
11

FeatherTrait: A Modest Extension
of Featherweight Java

LUIGI LIQUORI

INRIA

and

ARNAUD SPIWACK

ENS Cachan

In the context of statically typed, class-based languages, we investigate classes that can be extended

with trait composition. A trait is a collection of methods without state; it can be viewed as an

incomplete stateless class. Traits can be composed in any order, but only make sense when imported

by a class that provides state variables and additional methods to disambiguate conflicting names

arising between the imported traits. We introduce FeatherTrait Java (FTJ), a conservative extension

of the simple lightweight class-based calculus Featherweight Java (FJ) with statically typed traits. In

FTJ, classes can be built using traits as basic behavioral bricks; method conflicts between imported

traits must be resolved explicitly by the user either by (i) aliasing or excluding method names

in traits, or by (ii) overriding explicitly the conflicting methods in the class or in the trait itself.

We present an operational semantics with a lookup algorithm, and a sound type system that

guarantees that evaluating a well-typed expression never yields a message-not-understood run-

time error nor gets the interpreter stuck. We give examples of the increased expressive power of

the trait-based inheritance model. The resulting calculus appears to be a good starting point for a

rigorous mathematical analysis of typed class-based languages featuring trait-based inheritance.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and

Theory—syntax, semantics; D.3.2 [Programming Languages]: Language Classifications—object-
oriented languages; D.3.3 [Programming Languages]: Language Constructs and Features—

classes and objects; inheritance; F.3.3 [Logics and Meanings of Programs]: Studies of Program

Constructs—object-oriented constructs

General Terms: Design, Languages, Theory

Additional Key Words and Phrases: Java, inheritance, language design, language semantics

This work was supported by French grant CNRS ACI Modulogic, and by the AEOLUS FET Global

Computing Proactive IST-015964, Algorithmic Principles for Building Efficient Overlay Computers.
Authors’ addresses: L. Liquori, INRIA, 2004 Route des Lucioles, BP 93, F-06902 Sophia Antipolis,

France, email: Luigi.Liquori@inria.fr; A. Spiwack, Ecole Normale Supérieure de Cachan, 61

avenue du Président Wilson, F-94235 Cachan cedex, France, email: Arnaud.Spiwack@dptinfo.

ens-cachan.fr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 0164-0925/2008/03-ART11 $5.00 DOI 10.1145/1330017.1330022 http://doi.acm.org/

10.1145/1330017.1330022

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1330017.1330022&domain=pdf&date_stamp=2008-03-14

11:2 • L. Liquori and A. Spiwack

ACM Reference Format:

Liquori, L., Spiwack, A. 2007. Feather Trait: A modest extension of Featherweight Java.

ACM Trans. Program. Lang. Syst. 30, 2, Article 11 (March 2008), 32 pages. DOI = 10.1145/

1330017.1330022 http://doi.acm.org/10.1145/1330017.1330022

1. INTRODUCTION

“Inside every large language is a small language
struggling to get out ...” [Igarashi et al. 2001]

“... and inside every small language is a sharp
extension looking for better expressivity ...”

Inheritance is commonly viewed as one crucial feature of object-oriented
languages. There are essentially three kinds of inheritance, namely, single
inheritance, multiple inheritance (including mixin-based inheritance and trait-
based inheritance), and object-based (delegation-based) inheritance.
Single Inheritance is the simplest model, adopted, for example, in Java [Sun]
and C# [Microsoft]. The inheritance relation forms a tree, and a derived class
can inherit methods and variables only from its parent class.
Object-Based Inheritance, also called delegation-based inheritance, adopted,
for example, in Self [Ungar and Smith 1987] and Obliq [Cardelli 1995]. It is
the most flexible inheritance model based on the idea that objects are created
dynamically by modifying existing objects used as prototypes. An object created
from a given prototype may add new methods or redefine methods supplied
by the prototype; this may change the object type. Any message sent to the
created object is handled directly by it if it contains the corresponding method,
otherwise the message is “passed back”, that is, delegated to the prototype.
Because of the extreme dynamicity with respect to the class-based model, even
in the presence of a single parent inheritance, static type-checking is very
difficult [Liquori 1997, 1998; Di Gianantonio et al. 1998].
Multiple Inheritance is a richer but debated model (adopted, e.g., in C++
[Stroustrup 1997]): a derived class can inherit from many parent classes (forms
an inheritance directed acyclic graph).

Compared with single inheritance, multiple inheritance adds additional run-
time overhead (potentially involving dynamic binding). The literature presents
a rich list of potential problems with multiple inheritance, including fork-join
(diamond) inheritance, the yo-yo problem, access to overridden methods, and
the complication of type-checking in the presence of parametric classes. Among
this more flexible inheritance model, two concepts have been developed in the
past few years

(1) Mixins. There are essentially two kinds of mixins, mixin-classes and mixin-
modules.

A mixin-class is like a class (it contains defined methods, that is, interface-
types and bodies, or deferred methods, that is, only interface-types) that
can be applied to various parent classes in order to extend them with the
methods contained in the mixin-class itself. Mixin-classes are named and

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

FeatherTrait: A Modest Extension of Featherweight Java • 11:3

can be applied to a parent class. The concept of mixin-classes, invented in
the 90’s by Bracha and Cook [Bracha and Cook 1990], has been studied in
the recent years by, among others, Flatt et al. [1998], Bono et al. [1999],
and in the contexts of an extension of Java, by Ancona et al. [2003], and by
Allen et al. [2003].

A mixin-module (introduced to solve implementation inheritance prob-
lems) is a module which supports deferred components. Mixins are named
and can be composed using an ad hoc algebra (e.g., merge and restrict op-
erations). Mixin-modules were introduced by Bracha [1992], and have been
studied more recently by Duggan and Sourelis [1996], Findler and Flatt
[1998], Flatt and Felleisen [1998], Wells and Vestergaard [2000], Ancona
and Zucca [2002b, 2002a], and Hirschowitz et al. [2004].

(2) Traits. Defined by Schärli et al. [2003] and Ducasse et al. [2006], these
have recently emerged as a novel technique for building composable units
of behaviors in a dynamically typed language à la Smalltalk. Intuitively, a
trait is just a collection of methods, that is, behaviors without state. Derived
traits can be built from an unordered list of parent traits, together with
new method declarations. Thus, traits are (incomplete) classes without
state. Traits can be composed in any order. A trait makes sense only
when “imported” by a class that provides state variables and possibly some
additional methods to disambiguate conflicting names arising among the
imported traits. The order for importing traits in classes is irrelevant.

Historically, traits, intended as a collection of state1 and behavior, have
been originally employed in the pure object-based languages Self [Ungar
and Smith 1987], or in the language Obliq [Cardelli 1995], or for the encoding
of classes as records-of-premethods in the Object Calculus by Abadi and
Cardelli [1996].

More recently, typed traits, intended as pure behavior without state, have
been introduced by Fisher and Reppy in an object-based core calculus for the
Moby programming language (of the ML [Milner et al. 1997] family) [Moby
Team 2007; Fisher and Reppy 2004]. Then, traits have been immerged in
Igarashi et al. [2001] Featherweight Java by Liquori and Spiwack [2004],
studied by Smith and Drossopoulou [2005] in Java setting, and implemented
by Odersky in the class-based language Scala [Scala Team 2007], and
in the new language Fortress by Allen et al. [2007]. Here, programs are
first type-checked and then executed, forgetting type information; in this
way compilation ensures the absence of message-not-understood run-time
errors, enhancing safety greatly and speeding-up the compiled code.

1.1 Contributions

FeatherTrait Java (FTJ), described in this article, conservatively extends the
simple calculus of Featherweight Java (FJ) by Igarashi et al. [2001] with
statically-typed traits. The main aim is to introduce the typed trait-based
inheritance in a class-based calculus à la Java; the calculus features mutually

1This is in contrast to traits of Schärli et al. [2003] and Ducasse et al. [2006].

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

11:4 • L. Liquori and A. Spiwack

recursive class declarations, object creation, field access, method invocation and
overriding, method recursion through this, subtyping and simple casting. Just
as with FJ, some of the features of Java that we do not model include assignment,
interfaces, overloading, base types (int, boolean, String, etc.), null pointers,
abstract method declaration, shadowing of superclass fields by subclass fields,
access control (public, private, etc), and exceptions. Since FTJ provides no
operations with side effects, a method body always consists of return followed
by an expression.

The main contributions of this article are

(1) We define the calculus FTJ, a conservative extension of FJ featuring trait
inheritance. Multiple traits can be inherited by one class, and conflicts
between common methods defined in two or more inherited traits must
be resolved explicitly by the user either by (i) aliasing or excluding method
names in traits, or by (ii) overriding explicitly the conflicted methods in the
class that imports those traits or in the trait itself.

(2) We define a simple type system that type-checks traits when imported in
classes, resulting in a sharp and lightweight extension of the type system
of FJ. This can be considered as a first step in adding a powerful but safe
form of trait-based inheritance to the Java language.

1.2 Outline of the Article

The article is structured as follows. In Section 2, we review the untyped trait-
based inheritance model and we present the main ideas underlying our typed
trait-based inheritance model for Java. In Section 3, we present the syntax of
FTJ, together with some useful notational conventions. Section 4 presents the
operational semantics, while Section 5 presents the type system of FTJ. Section
6 presents the main meta-theoretical results. Section 7 presents a few examples
of using traits in FTJ. Section 8 discusses related work and Section 9 concludes.
Appendices A and B contain the full formal system, while Appendix C contains
the full proofs.

The presentation is kept as simple as possible, with a syntax and a semantics
for FTJ made as close as possible to this of FJ, few definitions and few theorems.
Some knowledge of the syntax, semantics and type system of FJ may be helpful
in reading this article. A preliminary version of this work appeared in June
2004 as an INRIA technical report [Liquori and Spiwack 2004].

2. TRAIT-BASED INHERITANCE

We start this section with a brief presentation of the main concepts of traits,
using FTJ syntax. One useful feature of trait-based inheritance is that when a
conflict arises between traits included in the same class (e.g., a method defined
in two different traits), then the conflict is signaled and it is up to the user to
explicitly and manually resolve the conflict. Three simple rules can be easily
implemented in the method-lookup algorithm for that purpose

(1) Methods defined in a class take precedence over methods defined in the
traits imported by the class.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

FeatherTrait: A Modest Extension of Featherweight Java • 11:5

(2) Methods defined in a composite trait take precedence over methods defined
in the imported traits.

(3) Methods defined in traits (imported by a class) take precedence over
methods defined in its parent class.

The above rules are the simple recipe of the trait-based inheritance model. They
greatly increase the flexibility of the calculus that uses traits.

Another property of trait-based inheritance is that a class that imports traits
is semantically equivalent to a class that defines in situ all the methods defined
in traits. This can be done via flattening, which immediately suggests how to
build a compiler translating FTJ code into FJ code, via code duplication.

A trait can import from other traits. Hence, it requires methods that are not
defined in the trait itself, those methods being useful in order to “complete” its
behavior. In FTJ syntax

trait T1 {String p(){return ‘‘hello’’;}}
trait T2 {String p(){return ‘‘world’’;}}
trait T3 imports T1 T2

{String m(){return (...this.p()...);} p is a required method
!String p(){return ‘‘hello world’’;} p is an overriding method
!String n(){return (...this.q()...);}} q is a required method

Trait T3 imports traits T1 and T2, overrides p, and q is still a required method

Observe that a trait is by definition potentially incomplete, that is, it cannot be
instantiated into a “runnable” object, since they have no instance variable, and
it can lack some method implementations, for example,

trait T4 {Object p(){return (...this.r()...);}} r is a required method
trait T5 {Object q(){return (...this.s()...);}} s is a required method
trait T6 imports T4 T5

{Object m(){return (...this.p()...);} p is a required method
!Object n(){return (...this.q()...);}} q is a required method

Trait T6 imports traits T4 and T5, and r and s are still required methods

2.1 Conflict Resolution

When dealing with trait inheritance, conflicts can arise; for example a class C
might import two traits T1 and T2 defining the same method p with different
behavior. Conflicts between traits must be resolved manually, that is, there is no
special or rigid discipline to learn how to use traits. Once a conflict is detected,
there are essentially three ways to resolve the conflict (below, “winner” denotes
the body selected by the lookup algorithm)

(1) Overriding a New Method p Inside the Class. A new method p is redefined
inside the class with an new behavior. The (trait-based) lookup algorithm
will hide the conflictin traits in favor of the overriding method defined in

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

11:6 • L. Liquori and A. Spiwack

the class. In FTJ syntax

class C extends Object
imports T1 T2 each trait defines a (different) behavior for p

{...;... instance vars and constructor
D p(...){...}} new behavior for p, the winner

(2) Aliasing the Method p in Traits and Redefining the Method in Class. The
method p is aliased in T1 and T2 with new different names. A new behavior
for p can now be given in the class C (possibly re-using the aliased methods
p of T1 and p of T2 which are no longer in conflict). In FTJ syntax

class C extends Object
imports T1 with {p@p_of_T1}2 T1 aliases p with p of T1

T2 with {p@p_of_T2} T2 aliases p with p of T2
{...;... instance vars and constructor
D p(...){...}} new winner behavior for p, it may use p of T1/2

(3) Excluding the Method p in One of the Traits. One method p in trait T1 or T2
is excluded. This solves the conflict in favor of one trait. In FTJ syntax

class C extends Object
imports T1 contains the winner method p

T2 minus {p} method p is now hidden
{...;...} instance vars, constructor and methods

A diamond problem occurs in the following situation. Let T be a trait with a
method p, and let T1 and T2 be two traits that inherit a method p from T. Then, a
trait or class that imports both T1 and T2 would ostensibly have two definitions
for the method p. One point of view is that this is harmless since both definitions
for p are the same. In contrast, Snyder [1987] suggests that diamonds should
be considered as conflicts. The type system of FTJ statically detects all possible
diamond conflicts and considers them as legal, that is, type-safe.

3. FEATHERTRAIT JAVA

In FTJ, a program consists of a collection of class declarations, plus a collection
of trait declarations and an expression to be evaluated.

3.1 Notational Conventions

—We adopt the same notational conventions and hygiene conditions as FJ,
with the following additions: the metavariable T ranges over trait names,
and TA ranges over trait alterations. TL (respectively CL) ranges over trait
declarations (respectively class declarations). TT (respectively CT) ranges
over trait tables (respectively class tables), where a trait table TT is a par-
tial function from trait names to trait alterations, and a class table CT is

2In the original model of Schärli et al. [2003], m@n was denoted by n->m.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

FeatherTrait: A Modest Extension of Featherweight Java • 11:7

Fig. 1. Syntax of FTJ.

a partial function from class names to class declarations. Finally, K (re-
spectively M) ranges over constructors (respectively methods), f (respec-
tively, m, n, p, and q) ranges over field names (respectively method names),
e (respectively x) ranges over expressions (respectively variables), and
A, B, C, D, and E range over class names, and M⊥ (respectively, (x, e)⊥) ranges
over methods (respectively method bodies) and the special failure value
fail.

—Sequences of field declarations, parameter names, method and trait decla-
rations, and trait alterations (vector notation) are assumed to contain no
duplicate names.

—As in FJ, we set the root class Object as the superclass of all classes: this
class has no method nor field, and does not appear in the class table CT.

3.2 Syntax

The syntax of FTJ is given in Figure 1: it extends the syntax of FJ. An FTJ
program is a triple (CT, TT, e) of a class table, a trait table, and an expression.
A class

class C extends C imports3 TA {C f; K M}
in FTJ is composed of field declarations C f, a constructor K, some new or
redefined methods M, plus a list of imported (and possibly altered) traits TA.
A trait

trait T imports TA {M}
is composed of a list of methods M and some other traits TA imported by the
trait itself. All conflicts will be discovered using the trait checking rules, and
resolved using the class checking rule. As noted above, the “diamond problem”
is not considered as a conflict. Expressions are the usual ones of FJ.

3The keyword imports was preferred to the keyword implements (à la Java) because traits already

implements some methods.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

11:8 • L. Liquori and A. Spiwack

3.3 Trait-Based Inheritance in FTJ

We list the features of FTJ

—A method defined in a class has the same behavior as a method defined in a
trait and imported by a class.

—A class (or a trait) may import many traits: the composition order of traits
does not matter.

—A trait can be altered either by dropping a method name m, or by aliasing a
method name m with another method name n.

—A modified method lookup is implemented to deal with traits and trait
alterations.

—A method defined in a class (respectively, trait) takes precedence over, or
overrides a method defined in a trait and imported by the class (respectively,
trait).

—A diamond schema is accepted statically.

—A trait is type-checked only inside a class, that is, inside a complete unit of
behavior (that is, inside a class).

FTJ, is, like FJ, a functional calculus, that is, there is no notion of state and no
assignment; for example, instead of assigning a different value to a variable,
we build another object completely from scratch with the new modified value
in place of the old one. The possibility to type-check traits only once (see
conclusions), is beyond the scope of this article.

4. OPERATIONAL SEMANTICS

The small-step operational semantics of FTJ is the same as that of FJ. The
essential difference between the two is the new lookup algorithm. The reduction
relation, given in Appendix A, defines the relation e −→ e′, read “expression
e reduces to expression e′ in one step”. As in FJ, the variable this denotes
the receiver itself (in the substitution). The first two rules (Run·Field) and
(Run·Call) deal with field lookup and method call, while the last rule (Run·Cast)
is a typecast. As usual, these reduction rules can be applied at any point of the
computation, so the classical congruence rules apply, which we omit here, as we
omit the rules of subtyping, proving judgments of the form A <: B (see Appendix
A). The functions mbody and fields are slight extensions of the corresponding
functions in FJ. The mbody function needs to be customized in order to find
method bodies defined within traits and altered traits. The mbody function calls
another function, tlook , which deals with trait lookup. The tlook function may
call another function, altlook , which deals with trait alterations lookup.

4.1 Lookup Algorithm

The lookup algorithm described in Appendix A takes into account the three
simple method-precedence rules. Extra complications with respect to the lookup
in FJ arise because of trait inheritance and because traits can be altered.

Field Lookup. It is performed as in FJ (see Appendix A).

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

FeatherTrait: A Modest Extension of Featherweight Java • 11:9

Method Lookup. This is performed by the rules (MBdy·Cla) that searches
in the current class, then (MBdy·Tr) that searches in all imported traits, and
(MBdy·SCla) that searches in the direct parent class. The trait lookup function
tlook searches the method body of m only if m is not overridden in the class; this
forces the uniqueness of the search, otherwise a conflict would arise, since a
method defined in the class could have overridden method m. In particular, the
rule (MBdy·Tr) is as follows

CT(C) = class C extends D imports TA {C f; K M}
m �∈ meth(M) tlook (m, TA) = B m(B x){return e; }

mbody(m, C) = (x, e)
(MBdy·Tr)

Here meth is a function, defined in Appendix A, that collects method names.

Trait Lookup. This is performed by the function tlook that, intuitively,
searches the body of the method m “traversing” a sequence of trait alterations.
The two simple inference rules are as follows

∃TA ∈ TA. altlook (m, TA) �= fail

tlook (m, TA) = altlook (m, TA)
(Tr·Ok)

∀TA ∈ TA. altlook (m, TA) = fail

tlook (m, TA) = fail
(Tr·Ko)

The auxiliary function altlook takes into account altered traits, that is, traits
with dropped methods, or with aliased methods. Finding a method that has
been dropped or aliased is one of the key parts of the lookup algorithm.

Trait Alteration Lookup. The trait alteration lookup rules are detailed in
Appendix A. The most interesting trait alteration rules are the following ones

TT(T) = trait T imports TA {M}
B m(B x){return e; } ∈ M

altlook (m, T) = B m(B x){return e; }
(ATr·Found)

altlook (n, TA) = B n(B x){return e; }
altlook (m, TA with {n@m}) = B m(B x){return e; }

(ATr·Ali1)

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

11:10 • L. Liquori and A. Spiwack

m �= p m �= q altlook (m, TA) = M⊥

altlook (m, TA with {p@q}) = M⊥
(ATr·Ali2)

m �= n

altlook (m, TA with {m@n}) = fail
(ATr·Ali3)

altlook (n, TA) = fail

altlook (m, TA with {n@m}) = fail
(ATr·Ali4)

—(ATr·Found) The function altlook succeeds to return the body of the method
we are looking for, since that method is found in the trait.

—(ATr·Ali1) When looking up a method m in a trait alteration where n is aliased
to m, we look up for the method with the former name n, and then we rename.
The condition m �= n is not required since it is enforced by the type system.

—(ATr·Ali2) Recursive call. The conditions m �= p and m �= q guarantee that it is
another method which is aliased.

—(ATr·Ali3) Failure. The condition m �= n is not necessary, since it is enforced
by the type system; however, it has been left to emphasize that the cases are
pairwise disjoint.

—(ATr·Ali4) Recursive call with failure. A failure is propagated in case the
premise fails.

Diamond Inheritance. Let us extend the meth function to trait alter-
ations, to obtain the set of method names available in the alteration (see
Appendix A). The following definitions will be useful to type-check traits and
classes (key rules (Tr·Ok) and (Cla·Ok)). Let

def= means equal by definition.

Definition 4.1. Method Intersection and Diamond Detection

∩TA def= {m | ∃TA1 �= TA2 ∈ TA. m ∈ meth(TA1) ∩ meth(TA2)}

�TA def= {m | ∃n, TA1. ∀TA2 ∈ TA. m ∈ meth(TA2) =⇒ m in TA2�n in TA1}.
Intuitively

—The set ∩TA denotes methods defined in more than one trait; it is used to
detect conflicts when importing traits.

—The set �TA denotes methods that potentially determine a diamond when
dealing with trait inheritance; such methods are expected to be “nonconflict-
ing”, hence accepted by the type system. The notation m in TA2�n in TA1, read
“m of TA1 behaves exactly as n of TA2”, will be introduced in the next paragraph.

In a nutshell: The set ∩TA detects every conflict in TA, while the set �TA detects
every diamond. A class declaration

class C extends D imports TA {C f; K M}
ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

FeatherTrait: A Modest Extension of Featherweight Java • 11:11

is well formed only if the imported trait alterations imported by the class C
satisfy the constraint

∩TA \ �TA ⊆ meth(M)

ensuring that every conflict is resolved, that is, every new-born conflict (∩TA)4

that is not a diamond (�TA) is being overridden. The ⊆ relation, instead of
the more restrictive = relation, is given in order to make FTJ a conservative
extension of FJ.

Method Paths in Trait Alterations. To compute �TA, we need a relation
proving judgments of the form

m in TA1�n in TA2

The meaning of this judgment is as follows: m is a method provided by trait TA1
that behaves exactly as method n provided by TA2 through any number of trait
declarations or alteration steps (paths). The most interesting rules are

TT(T) = trait T imports TA {M}
TA ∈ TA m ∈ meth(TA) \ meth(M)

m in T�m in TA
(Path·Inh)

p in TA1�n in TA2

m in TA1 with {p@m}�n in TA2
(Path·Ali1)

m in TA1�n in TA2 m �= p m �= q

m in TA1 with {p@q}�n in TA2
(Path·Ali2)

m in TA1�n in TA2 m �= p

m in TA1 minus {p}�n in TA2
(Path·Exl)

—(Path·Inh) If a trait T inherits a method m directly from a trait alteration TA
and does not override it, then m of T behaves exactly as m of TA.

—(Path·Ali1) If p of TA1 behaves exactly as n of TA2, then m of TA1 with {p@m}
behaves exactly as n of TA2.

—(Path·Ali2) If m �= p and m �= q, and m of TA1 behaves exactly as n of TA2, then
m of TA1 with {p@q} behaves exactly as n of TA2.

—(Path·Exl) If m �= p, and m of TA1 behaves exactly as n of TA2, then m of
TA1 minus {p} behaves exactly as n of TA2.

Reflexivity and transitivity rules are presented in Appendix A. Note that we
could have also a symmetry rule, although the resulting lookup would be less
algorithmic.

4Note that conflicts are resolved recursively.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

11:12 • L. Liquori and A. Spiwack

Remark 4.2 (Modified Lookup Rule). If we drop rules (ATr·Ali1) and
(ATr·Ali4) and (Path·Ali1) and we add the “imperative-like” rule

altlook (n, TA) = M⊥

altlook (m, TA with {n@m}) = [this.m/this.n]M⊥
(ATr·Alias·Imp),

then the resulting system would still be sound (the curious reader can customize
proofs of Lemmas 2, 3, 4 in Appendix C). This allows one to convert recursive
calls via this to the new aliased name. The operation [this.m/this.n] is not
strictly speaking a substitution, but rather a replacement, since this.n is not
a variable. The purpose of such operation is to substitute every recursive and
internal method call to this.n by this.m. Moreover, we assume the replacement
changes the name of the method declaration, that is,

[this.m/this.n](B n (B x){. . . this.n . . . }) def= B m (B x){. . . this.m . . . }.
The reason for this replacement is that in the aliased trait alteration
TA with {n@m} we want to alias method n with m without altering the rest of the
trait. From an external point of view, the aliased trait alteration will behave
exactly as TA, except that the method n will be aliased. The (ATr·Alias·Imp) rule
is not compatible with rules (ATr·Ali1) and (ATr·Ali4) and (Path·Ali1) since it
changes the body of the method we are looking for in the premises.

5. THE TYPE SYSTEM

This section introduces the most innovative rules of the FTJ type system. The
full set of rules is presented in Appendix B. The type system has two steps: first,
expression typing as in any statically typed language, proved as judgments of
the form

� � e ∈ C

second, class type-checking (as in FJ) is performed. Since everything in classes
is explicitly typed, the system has only to check if the class declaration is correct.
In contrast to FJ, the type-checker of FTJ also checks conflict resolutions. The
FTJ type system proves judgments of the three forms

M OK IN C and TA OK IN C except m and CL OK,

where the tables TT, and CT are left implicit in the judgments. Traits and trait
alterations are typed only with respect to a given class, the only complete unit of
behavior devoted to instantiate truly “runnable” objects. Separate compilation
of traits is possible but out of the scope of this article. For more advanced
proposals, see Fisher and Reppy [2004] or Liquori and Spiwack [2008].

Basic Expression Checking and Valid Type Lookup. These rules (see
Appendix B) have no novelties with respect to the corresponding ones of FJ.

Method Checking. The method type-checking rule is the same as in FJ (see
Appendix B).

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

FeatherTrait: A Modest Extension of Featherweight Java • 11:13

Trait Alteration Checking. The following type-checking rules are the core of
this article. These rules derive judgments of the form TA OK IN C except m, which
means that TA is well typed with respect to a given class C where every method
m must be overridden. The rationale is as follows: every method occurring in
the except part refers to a body that cannot be type-checked in C, and it is
overridden by another

N def= {M ∈ M | ¬M OK IN C} TA OK IN C except m ∩TA \ �TA ⊆ meth(M)

trait T imports TA {M} OK IN C except meth(N) ∪ (m \ meth(M))
(Tr·Ok)

altlook (n, TA with {m@n}) = M M OK IN C

TA OK IN C except p n �∈ meth(TA)

TA with {m@n} OK IN C except p \ {m}
(Alias·Ok1)

altlook (n, TA with {m@n}) = M ¬M OK IN C

TA OK IN C except p n �∈ meth(TA)

TA with {m@n} OK IN C except (p \ {m}) ∪ {n}
(Alias·Ok2)

TA OK IN C except n m ∈ meth(TA)

TA minus {m} OK IN C except n \ {m}
(Exlude·Ok)

Some comments are in order

—(Tr·Ok) Ensures that every TA ∈ TA is well-typed. Intuitively
—We fetch all the methods N defined in the trait T that are not type-checked

in C.
—We type-check the set of altered traits TA in C, producing a set of illegal

methods (the except m part) corresponding to the methods of TA that do
not type-check in C.

—We check the key condition ∩TA \ �TA ⊆ meth(M), ensuring that every
conflict is resolved, and guaranteeing that the lookup algorithm provides
the correct conflict resolution.

—We build a new set of illegal methods for T with respect to C, that is,
meth(N) ∪ (m \ meth(M)), that is, the illegal methods of TA (meth(N)) plus
the non-overridden illegal methods from TA (m \ meth(M)).

—(Alias·Ok1) Ensures that if TA is well typed, and the body M of the aliased
method is well typed in C, and the new name n is fresh in TA, then the altered
trait is well typed. The new set of illegal methods is the set p less m (former
method name).

—(Alias·Ok2) Behaves as for (Alias·Ok1), except that M is not well typed and n
is added to the set of illegal methods.

—(Exlude·Ok) If TA is well typed, then excluding m just removes m from the set
of illegal methods.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

11:14 • L. Liquori and A. Spiwack

Fig. 2. Blocked code.

Remark 5.1. (Why not simply TA OK IN C?) The reader may argue that a
simpler set for type-checking traits would be more appropriate, namely

M OK IN C ∩TA \ �TA ⊆ meth(M) TA OK IN C

trait T imports TA {M} OK IN C
(Tr·Ok′)

plus rules (Alias·Ok1), and (Exlude·Ok) (without the except part). This set of
rules enforces the well-known restriction saying that overriding a method in a
trait is possible only when the overridden method has the same type-interface.
In this case, the except part is empty. However, this restriction blocks the legal
code of Figure 2. Now the following two questions arise

—Are the above rules sound? Yes they are: but they block the legal code of
Figure 2.

—Are the FTJ rules sound? Yes they are (see Section 6). Intuitively, (i) all
methods defined or inherited in traits (respectively, in classes) are type-
checked all at once except for the illegal methods that are fetched and not
type-checked (the except part), and (ii) the lookup algorithm hide the (badly
typed) methods that are overridden in trait alterations or in classes. As such,
bodies of method m in traits T1 and T2 above are not type-checked and hence
overridden by two new bodies of type String in trait T3 and class B. This is
one of the great achievements of the FTJ’s type system.

Class Checking. The FTJ’s type system culminates in the class checking rule

K = C(D g, C f){super(g); this.f = f; }
fields(D) = D g ∩TA \ �TA ⊆ meth(M)

M OK IN C TA OK IN C except m m ⊆ meth(M)

class C extends D {C f; K M TA} OK
(Cla·Ok)

Intuitively, this rule checks that all the components of the class are well typed,
and that all conflicts are resolved. This type-checking rule ensures that FTJ is

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

FeatherTrait: A Modest Extension of Featherweight Java • 11:15

a proper extension of FJ, thanks to both occurrences in the premises of the ⊆
symbol that ensures compatibility whenever TA is empty. More precisely

—We fetch the constructor K and the fields g.

—We check the key condition ∩TA \ �TA ⊆ meth(M), ensuring that every conflict
is resolved (see the explanation about (Tr·Ok) above).

—We type-check all methods M defined in C.

—We type-check the set of altered traits TA in C, producing a set of illegal
methods m (the except part), that is, the methods of TA which do not type-
check in C.

—We check the condition m ⊆ meth(M), ensuring that the m illegal methods are
overridden with methods M of the class C.

Method-Type Lookup and Valid Method Overriding. These rules have no
difficulties (see Appendix B).

6. PROPERTIES

Once the operational semantics and the type system are defined, the next step
is to prove that (i) the static semantics matches the dynamic one, that is, types
are preserved during computation (modulo subtyping), that (ii) the interpreter
cannot get stuck if programs only include upcasts, and finally that (iii) the type
system prevents compiled programs from the unfortunate run-time message-
not-understood error.

The result we obtain in designing FTJ is that adding trait inheritance to
FJ does not break the elegance of the semantics of FJ nor does it make the
meta-theory excessively complicated. Of course, some care must be devoted
when dealing with trait alterations. Full proofs of the theorems are provided
in Appendix C.

The Conflict Resolution Theorem proves that the conflicts are resolved for
well-typed programs. The conflicts are, mathematically, the sources of non-
determinism in the lookup algorithm - specifically in tlook . The theorem states
that there is none.

THEOREM 6.1 (CONFLICT RESOLUTION). If, for all Ci ∈ CL, we have Ci OK, then
both mbody and mytype are functions.

Subject reduction proves that if an expression is typable and reduces to
another expression, then the latter expression is typable too has a type which
is a subtype of the type of the former.

THEOREM 6.2 (SUBJECT REDUCTION). If � � e ∈ C and e −→ e′, then � � e′ ∈ D,
for some D <: C.

Then, progress shows that the only way for the interpreter to get stuck is by
reaching a state where a downcast is impossible. Let # means cardinality, as in
Igarashi et al. [2001].

THEOREM 6.3 (PROGRESS). Suppose e is a well-typed expression

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

11:16 • L. Liquori and A. Spiwack

Fig. 3. Synthetic example.

—If e includes new C(e).f as a subexpression, then fields(C)=T f and f ∈ f;
—If e includes new C(e).m(f) as a subexpression, then mbody(m, C) = (x, e0) and

#(x) = #(d).

In accordance with FJ, we define the notion of safe expression e in � if the
type derivation of the underlying (CT, TT) and � � e ∈ C contains no downcast
or stupid cast (rules (Typ·DCast), and (Typ·SCast)). Recall that a stupid cast
in FJ is needed to ensure the Subject Reduction Theorem. Then, we show that
our semantics transforms safe expressions to safe expressions, and, moreover,
type-casts in a safe expression will never fail.

THEOREM 6.4 (REDUCTION PRESERVES SAFETY). If e is safe in �, and e −→ e′,
then e′ is safe in �.

THEOREM 6.5 (PROGRESS OF SAFE PROGRAMS). Suppose e is safe in �. If e has
(C)new D(e) as a subexpression, then D <: C.

7. EXAMPLES

7.1 Synthetic Example à la Goldberg and Robson [1983]

The example in Figure 3 defines three simple traits and four classes that import
those traits, some of them altered. The table summarizes all possible method
calls (we assume types and algebras for integers).

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

FeatherTrait: A Modest Extension of Featherweight Java • 11:17

Fig. 4. Funny example.

7.2 Funny Example à la FTJ

The example in Figure 4 shows how traits do not break legal code.5 The
ability to compose traits containing the same method name and different,

5Disclaimer: The names used here are chosen only for the purpose to show the power of combining

traits with different types. There is absolutely no political message inside.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

11:18 • L. Liquori and A. Spiwack

incompatible, signatures is one of the key results of this article. The ability
also to detect and type-check innocuous methods inherited via a diamond is
another achievement of FTJ. Roughly speaking, this corresponds to accept all
“safe” Smalltalk-like trait based feature that would not raise exceptions of the
shape message-not-understood at run-time.

8. RELATED WORK

In the past few years, many proposals for languages with typed traits have
emerged. The first paper about trait inheritance in statically typed languages is
the one by Fisher and Reppy [2004], presenting a core calculus (hereafter called
TcoreMoby) featuring traits for the programming language Moby. Quitslund
[2004] presented the first implementation of traits in a Java setting. Odersky’s
SCALA language [Scala Team 2007] features an interesting implementation
of typed traits. Recently, Smith and Drossopoulou [2005] formally adds traits
to Java [2005] (thereafter called Chai). Nierstrasz et al. [2006] formalize an
untyped mechanism to compile FTJ into plain Java by exploiting the flattening
property of traits. Finally, the new language Fortress by Allen et al. [2007] also
feature traits-as-types. We shortly review these proposals and compare it with
FTJ.

(TcoreMoby). It adds statically typed trait-based inheritance to an object-
based calculus with first-class functions of the ML family. Fisher and Reppy
[2004] have the same interest in typed traits as we do, and historically this
paper can be considered as the first attempt to type-check statically traits.
The key points of TcoreMoby are that (a) two traits can be combined only
if they are disjoint, and that (b) one method can be overridden by another
only if it has the same type interface, and that (c) in TcoreMoby traits can be
type-checked only once. The paper comes with the full set of proofs. Our FTJ
relaxes point (a) and (b), and leaves point (c) for further work (see Liquori
and Spiwack [2008]).

(Chai). It adds statically-typed trait-based inheritance to Java; in fact there
are three dialects defined: Chai1,2,3. As for TcoreMoby, the key points in Chai
are that (a) two traits can be combined only if they are disjoint, and that
(b) one method can be overridden by another only if it has the same type
interface, and that (c) in Chai2,3 traits can be type-checked only once, and
that (d) in Chai3 traits can be substituted for one another dynamically. The
paper comes with proof sketches for the theorems of Chai1, and soundness
theorems for Chai2,3, whose proofs are not yet published. Our FTJ can be
compared with Chai1: the biggest difference is that FTJ relaxes point (a)
and (b), making the type system more expressive than Chai1. Moreover, FTJ
comes with a full metatheory. Point (c) is left for further work (see Liquori
and Spiwack [2008]).

(Scala). It features traits as specific instance of an abstract class; thus the
abstract modifier is redundant for it. Traits in Scala are a bit like interfaces
in ClassicJava [Flatt et al. 1998], since they are used to define object types
by specifying the signature of the supported methods. Besides in Scala the
composition order of trait is irrelevant. A solid implementation is available

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

FeatherTrait: A Modest Extension of Featherweight Java • 11:19

on the Scala web site. A Featherweight Scala formal model with related meta-
theory remains to be fleshed out.

(Fortress). The language specifications was published on the SUN’s web site
at the end of 2005. This language features traits-as-types (i.e. a trait is like
an interface in Java with some concrete method bodies inside), and objects
are trait instances, obtained by completing the imported trait by the body
declaration of the abstract methods. A formal model with related meta-theory
remains to be fleshed out.

We compare below some of the above proposals on typed traits having a
formal static and dynamic semantics.

(1) TcoreMoby is a core calculus for languages of the ML family, whereas FTJ
and Chai are core calculi for Java-like languages (Java is a notable example,
not the absolute target).

(2) TcoreMoby and Chai are imperative, that is, they have a notion of state
and store, whereas FTJ is purely functional.

(3) TcoreMoby allows one to define a method only inside a trait definition,
whereas FTJ and Chai allows one also to define method in class definitions:
methods defined in classes take precedence over methods defined in traits.

(4) TcoreMoby and Chai allow trait compositions only if the traits to be com-
posed are disjoint, that is, no common methods, whereas FTJ permits one
to compose traits even if they share common methods: in this case all com-
mon methods must be overridden in the trait itself to be disambiguated.

(5) TcoreMoby considers method override inside traits as a derived operation,
whereas FTJ considers it as native; methods defined inside a trait take
precedence over methods imported the trait itself.

(6) TcoreMoby aliases a method m with n by copying the body of m and
associating to the method name n, and FTJ also does. Moreover, see
Remark 4.2, a sound variant of FTJ could alias m in n and replace in the
body of m every occurrence of this.m by this.n; in both cases, m will be is
removed from the illegal methods.

(7) TcoreMoby evaluates traits to trait values (this correspond to a linking
phase), whereas FTJ only type-checks a trait with respect to a class that
imports that trait.

(8) TcoreMoby and Chai feature this and super, whereas FTJ supports only
this.

(9) TcoreMoby has a type-system that features polymorphic-types and
polymorphic-traits, whereas that of FTJ type-system features only
first-order types.

(10) TcoreMoby and Chai subtype system features width subtyping, and FTJ
also does.

(11) TcoreMoby does not have constructors, whereas FTJ and Chai do.

(12) TcoreMoby and Chai2 type-check traits only once with a special type that
keeps tracks of the required and the provided methods, whereas FTJ
type-checks a trait only inside a class C, recording the methods that are

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

11:20 • L. Liquori and A. Spiwack

illegal (the except part of the trait typing judgment). Illegal methods can
be overridden with a complete different type, provided that all methods
that refers to those methods will continue to type-check it in the class
C. TcoreMoby and Chai1,2,3 are unable to type-check the examples of
Section 7. This is because both proposals enforce the constraint that
overriding a method in a trait is possible only when we respect the
same type-interface as the overridden one, as explained in Remark 2.
In contrast, the FTJ type system relaxes this constraint and permits
overriding a method in a trait with a different type-interface.

9. CONCLUSIONS

In this article, we have presented a formal development of the theory of FTJ,
a statically typed, purely functional, class-based language featuring classes,
objects, and trait inheritance. Among the possible future directions, we list
some questions on our agenda.

—The type system presented allows one to type-check traits only within classes;
in fact, when typing a class, all requirements of all traits (the except part)
must be resolved inside the class itself, otherwise the created instances would
generate a message-not-understood upon some non-implemented message
send. Type-checking traits only once is a reasonable feature to be added as
in TcoreMoby and Chai2. This suggests extending our type system for FTJ
with ad hoc types for traits. Here, traits can be type-checked only once and
considered as regular types, as Java-like interfaces with precise behavior.
We are developing two solutions for that: a simpler and a more complex
one. In the simpler solution, Liquori and Spiwack [2008], a trait can be seen
either as a potentially incomplete class where objects can be assigned but
not instantiated, that is, as an interface with some behavior inside but no
state: this extension can be achieved by adding and modifying few rules in
the FTJ type system. Another more complete solution would consider traits
as potentially incomplete units of behaviors, where objects can be assigned
and partially evaluated: to do this it could be encouraging to start from of
a previous work on potentially incomplete objects [Bono et al. 1997] in an
object-based setting. Other hints can be found in the theory of modules and
mixins [Hirschowitz et al. 2004], and in the linking phase of Fisher and Reppy
[2004].

—It would be interesting to add bounded polymorphic-types or even generic-
types; those extension will greatly improve the usefulness of statically typed
traits.

—It would be interesting to extend FTJ with imperative features.

—We would like to explore the impact of trait inheritance for the language C#;
although this language is quite similar to Java, it has its peculiarities, which
should be carefully interleaved and kept compatible with typed traits.

—We would like to compare the Fortress lookup algorithm with the FTJ lookup
algorithm.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

FeatherTrait: A Modest Extension of Featherweight Java • 11:21

—Finally, it is our opinion that trait-based inheritance could be fruitfully
applied to Aspect-Oriented Programming (AOP) à la Kiczales et al. [1997],
and Variation-Oriented Programming (VOP) à la Mezini [2002], and Object-
based Programming (OBP) à la Self [Ungar and Smith 1987].

APPENDIX

A. SYNTAX AND SEMANTICS OF FTJ
Syntax

CL ::= class C extends C [imports TA]{C f; K M} Class Declarations

TL ::= trait T [imports TA]{M} Trait Declarations

TA ::= T | TA with {m@m} | TA minus {m} Trait Alterations

K ::= C(C f){super(f); this.f = f; } Constructors

M ::= C m(C x){return e; } Methods

e ::= x | e.f | e.m(e) | new C(e) | (C)e Expressions

Subtyping

C <: C
(Sub·Refl)

C <: D D <: E

C <: E
(Sub·Trans)

CT(C) = class C extends D {. . . }
C <: D

(Sub·Cla)

Small-step semantics

fields(C) = C f

(new C(e)).fi −→ ei
(Run·Field)

mbody(m, C) = (x, e0)

(new C(e)).m(d) −→ [d/x, new C(e)/this]e0
(Run·Call)

C <: D

(D)(new C(e)) −→ new C(e)
(Run·Cast)

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

11:22 • L. Liquori and A. Spiwack

Congruence

e −→ e′

e.f −→ e′.f
(Cgr·Field)

e −→ e′

e.m(e) −→ e′.m(e)
(Cgr·Receiver)

ei −→ e′
i

e.m(. . . , ei, . . .) −→ e.m(. . . , e′
i, . . .)

(Cgr·Args)

ei −→ e′
i

new C(. . . , ei, . . .) −→ new C(. . . , e′
i, . . .)

(Cgr·New)

e −→ e′

(C)e −→ (C)e′
(Cgr·Cast)

Field lookup

fields(Object) = •
(Field·Top)

CT(C) = class C extends D imports TA {C f; K M}
fields(D) = D g

fields(C) = D g, C f
(Field·Cla)

Method body lookup

CT(C) = class C extends D imports TA {C f; K M}
B m (B x){return e; } ∈ M

mbody(m, C) = (x, e)
(MBdy·Cla)

CT(C) = class C extends D imports TA {C f; K M}
m �∈ meth(M) tlook (m, TA) = B m(B x){return e; }

mbody(m, C) = (x, e)
(MBdy·Tr)

CT(C) = class C extends D imports TA {C f; K M}
m �∈ meth(M) tlook (m, TA) = fail mbody(m, D) = (x, e)⊥

mbody(m, C) = (x, e)⊥
(MBdy·SCla)

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

FeatherTrait: A Modest Extension of Featherweight Java • 11:23

Trait lookup

∃TA ∈ TA. altlook (m, TA) �= fail

tlook (m, TA) = altlook (m, TA)
(Tr·Ok)

∀TA ∈ TA. altlook (m, TA) = fail

tlook (m, TA) = fail
(Tr·Ko)

Trait alteration lookup

TT(T) = trait T imports TA {M}
B m(B x){return e; } ∈ M

altlook (m, T) = B m(B x){return e; }
(ATr·Found)

TT(T) = trait T imports TA {M}
m �∈ meth(M) tlook (m, TA) = M⊥

altlook (m, T) = M⊥
(ATr·Inh)

altlook (n, TA) = B n(B x){return e; }
altlook (m, TA with {n@m}) = B m(B x){return e; }

(ATr·Ali1)

m �= p m �= q altlook (m, TA) = M⊥

altlook (m, TA with {p@q}) = M⊥
(ATr·Ali2)

m �= n

altlook (m, TA with {m@n}) = fail
(ATr·Ali3)

altlook (n, TA) = fail

altlook (m, TA with {n@m}) = fail
(ATr·Ali4)

m �= n

altlook (m, TA minus {n}) = altlook (m, TA)
(ATr·Exl1)

altlook (m, TA minus {m}) = fail
(ATr·Exl2)

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

11:24 • L. Liquori and A. Spiwack

Method names

meth(C m(C x){return e; }) = {m}
(Mth·Mth)

TT(T) = trait T imports TA {M}
meth(T) = meth(M) ∪ meth(TA)

(Mth·Tr)

meth(TA with {m@n}) = (meth(TA) \ {m}) ∪ {n}
(Mth·Ali)

meth(TA minus {m}) = meth(TA) \ {m}
(Mth·Exl)

Method paths in trait alterations

m ∈ meth(TA)

m in TA�m in TA
(Path·Refl)

m in TA1�p in TA2 p in TA2�n in TA3

m in TA1�n in TA3
(Path·Trans)

TT(T) = trait T imports TA {M}
TA ∈ TA m ∈ meth(TA) \ meth(M)

m in T�m in TA
(Path·Inh)

p in TA1�n in TA2

m in TA1 with {p@m}�n in TA2
(Path·Ali1)

m in TA1�n in TA2 m �= p m �= q

m in TA1 with {p@q}�n in TA2
(Path·Ali2)

m in TA1�n in TA2 m �= p

m in TA1 minus {p}�n in TA2
(Path·Exl)

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

FeatherTrait: A Modest Extension of Featherweight Java • 11:25

B. THE TYPE SYSTEM OF FTJ
Method type lookup

CT(C) = class C extends D imports TA {C f; K M}
B m(B x){return e; } ∈ M

mtype(m, C) = B → B
(MTyp·Self)

CT(C) = class C extends D imports TA {C f; K M}
m �∈ meth(M) tlook (m, TA) = B m(B x){return e; }

mtype(m, C) = B → B
(MTyp·Tr)

CT(C) = class C extends D imports TA {C f; K M}
m �∈ meth(M) tlook (m, TA) = fail

mtype(m, C) = mtype(m, D)
(MTyp·Super)

Valid method overriding

mtype(m, D) = D → D0 implies C = D and C0 = D0

override(m, D, C → C0)
(M·Ov)

Basic expression typing

� � X ∈ �(X)
(Typ·Var)

� � e0 ∈ C0 mtype(m, C0) = D → C

� � e ∈ C C <: D

� � e0.m(e) ∈ C
(Typ·Call)

fields(C) = D f � � e ∈ C C <: D

� � new C(e) ∈ C
(Typ·New)

� � e0 ∈ C0 fields(C0) = C f

� � e0.fi ∈ Ci
(Typ·Field)

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

11:26 • L. Liquori and A. Spiwack

� � e0 ∈ D D <: C

� � (C)e0 ∈ C
(Typ·UCast)

� � e0 ∈ D C <: D C �= D

� � (C)e0 ∈ C
(Typ·DCast)

stupid warning � � e0 ∈ D C �<: D D �<: C

� � (C)e0 ∈ C
(Typ·SCast)

Method Intersection and Diamond Detection

∩TA def= {m | ∃TA1 �= TA2 ∈ TA. m ∈ meth(TA1) ∩ meth(TA2)}

�TA def= {m | ∃n, TA1.∀TA2 ∈ TA. m ∈ meth(TA) =⇒ m in TA2�n in TA1}

Method typing

CT(C) = class C extends D imports TA {. . . }
x:C, this:C � e ∈ F override(m, D, C → E) F <: E

E m(C x){return e; } OK IN C
(Mth·Ok·Cla)

Trait typing

N def= {M ∈ M | ¬M OK IN C} TA OK IN C except m ∩TA \ �TA ⊆ meth(M)

trait T imports TA {M} OK IN C except meth(N) ∪ (m \ meth(M))
(Tr·Ok)

altlook (n, TA with {m@n}) = M M OK IN C

TA OK IN C except p n �∈ meth(TA)

TA with {m@n} OK IN C except p \ {m}
(Alias·Ok1)

altlook (n, TA with {m@n}) = M ¬M OK IN C

TA OK IN C except p n �∈ meth(TA)

TA with {m@n} OK IN C except (p \ {m}) ∪ {n}
(Alias·Ok2)

TA OK IN C except n m ∈ meth(TA)

TA minus {m} OK IN C except n \ {m}
(Exlude·Ok)

Class typing

K = C(D g, C f){super(g); this.f = f; }
fields(D) = D g ∩TA \ �TA ⊆ meth(M)

M OK IN C TA OK IN C except m m ⊆ meth(M)

class C extends D imports TA {C f; K M} OK
(Cla·Ok)

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

FeatherTrait: A Modest Extension of Featherweight Java • 11:27

C. THE FULL PROOFS

The following lemma proves that the method path relation only designs paths
for existing methods.

LEMMA C.1 (NONVIRTUAL PATHS). If m in TA1�n in TA2, then m ∈ meth(TA1) and
n ∈ meth(TA2).

PROOF. By induction on the derivation of m in TA1�n in TA2.

—(Path·Refl) Clear since TA1 = TA2.

—(Path·Trans) Straightforward by induction hypothesis.

—(Path·Inh) By hypothesis of the rule we have that m ∈ meth(TA2), and, by rule
(Mth·Tr), m ∈ meth(TA1).

—(Path·Ali1) By induction hypothesis we have that m ∈ meth(TA1) and
n ∈ meth(TA2), and, by rule (Mth·Ali), we get m ∈ meth(TA1 with {p@m}).

—(Path·Ali2) By induction hypothesis we have that m ∈ meth(TA1) and
n ∈ meth(TA2), and, by rule (Mth·Ali), we get m ∈ meth(TA1 with {p@q}).

—(Path·Exl) By induction hypothesis we have that m ∈ meth(TA1) and
n ∈ meth(TA2), and, by rule (Mth·Exl), we get m ∈ meth(TA1 minus {p}).
The following lemma ensures that altlook provides a method with the proper

name.

LEMMA C.2 (NAMING SOUNDNESS). If altlook (m, TA) = M⊥, then either M = fail
or M = B m (B x){. . . }.

PROOF. By straightforward induction on the derivation of altlook (m, TA) =
M.

The following lemma proves that a method path relation preserves the
body of the method. It is the first step for proving determinism of well-typed
programs.

LEMMA C.3 (DIAMOND PROTO-SOUNDNESS). If m in TA1�n in TA2, then altlook
(n, TA1) = B n(B x){return e; } implies altlook (m, TA2) = B m(B x){return e; }.

PROOF. By induction on the derivation of m in TA1�n in TA2.

—(Path·Refl) Clear since TA1 = TA2.

—(Path·Trans) Straightforward by induction hypothesis.

—(Path·Inh) Since m �∈ meth(M), the rule (ATr·Inh) can apply to TA1, which
implies the result.

—(Path·Ali1) The rule (ATr·Ali1) (respectively (ATr·Ali4)) can apply to TA1,
which implies the result.

—(Path·Ali2) Since m �= p and m �= q, the rule (ATr·Ali2) can apply to TA1, which
implies the result.

—(Path·Exl) Since m �= p, the rule (ATr·Exl1) can apply to TA1, which implies
the result.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

11:28 • L. Liquori and A. Spiwack

The following lemma proves that if a trait is well typed, then meth refers to
the set of methods where altlook does not fail.

LEMMA C.4 (meth SOUNDNESS). If TA OK IN C except m, then m ∈ meth(TA) if
and only if altlook (m, TA) �= fail .

PROOF. By induction on the derivation of altlook (m, TA).

—(ATr·Found) Then altlook (m, TA) �= fail and from rule (Mth·Tr), we have
m ∈ meth(TA).

—(ATr·Inh) Then altlook (m, TA) �= fail ⇐⇒ ∃TAi ∈ TA. altlook (m, TAi) �= fail .
Thus we have, by induction hypothesis

altlook (m, TA) �= fail ⇐⇒ ∃TAi ∈ TA. m ∈ meth(m, TAi) ⇐⇒ m ∈ meth(TA).

The latter comes from rule (Mth·Tr) and the statement m �∈ meth(M).

—(ATr·Ali1) Then TA = TA1 with {n@m}. Since TA is well-typed, we have that
n ∈ meth(TA1) and m �∈ meth(TA1). Then, by induction hypothesis, we have that
altlook (n, TA1) �= fail , and thus altlook (m, TA) �= fail , and rule (Mth·Ali) states
that m ∈ meth(TA).

—(ATr·Ali2) Straightforward as for (ATr·Ali1).

—(ATr·Ali3) Clear.

—(ATr·Ali4) By induction hypothesis.

—(ATr·Exl1) Straightforward using rule (Mth·Exl).

—(ATr·Exl2) Clear.

We prove that altlook is a function when the program type-checks.

LEMMA C.5 (CONFLICT RESOLUTION IN TRAIT ALTERATIONS). If TA OK IN C except
m, then altlook (· , TA) is a function.

PROOF. By induction on the derivation of altlook .

—(ATr·Found) Direct.

—(ATr·Inh) If tlook (m, TA) = fail , then the property obviously holds. Else, by
induction hypothesis, for all TAi ∈ TA, altlook (· , TAi) is a function.
—If m �∈ ∩TA, then there is a unique TAi ∈ TA where altlook (m, TAi) �= fail .
—If m ∈ ∩TA, then since TA is well typed, the rule (Tr·Ok) enforces that

m ∈ �TA. Then, for all TAi ∈ TA, we have m ∈ meth(TAi) ⇒ m in TAi�n in TA1.
Moreover, we know that n ∈ meth(TA1), by Lemma C.1 (Nonvirtual Paths),
which means that there is at least one altlook (n, TA1) = B n (B x̄){. . . .}
which is derivable, by Lemma C.4 (meth Soundness). Thus, altlook (m, TAi) =
B m (B x̄){. . . .} is derivable for all TAi such that m ∈ meth(TAi), by Lemma
C.3 (Diamond Proto-Soundness). To conclude, we know that altlook (·, TAi)
is a function which ensures they are all equal.

Which obviously gives the result.

—(ATr·Ali1) Then, TA = TA1 with {n@m}. The induction hypothesis ensures that
altlook (· , TA1) is a function. Then, it is straightforward.

—(ATr·Ali2) Straightforward as for (ATr·Ali1).

—(ATr·Ali3) Clear.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

FeatherTrait: A Modest Extension of Featherweight Java • 11:29

—(ATr·Ali4) By induction hypothesis.

—(ATr·Exl1) Straightforward as for (ATr·Ali2).

—(ATr·Exl2) Clear.

The system is kept nondeterministic to emphasize the fact that the order of
trait composition does not matter in the result. We prove that all conflict are
resolved both for static (typing) and dynamic semantics.

THEOREM C.1 (CONFLICT RESOLUTION). If for all Ci ∈ CL, we have Ci OK, then
both mbody(· , Ci) and mtype(· , Ci) are functions.

PROOF. We prove that mbody(· , Ci) is a function by induction on the
derivation of mbody(m, Ci), the proof for mtype(· , Ci) being similar.

—(MBdy·Cla) Direct.

—(MBdy·SCla) Straightforward by induction hypothesis.

—(MBdy·Tr) For all TAi ∈ TA, altlook (· , TAi) is a function, by Lemma C.5
(Conflict Resolution in Trait Alterations).
◦ If m �∈ ∩TA then, obviously, there is a unique TAi ∈ TA where altlook (m, TAi) �=

fail .
◦ If m ∈ ∩TA, then, since Ci is well-typed, the rule (Cla·Ok) enforces that
m ∈ �TA. Then, for all TAi ∈ TA, we have m in TAi�n in TA1. Moreover, we
know that m ∈ meth(TA1), by Lemma C.1 (Nonvirtual Paths), which means
that there is at least one altlook (n, TA1) = B n (B x̄){. . . .} which is derivable,
by Lemma C.4 (meth Soundness). Thus, altlook (m, TAi) = B m (B x̄){. . . .} is
derivable, by Lemma C.3 (Diamond Proto-Soundness). To conclude, we
know that altlook (·, TAi) is a function, which ensures they are all equal.

Which gives the result.

In the following, we suppose that the classes are well typed, so that Theorem
C.1 holds, and we can address mbody and mtype as mathematical functions.
Moreover, unless explicitly mentioned, when citing proofs in Igarashi et al.
[2001], we mean that they apply exactly for FTJ. From now on the lemma and
theorem sequence is the same as in FJ.

LEMMA C.6 (mtype SOUNDNESS). If mtype(m, D) = C → E, then mtype(m, C) =
C → E, for all C <: D.

PROOF. The proof is as in Igarashi et al. [2001], by induction on the
derivation of C <: D.

LEMMA C.7 (SUBSTITUTION LEMMA). If �, x:B � e ∈ D and � � d ∈ A, where
A <: B, then � � [d/x]e ∈ C for some C <: D.

PROOF. The proof is as in Igarashi et al. [2001]. By straightforward induction
on the derivation of �, x:B � e ∈ D.

LEMMA C.8 (WEAKENING). If � � e ∈ C, then �, X:D � e ∈ C.

PROOF. The proof is as in Igarashi et al. [2001]. By straightforward induction
on the derivation of � � e ∈ C.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

11:30 • L. Liquori and A. Spiwack

LEMMA C.9 (METHOD BODY TYPE). If mtype(m, C) = B → B and mbody(m, C) =
(x, e), then, for some Dwith C <: D, there exists A <: B such that x:B, this:D � e ∈ A.

PROOF. By induction on the derivation of mbody(m, C) = (x, e). If mbody(m, C) =
(x, e), then B m (B x){return e; } OK IN D for some D with C <: D and some B → B.
Then, by Lemma C.6 (mtype Soundness), B → B = mtype(m, C) holds.

—(MBdy·Cla) Immediate from (Cla·Ok) rule.

—(MBdy·Tr) Let CT(C) = class C extends D imports TA {C f; K M}. By
straightforward induction on the derivation of TA OK IN C except m, where
TA ∈ TA is the trait alteration selected by tlook .

—(MBdy·SCla) By induction hypothesis.

Lastly, we are ready to prove the main theorems.

THEOREM C.2 (SUBJECT REDUCTION). If � � e ∈ C and e −→ e′, then
� � e′ ∈ D, for some D <: C.

PROOF. The proof is as in Igarashi et al. [2001].

THEOREM C.3 (PROGRESS). Suppose e is a well-typed expression.

—If e includes new C(e).f as a subexpression, then fields(C)=T f and f ∈ f.
—If e includes new C(e).m(f) as a subexpression, then mbody(m, C) = (x, e0) and

#(x) = #(d).

PROOF. The proof is almost the same as in Igarashi et al. [2001]. There is a
very little to add, just remember that we need Theorem C.1 (Conflict Resolution)
to achieve the full proof.

THEOREM C.4 (REDUCTION PRESERVES SAFETY). If e is safe in �, and e −→ e′,
then e′ is safe in �.

PROOF. As in Igarashi et al. [2001], this proof is just similar to the Subject
Reduction proof.

THEOREM C.5 (PROGRESS OF SAFE PROGRAMS). Suppose e is safe in �. If e has
(C)new D(e) as a subexpression, then D <: C.

PROOF. The proof is almost the same as in Igarashi et al. [2001]. The
only rule that we can apply to derive the type of (C)new C0(e), if e is safe, is
(Typ·UCast).

ACKNOWLEDGMENTS

The authors are sincerely grateful to all members of the Software Composition
Group in Bern, for their deep understanding of the untyped trait model and for
several fruitful discussions. We also warmly thank all the anonymous referees
for their insightful comments and suggestions that helped us to improve the
article. Thanks to Benjamin Pierce for suggesting the name FeatherTrait Java.
Thanks to Andrew Black for revising an earlier version of this article. We finally
warmly thank Pierre Lescanne, Dan Dougherty, and Ralf Klasing for the careful
reading of this article.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

FeatherTrait: A Modest Extension of Featherweight Java • 11:31

REFERENCES

ABADI, M. AND CARDELLI, L. 1996. A Theory of Objects. Springer Verlag, New York.

ALLEN, E., CHASE, D., LUCHANGCO, V., MAESSEN, J.-W., RYU, S., STEELE, G. L., AND TOBIN-HOCHSTADT,

S. 2007. The Fortress Language Specification, version 1.0. http://research.sun.com/

projects/plrg/fortress.pdf.

ALLEN, E. E., BANNET, J., AND CARTWRIGHT, R. 2003. Mixins in generic java are sound. Tech. rep.,

Rice University.

ANCONA, D., LAGORIO, G., AND ZUCCA, E. 2003. Jam - designing a Java extension with mixins. ACM
Trans. Prog. Lang. Syst. 25, 5, 641–712.

ANCONA, D. AND ZUCCA, E. 2002a. A calculus of module system. J. Funct. Program 12, 12, 91–132.

ANCONA, D. AND ZUCCA, E. 2002b. A theory of mixin modules: Algebraic laws and reduction

semantics. Math. Struct. Comput. Sci. 12, 5, 701–737.

BONO, V., BUGLIESI, M., DEZANI-CIANCAGLINI, M., AND LIQUORI, L. 1997. Subtyping constraint for

incomplete objects. In Proceedings of TAPSOFT/CAAP. Lecture Notes in Computer Science, vol.

1214. Springer Verlag, New York, 465–477.

BONO, V., PATEL, A., AND SHMATIKOV, V. 1999. A core calculus of classes and mixins. In Proceedings
of ECOOP. Lecture Notes in Computer Science, vol. 1628. Springer-Verlag, New York.

BRACHA, G. 1992. The Programming Language Jigsaw: Mixins, modularity and multiple

inheritance. Ph.D. dissertation, University of Utah.

BRACHA, G. AND COOK, W. R. 1990. Mixin-based inheritance. In Proceedings of OOPSLA/ECOOP.

SIGPLAN Notices, vol. 25(10). ACM, New York, 303–311.

CARDELLI, L. 1995. Obliq: A language with distributed scope. Comput. Syst. 8, 1, 27–59.

DI GIANANTONIO, P., HONSELL, F., AND LIQUORI, L. 1998. A lambda calculus of objects with self-

inflicted extension. In Proceedings of OOPSLA. ACM, New York, 166–178.

DUCASSE, S., NIERSTRASZ, O., SCHÄRLI, N., WUYTS, R., AND BLACK, A. P. 2006. Traits: A mechanism

for fine-grained reuse. ACM Trans. Program. Lang. Syst. 28, 2, 331–388.

DUGGAN, D. AND SOURELIS, C. 1996. Mixin modules. In Proceedings of ICFP. SIGPLAN Notices,

vol. 31(6). ACM, New York, 262–273.

FINDLER, R. B. AND FLATT, M. 1998. Modular object-oriented programming with units and mixins.

In Proceedings of ICFP. SIGPLAN Notices. ACM, New York, 94–104.

FISHER, K. AND REPPY, J. 2004. Statically typed traits. http://www.cs.uchicago.edu/files/

tr authentic/TR-2003-13.pdf. (The early version “A Typed Calculus of Traits” has been

presented at FOOL 10.)

FLATT, M. AND FELLEISEN, M. 1998. Units: Cool modules for HOT languages. In Proceedings of
PLDI. SIGPLAN Notices. ACM, New York, 236–248.

FLATT, M., KRISHNAMURTHI, S., AND FELLEISEN, M. 1998. Classes and mixins. In Proceedings of
POPL. ACM, New York, 171–183.

GOLDBERG, A. AND ROBSON, D. 1983. Smalltalk-80: the Language and its Implementation. Addison-

Wesley, Reading, MA.

HIRSCHOWITZ, T., LEROY, X., AND WELLS, J. B. 2004. Call-by-value mixin modules: Reduction

semantics, side effects, types. In Proceedings of ESOP. Lecture Notes in Computer Science, 2986,

Springer-Verlag, New York, 64–78.

IGARASHI, A., PIERCE, B., AND WADLER, P. 2001. Featherweight Java: A minimal core calculus for

Java and GJ. ACM Trans. Prog. Lang. Syst. 23, 3, 396–450.

KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C., LOPES, C. V., LOINGTIER, J.-M., AND IRWIN, J.

1997. Aspect-oriented programming. In Proceedings of ECOOP. Lecture Notes in Computer

Science, 1241, Springer-Verlag, New York, 220–242.

LIQUORI, L. 1997. An extended theory of primitive objects: first order system. In Proceedings of
ECOOP. Lecture Notes in Computer Science, 1241, Springer-Verlag, New York, 146–169.

LIQUORI, L. 1998. On object extension. In Proceedings of ECOOP. Lecture Notes in Computer

Science, 1445, Springer-Verlag, New York, 498–552.

LIQUORI, L. AND SPIWACK, A. 2004. Featherweight-trait Java : A trait-based extension for FJ. Tech.

Rep. RR-5247, INRIA. Juin. http://www.inria.fr/rrrt/rr-5247.html.

LIQUORI, L. AND SPIWACK, A. 2008. Extending FeatherTrait Java with interfaces. Theoret. Comput.
Sci. To appear.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

11:32 • L. Liquori and A. Spiwack

MEZINI, M. 2002. Towards variational object-oriented programming: The rondo model. Tech. Rep.

TUD-ST-2002-02, Software Technology Group, Darmstadt University of Technology.

MICROSOFT. The C# Home Page. http://msdn.microsoft.com/vcsharp/.

MILNER, R., TOFTE, M., HARPER, R., AND MACQUEEN, D. 1997. The Definition of Standard ML
(Revised). MIT Press, Cambridge, MA.

MOBY TEAM. 2007. The Moby home page. http://moby.cs.uchicago.edu/.

NIERSTRASZ, O., DUCASSE, S., AND SCHÄRLI, N. 2006. Flattening traits. J. Obj. Tech. 5, 4, 129–148.

QUITSLUND, P. J. 2004. Java traits – Improving opportunities for reuse. Tech. Rep. CSE-04-

005, OGI School of Science and Engineering. http://www.ogi.edu/csee/tech-reports/2004/

04-005.pdf.

SCALA TEAM. 2007. The scala home page. http://scala.epfl.ch/.

SCHÄRLI, N., DUCASSE, S., NIERSTRASZ, O., AND BLACK, A. 2003. Traits: Composable units of

behaviour. In Proceedings of ECOOP. Lecture Notes in Computer Science, 2743, Springer-Verlag,

New York, 248–274.

SMITH, C. AND DROSSOPOULOU, S. 2005. Chai: Typed traits in Java. In Proceedings of ECOOP.

Lecture Notes in Computer Science, 3586, Springer-Verlag, New York, 453–478.

SNYDER, A. 1987. Inheritance and the development of encapsulated software systems. In Research
Directions in Object-Oriented Programming. MIT Press, Cambridge, MA, 165–188.

STROUSTRUP, B. 1997. The C++ Programming Language, Ch. 15, Third Ed. Addison Wesley,

Reading, MA.

SUN. Java Technology. http://java.sun.com/.

UNGAR, D. AND SMITH, R. B. 1987. Self: The power of simplicity. In Proceedings of OOPSLA. ACM,

New York, 227–241.

WELLS, J. B. AND VESTERGAARD, R. 2000. Equational reasoning for linking with first-class primitive

modules. In Proceedings of ESOP. Lecture Notes in Computer Science, vol. 1782. Springer Verlag,

New York, 412–428.

Received May 2005; revised June 2006; accepted February 2007

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 11, Publication date: March 2008.

