viable when the system
evaluation does not account for delays. All algorithms
find this solution, though it is of little interest in prac-
tice due to the large delays it would cause.

• Second, if the two penalties were independent, an op-
timal solution would be a line from the two end points.
Therefore, unless D is far from being optimal, the
two penalties are not independent. Note that for al-
pha=0.5 the difference between D and this hypothet-
ical line is as large as it is anywhere else, making al-
pha=0.5 a reasonable choice for testing the algorithms
in a difficult setting.

• Third, Monte Carlo and G are particularly poor at
handling multiple objectives. For both algorithms, the
performance degrades significantly for mid-ranges of α.

4.4 Computational Cost
The results in the previous section show the performance

of the different algorithms after a specific number of episodes.
Those results show that D is significantly superior to the
other algorithms. One question that arises, though, is what
computational overhead D puts on the system, and what
results would be obtained if the additional computational
expense of D is made available to the other algorithms.

The computation cost of the system evaluation, G (Equa-
tion 1) is almost entirely dependent on the computation
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Figure 8: Performance on two congestion problem,
with 300 Aircraft, 20 Agents and α = .75.
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Figure 9: Tradeoff Between Objectives on two con-
gestion problem, with 300 Aircraft and 20 Agents.
Note that Monte Carlo and G are particularly bad
at handling multiple objectives.

of the airplane counts for the sectors kt,s, which need to
be computed using FACET. Except when D is used, the
values of k are computed once per episode. However, to
compute the counterfactual term in D, if FACET is treated
as a “black box”, each agent would have to compute their
own values of k for their counterfactual resulting in n + 1
computation of k per episode. While it may be possible
to streamline the computation of D with some knowledge of
the internals of FACET, given the complexity of the FACET
simulation, it is not unreasonable in this case to treat it as
a black box.

Table 1 shows the performance of the algorithms after
2100 G computations for each of the algorithms for the sim-
ulations presented in Figure 5 where there were 20 agents,
2 congestions and α = .5. All the algorithms except the
fully computed D reach 2100 k computations at time step
2100. D however computes k once for the system, and then
once for each agent, leading to 21 computations per time
step. It therefore reaches 2100 computations at time step
100. We also show the results of the full D computation
at t=2100, which needs 44100 computations of k as D44K .



Table 1: System Performance for 20 Agents, 2 con-
gestions and α = .5, after 2100 G evaluations (except
for D44K which has 44100 G evaluations at t=2100).

Reward G σ/
√

n time
Dest2 -232.5 7.55 2100
Dest1 -234.4 6.83 2100
D -277.0 7.8 100
D44K -219.9 4.48 2100
G -412.6 13.6 2100
MC -639.0 16.4 2100

Although D44K provides the best result by a slight margin,
it is achieved at a considerable computational cost. Indeed,
the performance of the two D estimates is remarkable in this
case as they were obtained with about twenty times fewer
computations of k. Furthermore, the two D estimates, sig-
nificantly outperform the full D computation for a given
number of computations of k and validate the assumptions
made in Section 3.4.2. This shows that for this domain, in
practice it is more fruitful to perform more learning steps
and approximate D, than few learning steps with full D com-
putation when we treat FACET as a black box.

5. DISCUSSION
The efficient, safe and reliable management of air traffic

flow is a complex problem, requiring solutions that integrate
control policies with time horizons ranging from minutes
up to a year. The main contribution of this paper is to
present a distributed adaptive air traffic flow management
algorithm that can be readily implemented and to test that
algorithm using FACET, a simulation tool widely used by
the FAA, NASA and the industry. Our method is based on
agents representing fixes and having each agent determine
the separation between aircraft approaching its fix. It offers
the significant benefit of not requiring radical changes to
the current air flow management structure and is therefore
readily deployable. The agents use reinforcement learning to
learn control policies and we explore different agent reward
functions and different ways of estimating those functions.

We are currently extending this work in three directions.
First, we are exploring new methods of estimating agent re-
wards, to further speed up the simulations. Second we are
investigating deployment strategies and looking for modi-
fications that would have larger impact. One such modi-
fication is to extend the definition of agents from fixes to
sectors, giving agents more opportunity to control the traf-
fic flow, and allow them to be more efficient in eliminating
congestion. Finally, in cooperation with domain experts,
we are investigating different system evaluation functions,
above and beyond the delay and congestion dependent G
presented in this paper.
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