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STATE SPACE EXPLORATION IN MARKOYV MODELS

RESUMO

Anal ise de desempenho & dependabilidade baseia~se usualmente em modelos
Markovianos.

Um dos principais problemas que o analigsta encontra ¢ a grande cardina—
lidade do espa¢go de estados da cadeia de Markov associada ao modelo, o
que tmpede NRO somente a solucio do movelo, mas também a geragiko da ma-~
triz de transicio de estados.

Entretanto, em muttos modelos de sistemas Feals, & maioria da massa  de
probalidade estd concentrada em um pequeno nimero de estados . em COmpa-
Fagao com a totalioade do espago de estados. Por conseguinte, medidas
de desempenhabilidade ("performability”™) podem ser avaliadas com prect -
580 a part:r desses estados “mais provaveis® .,

Neste artigo, apresentamos um algoritmo de geragiio dos estados mars
Provaveis que € mais eficiente que algoritmos anteriormente propostos
na literatura.

fbordaremos também o problema de cdlculo das medidas  de interesse @
mostraremos como limites para algumas medidas poden ser eficientemente

calculados.
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Abstract

" Performance and dependability analysis is usually based on Markov models. One
of the main problems faced by the analyst is the large state space cardinality
of the Markov chain associated with the model. which precludes not only the
model solution, but also the generation of the transition rate matrix. However,
in many real system models, most of the probability mass is concentrated in
a small number of states in comparison with the whole state space. Therefore,
performability measures may be accurately evaluated from these “high probable”
states. In this paper, we present an algorithm to generate the most probable
states that is more efficient than previous algorithms in the literature. We also
address the problem of calculating measures of interest and show how bounds on
some measures can be efficiently calculated.



1 Introduction.

Pelfoxmancc and dependability analysis of computer and communication systems has been
an important tool for designers who wish to understand and predict the behavior of such
systems. Performance modelling attempts to capture the effect of contention for resources
in the system and queueing networks have been extensively used as a modelling tool (e.g.,
[32.33.7.13]). In particular, major advances in the area where due to the product form
solution which allows performance measures to be obtained without the solution of the
underlving Markov chain model. Dependability modelling is concerned with the changes
in the structure of the system which may occur due to faults in its components. In this
area. Markov chain models are extensively used (e.g., {43]) since. except for a few cases (e.g..
[21]). the models do not possess product form solution. More recently, with the advent of
degradable computer systems, the combined modelling of performance and dependability,
the so called performability modelling [36], has received increasing attention (see [14. 37) -
and references therein). Similarly to dependability modelling, Markov models are the main
tool for performability modelling.

The complexity of the current computer systems led to the development of many tools
. for performance/dependability modelling, e.g. {2,20.4,41,25.6,40] (see also [30] for a survey
and further references). Several tools allow the analyst to describe the system in a high level
representation and automatically generate the corresponding Markov chain model. Once the
transition rate matrix is generated, Markov chain solution techniques are used to obtain the
measures of interest.

One of the major problems faced by such tools is the large state space cardinality of
the Markov chain associated with the models. For instance, in dependability (performance)
" models. the number of states grows exponentially with the number of components that can
fail (number of resources and customers in the model). So, unless the model has special
properties (e.g.. product form) the solution is impractical. Large state space cardinality has
a major impact not only on the solution techniques but also on model generation, since it
may be too time consuming to generate and practically impossible to store a transition rate
matrix for a Markovian model with millions or billions of states.

Many techniques have been developed to deal with large state space cardinality. and
among those we mention: decomposition, lumping, truncation. Decomposition is a useful
technique for analyzing systems consisting of weakly coupled subsystems. In this case. the
underlying transition rate matrix is nearly completely decomposable and an approximation
solution for the state probabilities can be found based on the solution of each individual
subsvstem [43.8]. This technique has been found very useful when applied to queueing
networks. although it is not as useful for dependability modelling, since the underlying
Markov chain is not nearly completely decomposable. in general. However, the basic aggre-
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gation/disaggregation technique described in (8] is applicable. regardless of the form of the
transition rate matrix. Courtois and Semal [9] are concerned with the calculation of steady
state probabilities when only part of the model is generated. They obtain bounds on steady
state probabilitics of each state in a subset of states, conditioned on the system being in a
state of the subsct. and show how the approach can be useful for certain queueing models
[11]. Muntz et al [38] developed a method for bounding steady state availability of repairable
computer system models, based on the technique of Courtois and Semal. Their approach
uses certain properties of availability models in order to obtain tight bounds. Courtois and
Semal [10] obtain bounds on the mean and second moment of the mean time until absorption
(MTA) based on the results of [9]. The technique is shown to be cheaper than traditional
methods to calculate the MTA.

Lumping is a method that is used to reduce the state space of models. For a given
measure of interest. subsets of states may be combined (lumped) into a single state, without
affecting the final result. In [31], conditions for lumping states of a Markov model are given -
in terms of the transition probabilities of the one step transition probability matrix, and in
[21] lumping is applied to availability modelling. Recently, Sanders and Meyer [42] proposed
a state space reduction method based on lumpability conditions. but which can be applied
without the neced to construct the transition rate matrix. Instead, submodels of a high level
system description (a SAN model or Stochastic Petri net model) are identified and joined.
resulting in a much smaller state space than in the original model. In general, however,
lumping is restricted to the existence of symmetries in the model.

The truncation of the state space, after generating a number of states, is another method
which can be used to cope with large state space cardinality. For availability modelling, a
“natural” partition of the state space exists in terms of the number of components failed.
For example. in the SAVE [20] tool states can be generated up to a given number of failed
components in the model. according to the user specifications. As can be seen in the examples
given in [19], the steady state availability converges fast to the final result. after generating
a relatively small number of states corresponding to those with a few failed components in
the svstem. An issue is how to bound the final solution and, as mentioned above, accurate
bounds on steady state availability can be found [38.39].

The results in [46] can be applied to bound the absolute value of the difference between
the expected accumulated reward of a Markov model and a perturbed model with different
one step transition probabilities and rewards for the states. Truncation is an example of
such perturbation.

In many performance/dependability models, the state probabilities are highly skewed
and this property has been used to calculate performability measures. For instance, in
availability models. and for highly available systems, it is reasonable to assume that most
of the probability mass is concentrated on the states that represent the system with only



a few components failed. This observation motivated the bounding technique of [38], and
was used to obtain computational savings when transient performability measures [13,12] are
calculated. It also indicates that truncation techniques should produce good results. Other
examples of models with highly unbalanced state probabilities are those of communication
protocols (e.g.. [33]). In general, it may be difficult to find a "natural” state space partition
that contains the most probable states. As a consequence, a very important issue is how to
generate the subset of those important states in the model. The so called “dynamic state
exploration” techniques address this issue.

The basic idea of dynamic state exploration techniques is to develop algorithms to guide
the generation of the transition rate matrix (or equivalently the one step transition prob-
ability matrix) so that “important” states are generated first. The importance of a state
should be given in terms of its contribution to calculate the measure of interest. For instance,
for many measures such as the ones obtained in availability modelling, the states with the
highest steady state probabilities should be generated first. This contrasts with the depth
first or breadth first techniques. commonly used for generating the state space of Markov
models.

Several papers address the issue of generating the most probable states [23.47.17.16]. In
this work we extend the results of [16] and develop a new dynamic state exploration algorithm
which is shown to provide significant computational savings when applied to computer and
communication models. We also discuss the use of a different criterion than the one used in
[16] to guide the choice of the next state generated. This criterion, may be computational
more expensive than the previous one, but can be useful in certain cases. Then, we address
the problem of calculating the measures of interest, and propose a way to bound the solution.

In section 2 we discuss some dynamic state generation techniques and present the back-
ground material. Section 3 provides a description of our approach. In section 4 we discuss
issues related to the criterion used to guide the search procedure and also address the calcu-
lation of some measures of interest. Section 5 presents examples to illustrate the application
of the results. Our conclusions are presented in section 6.

2 Dynamic State Exploration.

As mentioned in the introduction, in many computer and communication models most of
the time is spent in a relatively small number of states, in comparison to the total number
of states. As a consequence, the probability mass is highly skewed. For such models, several
measures of interest can be calculated from a relatively small number of states. Dynamic
state space exploration techniques try to find these most probable states up to a given



tolerance. without the need to generate the whole state space.

The generation procedure is usually based on the “transient™ behavior of the system from
a given state. By transient we mean that the measure used for ending the search is related
to the amount of time the system remains in the subset of the states generated from the
given state. before leaving the subset. For instance, the generation stops when the expected
amount of time in the subset is greater than an specified value. This procedure is good for
transient measures. but it may not be acceptable for steady state measures. Note that the
subset of generated states may not be even similar to the subset of the most probable states
(up to a given tolerance) in steady state. Clearly, if we do not have any knowledge of the
system behavior once in the non-generated states, it is possible that a highly probable, but
not yet generated. state exists (for instance, an absorbing state). Nevertheless, this procedure
can be used to obtain bounds on steady state measures conditioned that the system is in
the subset of generated states, and this is useful in many cases. Depending on the amount
of knowledge of the system being modelled. unconditioned steady state measures can also
be bounded.

Grassman [23] proposed a dynamic state generation method to be used in conjunction
with the randomization technique [3] to avoid the generation of the entire transition rate ma-
trix before the randomization procedure starts. At each step of the randomization procedure
(say step k). an “active state set” is updated. The active set contains all states that can be
reached from the set of initial states in k steps. New states are generated, one by one, and
the probability of being in any of the states after & jumps is also calculated incrementally.
This method is useful because it may avoid the generation of the complete transition rate
matrix specially when the infinite sum in the randomization procedure is truncated to a
small value .V. However. the number of states generated at each step increases very fast.

The work of Yang and Kubat [47] is an example of a method that obtains the set of
the most probable states in steady state. The algorithm is developed for a very particular
system nodel and improves previous work of Li and Silvester [34] and Chiou and Li [5].
The model is composed of V components that can operate in one of several possible modes.
Furthermore. a component ¢ operates in mode m; (1 < : < N, 1 < m; < M. M; is the
number of modes of component i) with probability p;m,, independently of other units. From
this particular model, it is easy to obtain the steady state probability for a given state. The
form of the solution is used to transform the original problem into a tree search procedure
and from this generate the most probable states.

Maxemchuck and Sabnani [35] are interested in obtaining the most probable states for
models of communication protocols. They argued that “partial” evaluation is useful due
to the highly skewed probabilities of most protocol models. The main assumptions used
in [35] are that a protocol is modeled as a collection of finite state machines (FSM) and
non-deterministic transitions of each FSM has only two choices called: a “high probability



choice™ {with probability 1 — p) and a “low probability choice™ (with probability p << 1).
Furthermore. cach change in the global state is the result of a state change in two of the
FSM's of the model. From these assumptions, each transition from a global state to another
has either probability 1 —p & 1 or p or p?. The search algorithm generates the reachable
states from a starting one and organize these states into classes according to the probability of
reaching the generated state from the initial one. This is not difficult due to the assumptions
above. {The probability of reaching a state in class i is p'.) One measure that can be
computed is the probability of reaching a state that has not been explored after n runs of
the protocol. starting from the initial state.

Dimitrijevic and Chen [17,16] developed a dynamic generation method based on a re-
cursive calculation of the expected number of visits to a state between successive visits to
a given (initial) state. There are no restrictions with respect to the model as in [35]. We
describe this method in more detail since our approach is based on a similar search for the
states. This will also serve to introduce some basic notation used throughout the paper.

Let .\ = {Xif): ¢ > 0} be a homogeneous continuous time Markov process with gen-
erator Q that describes the behavior of the system being modelled. and let § = {¢; : ¢ =
| S \1} be the linite state space associated with the model. Let ¢;; be the entry zj of Q.

It is possible to think of X' as a discrete time Markov chain Z = {Z, : n = 0.1....}, with
state space S and transition matrix P = Q/A + I (A > max ¢ = ¥4 4i5), subordinated to
a Poisson process .V = {N(t) : t > 0}. For t > 0, it is known that X(t) = Zx( [29,3]. The
transformation of a continuous time Markov chain into a discrete time Markov chain subor-
dinated to a Poisson process is called randomization or uniformization. In what follows. to
simplify our description and without loss of generality. we consider the uniformized process
Zxqy and its associated transition matrix P.

Let ¢y be the expected number of visits to state [ in a path that starts in state ay and
ends in state ¢;. the initial state. Let V; be the expected number of visits to state a; between
two visits to state a;,. By definition, V; = ¢y,.

At step n (n = L.... N) of the dynamic generation procedure, there are two sets of states:
S and 8. The set S{™ contains n states and is called the explored set. This set includes
the states (called ezplored states) chosen to be included in the final reduced model. All
transition probabilities from each state in S™ have already been found in step n. The set
S i called the unexplored set and contains the neighboring states to those in S In step
n, the transitions from each state in S have not been found yet. It is assumed that for
all states a; € S\™ there is a single transition p;, =1 to a fictitious state a, that represents
the ~unknown” states in the model. Furthermore, the definition of g is modified to include
visits in a path that starts in a; and ends in a, (i.e., gy is the expected number of visits
to state [ in a path that starts in a; and ends in @, or a,). The definition of V; is modified
accordingly. Figure 1 illustrates the sets of states S{™ and S{™ and their transitions.



Figure 1: Sets of states in step n.

The generation algorithm is as follows:

I. Initial step: S = {q,}, SV = {8}. s=a;. n = 1.

2.n=n+1l.
Find all trausitions from s and all its neighboring states. St = S{"~"'U{ neighbors
of s not in S~V YSir-1}.

3. Stop if the stopping criterion is met.

1. Choose a state in S\, say state a., according to some rule. SM = SV {a.},

s =80 - {ac}.

3. s =a. go to 2.

As mentioned previously, the stop criterion is related to the amount of time spent n
the generated states. In [16], the stopping criterion is the average amount of time in the
generated states before reaching the fictitious state a,. Since the mean time to unknown at
step n (MTTU™) can be calculated from the visit ratios:

A . [(")
MTTU®™ = ;‘ET (1)
Vi

(where the superscript indicates the step of the algorithm) the rule used in [16] to choose
the next state in step 4 above is based on the visit ratios. In other words, assume that AR

is calculated at step n of the algorithm, for all «; € StM. A state a, € S is chosen if
VW = max{V™.q; € S{M}.
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The kev to the approach is to develop an efficient algorithm to compute Vi(n) = gs),

Va; € S\, for each step of the generation procedure. It is known that the gﬁ?) can be
calculated from the equation below (e.g.. see {26]):

gy = el + bu
oy

——
[o%]
~—

where py; is the one step transition probability from state a to state a;, and &y =1 ifk=1
and 0 otherwise. It is easy to see that solving equation (2) at each step of the algorithm
would require O(M?) operations, where M is the number of generated states. In [16], an

n

efficient recursive solution is proposed to calculated g™ Yk, 1. It it shown that:

{n—1)
(n) (n=1) (n—1) Zj;él Peidi (;3)
{n~1) :

9 = 9t ke
1 — 341 Pej¥5e

where «. is the state chosen in step (n — 1). Since gy = 0 Vai, € S™ (see Figure 1), equation
(3) can be evaluated as follows:

o calculate 3,4, chgﬁ':_”

¢ for all ¢ € S™YSH

— calculate 3~ ;4 chgﬁ_”

— for all ¢, € §{™

« calculate g\

Let L™ be the cardinality of St*. (Recall that n is the cardinality of S{.) The number

of operations to calculate the g\ is O(n(n + L)), In general. L™ can be much larger
than n. If we assume that each state has. in the average, r output transitions and a fraction
p of those ends in non-explored states. then L™ = prn and the number of operations at
step 1 ix O((1 + prn?) and so the total number of operations is O((1 + pr).V?), where N is
the total number of steps of the algorithm. The total storage needed is O(N (N + LMYy =
O((L + pr).N?).

In the next sections we present an algorithm which is shown to have less computational
requirements than the above procedure. We also show its applicability to models other than
communication protocols, such as availability models.
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3 An Iterative Approach.

There are two main issues concerning the generation procedure outlined in the previous
section: the choice of an appropriate rule in step 4 in order to achieve the goal of generating
the most probable states and; the computational requirements needed to apply the rule. In
this section we address the second issue.

We assume that the rule used to choose a state at each step of the algorithm is based on
the visit ratio of the states, as proposed by [16] and outlined in section 2. The method of [16],
summarized in equation (3), is recursive and, at step n. the values of gi’,‘) are calculated from
the values of gi.?”l). One main drawback of this technique is that the storage requirements
are very high: O((1 + pr)N?). This is a major problem for large values of N (say, tens of
thousands). One of the important advantages of iterative solution techniques to obtain the
measures of interest once the model is generated is that they preserve the sparseness of the
transition rate matrix®f the model. Since the recursive method for generating the model
requires the storage of a full matrix (all entries are different than zero) with size equivalent
to the final (truncated) transition rate matrix, the advantage of preserving the sparseness
of matrices usuallv obtained from real system models is lost. Another drawback of the
technique is the potential for numerical problems due to the denominator of equation (3). If
the sum in the denominator is close to one, there may be a considerable loss of accuracy in
the final result. As indicated by Grassman (e.g., [22]) algorithms that involve subtractions
are amenable to round off errors.

In what follows. we propose an iterative technique to calculate directly the visit ratios

(\/‘;(") = gi’;’) and which takes advantage of sparse matrices. The idea is based on the
observation that. il the solution for V(*=1 =< 1"V VT 5 s available at step n— 1

then. when a new state is added at step n. the value for V' should not differ much from
the previous value V;-("_l) (1< <n-1).

At step n, all the transition probabilities from the states in S{*) are known. The one step
transition probability matrix P(™ is given by (see also Figure 1):

- -

Puu P12 o Pin Pindl 0 Praglm 0
P21 P22 DPan Prmst o Panprm 0
(n) _ Pni Pn2 " Pan Pan+l *°° PnntLm 0 v
P 0 6 --- 0 0 e 0 1 (4)
0 0 0 0 0
L 00 0 0 0 ]




where we organize the states so that the first n are in S{™). the subsequent L") are in Str
and the last one is the fictitious state a,. In order to calculate the visit ratios of each state
betiween visits to state a; or ay, it is useful to observe that P represents a Markov chain
with one absorbing state, and this process has equivalent behavior to the one defined by
matrix IT™ in (3) where. whenever the process reaches the absorbing state a,, it is restarted
from the initial state. Furthermore, in TI™, the states a; € S{™ U{a.} are aggregated to a
single state ay: ”

[ P M2 o Pia DS ]
P P22 0 Pan Paf
H(n) — . . . . (5)
Pnt Pn2 " DPnm DPnf
i ] 0o --- 0 0 ]

The values of p;; in (5) are the sum of the transition probabilities from state ¢; to states in
St py = Z;‘;IL;’;' pij. The irreducible ergodic Markov chain given by II'® describes the

behavior of the original absorbing process given by P*). over an infinite number of runs that
start from the initial state. Thus V™ = V'™ where the “prime” indicates the quantity

related to process I If 7 =< 7 ... 7; > is the solution of =) = zWII" . then
"(n) il
Aln) My
| ! - (n) (6)
Ty

The visit ratio of states a; € S{™ needed to choose the next state to be included in S{"+!)
are also casily calculated from 7" as:

n NPT
VI'( ) z:J—llﬂ J l e Sl(‘n) (

Ty

bl |
St

Finallv. the MTTU™, needed for stopping the algorithm. can be calculated as the sum of
the expected number of visits to each state in S between two visits to state ay:

n x(") 1 — N‘(f")

MTTU™ = 3 —— = —q (8)
i=1 ‘S 7Tf
= —1——1 . (9)
Ty

Since the Markov chain determined by TI" is ergodic. the solution 7(® = 7™ TI™ can
be calculated by iterative techniques. For those techniques, an initial distribution for the =)
is needed. Let #(™(0) be this initial distribution at step n. At a new step of the algorithm a
new state is added to the explored set of states, but the transition probabilities among the
states in the previous explored set remain the same. Intuitively, if the probability mass is
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skewed, after a few steps the value of nl(-n_l) (1 <i < n—1) should not differ much from
the values of 7™, Therefore, the set of {z!""Y}’s is a good starting point for the iterative
algorithm at step n and only a few iterations should be required to find the solution =),
As we will show below. significant computational savings can be obtained with the use of
iterative techniques.

In summary, we set

70(0) = <V w2 gl (10)

where 7{*-1) = /=07 and q, identifies the state chosen to be included in S™ and
Vn=1) {5 obtained from equation (7).

Computational Requirements.

In order to calculate the computational requirements of the searching algorithm using ‘
iterative techniques. we assume, as before, that r is the average number of transitions out of
a state and p is the fraction of those transitions that go to states in S At step n, matrix
I has dimension (n + 1) x (n 4+ 1). Therefore, the number of multiplications performed
to solve (™ = x(WIIM is [M(1 — p)r(n + 1) where I is the number of iterations at step
n. Assuming I is approximately constant for all n and equal to /. the total number of
operations needed for the search algorithm over .V steps is O(/(1 — p)rN?).

The storage requirements for the iterative algorithm is rV since all transitions out of
the states in S(™ need to be stored at each step (and so we have NV transitions in the last
step). Therefore. iterative generation algorithms preserve the sparseness of the transition
rate matrix of system models. Note also that the storage requirements are independent of I.

('omparing iterative approaches with the recursive approach of [16] we see that:

{(a) number of operations:
iterative/recursive = [I(1 — p)rN2/[N*(N + L'W)] = [I(1 - p)r)[N(1 + pr)]. Since
r << N, if [ is small compared to N. then large computational savings are obtained.

(b) storage requirements:
iterative/recursive = [FN]/[N(N + L)} = [r]/[N(1 + pr)] Since r << .V the stor-
age requirements of iterative techniques are much lower than the ones for the recursive
technique. and it is independent of I, the number of iterations at each step.

The Choice of an Iterative Technique.

The number of iterations for an iterative technique has an impact on the number of op-
erations needed for the generation procedure. (But no impact on the storage requirements. )

11



Therefore. the choice of a method that requires few iterations is important. We have experi-
mented with different iterative techniques and choose the SOR (Successive Over Relaxation)
method c.g.. see [18]). In the method. an element =;(m) at step m of the iteration is
calculated as:

w

wim) = (1 —w)yr(m -1)+

7 - Z[)lizj(rwz)—Fij,':rj(rn— 1) (11)
—Pi | i>i

where w is the so called relaxation parameter. The choice of w is crucial for improving the
convergence of the method. The optimum value of w can be estimated from the computed
values of =(m) during the iteration (see [48,44]).

The convergence of this method is fast. However. there are cases where it does not
converge. When w > 2, the method diverges, and so we use a variant of the Power method
which has less strict convergence conditions than those for the traditional one [1]. Let

Py Py
P = 12
[ Py Py (12)
The m'™ jteration is given by:
72(m) = =m(m — 1)Pgyy + 7' (0) Py, (13)

where =(m) =< =!(0), #*(m) > and converges to the solution of = = #P. (The entries of 7
do not add to one. but they can be normalized later.)

In the many examples we run, the convergence of the method was fast and in the order of
3 to 8 iterations per each step of the generation procedure. In the next section we discuss
other rules to apply in the selection of a state in each step of the generation.

4 Additional Considerations.

In the previous section we show that iterative techniques perform better than the recursive
technique of [16] to implement the search rule based on visit ratios. In this section we address
two issues. One is related to the search rule as implemented by the algorithm of section 2.
The other discusses the calculation of measures of interest, once the generation procedure is
over.



4.1 The search Rule.

The stopping criterion used in step 3 of the algorithm described in section 2 is the average
amount of time spent in the generated states before exit (MTTU). Therefore. the search
rule should try to maximize the MTTU at each step of the algorithm. The MTTU can be
calculated from the visit ratios using equation (1). However, choosing a state a; from those

in S{™ so that it has the maximum value of V™ as implemented by the algorithm of section
2. may not be the best choice for increasing the MTTU of the new set Sé"“), as it can be
seen by the following example.

Assume that at step n of the search. S = {¢,;} and S{™ = {3, a3} as shown in Figure
2. From the figure it is easy to see that Vi = 0.4, V™ = 0.6 and thus, according to the

S!(ln)

non-generated
states

Figure 2: An example of the search.

rule which chooses the state with the maximum value of the visit ratio, state as is chosen.
Now assume that state a, (a3) has a transition back to itself with probability 0.9 (0.1). If
we take into account these transitions when we calculate the visit ratios then Vz(") =4 and
""3(") = 2/3, and state a; would be chosen. From equation (8), clearly this choice maximizes
the MTTU. This problem arises because, at each step of the search, the choice is based on
the visit ratios of the unexplored states and we do not know the output transitions from
these states. This problem can be overcome if we modify step 2 of the search algorithm of
section 2 as indicated below:

Step 2: n=n+1.
Find all transitions from s and all its neighboring states.
Let S{" = { neighbors of s not in S"~V JS{"~}. (Those are the new states found.)
- Find all output transitions from states in S{*).

13



Find all output transitions from states in S{"™!) to states in S{" and update the
trausitions to state a, accordingly.

S =srhusyy

This new algorithm may require more computational effort than the previous one, both
when we use the recursive or the iterative technique as well. First, consider the recursive
technique. At step n, gf:’;), Va, € S{™ is not necessarily equal to zero and. therefore. the
number of operations at step n is O((n + L™)?), and the storage requirements are also
O((n + L')?). Ve assume, as before, that the cardinality of S LM is prn. Since we
are generating the output transitions not only from states in S™ but from states in S{* as
well, then our stop criterion should consider the states in S US{™. Assume that we stop
the gencration procedure at step M when the cardinality of S JSM is N=. Therefore.
M = N-/(1 + pr). The total number of operations is O((N*)*/(1 + pr)). The storage
requirements is O((V7)?). '

Now we consider the iterative technique. The matrix TI™ in (5) has now n + L") 4+ 1
entries. Thus. the number of operations at step n is O(Ir(n + L™)) = O(Ir(1 + pr)n) and
the total number of operations is O(Ir(.N*)?/(1 + pr)). The total storage requirements are

O(rN=).

From the above. we note that: (a) The iterative technique, as before, outperforms the
recursive technique for this modified version of the algorithm. (b) The rule for choosing a
state guarantees that the MTTU from states in S is maximized among the possible choices.
However. this docs not guarantee that the mean time to exit from states in SMYS is
maximized. The computational requirements of this last algorithm can be larger or smaller
than the previous one, depending on the value of N~ and the value of pr. (c) We can reduce
the storage requirements of this last algorithm with respect to the previous one. by increasing
the number of operations. This can be done if the rule in step 4 of the original algorithm is
modified as follows:

e for cach state a; € S{™:

— generate the transitions out of a;.

— calculate the MTTU considering the states in S{™ U{a;}.

o choose the state that gives the largest value from all values of the MTTU calculated.

The storage requirements for the recursive and iterative techniques are O((1 + pr)M %) and
O(rM) respectively. Since our search rule is anticipated to produce better results than the
previous one. we expect that M < N. The computational requirements are O((1 + pr)*M*)
and O(I(1 — p)pr*M?3) for the recursive and iterative algorithms, respectively.
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4.2 Measures of Interest.

In the previous section we are concerned with the generation of states such that. for a given
initial state. the mean time to reach the non-generated states is greater than a given value.
With the procedure outlined above, we intend to generate the states that concentrate most
of the probability mass. Once the states are generated, it remains to calculate measures of
interest to the user such as performance, dependability or, more generally, performability
measures. and to bound the final solution. (For a definition of many performability measures
and solution techniques, we refer the reader to [14].) We first consider transient measures.
Steady state measures are considered later.

Transient Measures.

One important measure to be obtained is the random variable L(t) that is equal to the
time when the svstem reaches a non-generated state during an observation period (0.%).
The distribution of this random variable can be easily calculated using the randomization
technique [12.21]. Note that the MTTU obtained with the generation procedure is the

expected lifetime as ¢ — oc.

\We now consider the calculation of performability measures during an observation period
(0.t). We assign a reward rate r; to each state of the model. This reward rate may be equal,
for instance. to some measure of the performance of the system at that state. Assume that
the rewards are bounded 1 < r; < 7, for all states including the ones not generated. This
assumption is realistic for many models, since we usually know some of its characteristics
even without generating the states. If we aggregate the non-generated states into a single
absorbing state. it is easy to see that the distribution of the cumulative reward over (0,¢),
C'R(1). is bounded by:

P[CR(t) > y] < PICR(t) > y] < P*[CR(t) > y] (14)

where the superscripts (b and ub indicate that we assign a reward rp and ry to the ab-
sorbing state a,,. respectively. Clearly, the quality of the bounds depends on the probability
of reaching «, over (0.t) and the absolute value of the difference between ry, and ry. For
dependability models. many measures such as cumulative operational time and interval avail-
ability can be evaluated and bounded in this way since the rewards assigned to the states
are either 0 or L. :

Steady State Measures.
Steadyv state measures are usually obtained from the steady state probabilities of each

individual state in the model. The values of the state probabilities can be approximated
by the ones calculated from the solution of the transition probability matrix obtained from
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the generation algorithm, i.e., by solving 7™ = 7MW, where II™) is given in (5).

Unfortunately, if we do not have any knowledge of the behavior of the model once in the
non-generated states, it is impossible to bound accurately individual states probabilities.
For instance. there may exist a highly probable state among the non-generated ones (e.g.,
an absorbing state in the worst case) and so, the values of 7¢¥) obtained from IT') may be
a poor approximation of the steady state values. Nevertheless. the steady state probabilities
conditioned that the system remains in the subset of the generated states can be bounded
by using the approach developed by Courtois and Semal [9,11]. If we have some knowledge
of the model once in the non-generated states (e.g., if we know a bound for the transition
rates from the non-generated states, etc.), then bounds for unconditional measures may be
computable from the generated states. For instance, we refer to the bounds on availability
obtained in [38,39]. Below we address some of the issues related to bounding steady state
measures.

Suppose that we are interested in calculating the cumulative reward R averaged over
the observation period (0,t) as t — oc. If we know the steady state probabilities 7 =<
Fleo.. 7¢ > of the complete model. then R = ¥ 7. Now we assume that the state
space is partitioned into two subsets G which contains the states generated by some procedure
and .\" which contains the non-generated states. Clearly:

R = P(G)Rg + P(N)Ry (15)

where P(G) (P(.V)) is the probability that the system is in a state of G (V) and Rg (Ry)
is the value of R conditioned that the system is in a state of G (\). If the rewards are
bounded. ripy < r; < ry, then ry <Ry < rypy 1y < Rg < 7y, and we have:

ris + |P(G)l|Relis = o] £ R < rup — [P(G)is[rus — IR us] (16)

where the subscript (b (ub) indicates a lower (upper) bound on the term.

Equation (16) is borrowed from [38] and indicates that bounds on the expected reward
R can be obtained from the lower and upper bounds on the conditioned expected reward
R¢ and a lower bound on P(G). A lower bound on P(G) requires some knowledge of the
svstem in the unknown states such as bounds on transition rates, etc. Bounds on the state
probabilities conditioned that the system is in the subset G (and, from those. bounds on
Rg) can be obtained from the results of Courtois and Semal [9] as follows. Consider the
matrix II'™) of (5) where the last row and column is removed. (The resulting matrix IT'M
is not stochastic.) For notational convenience, we remove the superscript (N). Let v; the ¢*!
normalized row of the inverse (I — IT')~!. It can be shown that the conditional steady state
probability vector is a linear combination of the v;’s. Therefore, bounds on the conditioned
probabilities can be derived from the vectors v;'s. Unfortunately, it may be impractical to
obtain the inverse above using the so called direct methods if IT’ is large, since we do not
take advantage of the sparseness of the matrix. Iterative methods, on the other hand, are
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appropriate to large and sparse matrices. In order to use an iterative method. we modify
IT such that py; = 1 for a given ¢, 1 < ¢ < NV, and let IT! be the resulting matrix and
v; the solution of v; = v;II!. The conditioned steady state probability vector is a linear
combination of the v;’s and bounds on these conditioned probabilities can be derived from
the v;’s. Clearly. the use of an iterative technique requires the solution of a large number of
matrices. i.e.. the solution of each IT;. However, we can overcome this problem by adapting
the approach developed in [38]. Bellow we outline this new procedure for obtaining bounds
on conditioned steady state probabilities which has cheaper computational requirements than
those in [9]. These bounds, however, may not be as tight as those obtained in [9], though
the difference is negligible for skewed models. '

Consider the transition rate matrix Q; of Figure 3 that represents the generated states of
the model. The first state in Q; is the initial state for the generating procedure. We assume

Qo Qo1 Qo2
Ql = QIO Qn le
Q2 Q2 Q2

Figure 3: matrix Q.

that the last state in Q; (ay) is an exact aggregation of the non-generated states and so,
the transition rates out of this state are known. (Note that matrix Q, is a transition rate
matrix “equivalent” to II, except for the rates out of a; that do not necessarily go to the first
state.) Therefore. the exact conditioned steady state probabilities of the generated states
can be obtained from the solution of Q. Let Q be the set of states of matrix Q,. Qo = {a,},
Q= Q — {{ai} Ulas}} and Q; = {ay}. In Figure 3 the submatrix Q,; corresponds to the
set Q..

We follow the idea developed in [38] and from Q,. we construct a matrix Q, shown in -
Figure . where states in @ are replicated. As indicated in [38], the steady state probabilities

QOO QOI 0 Q02
Qo Qu 0 Qp
QIO 0 Qll Q12
Q20 0 Q21 Q2‘2

Q:

1l

Figure 4: matrix Q.

of Q; can be obtained from those of Qz, i.e., if #'Q; =0, ! =< 7}, 7}, 7} > and 72Q; =0,

2 =2 22 A2 o2 1 2 .1 _ -2 2 -1 _ 2
T =< 7. 7y, Tiq. Ty > then my = 7§, 71y = ) + 7y, 75 = 7l.
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\We now organize the replicated states in subsets Fi., 1 < k < K. K < .V. such that
a state a; is in F iff the minimum number of steps from «; to the initial state ¢, € Qp is
k. Reorganizing the states is not a problem. A minimum path algorithm (e.g., Dijkstra)
can be used. We assume that all the generated states. i.e.. the states in subset Qo U Q;
communicate. If this is not true at the end of the generation procedure. the states that have
transitions only to state ay are excluded from the set of generated states. As a consequence
of this reorganization, the output transition of states in F; (k > 1) can go only to states in
Fi—1. or to states in F; for [ > k, or to state as. Furthermore, there is always one transition
from a state in F to a state in Fy_;. Figure 5 shows the new matrix Qj after reorganizing
the states in matrix Q2. We note that the steady state probabilities of Q, are identical to
the steady state probabilities of Q} after proper matching of states.

[ Qo Qo 0 o -- 0 0 Qo2

QIO Qll 0 0 e 0 0 Q12

-7'-10 0 fll ‘71'2 T f].l\'—l fl[\‘ fl')

, 0 0 Fa Fa -+ Farar Far Faz

Q; = : : : S : : :

0 0 0 0 te fl\’-—l.l\'—l fl\'—l,l\' fl\'—l“l

0 0 0 0 tt —7:1\'.1\'—1 ]:l\'.l\' fl\'.?

[ Qo Qu Q) Qj - Qhpy e Qo

Figure 5: matrix Q.

If submatrices Q2,0, @21, Q%5 - ., Q3 5 —; Were null. then we could immediately apply the
results of [38]. However, this is not true in our case. We proceed by constructing, from
matrix Qj, matrix Qs, where the states in subsets F;, 1 < & < K are exactly aggregated
into a single state fi, assuming that we can perform such aggregation. Later we show that
exact aggregation is not necessary to obtain the bounds on conditioned probabilities. The
process defined by Q3 is shown in Figure 6. In Figure 6 subset G’ is the subset of generated
states from the initial state a; and does not include state a;. We cannot perform exact
aggregation, since we do not have any knowledge of the complete transition rate matrix
of the model. Therefore, in Figure 6. the unknowns are the output rates from states fi,
1 £ k £ K, and from state as.. Furthermore, the exact value of the reward rate to be
associated with state fx, 1 < k < K, is not known, which precludes the calculation of the
exact value for Rg. However, Theorem 1 below indicates a way to obtain a lower bound for
Rg. An upper bound on Ry can be found in the same way.

Theorem 1 A lower bound on Rg can be obtained by solving a transition rate matriz Q
obtained from Qs as follows:
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Figure 6: Process defined by matrix Qs.

e Remove all transitions from state s; and replace them by a single transition to state
fl\'-

e Replace the unknown transition values from state fi to fi 1 > k (for all1 < k < K)
(or to state ay) by the mazimum sum of transition rates from a state in Fi to states
in Fi (or to state ay).

e Replace the unknown transition values from fi to fr_y (for all 1 <k < K) (or to state
ay) by the minimum value of the sum of all transition rates from a state in Fj to states
in Fi—y (orto ay).

Assign a reward ry to each state fi for all 1 <k < K.

Proof: the proof is given in the appendix.

Since we know the values of all output transition rates from the states in Fy for all k.
obtaining the maximum and minimum values as indicated by Theorem 1 is not a problem.
Furthermore. by the way we assign states to subsets Fy, there is always a transition from a
state in Fj. to a state in Fj_; (or to a;) and thus the minimum is guaranteed to be greater
than zero. The rate assigned to the transitions from a; to fx is irrelevant for the final
calculation of the conditional probabilities of the remaining states.
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In order to simplify further the solution. we can exactly aggregate the states f, inde-
pendently of the other states. This is true since the only return to this set of states is from
state as to fx. Because the submatrix formed by the states fi is upper Hessemberg, the
conditioned steady state probabilities of being in states f; can be easily obtained and from
those. the transition rates of the aggregate state representing the states f; are calculated.
After this aggregation, we remove state as such that all transitions to this state go to the
new aggregated state. Note that the final solution is not affected when a; is removed. Let
us call this new matrix Qs and from this we obtain the randomized matrix Ps. The final
probability matrix P used to obtain the value of R is given in Figure 7. Note that Ps is
identical to I, except by the value of ps; which is obtained after aggregating the states fj
in matrix Q4. The desired lower bound is obtained by assigning a reward ry to state ay in
Figure 7 and an upper bound is obtained by assigning a reward r,, to a;.

Pu M2 " DPia Pif
Pz P2 o Pan P2.f
P5 — . . . . .
Prni Pn2 " DPan Pn.f
RO U R S T

Figure 7: Matrix Ps.

5 Examples.

In this section. we present examples to illustrate some of the issues concerning the generation
procedure.

The first is a “toy” example which shows the difference between the search rule based on
visit ratios and the one based on MTTU as outline in section 4.1. Consider a model with
six states that has the transition probabilities given by the table bellow. The steady state
probabilities are also given in the table.



state state trans. steady state state state trans. steady state

prob.  prob. prob.  prob.
ay iy 0.60 7w = 0.2017 g as 0.95 7y = 0.1150
ay s 0.40 g ag 0.05
ay (y 0.95 me = 0.1210 s dg 0.05 75 = 0.2380
as s 0.05 as a3 0.95
as s 0.40 3 = 0.3067 ag N 1.00 7e = 0.0176

as ay 0.60

Starting from state a;, if we use the search rule based on visit ratios, then the states are
generated in the order a; — a4 — a5 — a3 — ag, which is not the desired order of decreasing
steady state probabilities. However, using the rule based on the MTTU, the most probable
states are generated first (i.e., a3 — a5 — a2 — a4 — ag). For large models. we found
that both rules perform well in general. though the number of states M found by using the
MTTU rule is always smaller that N, the number found using the visit ratio rule. and when
the same stopping criterion is used. This indicates that the MTTU perform better as we
anticipate.

We now consider a very large model of a communication protocol: the Abacadabra protocol
[27) which is defined by ISO to compare different formal description techniques, and has
similar characteristics to many of the standard protocols.

There are two layers in the protocol: the bottom layer offers a connectionless transmission
service which is used by the subsequent layer that offers a connection oriented full duplex
service to the user. The formal specification of this protocol is lengthy and we omit it from
the text for conciseness. The structure of the specification is shown in Figure 8. The number

System activity Abracadabra

Activity UA ctivity UB
UCEP UCEP
UCEP UCEP

Activity Activity B
MCEP MCEP
{CEP(0] 1CEP(1]

ctivitv DG

Figure 8: The specification structure of the Abacadabra protocol.
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of states in this protocol is very large and there are approximately over 10'? possible states in
the model. We used the Estelle [28] formal description language to specify the protocol and
from the description. the states of the Markov model of the protocol are generated by using
the iterative procedure outlined in section 3. If we specify a value of 10° units of time to the
MTTU. 257 states are generated. By verifying the meaning of those states. we can see that
they correspond to the opening and shutdown of a connection without error, and subsequent
data transfer. The table below shows the data throughput values for different number of
states in the generation procedure. It can be observed that the throughput converges fast.

Number of states | Throughput (x1073)
100 3.20
120 10.87
140 } 10.93
160 ‘ 11.76
180 41.79

When we use the modified algorithm outlined in section 4.1, the number of generated
states (M) drops to 187 with the same value of the MTTU as above. This corroborates
our conjecture that M < N in section 4.1. [From the results of section 1.2 we can also
obtain bounds for the throughput values above, conditioned that the protocol is in the
generated scenario (open/shutdown and data transfer). We are in the process of automating
the bounds calculation. and so we do not have the results for this example vet. However, we
obtain bounds for the example below which has a sunpler structure.

The last example is an availability model taken from the save manual (19]. The example
is a model of a fault-tolerant database system with the following components: a front-end,
a database and two sets of modules, each formed by two processors connected to a memory
unit by a switch. Unlike the example in [19], we assume that the components can fail even
when the system is down. The failure rate for the front-end. the database. the switches
and memory units is 1/2400, and the processors fail with a rate of 1/120. All components
are repaired (with a rate of 1) by a single repairman who gives the highest (preemptive)
priority to the front-end and the database. followed by the switches and memory units and
the processors have the smallest priority. If a processor fails. it may affect the database with
probability c.

In this example, the “natural” order of generating the most probable states is by increas-
ing number of failures, since we expect that states with relatively low number of components
failed are the most probable. However, this may not correspond to the “most probable
states” order. When ¢ = 0.99, the most probable states after the state with no failures are
the two which represent a failure of one processor in a module (one state for each module),
followed by the state which represents two processors failed, one in each module. Therefore,
a state with two components failed concentrates more probability mass than the other states
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with only one component failed. When ¢ = 0.90. the ~natural” order performs even worse.
Since we increase the probability of having a database failure when a processor fails, more
states with i components failed concentrates more probability mass than those with j com-
ponents failed, for j < 2. In order to obtain better bounds for the measures of interest, when
we truncate the state space, it is important that we generate the most probable states.

When we specify a value of MTTU = 10° for stopping the generation of states. 31 states
are obtained when ¢ = 0.99 and 42 when ¢ = 0.90. The entire state space for this example
has 576 states. We first calculate a transient measure, say the probability that the system
(with ¢ = 0.90) remains operational for a percentage y of the observation period t equal to
360 units of time (P[O(t) > y]). Using the method of [13] and equation (14) to calculate the
bounds. we obtain:

y P®O(t) > sl P*[O(t) > y)

0.98 0.986 0.939
0.99 0.830 0.888

We now consider the calculation of steady state availability Av. This is possible. since
we have knowledge of the behavior of the system once in the non-generated states. If the
states are generated in increasing order of number of failed components. then the results in
[38] can be used to calculate bounds on Av. However. as we mention above. this order is
not the best order to obtain the most probable states. As a consequence, the “state dupli-
cation procedure” outlined in [38] is not directly applicable to obtain bounds on conditional
availability and, from those, bounds on Av. This can be seen by observing Figure 6. In
that Figure, there may be several transition rates from state a; to the aggregate states fx
representing the duplicated states, unlike the single transition from ay to fr, required for
the procedure in [38]. (Note that if the states are generated in order of increasing number of
failures. this problem does not arise, since there would be only a single transition from a; to
fi.) However, we can invoke Theorem 1 to obtain bounds on conditional availability. From
equation (16 we also need a lower bound on P(G), the probability that the system isin a
state of those generated. in order to calculate Av. The “maximum holding time” Lemma in
[38] provides this lower bound. Applying these results. we obtain the following bounds on
A

c number of states lower bound upper bound exact value
generated : (576 states)

0.99 31 0.998823 0.998840 0.998834

0.90 42 0.995861 0.995878 0.995873



6 Conclusions.

We have developed an approach to generate efficiently a subset of the state space of a Markov
model with the aim to obtain the most probable states in the model. The approach is based
on the work of Dimitrijevic and Chen [16]. The iterative method we propose is shown to be
significantly more efficient than previous methods, both in terms of storage and number of
operations. In this new method, the sparseness of the transition rate matrix of the Markov
model is preserved, which is important to solve large models. The examples show that the
method works satisfactorily for models with skewed probabilities.

We have addressed the problem of bounding reward measures based on the states gen-
erated. Even if there is no knowledge about the non-generated states. bounds on transient
reward measures can be easily obtained. For steady state. we have used the state replication
technique in [38] and showed how to obtain (for general models) bounds on reward measures
conditioned that the system is in the subset of the generated states. Unlike Courtois and
Semal bounds [9], ours can be calculated while preserving the sparseness of the generated
transition rate matrix. Bounds on conditional state probabilities are important to evaluate
performability measures conditioned that the system is in the generated. most probable,
scenario. Theyv can also be used to evaluate unconditioned measures. when we have more
knowledge about the behavior of the model in the non-generated states.

Several extensions are possible to increase the efficiency of the algorithm. In one of them,
sets of states are chosen instead of one at a time. In another, sets of generated states are
aggregated and the aggregated process is used for the choice of the next state, instead of
using the entire unaggregated set of generated states. We are currently investigating these
and other approaches. '

We have implemented our method in a tool and used it to generate states of communica-
tion protocols described in Estelle. We hope the method will be useful in other specification
languages. such as Stochastic Petri-net. The method to bound conditioned measures is in
the process of being automated.
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APPENDIX

A Proof of Theorem 1.

Before proving Theorem 1, we need the following Lemmas.

Lemma 1 A lower bound on Rg can be calculated from the solution of n(k)ng) =0, where
gk) is identical to Qs, except that all the transition rates out of state ay go to fi, and k 1s
one of the possible values between 1 and K.

Proof: Consider matrix Qj in Figure 3. Rg¢ is given by:

N

Rg = > _rilB + By (17)

=1

where N is the number of generated states, 3? is equal to the i'" element of of =% solution
of 72Q} = 0. normalized so that the sum of all the states of Q) except state ay is one,
h(i) is a function that maps a state a; € G’ to an equivalent (replicated) state in the set
{FiU...UFr}. Let us assume that the states in each set Fi (1 < k < K) are exactly
aggregated and we obtain the process of Figure 6. Obviously, a lower bound R} on Rg can
be found by assigning a reward rate ry, to each state fi (1 <k < K).

N K
Rg = 2B+ ) Blwn < Rg (18)
i=1 k=1

where 33 is equal to the ! element of of 7* solution of 7°Qz = 0 normalized as above. We
cannot find exactly the state probability vectors 72 or 73, since we do not know the values
of Qa0, Q21, Q. - - - » Qo Qa2 in Figure 5 or, equivalently, the output rates from state ay in
Figure 6. However.

' N
Ry = bl +mull-3 B
N
= rmp+ Z Biri — ) (19)

A lower bound Ré < 'Rb can be found if we obtain a lower bound on 32, i.e., the normalized

steady state probabilities of the process of Figure 6. Let 7*) be the solution of (¥ ng) = 0.
Let 3% be the normalized 7(¥) as above. From the results of Courtois and Semal [9] we
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know that 3° is a linear combination of the 3¥)’s (1 < k < K). Since the only entry in set
G = {a,} UG is through state a;, the steady state probabilities of being in any state in set g,
conditioned on the system being in G is not altered when we change the transition from a; to
fi to another state f; or to a;. This implies that < ,3&1). .. .,5,(\1,) >=C(k) < ,B{k). V. ,ﬂf\'f) >
for any [ # k, where C(k) is value that depends on k. Therefore. one of the K matrices Q)
will give the desired lower bound.

Lemma 2 Consider a process represented by Figure 9 with a corresponding transition prob-
ability matriz P given in Figure 10. In this process, pmi >0 fork2m —1, pnm-i = 0 for
i > 1 and for all values of m <n—1:p,; #0, pox =0. k # L and k # n. Let mo be the first
entry of w, the solution of # = 7P. If we vary I, 1 <[ < n, the minimum value of g occurs
when l=n—1.

ol ‘j@iéﬁ X

Figure 9: Process of Lemma 2.

Poo Por Poz2 " Poi-1 Pot Poi+r  ~° Pon-1 Po,n
Pio Pin P12 - Dig-1 P Pri+r 0 Pin- Pin
0 pa pa2 - pria Pa Pyl 0 Pan-i P2.n

P = 0 0 0 - p—1g=1 Pi=1d Pi—ti41 0 Pl-1n-1 Pi-1n
0 0 0 -+ pyuor P Pusr ot Pla-t Pin

0 0 o - 0 Pi+1d Pisrd+1r 0 Pl4la-1 Pl4ian

0 0 0 0 0 0 " Pn-1n-1 Pn-1n

| 0 0 0 - 0 P 0 e 0 Pan |

Figure 10: matrix of Lemma 2.

Proof: Let | = n — 1. Then the matrix P is upper Hessemberg and the solution satisfies:

m~—1 n
WS:."I)Pm,m—l = Z ”z(n-l) Z Pij (20)

1=0 - =m
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where the superscript indicates that p, -1 # 0. From (20} it is easy to see that 7{"~1 can
be obtained by first calculating recursively the unnormalized values v{n=1) from the values

of Y, .. 47) | assuming ~{""1 = 1. The final normalized value of #{*~) is calculated
by dividing 7*~! by the normalization constant G"~") = 3% ;v yh,

Let p,; # 0. For m < I, equation (20) is satisfied:

m-1 n
i §
T Pmm=t = Y 7Y pij (21)

1=0 j=m

Therefore, if 7' = 1. 700"V =y m <. For m =1+ 1:

i ! i i
'71(+)1Pl+1.1 = Z*/,“ z Dij —7,(,)Pn.1
= j=Il+1
= A s = YOpn : (22)

Since 74 > 0, ‘7,“ < '7,(1:1-”.

Now assume ~{1) < 4(=1) for a given value of m. [+ 1 < m < n, ie., 7 = 757" —c(m).

im

where ¢(m) is a pomtne value dependent on m.-

l m l) T l
A Pmiim = LN S b= AP
=0 Jj=m+1

{ n m
= Y i+ XA Z pi; = 7Py

1=0 J=m+1 ={41 Jj=m+1
(n-1) = S n 3 1
n— n-— .
= Z ¥i Z pi; + Z [ - ()] z pij — Y pn
=0 J=m+l i=l+1 j=m+l
m n
(n—l) !
= Z Z Pij — [ Z Z PiJ - /fz)pﬂl
=0 j=m+1 =41 j=m+l
-1 BY
< 75:+1)Pm+1,m (23)

Similarly to above, for m = n YVpu < 4" Ypu In summary:

! n=1)
,(,;) = - m <
O < 4= {<m<n

Since GV = T,4W, GO < G-V, Therefore, 7§’ = [4')/[GY] = [w'"1/[GY] >
e )IG Y = Y

Lemma 3 The value of k which minimizes simultaneously all the normalized state probabil-
ities < ﬂ%k), e ,B%‘) > defined in Lemma [ is k=K.
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Proof: Let us aggregate all states in the set G, of the process given by transition matrix
Q(gk) defined in Lemma 1. Figure 11 shows the resulting process. and ag is the aggregated
state. Since the process in Figure 11 is identical to the process of Figure 9, we can invoke

mf NANANS A

Figure 11: Process defined by matrix .(k) where states in G are aggregated.
o 3 4 gereg

Lemma 2 which shows that 7 is minimized when k& = A’

In the proof of Lemma 1 we establish that < 3,“), e ,3,(\’,) >=C(k) < ,ﬂk). e 3,(\,“ > for
any | # k. Let a; be the steady state probability of being in state a; € § conditioned on the
system being in G. Then, < ﬂ“, e ,;3_%”) >=r7rg < qp,...,an >. When k varies. 7¢g varies,

but the value of each a; remains constant. From Lemma 2 7g is minimized when & = K.
Proof of Theorem 1.

From Lemmas | and 3, the ﬂgk)’s are minimized when the single transition out of state
ay goes to state fr. It remains to find the transition rates among the aggregate states Sk
Consider the process shown in Figure 11 and assume that the single transition from state
as goes to fr. From this process, construct a new one where the transitions from state fm
to f; for | > m and from f, to a; are replaced by upper bounds, and each transition from
fm 10 fmoy for 1 < m < K and from f; to a; is replaced by a lower bound. Let =g be
the state probability as defined in Lemma 2 and =y is the corresponding state probability
in the modified process. Lemma 2 of [38] shows that 7} < mg, which proves the theorem
if we can find upper and lower bounds on the transition rates. The maximum value of the
sum of transition rates from a state in F,, to states in F; (or to as) is an upper bound on
the transition rate from f, to f; [ > m (or to ay). The minimum value of the sum of all
transitions from a state in F,, to a state in Fn_; (or from a state in F; to a;) is a lower
bound on the transition rate from f,, to fr-1 (or from f; to a;).
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