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Abstract

Performance and dependability analysis is usuall.y based on NIarkov models. One

of the maill problems faced by t.he analyst is the large state space cardinality
of t.he .\larkov chain associated \\,ith the model. \Vhich precludes not only the

model solution, but also the generation of the transition rate matrix. However ,
in many real system models, most of the probability mass is concentrated in

a small number of states in comparison with the whole state space. Therefore,

performability measures may be accurately evaluated from these .;high probable"
states. In this paper, we present an algorithm to generate the most probable
states that is more efficient than previous algorithms in the literature. We also
address the problem of calculating measures of interest and show how bounds on

some mcasures cah be efficiently calculated.
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1 Introd uction.

Perlormallce alld dependability analysis of compllter and commllnication systems has been
an important tool for designers who ,vish to llnderstand and predict the behavior of sllch

sj'stems. Performance modelling attempts to captllre the effect of contention for resources

in the s:.stem and queueing networks have been extensively used as a modelling tool (e.g.,
[32.33,í.1.5]). ln particular, major advances in the area \vhere due to the product form
solution \\"hich allows performance measures to be obtained \vithout the solution of the

underl:.ing ~larkov chain model. Dependability modelling is concerned \vith the changes
in the structure of the system which may occur due to faults in its components. In this

area. ~larkov chain models are extensively llsed (e.g., [45]) since. except for a few cases (e.g..
[21]), the lllodels do 1lot possess product form solution. More rece1ltly, with the advent of

degradable computer systems, the combined modelling of performance and dependability,
the so called pelJormability modelling [:36], has receivecl i1lcreasing attention (see [14.3í]) ,

and r(~fer('l1ces t herei1l). Similarly to dependability modellil1g, ylarko\' models a1"e the mai1l

tool for l)erforl1l.Lbility modelling.

lhe (,Ollll)lexity of the curre1lt computer systems led to the developme1lt of many tools

.for pl'rforlllal1ce/depe1ldability moclelli1lg, e.g. [2,20.-1,41,2.5,6,40] (see also [:30] for a survey
a1ld fllrthl'r rMere1lces). Several tools allo\V the a1la.l:,st to describe the system i1l a high le\.el
represel1tatio1l a1ld automatically generate the correspondi1lg Nlarkov chain model. Once the
tra1lsitiol1 rate 11latrix is generatecl, Markov chai1l solution tech1liques are used to obtain the

measures of illterest.

Ol1e of the major problems faced by such tools is the large state space cardinality of

the ~Iarko\. (ha.ill associated with the models. For instance, in dependability (performance)
models. the llumber of states grows exponentially with the number of components that can

fail ( 1IIIlllber of resollrces a1ld customers in the model ) .So, unless the lllodel has special
properties (c.g.. product form) the solution is impra.ctica,l. Large state space cardinality ha.s
a llla.jol. illll)a(t llOt o1lI:, on the solutioll techl1iques but ctl~o Oll 11lodel gellercttioll. sill(e it

may be too time co1lsuming to generate alld pra.ctically impossible to store a transition rate

matrix for a ~1aJ.kovian moclel \vith millions or billiolls of states.

~IaJl:. techlliques have been developed to deal \Vith large state space cardi1lality, alld

amollg those we mention: decomposition, lumping, truncation. Decomposition is a useful
techllique for analyzing systems consistillg of \veakly coupled subsystems. In this case. th~

underl:.illg transition rate matrix is nearly completely decomposable and an approximation
solutioll for the state probabilities can be found based on the solution of each individual

subsystem [4:3.8]. This technique has been found very useful when applied to queueing

net\\"orks. although it is not as useful for clependability moclelling, since the underlying
1\Iarkov chain is not nearly completely decomposable, in general. However, the basic aggre-
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gationl disaggregation technique described in [8] is applicable. regardless of the form of the

transition rate matrix. Courtois and Semal [9] are conccrned with the calculation of steady

state probabilities \\.hen only part of the model is generated. They obtain bounds on steady
state probabiliti('s of each state in a subset of states, conditioned on the system being in a

state of the subsct. and show how the approach can be useful for certain queueing models
[11]. ~Iuntz et al [:38] developed a method for bounding steady state availability of repairable
computer system models, based on the technique of Courtois and Semal. Their approach
uses certain propcrties of availability models in order to obtain tight bounds. Courtois and

Semal [ 10] obtain bounds on the mean and second moment of the mean time until absorption
(~IT.\) based on the results of [9]. The technique is shown to be cheaper than traditional

methods to calculate the ?\!ITA.

Lumping is a method that is used to reduce the state spa.ce of models. For a given

measure of illterest. subsets of states may be combined (lumped) into a single state, without
affecting the final result. In [31], conditions for lumping states of a Markov model are given
in temlS of the t ransition probabilities of the one step transition probability matrix, and in

[21] lumping is a1)plied to availability modelling. Recently, Sanders and Meyer [.12] proposed
a state spacc rcduction method ba.sed on lumpability conditions, but \vhich cal1 be applied
\\"ithotlt the nc('d to construct the tra.nsition rat.e ma.trix. Ins\'ead, submodels of a high leveI

systenl Jescrip\'ioll (a SAN model or Stochas\'ic Petri Ilet model) are iden\'ified and joilled,

resultillg in a lllllCh smaller state space than in the original model. In general, however,

lumpillg is restrictcd to the existence of symmetries in the model,

The truncation of the state space, after generating a number of states, is another method
which can be lis('d \'o cope with large state space cardinality. For availability modelling, a

.'natllral.' par\,ition of the state space exists in terms of the number of components failed.
For exanlple, in \'he SAVE [20] tool states can be generated up to a given number of failed

components in t Ile model, according to the liser specifica\'ions. As can be seen in t.he examples

given in [19], thc sl('ady state ava.ilability converges fa.st to the fina.l result, after generating
a relati\.cly sm,lll nllmber of sta.tes corresponding to those \vith a few fa.iled components in

the s).stem. :-\n isslle is how to bound the rinal solution and, as mentioned above, accurate

bounds on stead.\. state availability can be found [:38,:39].

The results in [-l6] can be applied to bound the absolute value of the difference between

the expected a.ccllmulated reward of a Markov model and a perturbed model with differellt

one step tra;nsition probabilities and rewards for the states. Truncation is an example of

such perturbation.

In many performance/dependability models, the state probabilities are highly skewed
and this property has been used to calculate performability measures, For instance, in

availability models, and for highly available systems, it is reasonable to assume that most

of the probabilit~' mass is concentrated on the states that represent the system with only
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a fe\V cornpollents failed. This observation rnotivated the bounding technique of [38], and

\Vas used to obtaill cornputational savings \Vhen transient perforrnability rneasures [13,12] are

calculated. lt also indicates that trllncation techniques shollld prodllce good reslllts. Other

eXarnl)les of lllodels \Vith highly llnbalanced state probabilities are those of comrnllnication

protocols (e.g.. [:3;)]). In general. it rnay be difficlllt to find a ..natllral.' state space partition
that contains the rnost probable states. As a conseqllence, a \.ery important issue is ho\v to

generatc the subset of those important states in the model. .The so called .'dynamic state
exploration " techniques address this issue.

The basic idea of dynamic state exploration techniqlles is to develop algorithms to guide

the generation of the transition rate matrix ( or eqllivalently the one step transition prob-
abilit~. nlatrix) SO that ..irnportant " states a.re genera.ted first. The importance of a state

shoul(1 be gi\.('ll ill terrns of its contribution to calclllate the measllre of interest. For instance,

for mall~. measures sllch as the ones obtained in availability rnodelling, the states \vith the

highest stea{l.\, state probabilities should be generated first. This contrasts \Vith the depth

first or I)readtll lirst techniques. commonl~' used for generating the state space of Markov

rnodt'ls.

Sl'\.('r(11 ritrcrs a.ddress the issue of generating the rnost probable states [23.47.17.16]. ln

this \\.ork \\.e extcnd the reslllts of [16] a.nd develop a ne\v dynarnic state exploration algorithm
\,.hich i~ ~ho,\.l1 to provide sigl1ificant {"ornputat.ional savings \vhen applied to cornputer and

cornmulli{"atioll Illodels. We also discuss the use of a different criterion than the one used in

[16] to guide tlle (hoice of the next sta.te generated. This criterion, rnay be computational

more expensive than the previous one, but can be useful in certain cases. Then, we address

the rroblern of calculating the measures of interest, and propose a way to bound the solution.

In section 2 \\.e discuss some dynamic state generation techniques and present the back-

groulld materi(tl. Section 3 provides a description of our approach. In section 4 we discuss
issu(:,s r('latcd to the criterion used to guide the sea.rch procedure and also address the calcu-

latioll of solne l11(:'asures of interest. Section .5 rresents examples to illustrate the application

of til(' rl'sults. Our conclusions a.re presente<l ill section 6.

2 Dynamic State Exploration.

As rnentioned in the introduction, in many computer and communication models most of

the time is speIlt in a relatively small number of states. in comparison to the total number
of states. As a conseqllence, the probability rnass is highly skewed. For such models, several

measures of illterest can be calculated from a relatively small nllmber of states. Dynamic

state space (-,xploration techniques try to fin~ these most probable states up to a given
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tolera11ce- \\ithout the 11eed to ge11erate the whole state space.

The gelleratio11 procedure is usually based 011 the ..tra11sie11t.- behavior of the system from

a gi,.e11 state. B)' transient ,ve mean that the ineasure used for ending the search is related

to the amoullt of time the system remains ill the subset of the states generated from the

given state. before leaving the subset. For instance- the generation stops when the expected

amount of time i11 the subset is greater than an specified value. This procedure is good for

transiellt measures- but it may 11Ot be acceptable for steady state measures. ~ote that the

subset of generated states may not be e\'e11 similar to the subset of the most probable states

( up to a gi,.e11 tolerance) in steady state. Clearly, if \ve do not have any k11o\vledge of the

system behavior o11ce in the non-generated states, it is possible that a highly probable, but
not ).et ge11erated- state exists (for instance, an absorbing state). ~evertheless- this procedure
can be used to obtai11 bounds on steady state measures conditioned that the system is in

the subset of gellerated states, and this is useful in many cases. Depending on the amount

of kllo\\"I(:,Jg(' of t he system being modelled, UllCOl1ditiolled steady state measures can also

be bOUlld(,J.

C~rasslllall [2:J] rroposed a d)'llamic state gelleratiol1 method to be used ill conjunction
\vith tl1c ralldomization technique [:3] to avoid the generation of the entire transition rate ma-

trix before the ra11domization procedure starts. ...\t each step of the randomizatio11 procedure

(sa)' stcp h'j- all ..active state set" is updated. The active set co11tai11s all states that can be
reached frolll the ~et of initial states i11 k steps. New states are ge11erated, one by one, and
the probability of being in any of the states after k jumps is also calculated i11crementally.
This ll1etllod is useful because it may avoid the ge11eration of the complete transition rate

matrix specially \\.hen the infinite sum il1 the ra11domization procedure is truncated to a
small \.alu(' .\í .Ho\vever. the 11umber of states generated at each step increases very fast.

The \\ork of \.ang and Kubat [-!7] is all example of a method that obtains the set of

the most rrobable states in steady state. The algorithm is developed for a ver~' particular

system 111o<lel and improves previous \,.ork of Li and Silvester [34] and Chiou a1ld Li [5].

The mo<l(-,l is composed of .iV components that can operate in one of several possible modes.

Furthermore- a compo11ent i operates in mode mi ( 1 ~ i ~ N, 1 ~ mi ~ .Vi- .\t/i is the
Ilurnber of modes of component i) ,vith probability Pim, , independently of other ullits. From
this particular model, it is easy to obtain the steady state probability for a givell state. The

forrn of tl1e solutioll is used to transform the origi11al problem illto a tree search procedure

and froln t his gellerate the most proba.ble states.

Maxemchuck and Sabnani [:35] are interested in obtaining the most probable states for

models of communication protocols. They argued that ;'partial" evaluation is useful due

to the highly skewecl probabilities of most protocol models. The main assumptions used

in [35] are that a protocol is modeled as a collection of finite state machines (FSM) and

non"'determillistic transitions of each FSNl has only two choices called: a -.high probability
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choice.. (\\"ith probability 1- p) and a .'low probabilit). choice" (with probability p « 1).
Furthermore. each change in the global state is the result of a state change in two of the

FS~l.s of the model. From these assumptions, each transition from a global state to another

has either probability 1 -p ~ 1 or p or p2. The search algorithm generates the reachable
states from a starting one and organize these states into classes according to the probabilit). of

reaching the gellerated state from the initial one. This is not difficult due to the assumptions
above. ( The probability of reaching a, state in class i is pi. ) One measure that can be

compuled is the probability of reaching a state that has not been explored after n runs of

the prolocol. stayting from the initial state.

Dimitrijevic alld Chen [17,16] developed a dynamic generation method based on a re-
cursive calculation of the expected number of visits to a state bet\veen successive visits to
a gi,.ell ( illitia,l) state. There are no restrictions \vith respect to the model as in [35]. \Ve

describ(' lhis method in more detail since our approach is based on a similar search for the

states. l-llis \\"ill also serve to introduce some basic notation used throughout the paper.

I"l't .\. = {.\jf) : 1 ? O} be a homogelleous COlllillUOUS lime ~Ia,rkov process \\"ith gell-
eratur Q t Ilat (Ip:.;(.ribes the behavior of the system beillg mo.:lelled. aJld let S = { ai: i =

1. \1} I)(' t Ill' lillite state space associated with the model. Let qij be the entry ij of Q.
It is possible to tllillk of .Y as a discrete time Markov chaill Z = {Zn : n = 0.1, ...}, \Vith

state :.;pacc S alld transition matrix p = Q/ ,\ + I (,'\ ? max qi = Lj#i qij), subordinated to
a POiSSOll process .V = {N(t) : t ? O}. For t ? 0, it is known that X(t) = Z.IÍ;(t) [29,3]. The

transformation of a continuous time Markov chain into a discrete time Markov chain subor-
dinated to i.l Poisson process is called randomization or uniformiza,tion. In \vhat follows. to

simplif~. ollr dcscription and without loss of generality, \Ve consider the uniformized process

Z;\.(tf (111<.1 ils a~sociated transition matrix p .

Ll't .fj~.1 be the cxpected number of visits to state l in a path that starts in state ak and

ends ill stale al. the initial state. Let \/i be the expected number of visitsto state al bet\veen

t\VO \.isits lo statc (fl. By definition, Ví = gll.

.-\t step n (n = 1, ...N) of the dynamic generation procedure, there are t\VO sets of states:
s~n) alld S,~n). The set s~n) contains n states and is called the explored set. This set includes
the statcs (ci.tlled e;rplored states) chosen to be included in the final reduced model. .-\11
transitioll probabilities from each sta.te in s~n) have a.lready been found in step n. The set

s~n) is Ci.\llcd th(" Ilne;rplored .5et and co1lta.i1ls the 1leighbori1lg states to those in s~n). In step

n~ the t ra1lsitiollS ft.om each state i1l St~n) have 1lot been found yet. It is assumed that for

all statcs ai E s~n) there is a single transition Pitt = 1 to a fictitious state att that represents

the ..unk1lo\vn.' states ii1 the model. Furthermore, the defi1lition of gkl is modified to include
visits ill a path that starts in ak and ends in att ( i.e., gkl is the expected number of visits

to state 1 in a path that starts in ak and ends in al or au). The definition of Ví is modified

accordingly. Figure 1 illustrates the sets of states s~n) and s~n) and their transitions.
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S(n)e

G s~n)

Figure 1: Sets of states in step n .

The generation algorithm is as follows:

1. 1l1itial ster: S~l) = {al}, S~l) = {0}. .s = (/1- n = 1.

2.n=n+1.
l:-illd alI tral1sitions f1.om s al1d alI its lleighborillg statcs. S~'I) = s~n-i) U{ l1eighbors

of .~ l1ot il1 s~n-l) us~n-l)}.

:3. Stor if the stopping criterion is met.

-!. Choose a state in s~n), say state ac, according to some rule. s!n) -s~n-l) U{ ac} ,

s~n) = s~n) -{ac}.

.). ." = ac, go to 2.

.-\s mel1tiol1ed rreviously, the stop criteriol1 is related to the a1l10Ul1t of time spel1t il1

the generated states. In [16], the stopping criterion is the average amount of time in the

generated states before reaching the fictitious state (/u. Since the mean time to unknown at

step n ( MTT[í(n) ) can be calculated from the visit ratios:

'"" \/(n)
.1\1fTTU(n) = L...i i (1)

VJn)

(where the superscript il1dicates the step of the algorithm) the rule used in [16] to choose

the 1lext state i1l step 4 above is based 011 the visit ratios. In other words, assume that v:(n)
is calculated at step n of the algorithm, for alI (ti E S~'~) .A state ac E s~n) is chosen if

Vc(n) = max{\Ii(n)- ai E s~n)}.
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The key to the approach is to develop an efficient algorithm to compute \/i(n) = g~7),

'v'ai E S!,n) .for each step of the generation procedure. It is known that the gk7) can be

calculat('J rrol11 the equation below (e.g., see [26]):

(n) ~ (n) - ( .))gkl = L.. Pkjgjl + bkl -

j#l

where JlkJ is the olle step transition probability from state ak to state aj, and 8kl = 1 if k = 1

and O other\vise. It is easy to see that solving equation (2) at each step of the algorithm
would require 0("\J4) operations, where lVI is the number of generated states. In [16], an

efficieI1t recursi\.e solution is proposed to calculated gk7) 'v'k, I. It it sho\vn that:

'""' (n-l)
(n) -(n-l) + (n-l) L..j#l Pcjgjl (;

3)gkl -gkl gkc (n-l) ,

1 -Lj#l Pcjgjc

\vherl:. II. is the stlttp chosen in step ( n -1 ). Si1lce gkl = O 'v'ak E S~n) (see I;'igure 1 ), equatio1l

(:3) call I)(, (~\.alll(lt('d as follows:

.cltl(lIlate Lj#l PcjgJ~-l)

.[or alI al E s~n) us~n)

1 I '""' (n-l)-ca cu ate L..j#l Pcjgjl

-for (ttl ak E s~n)

* calculate gk7)

Let L(n) I)e the cardi1lality of s~n). (Recall that n is the cardinality of s~n),) The 1lumber

of op(-,ratiolls t(} (alculate the gk7) is O(n(n + L(n))). 11l ge1leral, L(n) ca1l be much larger
thal1 II, 1[ \\'e assllllle that ea,ch state has. i1l the a,verage, r output trallsitio1ls a1ld a fractio1l
p of those c1lds ill 1lo1l-explored sta,tes. the1l L(n) = prn alld the 1lllmber of operatio1ls at

step II i~ O( ( 1 + IIi' )n2 ) a1ld so the total 1llll11ber or operatio1ls is O( ( 1 + pr )" V3 ) , \vhere N is
the total llUl11ber or steps of the algorithm. The total storage 1leeded is 0( :v ( N + L (N) ) ) =

0((1 + Jlr).Y1).

11l the 1lext sections ..ve present a1l algorithm which is shown to have less computational
requirel11e1lts tha1l the above procedure. We also show its applicability to models other than

commu1licatio1l protocols, such as availability models.
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3 An Iterative Approach.

There are two main issues concerning the generation procedure outlined in the previous

section: the choice of an appropriate rule in step -! in order to achieve the goal of generating
the most probable states and; the computational requirements needed to apply the rule. In

this section we address the second issue.

\Ve assume that the rule used to choose a state at each step of the algorithm is based on

the \.isit ratio of the states, as proposed by [16] and outlined in section 2. The method of [16],

summarized in equation (3), is recursive and, at step n, the values of gk7) are calculated from

the \"alues of gk7-1) .One main drawback of this technique is that the storage requirements
are \"er). high: 0((1 + pr)N2). This is a major problem for large values of iV (say, tens of

thousands ). One of the important advanta.ges of iterative solution techniques to obtain the
measures of intercst once the model is generated is that they preserve the sparseness of the

transition rate 1l1atrix~f the model. Since the recursi\"(~ method for generating the model

requires the storage of a full matrix (all entries are different thal1 zero) \Vith size equivalellt
to tlle final (trullcated) transition rate matrix, the ad\'antage of preser\'i1lg the sparseness
of matrices usually obtained from real system models is lost. Another dra\Vback of the

techllique is the potential for numerical problems due to the denominator of equation ( 3 ). lf

the sum ill the dellominator is close to one, there ma)" be a considerable loss of accuracy in

the fillal result. .-\s indicated by Grassman ( e.g., [22] ) algoíithms that involve subtractions

are amenable to round off errors.

11l \\.hat follo\vs. \Ve propose an iterati\'e tcchllique to calculate directly the \.isit ratios
( 'ii(n, = g~7' ) alld \Vhich takes advalltage of sparse matrices. The idea is based on the
obser\.atioll that. ir the solutioll for v(n-l, =< \!;(n-l ) \/~:~I' > is available at step n- 1

thell. \\.hen a IlC\V state is added at step n. the \.alue for \Ji(lt) should not differ ll1uch from

the previous value \!:;(n-l' ( 1 ~ i ~ n- 1 ).

.\t step n, all the transition probabilities from the states in s!n, are kno\Vn. The one step

trallsition probability matrix p(n) is given by (see also Figure 1):

Pll P12 ...Pl.n Pl.n+l ...Pl.n+L(nl O

P21 P22 ...p2.n P2.n+l ...P2.n+L(n) O

p(7t) = Pn,l Pn.2 ...Pn,n Pn,n+l ...Pn.n+L(n) O ( 4)
O O O O O 1

O O O O O 1

O O O O O 1
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,vhere \\"e organize the states so that the first n aye in s!n) .the subsequent L (n) are in s~n)

and the last onc is the fictitious state au. In order to calculate the "isit ratios of each state
bet\veen ,.isits to :5tate al or au, it is useful to observe that p(n) represents a ~larkov chain

,vith oIle absorbiIlg state, and this process has equivalent behavior to the oIle defined by

matrix n(n) in (5\ \vhere. \Vhene,'er the process reacl1es the absorbing state au, it is restarted
from the iIlitial state. Furthermore, in n(n), the states aj E s~n) U{au} are aggregated to a

siIlgle state af:

Pl1 P12 ...Pl.n Pl.f

P21 P22 P2.n P2.f
n(n) = (.j)

P11.1 Pn.2 ...Pn.n Pn.f
1 O O O

The ,.alues of Pif in ( .5) aye the sum of the transition probabilities from statc ai to states in

S~n). Pif = L::j;,7~.: Pij. The irreducible ergodic Markov chain given by n(n) describes the

beha\.ior of the original absorbing process given by p(n). over an infinite number of runs that

start from tll(~ iIliT,ial state. Thus \ii(n) = \/i'(n). \Vhere the ..prime:: indicates the quantit!'
relatcd t\) I)ro('(':i:;. n("), If i!"(IL) =< 7il. , , ..i!"f > is ille solutioIl of ;;-(IL) = 7i(IL)nll'l. then

-(11)
V!(n) -II i ( 6 )

1 ( IL )
i!"l

The ,.isit ratio of states ai E s~n) needed to choose the next state to be included in s~n+l)

are also ('asil~' calculated from 7r(n) as:

\i'(n) = L::j=l Pjli!" j 1 s (n) ( -
)I E t, ,

irl

FiIlall.\.. the .VTT[.(IL). needed for stopping the algorithm. can be calculated as the sum of

the cxpccted llUmber of visits to each state in S(IL) bet ,veen t\VO \risits to state a (:[ ,

IL -(IL) 1 -7r(n)
jVTT[!(n) L:.i- -f (8)

i=1 ir f i!"}n)

1
= --1 (9)

7I"f

SiIlce the Markov chain determined by n(n) is ergodic. the solution 7I"(n) = 7i(IL)n(n) can

be calculated b~: iterative techniques. For those techniques, an initial distribution for the r;(IL)

is needed. Let 7r(n)(o) be this initial distribution at step n. At a ne\V step of the algorithm a

ne\V state is added to the explored set of states, but the transition probabilities among the

states i1l the previous explored set remain the same. Intuitively, if the probability mass is
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skewed, after a fe\V steps the value of 7r~n-l) ( 1 :::; i:::; n -1) should not differ much from

the values of 7r}n). Therefore, the set of {7r~n-l)},S is a good starting point for the iterative
algorithm at step n and only a few iterations should be required to find the solution 7:"(n).

As \ve \Vill show belo\V , significant computational savings can be obtained \Vith the use of

iterative techniques.

In summary, \Ve set

~(n) (o) - < (n-l) (n-l) (n-l) (n-l) -(n-l) > (10)" -7rl ,...,7rn-l'7rc .7rJ 7ic

\Vhere 7r~n-l) = \/~(n-l)7r~n-l) and ac identifies the state chosen to be included in s~n), and

\,,~(n-l) is obtained from equation (7).

Computatiol1al Requiremel1ts.

III order to calclllate the complltatiollal rcqllirelnents of the searchillg algorithm lIsillg
iterative techlliqllcs. \ve assume, as b(:,fore, that r is the average llumber of trallsitions out of

a state and p is the fraction of those transitiollS that go to states ill s~n) .At step n, matrix

n(n) has dimensioll ( lt + 1) x ( n + 1 ). Therefor('. the llumber of mllltiplications performed
to solve 7i(n) = 7r(n)n(n) is I(n)(l -p)r(n + 1) \Vhere I(n) is the number of iterations at step
n. Assuming I(n) is approximately constant for alI n and equal to I. the total number of

operations needed for the search algorithm over ~V steps is 0(1(1- p)rN2).

The storage reqllirements for the iterative algorithm is r N since alI transitions out of

the states in s~n) lleed to be stored at each step (and so we have r N transitions in the last

step). Therefore. iterati\'e generation aJgorithms preserve the sparseness of the transitioll
rate matrix of system models. Note also that the storage requirements are indepelldent of I.

C.omparing iterative approaches with the recursive approach of [16] \Ve see that:

(a) number of operations:
iterative/recllrsive = [1(1- p)rN2]/[~V2(N + L('V»)] = [1(1- p)r][N(l + pr)]. Since

r < < N, if I is small compared to !V. then large computational savillgs are obtained.

( b) storage reqllirements:
iterative/recursive = [rN]/[IV(N + L(iV»)] = [r]/[lV(l + pr)] Since r « IV the stor-

age requirements of iterative techniques are much lower than the ones for the recursive

technique, alld it is independent of I, the number of iterations at each step.

The Choice of al1 Iterative Techl1ique.

The number of iterations for an iterative technique has an impact on the number of op-

erations needed for the generation procedure. (But no impact on the storage requirements.)

11



Therefore. the choice of a method tha.t requires few iterations is important. \Ve have experi.

ment('d \\ilh <.lif[crent iterative techniques and choose the SOR (Successive O\.er Relaxation)
metho<.l ('.g.. s('e [18]). In the method. an element ;-;i(m) at step 'n of the iteration is

calcula1cd as:

I.V
[ ];-;i['U) = (l-l.v)7ri(m-l)+ LpJi;-;j(m)+Lpji;-;j(m-l) (11)

1 -pii j<i j>i

\\"her(' I.L. is the so called relaxation parameter. The choice of w is crucial for improving the

con\.crgellce of the method. The optimum value of lV can be estimated from the computed

\.alutc's of ;-;(ln) during the iteration (see [48,,14]).

1.11(' (OII\"(-'rg('nce of this method is fa.st. However. there are cases where it does not

con\.('rg(;'. \\:11('11 lL' ? 2, the method diverges, and so we use a variant of the Power method

\\"hicll lIas I('ss strict con\'ergence conditions than those for the traditional one [1]. Let

P = r Pl1 P12 1 ( 12)

l P21 P22 J

Th(, ",Ih it('ralioll is given by:

ir2(,ll) = 7i(m- I)P22 + irl(O)P12 (13)

\vherc ;-;(",) =< 7i1(O), 7r2(m) > and converges to the solution of 7r = ;-;P. (The entries of 7r

do not i1dd to olle. but they can be normalized later. )

III tIl(' ll1all.\. ('xamples we run, the convergence of the method was fast and in the order of

:3 to 8 iterations per each step of the generation procedure. In the next section we discuss

other rlll(,s to apply in the selection of a state in each step of the generation.

4 Additional Considerations.

Il1 the prcvious section we sho\v that iterative techl1iques perform better than the recursive
technique of [ L6] to implement the search rule based on visit ratios. In this section we address

t\VO issucs. Ol1e is related to the search rule as implemented by the algorithm of section 2.

The oth('r discusses the calculation of measures of interest, once the generatiol1 procedure is

o\.er.
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4.1 The search Rule.

The stopping criterion used in step :3 of the algorithm described in section 2 is the average
amount of time spent in the generated states before exit (MTTU). Therefore. the search
rule should try to maximize the MTTU at each step of the algorithm. The ~ITTU can be
calculated from the visit ratios using equation (1). However, choosing a state ai from those

in s~n) so that it has the maximum value of ~(n), as implemented by the algorithm of section
2. may llOt be the best choice for increasing the MTTU of the llew set s~n+l), as i~ can be

seell b~. the following example.

.-\ssume that at step n of the search. S~n) = { ai} alld s~n) = { a2, a3} as shown in Figure

2. Fi.om the figure it is easy to see that \í2(n) = 0.4, \,/;(n) = 0.6 and thus, accordillg to the

---7- .6 --~ ---~J~

G (13 s~n)

~ / ~on-generated
G states

Figure 2: All example of the search.

rule ".hich chooses the state with the maximum \'alue of the \'isit ratio, state a3 is chosell.
~ow assume that state (12 (a3) has a trallsitioll back to itself with probabilit~. 0.9 (0.1). If
,ve take into accoullt these trallsitiollS whell we calculate the visit ratios thell \I~(n) = 4 alld

\:;(n) = 21:3, and state a2 would be chosen. From equation (8), clearly this choice maximizes
the MTTU. This problem arises because, at each step of the search, the choice is based on
the ,.isit ratios of the unexplored states and we do llOt know the output transitions from
these states. This problem can be overcome if we modify step 2 of the search algorithm of

sectioll 2 as indicated below:

Step 2: ll=n+1.
Find alI transitiolls from s and alI its neighborillg states.
Let s~n) = { neighbors of s not ill s~n-l) us~n-l)}. (Those are the new states found.)

Find all output transitions from states in s~n).
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Filld aJI output transitions from states in s~n-l) to states in s~n) and update the

tra11sitiollS to state au accordingly.
S lril = C(11-l) uS(n)1t 1t !L.

This lll'\\. algorithm may require more computational effort than the previous one, both

when \\.e usc tlle recursive or the iterative technique as \vell. First, consider the recursive
technique. ;\t step n, g17), Vak E s~n) is not necessarily equal to zero and. therefore. the

number of opffations at step n is O((n + L(n))2), and the storage requirements are also
O((n + L('I»)2). \\e assume, as before, that the cardinality of s~n), L(n), is prn. Since \ve

are gelleratillg the output transitiolls llOt ollly from states in s~n) but from states ill s~n) as

well, thell vllr stop criterion should consider the states in s~n) U s~n) .Assume that \ve stop

the gellCr(ltioll procedure at step M when the caydil1ality of S~j\,/) U S~.\1) is .V.. Therefor~.

lvl = .\..1( 1 + pl.). The totalllllmber of operatiolls is 0((N.)3/(1 + pr)). T.he storage

requirem('llts is O((iV.)2).

~O\\. \\"(' ("{)Ilsider the iterative techllique. The matrix Wn) in { .5) has llO\V n + L(n) + 1
entries. 1.1IIis. 11l-e llumber of operatiolls at step n is O(lr(n + L(n))) = O(lr(l + pr)n) alld

the tot(llllllllt1)('r of operatiolls is 0(Ir(.V.)2/(1 + pr)). The total storage requiremellts are

O(r.\.. ).

l:'rolll 111(' (tl)o\.(-'. \\,e l1ote that: (a.) The iterative techl1ique, as before, outperforms the
recursi\.(' t(,rlllli(llle for this modified versiol1 of the algorithrn. (b) The rule for choosil1g a

state gll(lraIlt('('S that the MTTU frorn states ill s~n) is maximized amollg the possible choices.
Ho\Ve\.('r. t Ilis (Iocs llOt guarantee that the meall time to exit from states ill s~n) us~n) is

maximizc(l. .1.11(' computational requiremellts of this last algorithm can be larger or smal1er

than the I)r('\.ious olle, depending on the value of N. and the va1ue of pr. ( c) We can reduce

the stora!!;(' r('quiremellts of this last algorithm \vith respect tothe previous olle. by increasil1g
the llumb('r of operatiolls. This can be done if the rule in step 4 of the original algorithm is

modific<i as rvllo\,s:

.for ('(1(.11 st(lte ai E s~n):

-gellcrate the trallsitions out of ai .

-calculate the MTTU cqnsidering the states in s~n) U{ ai} .

.chOOS(~ the state that gives the largest value from all values of the MTTU calculated.

The storage rcqllirements for the recursive and iterative techniques are 0((1 + pr)M2) and

O(rjW) rl'sp(,("tively. Since our search rule is a.nticipated to produce better results than the

previous olle. \\,e expect that ivI < N. The computa.tiollal requirements are 0((1 +pr)2,~14)

and 0(1( 1- p)pr::~W3) for the recursive and iterative algorithms, respectively.

14



4.2 Measures of Interest.

In the pre\'ious s(-'ction \Ve are concerned \Vith the generation of states such that. for a given
initial state. the mean time to reach the non-generated states is greater than a given value.

\\rith the procedure outlined above, \Ve intend to generate the states that concentrate most
of the probabilit!. mass. Once the states are generated, it remains to calculate measures of

inteyest to the user such as performance, dependabilit~' or, more generally, performability
measures. and to bound the final solution. (For a definition of many performability measures

and solution techniques, we refer the reader to [14].) We first consider transient measures.

Stead~. state mf'asures are considered later.

T1.ansient Measures.

Ol1e importallt 111easure to be obtail1ed is the random variable L(t) that is equal to the

time \vhel1 th(' s.\.stem reaches a l1on-gel1erated state duril1g al1 observation period (O. t).
The distributiol1 of this ral1dom va.riable ca.11 be easil~' calculated using the ral1domizatiol1
techl1ique [12.~1]. \Tote that the MTTU obtail1ed \Vith t.he generation procedure is the

expected lifetiI11(' as t -1 00.

\Ve I1O\V COllsidcr the calculatiol1 of performabilit~' measures during an obser\'atiol1 period
(O.l ). \\:e assigll a re\Vard rate rj to each state of the model, This reward rate may be equal,
for il1stal1ce. to some measure of the performal1ce of the system at that state. Assume that

the re\Vards are boul1ded Tlb ~ Ti ~ Tup, for all states includiI1g the ones not generated. This

assumptiol1 is realistic for many models, since we usually know some of its characteristics

e\.el1 \vithout gcl1eratil1g the states. If we a.ggregate the non-generated states il1to a single

absorbil1g state. it is easy to see that the distributiol1 of the cumulative re\Vard over (0, t),

C R( t ). is boul1dcd by:

plb[CR(t) > y] ~ P[C1R(t) > !J] ~ PUb[CR(t) > y] (14)

\Vhere the sllp(~rscripts lb and ltb indicate that \Ve assign a re\\'ard rlb al1d rub to the ab-

sorbil1g state ou. respectively. Clearly, the qualit.y of the bounds depends on the probability
of reachil1g au o\.(,:r ( o.l ) and the absolute value of the difference bet\Veen rlb al1d rub. For

dependability models. many measures such as cumulative operational time and interval avail-

abilit~. cal1 be e\.aluated and bounded il1 this way since the rewards assigned to the states

are ei ther 0 or I.

Steady State Measures.

Steady state measures are usually obtained from the steady state probabilities of each

individual state il1 the model. The values of the state probabilities can be approximated
by the ones calculated from the solution of the transition probability matrix obtained from
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the generation algorithm, i.e.. by solving 7r(N) = 7r(.V)n(iV), \Vhere n(N) is given in (5).

1jnfortunately, if \Ve do not have any knowledge of the behavior of the model once in the

non-generated states, it is impossible to bound accurately individual states probabilities.
For instance. there may exist a highly probable state among the non-generated ones ( e.g.,
an absorbing state in the worst case) and SO. the ,.alues of 7r(N) obtained from n(iV) may be

a poor approxil11ation of the steady state ,'alues, Ne,'ertheless. the steady state probabilities

conditioned that the system remains in the subset of the generated states can be bounded

by using the approach developed by Courtois and Semal [9,11], If we have some knowledge

of the model once in the non-generated states ( e.g. , if ,ve kno\V a bound for the transition
rates from the non-generated states, etc.), then boUl1ds for ul1conditional measures may be

compl\table from the generated states. For instance, \ve refer to the bounds on availability

obtained il1 [;38,39]. Belo\V we address some of the issl\es related to bounding steady state

measl\res.

Sl\ppoSe that \\.e are interested in calcl\latjl1g the cl\mulative re,\"ard 'R. averaged over
the obser\.atiol1 p(~riod (O, t) as t -+ oc. If \\.e kl10\V the steadJ' state probabilities ií =<

iíl. ;:c > of the complete model. thel1 .R = Lf~l ;:iri. No\V \Ve assume that the state

spac(' is partitiol1ed il1to t\Vo sl\bsets 9 \\.hich colltains t.he states generated by some procedure

al1d .\ \Vhich contail1s the non-generated states. Clearly:

'R. = P( g)'R.ç + P(jV.)'R.N ( 15 )

\vhere P(g) (P(.,V.)) is the probability tha.t the system is il1 a state of 9 (j\l) and 'R.9 ('R.N)
is the vall\e. of 'R. conditioned that the system is in a state of 9 (.IV). If the rewards are

bounded. rlb ~ ri ~ r,Lb, then rlb ~ 'R..\Í ~ rllb, I'lb ~ 'R.9 ~ rtLb, al1d \ve have:

rlb + IP(Ç)llb[I'R.91Ib -rlb] ~ 'R. ~ r1Lb -IP(Ç)l/b[rub -1'R.9Iub] (16)

\\,here the sl\bscript lb (ub) il1dicates a. 10\Ver (l\ppcr) bOl\lld 011 the term.

Eql\ation ( 16) is borro\ved from [:38] and indicates that bol\nds on the expected re\vard

'R. ca11 be obtained from the lower and l\pper bol\nds on the conditioned expected re\vard

'R.9 and a lo\Ver bol\nd on P( Ç). A lo\ver bol\nd on P( g) reql\ires some kno\vledge of the

s~'stem il1 the l\l1kl1o\vn states sl\ch a.s bol\nds on transitiol1 rates, etc. Bol\nds on the state
probabilities conditioned that the system is il1 the sl\bset ç (and, from those. bol\l1ds on

'R.ç) can be obtained from the results of Courtois and Semal [9] as follows. Consider the
matrix n(iV) of ( .5) ,vhere the last row and coll\mn is removed. (The resl\lting matrix n'(N)

is not stochastic.) For notational convenience, \ve remove the superscript (N). Let Vi the ith

normalized ro\V of the inverse (1- n')-l. It can be shown that the conditional steady state

probability vector is a linear combination of the Vi'S. Therefore, bounds on the conditioned

probabilities can be derived from the vectors Vi'S. Unfortl\nately, it may be impractical to

obtain the inverse above l\sing the So called direct methods if n' is large, since \Ve do not
take advantage of the sparseness of the ma.trix. Iterative methods, on the other hand, are

16



appropriate to large and sparse l11atrices. Il1 order to use an iterative method. \Ve modify
II such tl;"lt l)fi = 1 for a gi\rel1 i, 1 ~ i ~ lV, and let II; be the resulting matrix al1d
vi the solutiol1 of Vi = viII~. The col1ditiol1ed stea.dy state probability vector is a linear

combinatiol1 of t he v i'S and boul1ds Ol1 these conditiol1ed probabilities can be derived from

the Vi.S. (..'learl~.. the use of an iterative technique requires the solution of a large number of

matrices. i.e., the solution of each IIi. Ho\Vever, \Ve can overcome this problem by adapting

the approach developed in [38]. Bellow we outline this new procedure for obtaining bounds

on conditiol1ed steady state probabilities \vhich has cheaper computational requirements than

those il1 [~)]. These bounds, ho\vever, may not be as tight as those obtained in [9], though

the differcnce is negligible for ske\ved models.

Consider the tral1sitiol1 rate l11atrix Ql of Figure :3 that represents the generated states of
the l11odel. The first state in Q1 is the initia.l state for the generating procedure. \Ve assume

[ Qoo QOl QO2 ]Ql = Q10 Qll Ql2

Q20 Q21 Q22

Figure :3: l11atrix Ql.

that the last stat(~ il1 Q1 ( a f ) is an exact aggregation of the non-generated states and so,

the transitiol1 rates out of this state are kno\vn. (Note that l11atrix Ql is a transition rate
matrix ..equivalellt to II, except for the ra.tes out of af that do not necessarily go to the first

state. ) Thcrefore. the exact conditioned steady state probabilities of the generated states
can be obtaillcd f1.Ol11 the solution of Q1. Let Q be the set of states of l11atrix Q1. Qo = {al},
Ql = Q- {{(tl} U{(tf}} and Q2 = {(tf}. In Figure :3 the subl11atrix Qii corresponds to the

set Qi.

\\:(.. follo\\. the i(lea developed ill [:38] and from Ql, \Ve construct a matrix Q2 shown in ,

Figure 1. \\"hcr(' states il1 Q1 are replicated. :-\s il1dicated il1 [:38], the steady state probabilities

[ Qoo QOl O QO2

}Q2 ;: Q10 Q11 O Q12

Q10 O Q11 Q12

Q20 O Q21 Q22

Figure 4: l11atrix Q2.

of Q1 cal1 be obtail1ed frol11 those of Q2, i.e., if 7r1Q1 = O, 7r1 =< 7rJ, 7ri, 7r~ > and 7r2Q2 = 0,
2 ..:.< -2 ~2 2 ",.2 > then -1 --2 1 --2 + -2 -1 2

11- "0./111'1'12.1'2 l'o-110'1'1-1'11 1'12'112=7r2.
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\Ve now organize the replicated states in subsets Fk, 1 ~ k ~ I{ .I{ ~ "V. such that
a state ai is in :Fk iff the minimum number of steps f1.om ai to the initial state al E Qo is

k. Reorganizing the states is not a problem. :-\ miIlimurn path algorithm { e.g., Dijkstra)

can be used. \\Te assume that alI the geIlera,ted sta,tes. i.e.. the states in subset Qo U Ql

communicate. If this is l1ot true at the el1d of the genera,tion procedure. the states that have

tral1sitions only to state a J are excluded from the set of generated states. As a consequence

of this reorgal1ization, the output transition of states il1 :F k ( k > 1) can go ol11y to states in

:Fk-l, or to states in n for 1 > k, or to state aJ. Furthermore, there is always one transition

from a state in :Fk to a state in :Fk-l. Figure .5 shows the new matrix Q~ after reorganizing

the states in matrix Q2. We note that the steady state probabilities of Q2 are idel1tical to

the steady state probabilities of Q~ after proper matching of states.

Qoo QOl O O O O QO2

QI0 Qll O O O O Q12
:F1o O :F11 :F12 :F1.1\-1 :F11\ :F12

I O O :F21 :F22 :F2.1\-1 :F2I\ :F22
Q2 =

O O O O. ..:FI\-l.I\-l :FI\-l.l\ :F1\ -1.2

O O O O :F 1\.1\- I :F 1\.1\ :F 1\ .2

Q20 Q21 Q;J Q;2 ...Q;.I\-1 Q;I\ Q22

Figure ;j: matrix Q~.

If submatrices Q2.0, Q21, Q~l' ..., Q;.I\-l were l1ull. thel1 we could immediately apply the

results of [38]. However, this is not true il1 ollr case. We proceed by constructil1g, from
matrix Q;, matrix Q3, where the states in subsets :Fk 1 ~ k ~ I{ are exactly aggregated

into a single state fk, assuming that we can perform such aggregation. Later \Ve show that

exact aggregatiol1 is l1ot l1ecessary to obtain the bolll1c1s Ol1 coIlclitiol1ecl probabilities. The

process clefinecl by Q3 is showl1 il1 Figure 6. III Figure 6 subset g' is the subset of generatecl

states from the initial state al and cloes l1ot inclllcle state al. We canl1ot perform exact

aggregation, since \ve cio not have al1y kno\vledge of the complete transition rate matrix

of the model. Therefore, il1 Figure 6. the ul1kl1owns are the output rates from states fk,

1 ~ k :5 I( , and from state a J .Furthermore, the exact value of the reward rate to be

associated with state fk, 1 ~ k ~ I{ , is not known, \vhich precludes the calculation of the
exact value for Rç. However, Theorem 1 below indicates a way to obtain a lower bound for
Rç. .-\n upper bound on Rç can be found in the same way.

Theorem 1 A lowe.'. bound on Rç can be obtained b:1J .S'olvin9 a t.'.ansition '.ate mat.,.ix Q4

obtained from Q3 as follo'lvs:
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...

.
.

.

Figure 6: Process defil1ed by matrix Q3.

.R(; move ali t ransitions from state .s f and replace them by a .5ingle tra1lsition to state

!I\.

.Replace the unknown transition values from state fk to fl I > k (for alll ~ k ~ K )

( or to state a f ) by the maximum sum of transition rates from a state in :F k to states

in :FI ( or to state a f) .

.Replace the unknown transition values from fk to fk-l (for alll ~ k ~ I( ) ( or to state

al) by the minimum value of the sum of ali transition rates from a state in :Fk to states

in :Fk-l (or to al).

.,clssign a ,.(;{vard rlb to each state fk .for alll ~ h. ~ 1\.

Proof: the proof is givel1 il1 the appel1dix.

Since \Ve kl1o\V the values of all output transitiol1 rates from the states in :Fk for alI k,

obtaining the maximum and minimum values as il1dicated by Theorem 1 is not a problem.

Furthermore, by the \Vay we assign states to subsets :Fk, there is always a transitiol1 from a

state in :Fk to a state in :Fk-l (or to al) and thus the minimum is guaranteed to be greater

than zero. The rate assigned to the transitions from af to fK is irrelevant for the final

calculatiol1 of the conditional probabilities of the remainil1g states.
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In order to simplify flll.ther the solution. \\'e call exactly aggregate the states fk, inde-

pendentl~. of the other states. This is true since the ollly returll to this set of states is from

state af to fl\. Because the submatrix formed by the states .fk is upper Hessemberg: the

conditioned stead~' state probabilities of being in states .fk can be easil~. obtained and from
those. the trallsition rates of the a,ggregate state represelltillg the states fk are calculated.
After this aggregation, \ve remove state a f such that all transitions to this state go to the
lle\V aggregated state. N ote that the final sol u tion is llOt affected w hen a f is removed. Let

us call this new matrix Q5 and from this we obta,ill the randomized matrix P5. The final

probability matrix P5 used to obtain the value of Rç is given in Figure 7. ~ote that P5 is

identical to n. except by the value of Pfl \vhich is obtained after aggregating the states fk

ill matrix Q4. The desired lo\ver bOUlld is obta,illed b~' assignillg a reward rtb to state a f in

Figure 7 alld all upper bound is obtained by assiglling a reward rub to a f.

Pll Pl2 ...Pl.n Pl.f

P21 P22 ...p2.n P2.f
P,5 =

Pn.l Jln.:l ...Jln.n Jlrl.J
Jlfl O O 1- Pfl

Figure 7: Matrix P5.

5 Examples.

In this section. \\.e present examples to illl1stra,t.e some of the issues concerning the generation

procedure.

The first is a ..toy" example which shows the difference bet\veen the search rule based on

\,isit ratios and the one based on MTTU as outlille ill section 4.1. Consider a model \vith

six states tha,t has the transition probabilities given by the table bellow. The steady state

probabilities are also given in the table.
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state state trans. steady state state state trans. steady state

prob. prob. prob. prob.-~ -
al (l2 0.60 7rl = 0.2017 a4 a.5 0.95 ;r4 = 0.11.)0

al (l.} 0.40 a4 a6 0.05
a2 (l,1 0.9.5 7r2 = 0.1210 (l5 af3 0.05 7r.5 = 0.2380

a2 (l'i 0.0.5 a5 a3 0.9.5
a3 a.'i 0.40 7r3 = 0.:3067 ({6 al 1.00 7r6 = 0.0176

a3 ({1 0.60

Starting from state al, if we use the sea.rch rule based on visit ratios, then the states are

generated ill lhc order a2 -+ a4 -+ a5 -+ a3 -+ a6, \Vhich is not the desired order of decreasing

steady state rrobabilities. However, using the rule based on the MTTU, the most probable
states are gcllcrated first (i.e., a3 -+ a.5 -+ a2 -+ a4 -+ a6). For large models. we found

that both rulcs rerform \vell in general. though the number of states 1\-/ found by using the
~ITTU rule is al\vays smaller that N, the number found using the visit ratio rule. and \vhen
the samc stol)pillg criterion is used. This i1ldicates that the MTTU perform better as \Ve

anticipatc.

\\1.e 1lO\V ("OI1~iJcr a very large model of a commu1lication protocol: the Abacadabra protocol
[27] whicll is dcfi1led by ISO to compare diffcre1lt formal description tech1liques, and has

similar Cllar(l(leristics to many of the standard protocols.

There are t\Vo layers in the protocol: the bottom layer offers a connectionless transmission

service \vhi(h is used by the subsequent layer tha.t offers a connection oriented full duplex
service to t l1c llser. rrhe formal specificatio1l of this protocol is lengthy a1ld \Ve omit it from

the text for (o1lcise1less. The structure of thc specifica.tion is sho\v1l i1l Figure 8. The number

System activity Abra.cadabra

UCEP UCEP
EP EP

MCEP MCEP

[CEP[O] 1CEP[1]

ctivitv DG

Figure 8: The specification structure of the Abacadabra protocol.
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of states in this protocol is very large and there are approximately over 1012 possible states in

the model. We used the Estelle [28] formal description language to specify the protocol and

from the descriptiol1. the states of the i\larkov model of the protocol are generated by using
the iterati\'e procedure outlined il1 sectiol1 :3. If \\"e specify a value of 105 units of time to the

MTTU. 257 states are generated. By verifying the meaning of those states. we can see that

they correspond to the opening and shutdo\vn of a connection \vithout error, and subsequent
data transfer. The table belo,v shows the data throughput values for different number of

states in the generation procedure. It can be observed that the throughput converges fast.

Number of states Throughput ( x 10-3)

100 8.20

120 -t0.87

140 ' -t0.9:3

160 -tl.76
180 41.79

When \ve use the modified a.lgorithm outlined il1 section 4.1, the l1umber of generated

states (1\1) drops to 187 with the sa.me \'a.lue of the MTTU as above. This corroborates
our conjecture that .\1 < lV in section 4.1. From the results of section -t.2 we can also
obtain bOUllds for the throughput \'alues above, conditioned that the protocol is in the

generated scellario ( opel1/ shutdo\vl1 a.l1d da.ta transfer) .\\le are ill the process of automatillg
the bounds calculatiol1. and so \ve do not have the results for this example yet. Ho\vever, we

obtain bounds for the example below \Vhich has a. simpler structure.

The last example is an availability model taken from the save manual [19]. The example

is a model of a fault-tolerant database system \vith the following components: a front-end,
a database and t\Vo sets of modules, each formed by t'vo processors connected to a memory
unit by a switch. Unlike the example in [19], \ve assume that the components can fail even

\Vhen the system is do\vn. The failure rate for the frol1t-end. the database. the s\vitches

and memory ullits is 1/2400, alld the processors fail \vith a rate of 1/120. ,\ll compollents

are repaired (\Vith a rate of 1) by a sillgle repairl1laJl \Vllo gives the highest (preempti\re)
priority to the frol1t-end alld the da.ta.base, follo\Ved by the s\Vitches al1d memo1'y units and

the processors ha\.e the smallest priorit~'. If a processor fails. it may affect the database \vith

probabili ty c.

In this exa.mple, the .'natural" order of genera.ting the most probable states is by increas-

ing number of failures, since \ve expect that states \vith relatively low number of components

failed are the most probable. However, this ma.y not correspond to the ..most probable
states" order. When c = 0.99, the most probable states after the state \vith no failures are

the t\VO which represent a failure of one processor in a module (one state for each module),

followed by the state \vhich represents t\VO processors failed, one in each module. Therefore,
a state with two components failed concentrates more probability mass than the other states

22



\vith Ol11y Ol1e COl11pOl1el1t failed. \\rhel1 c = 0.90, the ..l1aturar order performs evel1 worse.

Sil1ce we illcrease the probability of havil1g a data.base failure \\hel1 a processor fails, more
states \vith i compol1el1ts failed COl1Cel1trates more probability l11ass thal1 those \vith j com-

pol1el1ts failed, for j < i. Il1 order to obtail1 better boul1ds for the measures of il1terest, \vhel1

\ve trul1Cate the state space, it is importa.nt tha.t we gel1erate the most probable states.

\\rhel1 \ve specify a value of JVTT[! = 105 for stoppil1g the gel1eratiol1 of states, 31 states

are obtail1ed whel1 c = 0.99 al1d 42 \vhel1 c = 0.90. The el1tire state space for this example

has .j76 states. We first calculate a tral1siel1t mea.sure, say the probability that the system
( \\"ith c = 0.90) rel11ains operatiol1al for a, percel1tage ]J of the observatiol1 period t equal to

:360 units of time (P[O(t) > y]). Usil1g the metl1od of [13] al1d equatiol1 (14) to calculate the

boul1ds. \\.e obtail1:

JJ plb[O(t) > y] pub[O(t) > y]-
0.98 0.986 0.989

0.99 0.880 0.888

\Ve l1O\V col1sider the calculatiol1 of stcad), statc availability .j.lv. This is possible, sil1ce
\ve have kl1o\vledge of the behavior of the s)'stel11 ol1ce il1 the l1ol1-gel1erated states. If the

states are gel1erated il1 il1creasil1g order of l1umber of failed cOl11pOl1ellts, thel1 the results il1
[:38] cal1 be used to calculate boul1ds Ol1 Av. However. as we l11el1tiol1 above. this order is

not the best order to obtain the most probable states. As a consequence, the ..state dupli-

catiol1 procedure" outlil1ed in [38] is l1ot directly applicable to obtain bounds Ol1 col1ditional
a\'ailability al1d, from those, bounds on Av. This cal1 be seen by observing Figure 6. Il1

that Figure, there may be severa,l tral1sitiol1 rates from state (t f to the aggregate states fk
represel1t.ing the duplicated states. ul11ike the sil1g1e transitiol1 from af to fI.;, required for

the procedure in [38]. (Note that if the states a.re gel1erated in order of increasil1g number of

failures. t.his problem does not ayise, since there \vould be only a single transition from a f to

f I\ .) Ho\vever, \ve cal1 il1voke Theorem 1 to obtail1 boul1ds on conditional availability. From
equation ( 16 we also l1eed a lo\ver bound Ol1 P( g), the probability that the system is in a

state of those gel1erated. il1 order to calculate Av. The ..maximum holdil1g time.. Lemma il1

[:38] provides this lo\ver bound. Applying these results. \ve obtain the following bounds on

.--tl..:

c l1umber of states lo\ver bound upper boul1d exact value

generated ( .576 states )~ 0.99 :31 0.998823 0.998840 0.998834

0.90 42 0.995861 0.995878 0.995873
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6 Conclusions.

\\e ha\.e developed an approach to gel1erate efficicl1tl~! a subset of the state space of a Markov
model \,ith tl1e aim to obtail1 the most probable states il1 the model. The approach is based

on the \Vork of Dimitrijevic al1d Chel1 [16]. The iterati\.e method we propose is sho\vn to be

significantly more efficient than previous methods. both in terms of storage and number of

operations. Il1 this ne\v method~ the spayseness of the transition rate matrix of the Markov
model is preserved~ \vhich is important to solve large models. The examples show that the

method \vorks satisfactorily for models \vith skewed probabilities.

We l1ave addressed the problem of boul1dil1g re\vayd measures based on the states gen-

erated. Even if there is l1O kl1owledge about the l1on-generated states. boul1ds on transient

re\vayd measures can be easily obta.il1ed. For st.ead~' stat.e. we have used the stat.e replication
techl1ique ill [:38] al1d sho\ved ho\v to obtail1 ( for gel1eraJ models) boul1ds Ol1 re\Vard measures
conditiol1ed tllat tl1e system is il1 the subset. of the gel1erated states. Ul11ike Courtois al1d

Semal bol1l1ds 19], ours cal1 be caJcl11ated while preservil1g the sparsel1ess of the generated

tral1sitiol1 rate matrix. Bounds on col1ditiol1aJ state probabilities are importal1t to evaluate

performabilitJ. mcasures conditioned that the system is in the generated, most probable~
scenario. They cal1 also be used to evaJuate lIncol1ditioned measures. whel1 we have more

knowledge abollt the behavior of the model il1 the l1ol1-generated states.

SeveraJ extel1siol1s are possible to il1crea.se the efficiel1cy of the algorithm. In one of them,
sets of states are cl1osen il1stead of one at a time. In another, sets of generated states are

aggregated al1d the aggregated process is lIsed for the choice of the next state, instead of
using the entire lIl1aggregated set of gel1erated states. We are currently investigating these

and other approaches.

We have implemented ollr method il1 a tool and lIsed it to generate states of communica-

tiol1 protocols described in Estelle. We hope the method \vill be useful in other specificatiol1
languages. sl1ch as Stochastic Petri-l1et. The method to bolll1d conditiol1ed measures is in

the process of beil1g automated.
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APPENDIX

A Proof of Theorem 1.

Before proving Theorem 1, \ve need the follo\ving Lemmas.

Lel11l11a 1 "4 lou!er bound on nÇ can be calc11lated fi.om the solution of 7r(k)Q~k) = O, where

Q~k) is identical to Q3, except that ali the transition rates out of state af go to fk, and k is

one of the possible values between 1 and I\. .

Proof: Consider matrix Q; in Figure .). nÇ is given by:

N
nÇ = L ri[13r + 13i{i)] (17)

i=l

\vhere lV is the number of generated states, 13; is equal to the ith element of of ii:l solution
of 7r2Q; = 0, norll1alized so that the sum of ali the states of Q; except state a J is one,
h(i) is a function that maps a state (ti E g' to a11 equivalent ( replicated ) state in the set

{ :F 1 U ...U :F I\ } .Let us assume that the states in each set :F k ( 1 ~ k ~ I{ ) are exactly
aggregated and \ve obtain the process of Figure 6. Obviously, a lower bound nb on nÇ can

be found by assigning a re,vard rate rlb to each state .fk ( 1 ~ k ~ I{ ) .

N I\
nb = L ri13t + rlb L 13.t+k ~ nÇ (18)

i=l k=l

\Vhere 13T is equal to the ith element of of 7r3 solution of 7r3Q3 = 0 normalized as above. We

cannot find exactly the state probability vectors 7r2 or 7r3, since ,ve do not kno,v the values

of Q20, Q21, Q;l' ..., Q;I\Q22 in Figure .5 or, equivalently, the output rates from state aJ in
~ Figure 6. Ho\ve\,'er,

N
nb = L ri13t + rlb[l -L 13t]

i=l
N

= rlb + L 13t[ri -rlb] (19)
i=l

A lo\ver bound n~ ~ nb can be found if \ve obtain a lo,ver bound on 13T, i.e., the normalized

steady state probabilities Qf the process of Figure 6. Let 7r(k) be the solution of 7r{k)Q~k) = 0.

Let ,B(k) be the normalized 7r{k) as above. From the results of Courtois and Semal [9] we

25



know that ,B3 is a linear combination of the ,B(k)'s ( 1 ~ J.: ~ I(). Since the only entry in set

ç = { al } U ç' is through state al, the steady state probabilities of being in any state in set ç ,
conditioned on the system being in ç is not altered when \Ve change the transition from af to

f h ., .{ TI .. 1. h IJ(I) ,B(I) - C(k) B(k) ,B(k) k to anot eI :,;tdle JI or to al. IIS Imp les t a.t < ,ul , N >- .< 1 , ;\" >

for any I # k, \Vhere C(k) is value that clepencls on h.. Therefore. one of the I( matrices Q(k)

\Vill give the clesired lower bouncl.

Lemma 2 Consider a process represented by Figul'e 9 with a corresponding transition prob-
ability matrix p given in Figure 10. In this process, Pm.k ~ O for J.: ~ m -1, pm.m-i = O for

i > 1 andfor ali ralues ofm ~ n -1,. Pn,1 # O, Pn.k = 0. h. # I and k # n. Let 7ro be the first

entry of1!', th.e solution of1!' = 1!'P. If'lve vary 1,1 ~ l ~ n, the minimum value of1!'o occurs

when l = n -1.

~k ~
~ ~A ~ W ...~ 1 /+1 ...G 11

L-:-)~ ~ ~

Figure 9: Process of Lemma 2.

Poo POl PO2 ...PO.I-1 POI PO.I+1 PO.n-l PO.n
PIO Pl1 Pl2 ...Pl.I-1 Pl1 Pl.I+1 Pl.n-l Pl.n

O P21 P22 ...P2.1-1 P21 P2.1+1 P2.n-1 P2,n

p = 0 O o. ..PI-l.I-1 PI-l.1 PI-I.I+1 Pl-l.n-l PI-l,n

O O O PI.I-1 PI.I PI.I+1 PI.n-1 PI.n

O O O O PI+l.1 PI+l.I+1 PI+l.n-l PI+I.n

0 0 0 0 0 o. ..Pn-l.n-l Pn-l.n

0 0 O 0 pn.1 O O pn,n

Figure 10: matrix of Lemma 2.

Proof: Let 1 = n- 1. Then the matrix p is upper Hessemberg and the soIution satisfies:

m-l n
(n-l) -'\:"""' (n-l)'\:"""' . (.)0)1!'m Pm.m-l -L..., 1!'i L..., PIJ -

i=O j=m
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\vhere the superscript i11dicates that pn.n-1 # O. From (20) it is easy to see that 7r~-1) ca11

be obtai11ed by [irst calculati11g recursively the u1111ormalized values 1~-1) from the values

of l~n-1), ...I<r:--:). assumi11g ~f6n-1) = 1. The fi11al11ormalized value of 7r~-1) is calculated

bv dividin g '"V(n-1) bv the normalization consta11t G(n-1) = ~~ O ~I(n-l)..Im .L..~- II

Let pn.1 # 0. For m ::; l,equation (20) is satisfied:

m-1 n
(I) -'\:"""' -(1) '\:"""' (? 1)7r m pm.m-1 -L " i L PtJ -

i=O j=m

Therefore, if 161) = 1, 1~-1) = I~) m ::; 1. For m = 1 + 1:

1 n
(1) ,\:""",~(I) '\:"""' .-(1)

II+1PI+1.1 L Yi L PtJ 'n Pn.1
i=O j=I+1

(n-1) (1) (??)= /1+1 PI+1.1 -'n pn.1 --

S.(1) 0 (1) (n-1)111ce 'n > , /1+1 < /1+1 .

No\v assume í},~) < í~,~t-1) for a givel1 vall1e of m. 1 + 1 < m < n, i.e., I~) = I~~-l) -c(m),

\vhere c(m) is a positive value depel1del1t 011 n~.

m ,t
(1) -'\:"""' (1) '\:"""' ..(1)

'm+1Pm+1.m -L /i L PtJ -'n pn.1
i=O j=m+1

1 n m n
'\:"""' (1) '\:"""' ,\:""",(1) '\:"""' (1)= L -fi L Pij + L li L Pij -'n Pn.1

i=O j=m+1 i=l+l j=m+1
1 n m n

= L l!n-1) L Pij + L [/1't-1) -c(i)] L Pij -/~I)pn.1
i=O j=m+l i=I+1 j=m+1
"t n m lt

= L,!7t-1) L Pij -[ L c(i) L Pij] -/~I)pn.1

i=O j=7It+l i=I+1 j=7It+1

< (n-1) (?3)'m+1 Pm+1.m -

Similarly to above, for m = n lil)pnl < -fin-1)pnl 111 summary:

,(1) -~f(n-1) m < 1
I~) < 1~-1) 1 < -'n ::; n (24)

Since G(I) = Li=o I~), G(I) < G(n-1). Therefore, 7r~I) = [,~I)]/[G(I)] = [/~n-l)]/[G(I)] >

[-f~n-l)]/[G(n-l)] = l~n-1).

Lemma 3 The value of k which mini.mizes simultaneously all the normalized state probabil-
.. j3 (k) j3 (k) d fi d . L 1 . k } ...ltles < 1 , ..., N > e ne m emma lS ~ = \ .
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Proof: Let us aggregate alI states in the set 9, of the process given by transition matrix

Q~k) defined in Lemma 1. Figure 11 shows the resulting process, and aÇ is the aggregated
state. Since the process in Figure 11 is identical to the process of Figure 9, we can invoke

c:&"r!i ...~-I .fk+l ...~A

L-.JL- ~ ~

Figure 11: Process defined by ma.trix Q.~k) where states in 9 are aggregated.

Lemma 2 which shows that 7rç is minilruzed when h. = J\.

I 1 . f. t. L 1 . bl . 1 I ,J(I) ,J(I) - C'(k) i-(k) 3-(k) r . n t le plOO o emma \\e esta IS 1 t lat < iJl , IJN >- < J31 ' N > 101

any I # k. Lct ai be the steady state probability of being in state aj E ç conditioned on the

s).stem being ill ç. Then, < ;3~k),...,;3.~) >= 7r9 < a:l,...,a:N >. When k varies. ;;9 varies,
but the value of each a:j remains constant. From Lemma 2 7rç is minimized when k = J{ .

Proof of Theorel11 1.

From Lemmas 1 and 3, the 13~k) 's are minimized when the single transition OUt of state

af goes to state .fI\. It remains to find the transition rates among the aggregate states fk.
Consider the process shown in Figure 11 and assume that the single transi tion from state

af goes to jI\. From this process, construct a new one where the transitions from state fm
to !I for I > m and from f m to a f are replaced by upper bounds, and each transition from
fm to fm-l for 1 < m s: J\ and from .fl to al is replaced by a lo\\.er bound. Let 7rç be

the state probability as defined in Lemma 2 alld 7rÇ is the corresponding state probability
in the modified process. Lemma 2 of [:38] shows that 7rÇ s: 7rç, which proves the theorem
if we can find upper alld lower bounds on the trallsition rates. The maximum \.alue of the

sum of transition rates from a state in :Fm to states in :F1 (or to af) is an upper bound on

the transition rate from fm to !II > m (or to (tf). The minimum value of the sum of all

transitions from a state in :Fm to a state in :Fm-l (or from a state in :F1 to al) is a lower

bound on the transition rate from fm to fm-l (or from fl to al).
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