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Abstract

A fundamental concern of information integration
in an XML context is the ability teambedone or
more source documents in a target document so
that (a) the target document conforms to a tar-
get schema and (b) the information in the source
document(s) ipreserved In this paper, informa-
tion preservation foxmL is formally studied, and
the results of this study guide the definition of a
novel notion ofschema embeddingetween two
XML DTD schemas represented as graphs. Schema
embedding generalizes the conventional notion of
graph similarity by allowing an edge in a source
DTD schema to be mapped to a path in the target
DTD. Instance-level embeddings can be defined
from the schema embedding in a straightforward
manner, such that conformance to a target schema
and information preservation are guaranteed. We
show that it is NP-complete to find an embedding
between twoDTD schemas. We also provide ef-
ficient heuristic algorithms to find candidate em-
beddings, along with experimental results to eval-
uate and compare the algorithms. These yield the
first systematic and effective approach to finding
information preservinggML mappings.

I ntroduction

It is clearly desirable that the document produced by an
XML mapping conforms to a target schema, guaranteeing
type safetyBut this may be difficult to check for mappings
defined inXQuery or XSLT [4]. Further, since in many ap-
plications one does not want to lose the original informa-
tion of the source data, a mapping should also preserve in-
formation. Criteria forinformation preservationnclude:

(1) invertibility [16]: can one recover the source document
from the target? and (2juery preservationfor a particular

XML query language, can all queries on source documents
in that language be answered on target documents? We now
illustrate these concepts with an example.

Example 1.1: Consider two sourceTDS Sy, .S; and a tar-
getDTD S represented as graphs in Fig. 1 (we omit the
str—PCDATA- child undercno, credit, title, year, term, in-
structor, gpan Fig. 1(c)). A document ob, contains in-
formation ofclas®s currently being taught at a school, and
a document of5; containsstudentlata of the school. The
user wants to map the document%fand the document of
S1 to a single instance df, which is to collect data about
coursesand studentsof the school in the last five years.
Here we use edges of different types to represent different
constructs of @1D, namely,solid edgedor a concatena-
tion type (a unique occurrence of each chitigshed edges
for disjunction (one and only one child), arstlar edges
(edge labeled+’) for Kleene star (zero or more child).O

In this example, invertibility asks for the ability to re-
construct the originatlassandstudentiocuments from an
integratedschooldocument, while query preservation re-

A central technical issue for the exchange, migration a“‘huires the ability to answemL queries posed odlassand
integration ofxmL data is to find mappings from docu- gt,denglocuments using thechooldocument. Two natu-

ments of a sourcamL (DTD) schema to documents of @ 5] questions are: (a) can one determine whethexan
target schema. While one can certainly define. map-

pings in a query language such ¥8Query or XSLT, such

gueries may be large and complex, and in practice it is of-

ten needed thatML mappings (1) guarantegpe-safety
and (2)preserve information
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mapping is information preserving? (b) is there an efficient
method to find information-preservingiL mappings?

While type safety and information preservation are
clearly desirable, an additional feature is the ability tagm
documents obTDs that havalifferent structuresA given
sourceDTD may differ in structure from a desired target
DTD. This is typical in data integration, where the target
DTD needs to accommodate data fromltiple sourceand

thus cannot be similar to any of the sources; see, e.g., the
class studenbTbs and theschoolbTD in Fig. 1.

Background. While information preservation has been
studied for traditional database transformations [3, 18, 2
28], to our knowledge, no previous work has considered it
for xML mappings. In fact, a variety of tools and models



db
CIL : db sion of XPath introduced in [23]), and ensure type safety.

i * As with schema-mapping techniques for other data models,
o ite e student by automatically producing this mapping the user is saved
L ‘/l\ from writing and type-check_ing a complex mapping query.
o regiiar pmvj ot s name taking More_over, we show that thmve.rs.eand query rewriting
| ~| - functionsfor the mapping are efficient (Section 4).
prereq (b) Boarce $ERems; Third, we provide algorithms to compute schema em-
ce schems school beddings. We show that it is NP-complete to find an em-
Courfﬁ/\sw’dems bedding between twoTDs, even when theTDs are nonre-
|+ cursive. Thus algorithms for finding embeddings are nec-
history current sfudent essarily heuristic. A building block of our algorithms is
* * an efficient algorithm to find éocal embeddindor indi-

4/""‘”3’\) s name gpa t&king  yidual productions in the source schema. Based on this,

basic category +  we develop three heuristic algorithms to compute embed-

: S dings. The first two algorithms repeatedly attempt to as-
ono credt dass - mencaory  adveneed semble local embeddings into a schema embedding (using

semester regma, b ‘s?nvina, pﬁm a random or quality-specific order of the local embeddings,
respectively), and when conflicts arise, attempt to gener-

title year term instructor required ate new, non-conflicting local embeddings. The third algo-
. prer;q/\apa rithm generates a candidate pool of local embeddings, and

‘ then uses a heuristic solution to Maximum-Independent-

(C) Targetschema

Figure 1: Example: source and target schemas Set to assemble a valid schema embedding (Section 5).

Finally, we have implemented our algorithms and con-
havebeen proposed for findingmML mappings at schema- ducted an experimental study based on mapping schemas
or instance-level [13, 22, 24, 25, 26, 29]; however, nonetaken from real-life and benchmark sources to copies of
has addressed invertibility and query preservatiorxfer . these schemas with varying amounts of introduced noise.
Most tools either focus omighly similar structures, or ~These experiments verify the accuracy and efficiency of our
adopt a strict graph similarity model like bisimulationg¢se  heuristics on schemas up to a few hundred nodes in size
e.g., [1]) to match structures, which is incapable of map-(Section 6), and suggest that schema embeddings will lead
ping DTDs with different structuresuch as those shown in to @ promising tool for automatically computing informa-
Fig. 1, and can ensure neither invertibility nor query prese tion preservingkmL mappings. We discuss related work in
vation w.r.t.xML query languages. Another issue is that it Section 7. Proofs are in the full version [8] of this paper.

is unclear that mappings found by some of these tools guar- To the best of our knowledge, this work is the first to
antee type safety when it comes to comptex. DTD s. study information preservation in thevL context, and it
yields a systematic and effective approach to defining and

Contribution. To this end we study information preserving finding information preservingmML mappings

XML mappings, and make the following contributions.

First, as criteria for information preservation we revisit . .
the notions of invertibility and query preservation [3, 16, 2 DTDs, XPath, Information Preservation
27, 28] forxmL mappings (Section 2). While the two no- In this section we revievwnTbs and (regular) XPath, and
tions coincide for relational mappings w.r.t. relational-c  revisit information preservation [16, 28] fommL .
culus [16], we show that they are in general different for
XML mappings w.r.txMmL query languages. Furthermore, 21 X Path and Regular XPath
we show that i_t is undecidable to determine whether or no{Ne consider a class ségularXPath queries proposed and
?(?r>)<(|\étT;ni2|?r|?f|(r)1?mdaet;‘(l)nnesrglssr\?ilrr]gp(lgef(r:?i%r::esglltXIDuery studied in [23], denoted bz and defined as follows:

Second, to cope with the undecidability result, we intro- == €| A | p/text() | p/p | pUp | p* | pldl,
duce anxML mapping framework based on a novel notion ¢ == p | p/text() ="'c | position() =k
of schema embeddings. $chema embeddirig a natural | =q¢ | arq | qVa.

extension of graph similarity in which an edge in a source

DTD schema may be mapped tpath, rather than a single  wheree is the empty pathsel), A is a label (element type),
edge, in a targebTD. For example, the souraTDs Sy ‘U’ is the unionoperator, /’ is the child-axis andx is the
andS; of Fig 1 can both be embedded$) while there is  Kleene starp is anX'r expressionst is a natural number,
no sensible mapping from them fHbased on graph sim- ¢ is a string constant, and, A, \V are the Boolean negation,
ilarity. From a schema embedding, an instance-lewal conjunction and disjunction operators, respectively.
mapping can be directly produced that has all the prop- An XPath fragmenof X'z, denoted byY, is defined by
erties mentioned above. In particular, such mappings areeplacingp* with p//p in the definition above, wherg/ is
invertible, query preserving w.r.t. regular XPath (an exte thedescendant-or-self axis



A (regular) XPath query is evaluated at aontext node For anxMmL query language®, a mappingr, is query
v in anxML treeT’, and its result is the set of nodes (ids) preserving w.r.tL if there exists a computable functidn:

of T reachable via from v, denoted by [p]. L — L such that for anxmL query@ € £ and anyl €
(1), QT) = F(Q)(o4(T)), 1€.Q = F(Q)ooa.
2.2 DTDs In a nutshell, invertibility is the ability that the origi-

nal sourcexmL document can be recovered from the target

We consideDTDs of the form(Ele, P, r), whereEleisa  document; query preservation w.rt.indicates whether or
finite set ofelement types- is a distinguished typ(_e iwie, not all queries ofZ on any sourcé’ of S; can be effec-
called theroot type P defines the element types: for each tively answered overy(T), i.e., the mapping, does not

Ain Ele, P(A) is a regular expression of the form: lose information ofl” when £ queries are concerned.

a u= str|e| Bi,....,Bn | Bi+...+ B, | B The notions of invertibility and query preservation are
inspired by (calculusdominanceand query dominance
that were proposed in [16] for relational mappings and later
studied in [3, 27, 28]. In contrast to query dominance,
query preservation is defined w.r.t. a givemL query lan-
guage that does not necessarily support query composition.
Invertibility is defined forxmL mappings and it only re-
ireso; ! to be a partial function defined any(Z(S;)).

We say that a mapping, : Z(S1) — Z(Ss2) is infor-
mation preservingv.r.t. £ if it is both invertible and query
preserving w.r.tL.

wherestr denotesPCDATA, ¢ is the empty word,B is a
type in Ele (referred to as &hild of A), and +', *," and
‘x’ denotedisjunction(with n > 1), concatenatiorand
the Kleene stay respectively. We refer tol — P(A) as
the productionof A. Note that this form 0bTDs does not
lose generality since anyTbs S can be converted t§’
of this form (in linear time) by introducing new element qu
types, and (regular) XPath queries Sncan be rewritten
into equivalent (regular) XPath queries 8hin PTIME [7].

Schema Graphs. We representaTtD S as a labeled graph

Gg, referred to as thgraphof S. For each elementtype 3 |nformation Preservation

Ain S, there is a unique node labelddin G g, referred to ) ) ) ) )
as theA node From theA-node there are edges to nodes!n this section we esta_lbllsh_ b_a_15|c results for separation
representing child types i (A), determined by the pro- and equalenpe of the invertibility and query preservatio
ductionA — P(A) of A. There are three different types of ©f XML mappings, as well as complexity of determining
edges indicating differertTp constructs. Specifically, if Whether a givexmL mapping is information preserving.
P(A)is By, ..., B, then there is &olid edgefrom the A Invertibility and Query Preservation. It was shown [16]
node to eaclB; node; it is labeled with a positiohif B;  that calculus dominance and query dominance are equiva-
is the k-th occurrence of a typ® in P(A) (the label can lent for relational mappings. In contrast, invertibilitpc

be omitted ifB;’s are distinct). IfP(A)is By + ...+ B, query preservation do not necessarily coincide fer

then there is alashed edgé&om the A node to eachB; mappings and query languages. Recall the cléssf
node (w.l.o.g. assume th&’s are distinct in disjunction).  XPath querieslefined in Section 2, which supports neither
If P(A)is B*, then there is &olid edge witha ‘«’ label guery composition, nor identify mapping, nor the ability to
from the A node to theB node. Note that ®TD isrecur-  navigate a recursiveTD based on certain patterns that are
siveif its graph iscyclic. When it is clear from the context, expressible in terms of the Kleen closyre

we shall use th@TP and its graph interchangeably, both Theorem 3.1: There exists an invertiblemML mapping
referred to as; similarly for A element type andi node. ¢ g not query preserving w.r.&t'; and there exists an

For example, Fig. 1 shows graphs representing threg,, manning that is not invertible but is query-preserving

DTDS, where Figs. 1(a) and 1(c) depict recursims. w.rt. the class oft’ queries withouposition()qualifier. O
An XML instanceof aDTD S is a node-labeled tree that

conforms toS. We denote byZ(S) the set of all instances e identify sufficient conditions for the two to coincide:

of S. A DTD S is consistenif it has no useless element the definability ofthe identity mappingand query com-

types, i.e., each type of has an instance. In the sequel POSiPility (i.e., forany@y, @2 in £, @z 0 Q1 isin £).

we only consider consistemTDs, w.l.0.g. since anpTD  Theorem 3.2: Let £ be anyxML query language andy

S can be converted to a consistéfitin O(|S|?) time such  be a mapping fronf(S;) — Z(S5).

thatZ(5’) = Z(.5), by dropping all useless types frofh e If the identity mappingd is definable in and o is
query preserving w.r.tC, theno, is invertible.

2.3 Invertibility and Query Preservation e If £ is composableg, is invertible ando* is ex-

For XML DTDs S; and Ss, a (data) instance mapping pressible inZ, theno, is query preserving w.r.iL. O

oa : Z(S1) — Z(S2) isinvertibleif there exists an inverse  Recall the classty of regular XPath queries defined
o; " of o4 such that for anyxmL instanceT € Z(S1),  in Section 2. Although the identity mapping is not

o (04(T)) = T, wheref(T) denotes the result of apply- definable inX, we show below that query preservation
ing a function (or mapping, queny)to 7'. In other words, w.r.t. Xz is a stronger property than invertibility: every
the compositiorar;1 o o4 is equivalent to the identity map- node in a source document can uniquely identified by an
pingid, which maps arxML document to itself. X'r query on the target document, and thus can be retracted.



Theorem 3.3: If an XML mappingo, iS query preserving
w.r.t. X, thenoy is invertible. Conversely, there existg
that is invertible but is not query preserving w.itg. O

Complexity. It is common to findkML mappings defined
in XQuery or XSLT. A natural and important question is
to decide whether or not axmL mapping is invertible or
query preserving w.r.t. a query languageUnfortunately,
this is impossible foxmL mappings defined in ang that
subsumes first-order logidO, or relational algebrarA),
e.g., XQuery, XSLT, even whenl consists of projection
queries only. Thusitis beyond reach to answer the questio
for XQueryor XSLT mappings.

Theorem 3.4: It is undecidable to determine, given an
XML mappingoy defined in any language subsumif@,
whether or not (a4 is invertible; and (b)r, is query pre-
serving w.r.t. projection queries. O

This can be verified by reduction from the equivalence

problem forRA queries. The undecidability suggests that
we start with languages simpler that@uery and XSLT
when studying information preservingiL mappings. In-
deed, understanding (regular) XPath query preservation i
a necessary step toward a full treatmenkefi. mappings
defined inXQueryor XSLT, in which XPath is embedded.

4 Schema Embeddings for XML

The negative results in Section 3 tell us that it is already,

hard to determine whether or not &mL mapping is infor-
mation preserving, not to mention finding one. This moti-
vates us to look for a class &L mappings that arguar-
anteedo be information preserving.

We approach this problem by specifyirgiL mappings

(b) (c) (e)

Figure 2: Path mappings for DTDs

of the form A[q], andgq is eithertrueor a position()qual-
ifier, such thatp is a path inS and it carries all the posi-
tion labels on the path. AR’; path is called amND path
(resp.oR path, andsTAR path) if it is nonempty and con-
gists of only solid or star edges (resp. of solid edges and

at least one dashed edge, and of solid edges and at least

one edge labeled). Referring to Fig. 1(c), for example,
basic/class/semester/tittan AND path as well as 8TAR
path, andnandatory/regulas anoR path.

Name Similarity. A similarity matrixfor S; andSs is an
|E1| x | Es| matrix att of numbers in the rang@, 1]. For
any A € FE; andB € E», att(A, B) indicates the suitabil-
ity of mappingA to B, as determined by human domain ex-
perts or computed by an existing algorithm, e.g., [5, 13, 21]

JypeMapping. A type mapping\ from S; to S, is a (total)
function from E; to E5; it maps the root of5; to the root
of So, i.e.,A(r1) = r2. Atype mapping\ is valid w.r.t. a
similarity matrixatt if forany A € E4, att(4, A\(A)) > 0.

Path Mapping. A path mappindrom S, to Ss, denoted by
o571 — So,isapair(\, path), where\ is a type mapping
andpath is a function that maps each edgé, B) in S; to
anXr pathpath(A, B) thatis fromA(A) to A(B) in Ss.

For a particular element typé in £, we say that is
valid for A if the following conditions hold, based on the
productionA — P;(A) in Sq:

e if P/(A)=hB,..., B, thenforeach, path(A, B;) is

at the schema level embeddings, and providing an auto-
mated derivation of instance-level mappings from these
embeddings. Our notion afchema embeddings novel,

and extends the conventional notion of graph similarity by
allowing edges in a souraerbd schema to be mapped to a
path in a targebTD with a “larger information capacity”.
For example, s8TAR edge can only be mapped to a path
with at least onesTAR edge.

In this section we definexmL schema embeddings,
present an algorithm for deriving an instance-level map-
ping from a schema embedding, and verify that the result
ing mappings ensure information preservation.

an AND path fromA(A) to A(B;) that is not a prefix
of path(4, B;) foranyj # i;

if P1(A)=DB1+...4 By, then for each, path(A, B;)
is anoR path fromA(A) to A(B;) that is not a prefix
of path(A, B;) foranyj # i1

e if Pi(A)=B*, thenpath(A, B;) is aSTAR path;

if P1(A) = str, thenpath(A, str) is anAND path end-
ing with text().

The validity requires @ath typecondition and grefix-free
condition, which, as will be seen shortly, are important for
deriving the instance-level mapping from

Example 4.1: Consider pairs of source (on the left) and
target (on the rightpTDs depicted in Fig. 2, for which
a type mapping)\ is defined as\(X) = X’ for X in
{4, B,C'}, except in Fig. 2(c) where both(C) = B’
and\(B) = B’. Observe the following. For Fig. 2(a),
there is no valid path embedding from the soupg® to
the target; intuitively,B and C' must coexist in a source
document while only one aB’ andC” exists in the target.

4.1 Schema Level Embeddings

Consider a sourcgmL DTD schemaS; = (Ey, Pi,m)
and atargebTD S2 = (Es, P2, 72). Inanutshell, a schema
embedding is a pair of functiong\, path) that maps each
AtypeinE; to a)(A) type in E2, and each edgeAd, B)

in Sy to a uniquepath(A4, B) from A(A4) to A(B) in Sa,
such that the5; paths mapped from sibling edgesSn are
sufficiently distinct to allow information to be preserved.
To define) andpath we first introduce a few notations.

Xr Paths. An Xy pathover abTd S = (E, P,r) is an
Xr query of the formp =7,/ ... /ni, wherek > 1, n; is

1Abusing our normal form obTDs, an optional type3 can be spec-
ified as, e.9.A — B + ¢, herepath(A, B;) simply needs to be aorR
path since: is not an element type and thpsth(A, ¢) is undefined.



For Fig. 2(b), the source cannot be mapped to the target.2 InstanceLevel Mapping
since there are possibly multiple elements in the source,

which cannot be accommodated by the target. For Fig. 2(c L . - :
a valid embedding ipath(4, B) — B'[position() = 1] 52, we give its semantics by defining a (data) instance-level

and path(A,C) = B’[position() =2]. For Fig. 2(d), mapp!ngad t Z(81) — I(52), referred to as theL
there is no valid embedding singath(A, B) is a pre- ma\;pvplr(ljgfc.)fa. b i lorithm that. ai
fix of path(A4, C), violating the prefix-free condition. For € delineo, by presenting an aigorithm that, given an

Fig. 2(e), a valid embedding isath(4. B) = A’/B’ (b instanceT’ of S, computes an instanck, = ad_(Tl) of
un%old(in)g the cycle once) ar?ﬂaﬁ(/l( é) l B’/C/’ ( Dy Sa. In a nutshell gy constructsl; top down starting from
’ ' the rootry of Ty, mapped from the root; of T} (recall

Finally, we definexmL schema embeddings as follows. )(r,) = r,). Inductively, for each\(4) elementu in T,
Schema Embedding. A schema embeddirfigpm S to S, that is mapped from ad elementv in T', o4 generates a

)For a valid schema embedding= (\, path) from S; to

valid w.r.t. a similarity matrixatt is a path mapping =  distinctA(B) nodeu’ in T for each distinct3 child v” of
(A, path) from S to S, such that\ is valid w.rt.att, and v in 71, such that.’ is reached fromu via path(A, B) in
o is valid for every element in E;. T, i.e., ' is uniquely identified by theXr path fromu.

Example 4.2: Assume a similarity matriatt such that More specifically, the construction is based on the produc-

att(A, A') — 1 for all A in thepTp S, of Fig. 1(a) and 1oN A — F1(4)in 5 asfollows.
A’in S of Fig. 1(c). The sourceTp S, can be embedded (1) Pa(A)is By, ..., B,. Foreach child; of v, o4 creates
in the targetS via oy = (A1, path, ) defined as follows: a nodeu; bearing the same id as. These nodes are added
to T, as follows. For eachi € [1,n|, u; is added tol%
A1(db) = school, \i(class) = course, \i(type) = category, by creatingpath(A, B;) emanating fromu to u;, such that

A(A) = A [* A:cno, title, regular, project, preresgr */ the path shares any prefix alreadylinwhich were created
path, (db, class) = courses/current/course for, e.g.,path(A, B;) for j < i. The definition ofpath()
path, (class, cno) = basic/cno ensures that;; andw; are not the same node i, since
path, (class, title) = basic/class/semesterttitle path(A, B;) is not a prefix ofpath(A4, B;) and vice versa.
path, (class, type) = category (2) Pi(A)is By + ... + B,. Herev in T} must have a
pat:l(type’ regulan = n:jandato(B//re_gular unique childv;. Foru;, o4 creates a node; bearing the
path, (type, project) - = advanced/project same id as;, and adds.; to 75 via path(A, B;) as above.
path, (regular, prereq) = required/prereq ) o ) )
path, (prereq, class) = course (3) P (A) is B*. By the definition of vallcbath function,
path, (A, str) =text() /* Aforcno, title */ path(A, B) is of the formpath(A, A;)/B1 /path(By, B),

whereA; is the first type defined in terms of Kleene star in

Note thatpath, (A, B) is a path inS denoting how to P, i.e.,P»(A;) = Bj. Let[vy, ..., v;] be the list of all the
reach\;(B) from \; (A), i.e.,the path igelative toA;(A).  children ofv. Theno, createsuy, . . ., u; bearing the same
For example path, (type, projectjindicates how to reach id’s asvy, ..., v, and adds these nodesTpas follows. It
projectfrom a categorycontext node ir, wherecategory  first generates a singigath(A4, A;) from « to an A’ node

is mapped frontypein Sy by A\;. Here the similarity ma- /' if it does not already exist ifi,, and for each € [1, k],

trix att imposes no restrictions: any name in the source caifit creates a distinct-th B, child if it is not already inT5.

be mapped to any name in the target; thus the embeddingrom thei-th B; node it generatesath(B;, B) leading to
here is decided solely on therp structures. u;, in the same way as in (1) above. Note that the order of

In contrast, oneannotmap.Sy to S by graph similarity,  the children ofv is preserved by,.

which requires that nodd in the source is mapped (simi- (4) p,(A) is str. The treatment is the same as (1) except

lar) to B in the target only if alichildrenof A are mapped  the |ast node opath(A4, str) in T3 is a text node holding
(similar) tochildrenof B. In other words, graph similarity  the same value as the text nod&lin

maps an edge in the source to an edge in the target.O We repeat the process until all nodesTinare mapped
The definition of schema embedding can be extended teo nodes inT,. We finally completer,(7) by addingnec-
support further restructuring “across hierarchies” suwtt essarydefault elements such that;(7) conforms toSs.
a child B of a source typel is not necessarily mapped to a Recall from Section 2 that we can assume w.l.0.g. consis-
descendant ok(A) in the target; this can be achieved via, tentpTps. Thus for each element typkin S, we can pick
e.g., upward modality ipath(A, B). Itis also possible that 3 fixed instancd 4 of A and use it asi’s defaultelement.
anAND edge does not have to be mapped to\ap path.  The choice of default elements is arbitrary since as will be
We focus on the main idea of schema embeddings in thigseen shortly, the inverge;l of o4 exists and it can distin-
paper and defer the full treatment to the full version. guishT, nodes mapped frofi; from default elements.

Embedding Quality. There are many possible metrics. In Example 4.3: Consider thexmL mappingo, of the em-
this paper we consider only a simple one: the quality of abedding defined in Example 4.2. Given an instafficef
schema embedding = (A, path) w.r.t. att is the sum of S, of Fig. 1(a),0, generates a tre&, of S of Fig. 1(c)
att(A4, \(4)) for A € E4, and we say that isinvalidif A as follows: o first creates the roaschoolof T», bearing
is invalid w.r.t.att. We refer to this metric agual(c, att). the node id of the rootlb of T;. Then,o, creates a sin-



gle courseghild x of schoo/ a singlecurrentchild y of «,
and for eacltlasschild ¢ of db, o4 creates a distinatourse
child z of y bearing the id o€, such that theoursechildren
of y are in the same order as thiasschildren ofdb. It then
maps thecno, title, typechildren ofc to cno, title, category
descendants of in T», based orpath,. In particular, to
maptitle in Sy, it creates a singlelasschild x.. of the ba-
sicelement, ssingle semestechild x; underzx,. (although
classis defined with a Kleene star), and thertitée child
underx,. For thecategoryelementw mapped from the
typechildt of ¢, o4 creates a distinct patidvanced/project
underw if ¢ has aprojectchild, or a mandatory/regular

path otherwise, but not both. The process proceeds until

all nodes inl; are mapped td@s. Finally, default elements
of history, credit year, term, instructorandgpaare added
to T such thafl; conforms taS. At the last stage, no chil-
dren of disjunctive typesategory mandatoryor advanced
are added, and no children are created urd&tory. That
is, default elements are added omifien necessary O

We next show that; is well defined That is, given any
Ty in Z(Sy), 04(T1) is anxML tree that conforms t®,.
This is nontrivial due to the interaction between different

and (b) there is a query translation functidn that given
any Xr query @ over .Sy, computes ant’sz query F'(Q)
equivalent w.rto, over Sy in O(|Q| |o] |S1|) time. O

Example4.4: The Xr query@ below, overS, of Fig. 1(a),
is to find all the classes that are (direct or indirect) prereq
uisites ofCS331. It is translated to ait’s queryQ’ overS
of Fig. 1(c), which is equivalent w.r.t. the mappiaggiven
in Example 4.3,i.eQ(T) = Q'(c4(T)) foranyT € Z(Sy),
when evaluated oft’ with the root as the context node.

Q: class[cno/text()="CS331’]/(type/regular/prereq/dfis

Q': courses/current/course[basic/cno/text()='"CS331’]/
(category/mandatory/regular/required/prereq/cotirsg)

In contrast, the notion of graph similarity ensures neither
invertibility nor query preservation w.r.t¥z. As a sim-
ple example, the source and target schemas in Fig. 2(a) are
bisimilar by the conventional definition of graph similgrit
which does not consider cardinality constraints of differ-
entdbTD constructs. However, there exists no instance-level
mapping from the source to the target, not to mention in-
verse mappings and query translation.

Multiple sources. In contrast to graph similarity, it is pos-

paths defined for disjunction types in the schema mappingjple to embed multiple sour@@TDd schemas to a single

o, among other things. Consider, for exampieth(type,

targetDTD, as illustrated by the example below. This prop-

regular)in Example 4.2. The path requires the existence Oferty is particularly useful in data integration.

a regularchild under amandatoryelementmn, which is in
turn a child under aategoryelementc in an instance of
S. Thus it rules out the possibility of adding @avanced
child undere or alabchild undenmn, perhaps requested by a
conflicting pathin o. However, Theorem 4.1 below shows
that theprefix-freecondition in the definition of valighath
functions ensures that conflicting paths do not exist.
Theorem 4.1 also shows that; is injective it maps
distinct nodes inl; to distinct nodes iy, (71), a prop-
erty necessary for information preservation. Indeedge-
termines an injectivgpath-mappingunction § such that,
for eachXy pathp = Ai[q¢1]/ ... /Aklgr] in Sy from 7,
d(p) is path(ry, A1)[q]/ - . . /path(Ax—1, Ar)lar], anXr
path inSs fromrs, by substitutingrath(A;, 4,11) for each
A;y1 in p. Since each node i} is uniquely determined
by anX’y path from the root, it follows that, is injective.

Theorem 4.1: The xML mappingoy of a valid schema
embedding : S; — S is well defined and injective. O

4.3 Propertiesof Schema Embeddings

We have shown that thevL mappings,; of a valid schema
embeddingr is guaranteed to type check. We next show
thato, ando also have all the other desired properties.

Information Preservation. In contrast to Theorem 3.4,
information preservation is guaranteed by schema embe
dings. Recall regular XPatl'; from Section 2.

Theorem 4.2: ThexML mappings, of a valid schema em-
beddinge : S; — Ss is invertible and is query preserving
w.r.t. Xr. More precisely, (a) there exists an invensa‘el of
o4 that, given any,(T), recoversl in O(|oq(T)|?) time;

Example 4.5: The embeddingra = ()2, path,) below
mapsS; of Fig. 1(b) to the targedTD S of Fig. 1(c).

A2(db) = school

A2(A) = A /* A: student, ssn, name, taking, cno */
path,(db, student) = students/student
path,(student,B) =B [* B: ssn, hame, taking */

path,(taking, cno) =cno
path,(C, str) = text()

Taken together withr; of Example 4.2, this allows us to
integrate acoursedocument ofS, and astudentilocument
of S into a singleschoolinstance of the targettp S. O

In general, given multiple souraeTps Sy, ..., .S, and
a single targebTD S, one can define schema embeddings
o; : S; — S to simultaneously majs; to S. Their xmL
mappingso}, ..., 0" are invertible and query preserving
w.r.t. Xr as long agj;, 6; are pairwise disjoint whered;
is the path mapping function derived from to mapXr
paths from root inS; to X'r paths from root inS. The
instance-levekML mappingo, is a composition of indi-
vidualo}, ... o%. Hereo! increments the document con-
structed byo)’s for j < i by modifying default elements
or introducing new elements, instead of constructing a new
document ofS constructed starting from scratch.

Small model property. The result below gives us an upper
ound on the lengtlpath(A, B)|, and allows us to reduce
he search space when defining or finding an embedding.

/* C: ssn, name, cno */

Theorem 4.3: If there exists a valid schema embedding
o : S; — 5o, then there exists one such that for any edge
(A, B) in Sy, |path(4, B)| < (k + 1) |Ez|, whereSy =
(E9, P2, 74), andk is the size of the productiaf,(A). O



5 Computing Schema Embeddings

In this section we address the computatiox@i. schema
embeddings as defined by the following problem, stated i
terms of twoxML DTD schemasS; (Fy,P,m) and

Sy = (E2, Py, r9), and a similarity matriatt:

PROBLEM Schema-Embedding
INPUT: Two DTDS S7 and.S; and matrixatt.

OUTPUT. A schema embedding : S; — 5> valid
w.r.t. att if one exists.

Algorithm findPathsDAG (G, s, Ltar)

Input: Directed Acyclic GraphG, source node,
a bag of target nodeb.r = {|t1, ..., tx[}-

1 Output: Pathspi, . .., pi satisfying the prefix-free condition
pathp := <empty>;
P =0
marked (n) := false forall n ;
traverse (G, s, p, Ltar, P);
if Lar IS NnONEmMpty

return (;
else return P;

Nogak~wnhpRE

In practice, a reasonable goal is to find an embedding
S1 — Sy with as high a value foqual(o, att) as possible.
The ability to efficiently find good solutions to this problem
will lead to an automated tool that, given twaobd schemas,
compute candidate embeddings to recommend to users.
However desirable, this problem is intractable. Worse,

it remains NP-hard for nonrecursizarbs even when they
are defined in terms of concatenation types only.

Theorem 5.1: The Schema-Embedding problem is NP-
complete. It remains NP-hard for nonrecursiveDs.

In light of the intractable results we develop two ef-
ficient yet accurate heuristic algorithms for computing
schema embedding candidates in the rest of the section.

Notations. Recall that a schema embedding is a path map
pingo thatis valid for each element typkin S;. Since the
validity conditions forA involve only A’s immediate chil-
dren, it is useful to talk about mappings local4o A local
mappingor A is simply apartial path mappingXo, path,)
such that (aj\o andpath, are defined exactly on all the el-
ement types appearing i's productionA — P;(A), in-
cluding A itself; and (b) it isvalid, i.e., it satisfies the path
type and prefix-free conditions given in the last section.
Consider two partial mappingsy = (Ao, path,) and
o1 = (A1, path;). We say that\, and\; conflict onA if
both A\g(A) and\; (A) are defined, buio(4) # A\ (4),
and similarly forpath, andpath,. We sayo, ando; are
consistentf they do not conflict, either on or path. The
union of consistent partial mappingsenoted byry @ o1,
is a partial embedding\: & A2, path; & path,), where
A(A) if A2(A)is L (undefined)
Aa(A) if A(A)is L
A1(A) otherwise
similarly for path, (A, B) @ path, (A, B).

Outline. In the rest of the section we first present a tech-
nique for finding local embeddings, already a nontrivial

A(A) @ A2(4) = {

Figure 3: AlgorithmfindPathsDAG

is fixed, as this is a key building block of our schema-
embedding algorithms. We then extend the algorithm to
handle the general case wh&pis not given. To simplify
the presentation we focus on nonrecurg®s, i.e.,DTDS
with adirected acyclic graph (DAG3tructure, but we show
that our technique also works on recursive (cycticps.

Finding Valid Paths. Let A € F4 be a source element type
with productionA — P;(A), in which the element types
appearing inP; (A) are By, .. ., Bx. Assume that the type
mapping\ is already given as a partial function fraf to
E5 that is defined orB, ..., B, and A. The Valid-Paths
problem is to find pathgath, (A4, B1), ..., pathy(A4, Bx)
such thai Ao, path,)) is a valid local mapping foA.

The validity conditions stated for embeddings in Sec-
tion 4.1 require that (a) target paths for each edge are of the
appropriateéype(AND, OR, Or STAR path), and (b) that the
target path for an edge %ot a prefixof a sibling's target
path. We abstract the second condition as a directed-graph
problem: Given a directed gragh = (V, E), a source ver-
tex s and abag of target verticeS.iar = {|t1 ... tx[}, find
pathspi, ..., pr such that no path is the prefix of another.
That s, for alli # j, p; # pi/pi; for any p;; including the
empty path. In contrast to most sub-problems of Schema-
Embedding, this can be solved®TIME. We introduce our
solution by giving an algorithm that works only orbac
and discuss extending it to handle cycles below.

We present our algorithnfindPathsDAG, in Fig. 3, for
finding prefix-free paths in @AG. The algorithm depends
on the recursive proceduteaverse, shown in Fig. 4. The
intuition of this algorithm is to modify a simple (but expo-
nential) algorithm to recursively enumerate all paths in a
DAG in such a way that prefix-free paths are found, but ex-
cessive running time is avoided. In a nutshigHyerse con-
ducts a depth-first-search on the input graghenumerat-
ing paths from the source nod¢o target nodes iti.,,, and

yet interesting problem. Making use of this algorithm, we jjengifies prefix-free ones. It uses a (global) boolean array
then provide three heuristics for finding embeddlng CaN-marked (n) to keep track of whether the subgraph rooted
didates. The first two are based on randomized programy; 4 node; has been searched and yielded no matches for
ming and the last is by reduction from our problem to theades inL,,,, and if so, it does not re-enter the subgraph.
Max-Weight-Independent-Set problem for which a well- A (jocal) variableretis used to indicate whether the search
developed heuristic tool [10] is available. of a subgraph finds any matches to node.in.

_— . . To see thatraverse is correct, consider removing line 5
5.1 Finding Valid Local Mappings in which the algorithm returns early, and line 11 in which
We start by giving an algorithm to find a local embed- nodes are marked to avoid revisiting them. It is clear that
ding op = (Ao, pathy) when the partial type mappinky the resulting algorithm considers every possible path-lead



Algorithm traverse (G, n, p, Ltar, P)

Input: Directed Acyclic GraptG, noden, match the types needed fare L.,. That is easy to ac-

complish, as the type of a path can be maintained incremen-
a bag of target nodeb..r = {t1, ..., tk[}, L .

tally as it is lengthened and shortended (by storing counts
p, the current path to the root, .
andP, the output set of prefix-free paths. of nodes of each type), and be checked at line 2.

Global variables: marked: maps nodes t@true,false }

. Schema Embeddings with a Given A. This algorithm can
Output: a list of paths.

be used to directly find a schema embedding (A, path)

1. if (marked (n)) return false; from S; to S» when the type mapping is a given total
g- if (n € Ltaf)f I function fromE; to E5. As remarked earlier, the validity
. removen from Liar; conditions for anyA in E; involve only A’s children; thus
4, addptoP . . . .
5 . to find path we only need to find valid paths for eachin
. return true; d . . .
6. else ret =false: E_l and take the union of th_ese vallq local embe_ddm_gs. '_I'hls
7. for each edge = (n, m) outgoing fromn yields anO(|:51] [S2) algorithm to find embeddings in this
8. append: to p: special setting, which is not so uncommon since one may
pp p; | sett hich t
9 ret := retor traverse (G, m, p, Liar, P); know in advance which target type a source type should
10. removee from p; map to, based om,.g.,machine-learning techniques [13].
11. if (not ret) marked (n):=true; ) . ) )
12. return ret: Handling Multiple Targets. However, to find valid local
- - mappings when is not given, we must consider that there
Figure 4: Algorithmtraverse are multiple possible target nodes for each source node.

ing to nodes inL.a,, and assigns one path to eack L, The general Local-Embedding problem is to find a local
but it does not avoid assigning one node the prefix of an€mbedding Ao, path,) when A, may not be fixed. This
other path. However, the prefix-free condition is assured®roblemis no longer tractable as shown below.

by the return at line vithout affecting correctnessince @  Theorem 5.2° The Local-Embedding problem is NP-

suffix of the path assigned tocould only be generated by complete for nonrecursiveTos. O
continuing the recursion from this node. Thus it remains to
argue that the algorithm is still correct if line 11 is in péac One heuristic approach to finding local embeddings is

The intuition of line 11 is simple: if no new target nodes to extendfindPathsDAG as follows. We compute the set
were found in the subtree of a node when it was exploredf all pairings of source node4 and possible matches for
by the recursive calls of lines 7-10, then the current noded from att and pass it ad.,,. We also modify line 3 of

will not be on any path to any’ remaining inLi,,. traverse to (&) pick an arbitrary pair with the current node

Example 5.1: Consider the schema embedding problem@S the target froni.,, at line 2 and (b) remove all pairs as-
shown in Fig. 1. Assume thatt (regular seminay, and sociated with source nodéfrom Ly, at line 3. While this

att (project advanceyiin Sy are 0.75. This means that the May work, itis essentially a greedy algorithm and may not
bag of possible target matchings for source tagmular find a solution if one exists. To compensate for this, we ac-
project in Sy can be{|seminar advancei from S. We tually use a randomized variafitidPathsRand (not shown)
then invoketraverse with S, categoryp (which is empty), Which (&) picks a random source node associated wh
and L., as{ seminaradvancel. The first call totraverse  liN€ 2 of traverse, and (b) tries outgoing edges fromat
would result in all edges frorategonto be recursed. Say, i€ 7 in random order. The ability dindPathsRand to

our algorithm first picks the edge tadvanced Line 2 of ~ find embeddings varies with the size bf.,, and will be
traverse would checkadvancedo be in L.,, and add the investigated in Section 6.

path toadvancednto P. It would then return back from  angling Cycles. Of course, schemas are frequently cyclic
the recursion and try the other edges froategoryin lines  (recuyrsive), and the algorithms as presented so far only
7 though 10. This would resultin a prefix-free patlanda-  handlepacs. In fact, handling cycles generally is some-
tory/seminakvhich would also be added ®. U what more complicated, but not hard — it is easy to see that

To analyze the performance fiidPathsDAG, consider  an arbitrary number of paths can be generated by repeated
traverse as a sequence of forward and backward traversalfoops around some cycle on the path to a target, and care-
of edges in the graph. A forward traversal occurs at line 9ul use of these paths can guarantee the prefix-free prop-
and a backward traversal at lines 1, 5 and 12. Clearly, therty (Figure 2(e) gives such an example, in which the cycle
number of forward traversals and backward traversals in @ unfolded once to get a prefix-free path, in contrast to
run are the same. Further, observe that one returns from drig. 2(d)). While we present this full algorithm in [8], the
un-marked node at line 5 only on the paidickfrom some  complication is not warranted here since long cyclic paths
node newly removed froni,,. Thus, there can be at most are almost certainly semantically uninteresting. In prac-
|Liar| |V| such backward steps, and at mg@st other back-  tice, we have extendethdPathsDAG once again to allow
ward steps (which mark the child of the edge traversed)limited exploration of cycles limited by (a) no more than
SinceG is aDAG, the algorithm is inO(| Ly | |V]) time. k trips through visited nodes and (b) no more ttiantal

To usefindPathsDAG in our algorithms for schema em- path length. A bound o#& and! is given in Theorem 4.3
bedding, we must further ensure that the paths returnednd usuallyt andi are set to small numbers.



Algorithm Ordered (51, S2, O, C)

Input: Schemass; andS2, an ordered set of source tags
andC, a set of local embeddings for each source ta
Output: a schema embedding frof\ to S if one is found.
o = empty solution(, 0);
for Ain O
for o4 in C(A)
c ;= conflict betweerr ando 4;
if cis null
o =0 D oa; break;
if cis not null
findPathsRand (G, A, L. (A) —
if cis not nullreturn 0;
return o;

c);

BOoNoORrODNE

Algorithm QualityOrdered (S1, S2)

Input: Schemass; and.S,.

Output: a schema embedding frof to S if one is found.
1. count:=0;

2. while (count< MAX _TRIES) do

3. count++;
4, for each source nodg
5. C(A) :={alocal embeddings 4 for A
as found byfindPathsRand };
6. O := All source nodes, ordered hyual(o 4, att);
7. o := Ordered (51, 52,0, C);
8. ifo#0
9. return o;
10.return ;

Figure 5: AlgorithmOrdered
5.2 ThreeMethodsfor Finding Schema Embeddings

We next give three heuristic embedding-search algorithms:

QualityOrdered, RandomOrdered andRandomMaxInd.

Finding Solutions with Ordered Algorithms. Our first
two heuristics are based on a common subroufirdered,
shown in Fig. 5. A key data structure is a tablg, where

Figure 6: AlgorithmQualityOrdered

partial or complete solutions to this problem, which can be
used to create partial or complete embeddings.

Before describing our reduction, we review the defini-
tion of Max-Weight-Independent-Set. That problem is de-
fined on an undirected graghi = (V, F) (not to be con-
fused with a schema graph) with node weighis|,v € V.
The goal is to find a subsét’ of V' such that for; andv;

C(A) is a set of known local embeddings for a source nodén v/, there is no edge from; to v;; i.e., (v;,v;) ¢ E and

A. The initialization of this table is discussed later. Given
C and an ordered s&b of source typesQrdered tries to
assemble a consistent mappingy considering eacH in
O order (line 2), and trying to find a local embedding
in C'(A) which can be merged with the existiagwithout
a conflict (lines 3-8). If a conflict occurs it finds new local
embeddings fod by invokingfindPathsRand (lines 7-8).
Our first Ordered-based algorithmQualityOrdered, is
shown in Fig. 6. HereZ(A) is initialized with a single
randomly chosen local embedding for each source nbde
andO is sorted by theuality of the local embedding.
In our second algorithnfRandomOrdered (not shown),

the weight ofl”’, defined as ., w[v], is maximized.

Given an instance of the Assemble-Embedding prob-
lem, it is straightforward to construct an instance of Max-
Weight-Independent-Set. First, for each local mapping
o, € C(A) forany A € E;, we construct a vertex,,
in V. Second, for each pair,, o, of such mappings, we
construct an edge betweep, andv,, if o, ando;, con-
flict. The weight ofv,, is given agjual(o,, att).

To complete the algorithm on the resulting graph, we use
an existing heuristic tool for Max-Weight-Independent;Se
which returns a subsét’ of V. Finally, we construct an
embeddings by adding local embedding, to o for each

C is the complete set of local embeddings discovered so fas,, < V’. The quality ofo is warranted by the heuristic

for each source node (lines 4 and 5 in Fig. 6), widllés a
random ordering of source nodes (line 6 in Fig. 6).

A Reduction Approach. We now discuss our third heuris-
tic, RandomMaxInd. To understand this heuristic, consider
the following problem defined on the takdéof local map-
pings defined above:

PROBLEM Assemble-Embedding

INPUT: Two DTDS S; and Ss, a similarity matrix
att, and a table”.
OUTPUT. A schema embedding : S; — Ss, valid

w.r.t. att, formed as the union of a subse
of embeddings i if one exists.

t

Composingr from local embeddings i’ is nontrivial:

Theorem 5.3: The Assemble-Embedding problem is NP-
complete for nonrecursivieTDs.

To cope with this, thdRandomMaxInd heuristic takes the

tool used, and its correctness is verified below.

Theorem 5.4: If |V'| = |Ey|, o constructed as above is a
schema embedding froff to Ss. O

If o is not a full embedding, we ud@andPathsRand to
generate new local mappings, if any are available, for tags
A notmapped by, and repeating the process until either
it finds a valid embedding or it reaches a threshold of tries.

6 Experimental Study

In this section, we present an experimental evaluation of
our schema embedding algorithms. Our approach is to vary
the difficulty of the matching task by introducing artificial
noise into a target schema, and measuring the ability of our
algorithms to find an embedding.

Our experiments are based on real-wondbs taken
from a publicly available repository [30], plus therD
of the XMark benchmark [33]. EacbTb was normal-

approach of reducing the Assemble-Embeddings problenrzed into our graph representation. The XMark schema is
to the problem of finding high-weight independent sets in athe largest, with 57 productions after normalization. The
graph. It uses an existing heuristic solution [10] to praeluc XMark schema is apparently the most involved schema
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as the others scale better (see Fig. 10), and accordinglgmbedding in our generated data always has the highest
we evaluate our algorithms for all the schemas but use thaverage quality. Accuracy is implemented with a parameter
XMark schema for more detailed experiments. ¢, which varies between 0 and 1. Each entnyin att is

Generating Target Schemas. Target schemas are gen- replaced by:m+(1—c)rnd, wherernd is a random number

erated from source schemas with added complexity anffomOto 1 Alow accuracy tends to mislead hegristics that
noise. As we introduce noise, we take care to preservEly heavily onatt. Combining a low accuracy with a very

this matching, but make it harder to find in a number of OW selectivity makes the problem very difficult to solve.

ways, So as to attribute any failure to find a matching to thqzxperimentgﬂ Setting_ Experiments are conducted by
algorithm rather than the data. Particular target schemagopying the source schema, adding some amount of
are generated according to a probabilityse in two steps:  noise based on the parametesise, and adjusting the
First, for each edge in the schema, with probabilityse,  att according tosel and c. Then the three algorithms
the edge in the target is replaced with a path of between §jven in Section 5RandomOrdered, QualityOrdered and
and 5 nodes. When new nodes are added, with probabilitRandomMaxInd) are used to try to find embeddings. For
.5, the name of the node is formed as a small mutation ofhe ordered algorithms, the sétis initialized by finding3
an existing name. Also, the type of the deleted edge(  random mappings for each, and discarding the two with
OR, STAR) is used as the type of the first introduced edge tothe lowestqual ratings. When not otherwise stated, exper-
ensure that the original mapping is still possible. iments are run withsel = 0.6, ¢ = 0.75 (accuracy) and

In the second step, each node in the target (includingoise = 0.25. Since all algorithms (and the noise introduc-
newly-added nodes) are visited again, and with probabilittion) have a random component, they are repeated with 40
noise, a new subtree is added under it. The new subtregifferent random seeds, and an average is used.
adds between 1 and 10 nodes. After each subtree addition, 1ha software is written in Java except for the external
each leaf in the new subtree is visited, and with probability, o ristic for maximum independént sets [9], which is an

.5, an edge is added to an existing leaf outside the newlyy +ii-aq C ; ;
. program. Experiments are run on a variety
added subtree. (This leaf may later have a subtree a.dd%fmachines with Pentium 11l processors running at either
under it.) The intuition for this last step is that confusion 933117 or 1.0GHZ. with 256MB of RAM
between different parts of the tree is more likely to arise if ' ’ '

the same “attributes” (leaf nodes) appear in multiple mace Accuracy Results. Figure 7 shows how the three algo-
rithms perform while varying accuracy, wittoise = 0.25.

Generating the att. The similarity array,att, is initial- The y axis shows the percentages of runs for which a suc-
ized by computing pairwise string-edit distances between essful embedding is found. For this noise amount, the

source and target tags (string edit distance with unit Cosfar ot schema is approximately three times as large as the
is also known as Damerau-Levenshtein distance). Further- 9 IS approxi Y ' 9

more, if a minimum thresholdsel, of similarity is not met ~ S0Urce schema. This graph shows tQatlityOrdered is

by a pair, the similarity of that pair is set to 0, and as aextremely sensitive to the quality of thet values. It uses

result the tags cannot be matched. Note that the ugimidtt extensively in its search pattern, and thus cannot find

lar names” introduced above range in similarity from .5 solutions unlesatt is accurate. Figure 7 also shows that

; ; - RandomOrdered finds correct solutions more frequently
for short strings to over .8 for longer strings, and will be tgan RandomMaxind. While RandomOrdered takes into

counted as potential matches in many experiments. Ther o L . N
are also similar names in the schemas themselves, causagcountatt when it is seeking its solution set, it tries to
: ind alternative solutions based on the conflicts it detects,

by the conversion of the schema to our graph format, independent of thett values.RandomMaxInd seeks alter-

Clearly, sel, referred to as theelectivityof att, is an ]native solutions for nodes based solely on their weights, as

importan_t parameter, as it directly detgrmines the size %Yefined byatt. It does not use conflicts to guide its search
the candidate pool of target tags matching each source tag. ' '

Larger selectivities make the problem easier, and for ouVarying Target Schema Size. We also consider tar-
experimental data el is 1.0 (exact matches only), finding get schemas with different numbers of erroneous nodes
a schema embedding reduces to finding valid prefix-freeand edges introduced. These results are shown in
paths for each local embedding in the source schema.  Fig. 8. Because this graph shows results when accuracy
A second important parameter is thecuracyof att. is 0.75, QualityOrdered does not do well, as expected.
This matters greatly for heuristic algorithms, since thikdva RandomOrdered andRandomMaxInd both find the correct
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solution the majority of the time, decreasing somewhat ag wide class of schemas and can be tailored to a variety

noise increases. The running times are shown in Fig. 9.  of data models. The similarity flooding algorithm of [24]
provides a novel schema matching tool based on graph-

similarity. Cupid[22] is a generic system that encompasses
a variety of techniques such as linguistic analyses and con-
text dependencies.Rondo [25] proposes a powerful set

Different Source Schemas. We also run tests with dif-
ferent source schemas. We vargise over five differ-
ent source schemas, usiRgndomOrdered and accuracy

0.75. Figure 10 shows the running times for the various

source schemas. For all runs across the diﬁerentschemas%ar;%?ﬁl Tﬁggemg 2tpeenr16;t<;r§6 I;orr;tr#(:stil:;ﬁ;ﬁzleltscr:gmz
solution was found more than 90% of the time (not shown). 9, y Pt grap y P

single source schema to a target. TransScm [29] considers
Varying Selectivity. We also run experiments with dif- instance-level mappings based on schema matching, and
ferent values of selectivity. BotiRandomOrdered and uses a semi-automatic mechanism to match highly simi-
RandomMaxind find solutions less frequently as selectiv- |ar schemas. Clio [26] also focuses on deriving instance
ity decreases (not shownQualityOrdered is relatively in-  translation from schema mappings. The recent work [6]
different to the selectivity level, finding approximatehet  studies invertiblexmL -to-relation mappings that guarantee
same number of solutions &l = 0.3 as atsel = 0.7. The  the sourcexmL document remains valid in the presence
running time increases dramatically, however, osetéalls  of updates to the mapped relations. To our knowledge, no
below0.4. The results are shown in Fig. 11. previous work has considered information preservation for

Discussion. Our experimental results show that, when aXML DTD schema mappings. Our notion of schema embed-
feasible matching exists, it is likely to be almost com-ding extends graph similarity and allows multiple source
pletely found for schema sizes of up to a few hundredPTD schemas to be mapped to a single structurally differ-
nodes. While this does not demonstrate that similar result§nt targedTD. Furthermore, from a schema embedding an
can be obtained with differing target schemas and the us#stance mapping can laeitomaticallyderived and iguar-

of real-world tools to producett, it is certainly promis- ~anteesboth invertibility and query preserving w.r.t. reg-
ing. Further, we found that the randomized algorithmular XPath queries. The ability of finding information-
RandomOrdered performs better tharRandomMaxInd, ~ PreservingkmML mappings is important for data integration
and thatQualityOrdered only does well with a highly ac- (see, e.g., [19]) anB2Psystems (e.qg., [14, 17, 34]).
curateatt. Based on these results, we plan to integrate Information preservation has been studied for nested re-
RandomOrdered and RandomMaxind, since the external lational and complex data models (e.g., [3, 16, 27, 28]).
independent set heuristic is very fast in practice. Finally[16] proposed several notions of dominance and studied
we note thaQualityOrdered may be important in practice, their relationships, which were revisited in [27]. The fo-

where theatt values may in fact be reliable. cus of [3, 28] has mainly been on the information capacity
of type constructs and structural transformation rulest Ou
7 Reated Work study of information preservation is inspired by the prior

work: our notions of invertibility and query preservation

A wide variety of techniques have been developed to solvare mild extensions of calculus dominance and query dom-
different forms of schema matching for relationeR and  inance [16]. We revise these notions and study their basic
object-oriented models (e.g., [5, 12, 18, 21, 31]; see [32]roperties foixML DTD schemas angMmL queries, and our
for a recent survey). While these are not focusedksmn focus is to develop the notion afTb schema embedding
DTD schema matching, some techniques, such as linguighat preserves information by ensuring both effective in-
tic analyses and machine learning, are useful for findingvertible mapping and efficiextML query translation.
name/label similarity, which our algorithms take as input. ~ Query preservation is related to query rewriting using

Closer toxmL schema matching are [6, 13, 22, 24, 25, views, which has been extensively studied for conjunc-
26, 29]. LSD [13] proposes machine-learning techniquestive and datalog queries for relational databases and regu-
that make use of instance-level information to determindar path queries on semistructured data (e.g., [2, 11, 20];
XML DTD tag mapping. Systems of [22, 24, 25] target see [15, 19] for surveys). View-based query rewriting



mainly studies whether a given query on the source can bE0] S. Busygin, S. Butenko, and P. M. Pardalos. A heuristic f
answered using materialized data from a set of views (loss-
less), by translating the query to an equivalent query in a

particular language on the views. In contrast, query prese

vation deals with the issue whethalt queries in an (infi-

1)

nite) query language on atML source can be rewritten to [12]

equivalent queries ovedML target (view). Moreover, the
focus of this work is to generatevL “views” that automat-
ically preserves all the queries in amL query language,

[13]

rather than to determine the losslessness of views. Note

that Theorem 3.2 establishes a connection between invert- < )
14] A. Fuxman, P. Kolaitis, R. Miller, and W. Tan. Peer data

ibility and query rewriting;e.qg., if the query languag&
includes the identity querid, then a views, is invertible
andcr;1 isin L iff id has a rewriting inC usingoy.

8 Conclusions

We have revised information-preservation criteria XorL

[15]
[16]

[17]

mappings and established separation, equivalence and
complexity results. We have introduced a novel notion ofj; g

schema embedding fotmL DTD schemas, from which an

instance-levekML mapping is automatically derived and

is guaranteed to be information preserving, type checking(19]
and able to accommodate multiple source schemas. While
we show that finding a schema embedding is NP-completd20]
we have provided heuristic algorithms to compute embed-

dings, which are efficient and accurate as shown by ou

pu

experimental results. These yield a practical approach to

computing losslessML data migration and integration.

[22]

We plan to extend the notion of schema embedding to

(a) accommodate more genepaliL schemas with con-

[23]

straints and inheritance, (b) allow one source type to map to

different target types idifferent contexts(c) allow certain
queries in XQuery in theath function, and (d) preserve
XQuery fragments as query languages.
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