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Abstract—We propose a low overhead scheme for detecting a network detect network cuts. Because a sensor network’s lifetime is largely
partition or cut in a sensor network. Consider a network S of n sensors,  determined by how well it conserves power, solutions where all sen-
modeled as points in a two-dimensional plane. A-cut, forany 0 < e < g5 are continuously monitored are both inefficient and unscalable.
1, is a linear separation ofen nodes in S from a distinguished node, N
the base stationWe show that the base station can detect whenever an BC2USE sensor networks can vary in size from few hundred nodes
e-cut occurs by monitoring the status of justO(1) nodes in the network.  to hundreds of thousands, it is also desirable to design schemes that
Our scheme is determinisltic and it is free of false positives: no reported are highly scalable, so that the task of cut detection does not end
cut has size smaller thansen. Besides this combinatorial result, we also up consuming a large part of the network resources. Finally, because

- . . 1
propose efficient algorithms for finding the O(2) nodes that should act 5 sensor network applications envision unmanned and remote
assentinels and report on our simulation results, comparing the sentinel

algorithm with two natural schemes based on sampling. deployment, failure detection schemes that yitdtse positive or
false negatives, are highly undesirable. With this motivation, we now
I. INTRODUCTION describe our problem setting.

Wireless sensor networks (WSN) have emerged as an important .
new technology for instrumenting and observing the physical Worlé.' Cuts in Sensor Networks
The basic building block of these networks is a tiny microprocessorConsider a sefS of n sensors, which are modeled as points in
integrated with one or more MEMS (micro-electromechanical syghe two-dimensional plane. (More generally, we can assume that the
tem) sensors, actuators, and a wireless transceiver. These deviceseasors lie on a surface or terrain that is topologically equivalent to
be embedded or scattered in large quantities in a physical spabe, plane.) An adversary can makdiear cut through the sensor
where they self-organize into &t hocmulti-hop wireless network, network, disabling all the sensors on one side of the line; the base
allowing us to observe and monitor the world at an unprecedentsgtion is assumed to lie on the other (safe) side. Formally, given a
spatial and temporal resolution. A rich variety of scientific, commetfine L, let L~ and L™ denote the two half-planes defined By and
cial, and military applications [7], [11], [25], [32] has been proposetét L~ (S) and L™ (S) denote the subset of sensors that lie in these
for sensor networks, and many experimental prototypes are unéeitf-planes. We will adopt the convention that the linear cut induced
development in academia and industry. Realizing the full potential b L disables all the sensors i~ (.S). Alternatively, the adversary
the sensor networks, however, requires solving several challengitan disrupt the communication so that sensors on one side of the line
research problems. Many of these challenges stem from two magannot communicate with sensors on the other side, including the base
limitations of the sensor nodes: low power and low bandwidtlstation. These two formulations are equivalent for our purpose. There
Consequently, a number of proposals have been made for improvire other natural forms of cuts, such as circular cuts, rectangular cuts,
the data collection and information processing in sensor networkglygonal cuts. We will briefly discuss them in Section VI.
including power-aware routing and scheduling [16], [24], [27], in-
network aggregation [15], [23], [28], query processing [13], data o
storage management [12], etc. RS A
In this paper, we address a different kind of challenge for sensor R
networks, which does not seem to have received adequate attention.
How to monitor the sensor network itself, and how to detect when the
network has suffered a significant “cut’&fter all, if sensor networks
are to act as our remote “eyes and ears,” then we need to ensure that
any significant failure (natural or adversarial) suffered by the network
is promptly and efficiently detected. Tracking the operational health
of the infrastructure is important in any communication network, but
it is especially important in sensor networks due to their unique
characteristics, and the need to perform this duty with very little
overhead. Fig. 1. 1000 sensor nodes, distributed uniformly at random, and a linear
In our view, power efficiency scalability, and absence ofalse cut. The sentinel nodes far= 0.05 are shown as triangles.
positivesare the three most important considerations for a scheme to
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is to develop a low-overhead scheme for detectinzuts in sensor and second where the cut included and theen — 2 predecessors
networks. of b. These two cuts differ only i but neithera norb is a sentinel,
Our scheme for detecting-cuts will choose a small subset ofso the algorithm cannot distinguish between the two cuts. But, by the
sensors, which act aentinels Each sentinel will communicate with strict e-cut definition, the former is not a reportable cut, while the
the base station at a regular time interval. We assume that the blaser is. We adopt the standard convention and detvar boundon
station is not attacked, and it always lies in the safe halfplane the size of any cut reported. Specifically, our algorithm successfully
A communication failure from a sentinel is taken to mean that theill report every e-cut and, at the same time, every reported cut
sentinel has been cut off. Our problem now becomes: can one choosmes with a guaranteat leasts /2 fraction of the network must
a small number of sensor nodes as sentinels so that (1) ewauy have been cutThe fraction1/2 is chosen to simplify our analysis,
can be detected based solely on the live/dead status of sentinels, amdlit can be replaced by any user specified parameter.
(2) the algorithm does not report false positives. In Figure 1, we show o
a collection of1000 sensor nodes, distributed uniformly at randomt+ Our Contribution
and its sentinel set far = 0.05. Our paper makes three contributions. First, we prove a combi-
Before describing our results, we first briefly discuss why we choseatorial result: for any positive real number< 1, there exists a
e-cuts as our definition, why avoiding false positives is challengingentinel set of size€)(1), which can detect every-cut. Moreover,
and why the detection scheme requires an approximation slack. every cut reported as ancut includes at leasfen failed sensors. A
key point to note is that the size of the sentinel set depends only on
B. e-Cuts the parameteg, andnot onn, the size of the sensor network. Thus,
Thee-cuts are motivated both by practical and theoretical concerrair construction is highly scalable. It is easy to see that the sentinel
It makes practical sense to treat failures as significant only whersiae ofO(é) is asymptotically optimal.
fraction of the network is cut. It may be tempting to ask for schemes Second, we describe two efficient algorithms, a deterministic
that detect failure of a fixed (user-specifiedimber of sensors, algorithm for constructing a minimal sentinel set and a faster ran-
regardless of the network size. However, no efficient and scalaldlemized algorithm for computing a sentinel set of s@(%). All
solution is theoretically possible in this case, as the following simptair algorithms are centralized, because we envision the entire process
example shows. Imagine sensors arranged in a circle, and suppodeking place at a base station.
we want to detect cuts of size. Then, at least one sensor for every Finally, we implemented our scheme and ran simulations using a
m consecutive sensors must be chosen as a sentinel, which scedgtety of synthetic sensor network models. In our simulations, we
very poorly with the network size. found that the size of sentinel set was always significantly smaller
than the worst-case bound of Theorem 3.1. We also compared our
sentinel algorithm with two variants of sampling-based schemes:
By monitoring sufficiently many randomly chosen sensors, one caandom sampling, and radial sampling. Our experiments show that
detect alle-cuts with high probability. For instance, a random sampleven for rather well-behaved sensor distributions, these methods
of size O(é log é) is sufficient to catch any-cut with probability produce a significant number of false positives and false negatives.
at leastl — ¢ [21], [22]. The algorithm simply declares ascut
whenever at least one of the chosen sensors fails. Unfortunately, fhid¥elated Work
simple scheme suffers from the false positives problem. Many cutsThe problem of network partition in sensor networks has been
reported by this algorithm, however, are false positives, where thased in several papers, but it appears not to have been investigated
size of the failed network can be arbitrarily smaller than Indeed, formally. In their survey paper [6], Chong and Kumar raise this
if one of the random samples happens to lie on the boundary of g®blem with a security focus: sensor networks may operate in
sensor field, then it can cause an alarm even if a single sensor is loostile environments and schemes to detect tampering should be
off. built into the design. In [5], Cerpa and Estrin propose schemes for
A more sophisticated form of sampling can effectively eliminateelf-configuring sensor network topologies. They mention network
false positives, but at the expense of a very large number pdrtition as an important problem for which “complementary system
sentinels. In particular, the conceptaipproximationcan be used to mechanisms will be needed,” but leave that as a future research
distinguish between all cuts larger tham and those smaller than, say,direction. In [19], Lifton, Broxton and Paradiso consider a network
%En. But anc-approximation require@(sizlog %) sentinel nodes. A disconnection problem, but with a very different focus: the nodes
simple calculation, including the actual constants involved, howevere cooperative For instance, sensor nodes with low battery power
shows that even for modest valuessof 0.1 andé = 0.05, the size communicate with the network to determine whether the network will
of the sentinel set is at lea$6, 000! Thus, random sampling basedbe partitioned if they failed. This is also an experimental paper, with
schemes are infeasible, due to false positives or due to unscalaidyformal algorithm analysis.

C. False Positives

large size. Our research is inspired by some recent work by Kleinberg et
. al. [17], [18] on detecting failures in &ired network. In Kleinberg's
D. The Need for Approximation setting, the network is modeled as an undirected graph oodes;

Finally, we point out that we need to allow some approximatioan adversary can destroy up o edges (or vertices); and the
slack between am-cut and a false positive. If we demand that albetection algorithm installs a set of detection agents (equivalent
e-cuts be reported, ando cut of size smaller thaan be reported to our sentinels) that engage pairwise communication. They are
then no scalable solution exists. Consider, once again, the settingntérested in detecting when the graph is disconnected into two
n sensors arranged in a circle. We claim that in this easery other subsets, each of size at least The main result in [17], [18] is that
sensormust act as a sentinel. Otherwise, suppose that neither of theery graph has &, k)-detection set (number of sentinels) of size
two consecutive sensotsandb is a sentinel. Now consider two cuts:O(ki‘é log % + %10% %), which can detect an-cut with probability
one, where: is not cut buth and thesn — 2 predecessors @fare cut; 1 — §. There are three important differences between these results



and our results. One, because of the inherent geometric structur&@hus, the signature of astsentinel set will let us detect every cut
of sensor networks, linear or other geometric partitions are mooé size at leastn. Furthermore, we would also know which cuts
natural than thek independent edge failures. Second, due to theave size less thag. In the gray area where the size of the cut is
geometric structure of our problem, juét(é) sentinels suffice in betweenSn anden, the algorithm is free to go either way: report it
our case, while in Kleinberg's case, they require a much larger smtignore it.
of monitoring nodes, as well as pairwise communication betweenBecause the sentinels are points (sensor locations) in the plane,
those nodes. Finally, our scheme yieldsfatse positiveswhile the there are preciselyn(m — 1) = O(m?) combinatorially distinct
algorithms proposed in [17], [18] suffer from false positives: evergignaturess (W) that correspond to linear cuts. Because the base
e-cut is detected, but not every cut detected ireaout. Indeed, they station cannot distinguish linear cuts that yield identical signatures,
do not provide any lower bound on the size of the cut. the family of lines corresponding to a specific signatuwré1’)

The network partition problem has connections with the theogannot contain arz-cut and a less-tharie/2)-cut simultaneously.
of VC-dimension [31] and-nets [22]. Unfortunatelys-nets provide This insight suggests that the sentinel problem beconsparation
only 1-sided guarantees{R N N| > 0 does not imply thajR N problem in a transformed space, which we describe next.
S| > en. Thus,e-nets make poor sentinels: they raise too many false
alarms. B. A Duality Transform

An c-approximation is a stronger form of sample. Given a set of e yse a point-line duality of the Euclidean plane. The dual of a
n points S, the e-approximation intersects any range in (roughlyboim p(a,b) is the linep® : y = az — b and, conversely, the dual
the same proportion as it intersecs and so it would make a o 54 (non-vertical) lineL : y = az — b is the pointL* : (a,b).
nice sentinel set. Unfortunately, tbeappm;ima“?“ usually requires The yertical lines can be handled by using a slightly more involved
too many points (sentinels): it has siz¥ 5 log Z5). As mentioned  projective duality. Instead, we use the simpler transform here, and
earlier, with constant factors included, even with modest values 9§ ,me that all sensor nodes have distincbordinates. In this way,
¢ = 0.1 andd = 0.05, the size ofe-approximation exceeds), 000! for every vertical line, there is a slightly perturbed non-vertical line

In [4], the notion of sensitive e-approximations is introduced yith the same signature(S). It can be easily checked that the duality
as a generalization ot;apprO)ilma_tlon. However, even sensitiveyansform inverts thabove-below relatiorif point p lies above (resp.
approximations havé)( i log 5. ) size for linear cuts, whereas oUrpejow,) line L, then the dual ling* is below (resp. above) the dual
sentinel sets have optimal() size. In addition, the deterministic point 7.*. A similar transform is used in Liu et. al. [20] for tracking
construction of sensitive approximations is quite involved. a linear shadow over a sensornet.

The duality transform maps our sstof n sensors into a sef™

o of n lines. Conversely, a linear cut is transformed into a point

_The network topology and the communication protocol are ngf- \we point out that theorientation of L is lost in the duality.
directly relevant to our result. We simply assume that the sens@fe assume throughout that the lidieis oriented so that the right
network is connected and that every sensor is able to communic,argquaneLf lies abovethe line L. Thus. in the linear cut induced
with a base stationthrough multi-hop routing, as long as a validyy, 1, 5|l the sensors above are cut off. A similar argument holds

communication path exists. We also assume that the location of evgjiyen the halfplane.~ lies below L. Thus, to cover both cases, we
sensor is available to the base station. ASetf n sensors scattered i consider cuts where eithesm points lie below the cut, oen

in a terrain is modeled as a setwofpoints in the_pla_ne (ignqring t_he points lie above the cut.
altitude of each sensor). Our problem of monitoring the integrity of
the sensor field is best studied in a geometric setting.

Il. GEOMETRIC PRELIMINARIES

A. Sentinel Sets i
We wish to detect if the sensor network has suffered a linear cut
of size at leastn. We do so by monitoring a small subset of sensor "
nodes, called theentinel set¥. An adversary can introduce a linear
cut, by disabling all sensors lying on the right sifie of a line L. It . 76,
is assumed that the base station lies on the safe ideWe call a P2
directed lineL ane-cut if its halfplaneL.™ contains at least fraction
of all the sensors; formallyl. is ae-cut if |[L™(S)| > en.
We would like to point out that the base station as explicit F9- 2. A set of7 points (left), and the corresponding dual arrangement
. . . . (right). The lines¢ and m dualize to points¢* and m*, respectively. The
information about the IlneL.. It only learns the3|gnature. vector duality transform inverts the above-below relation; for instance, pajres
o(W) that represents the alive or dead status of the sentinel sensgfwye line¢, and its dual linep? lies below the dual poin*. The 3-level of
that is,o (W) is a binary vector of lengti¥’|. Our goal is to compute the arrangement is shown in bold.
a sentinel set obmall size that can detect everycut correctly, but
never reports a cut of size less theam, for some constant < 1.
For ease of presentation, we choase- 1/2 in this paper, but all
our results generalize to any fixed value®fd < ¢ < 1. With this The set ofn lines S* in the dual plane form dne arrangement
motivation, we have the following definition. denotedH (S*). The arrangement is a dissection of the plane into
Definition 2.1: SupposeS is a set ofn sensors, and > 0 is a convex polygons, some of which are unbounded. Vketices of
user-specified parameter. A subset of sen$trswhereW C S, is the arrangement are the intersection points between pairs of lines;
called are-sentinel setf, for any linear cutZ, we can decide whether the edgesof the arrangement are the line segments between two
L is ane-cut or thatL is a smaller tharg-cut, by observing only consecutive vertices on a line. An arrangement dihe has at most
the signatures (W). n(n — 1)/2 vertices and at mosk(n + 1) edges. For technical

P7,

C. Line Arrangements and Levels



simplification, we assume that no more than 2 lines pass througitangement of. lines in the plane, wheré < a < b < n. For
a vertex. any integerk, wherea < k < b, we define a specifie-monotone
The set of edges in the arrangement that lie above exactlyl zig-zagseparator, denoteel k), between thei-level and theb-level.
other lines form anz-monotone polygonal curve. This curve is callednformally, the separatoz(k) starts with the leftmost segment of the
the k-level of the arrangement. (A poirfl, b) is abovek lines if the  k-level, follows that line until it runs into either the-level or the
ray {(a,y) : y < b} crosses exactly lines of the setS*.) The1- b-level at a vertex, at which point it “reflects” and follows the other
level, for instance, is thiswer envelop®f the arrangement. A-level line determining that vertex. Thus, the pattk) zig-zags between
bends at every vertex along its way. See Figure 2 for illustration. the a-level and theb-level. We note that(k) is anz-monotone path,
Consider a sentinel sdfi’ C S, and some linear cuf.. The it only uses the lines of the arrangemdiifS™), and all its “bends”
signatures (W) of W with respect toL tells us which sensors are are at convex vertices of the-level or at reflex vertices of thé-
below the line L and which ones arabove L. In the transformed level; indeed, it can also have several consecutive bends along the
plane, this tells us which lines d¥* pass above the dual poifit, same level, on the reflex vertices @flevel and the convex vertices
and which ones pass belol*. In order forWW to be ane-sentinel, of b-level. See Figure 3 for an example.
we should be able to decider any point L* whether at leastn
lines of S* pass belowl* or fewer tharen/2 lines of S* pass below

L*, based solely on the signatus€lV). Thus, W is ane-sentinel if b-level
for any pointL* we can tell if L* lies above théen)-level or below
the (en/2)-level of H(S™) based on the location of the poifit in en
the arrangement formed By *. The important point here is that we
want to determine the location of a point in the arrangementof 5
but do so by looking only at the arrangement formed by the much 6"
smaller seti*.
D. Minimum Link Separators in Arrangements %5”
Given two disjoint simple polygonal curves; and 2, in the
plane, aseparator g is a polygonal curve that partitions the plane 7&n level
a—leve

into two parts such that; and 2 lie on opposite sides op. A T
minimum link separatofor v; and~ is such a separator with the
minimum number of vertices (i.e., bends).

A minimum link separatop between then and thesn /2 levels
of the arrangemenf{(S*) can efficiently distinguishe-cuts from
the less thar(e/2)-cuts. Specifically, ifL* lies belowp then L is
certainly not ans-cut; and if L* lies abovep then L is surely an  Altogether there aréh—a+1) such paths between thelevel and
(¢/2)-cut. A minimum link separator, in general, is free to use anfpe b-level, one for each value df betweena andb. The following
lines. However, in our setting, this separator will be used to forml@mma notes that these paths are pairwise edge-disjoint.

sentinel set, and therefore weust use only the lines &* in the Lemma 3.2:The (b—a-+1) zig-zag separators between txevel

minimum link separator. (Indeed, the previously known algorithms, 4 iheb-level are pairwise non-overlapping; that is, they can only
for constructing separators did not require the separator be partaf. cact at vertices.

the arrangement [10], [21].) Therefore, in the following discussion,

zig—zag path z(k)
level

Fig. 3. A zig-zag path between two levels.

we define theseparator in an arrangemerft to be a polygonal curve Proof: The leftmost edges of the zig-zag paths are pairwise
that only uses the edges of the arrangenfént disjoint by definition. If two zig-zag paths, say(k) andz(k) meet
at a vertexv and they reachy from the left on different lines, then
[1l. COMBINATORICS OF SENTINEL SETS v cannot be a convex vertex of thelevel nor a reflex vertex of the

In this section, we prove our first main result and show thatlevel, and so bothx(k) and z(k’) pass throughy without a bend.
there is a separator Wit@(%) links. The sentinel set is formed by If vis a convex vertex of the-level or a reflex vertex of thé-level,
choosing the points whose dual lines contain these links. We néien only one zig-zag path can reach it from the left, and so only

show that based on the signaturé¥') of this set, we can determine one path leaves it on the right. u
) et o .
in O(z log <) time if there is a linear cut of size at least, or that Thus, the total number of bends in all tte—a + 1) zig-zag paths

the cut is smaller thaan /2. Since we do not know the orientation;q upper-bounded by the number of convex vertices ofithevel and

of the cut, we make two sentinel sets: one for the separator of t§p, efiex vertices of thé-level. We, therefore, have the following
levels and and the other for bottom levels. If the signature of any OR&nma.

of them indicates a cut of size at least, then we declare there is

an e-cut in the network. Lemma 3.3:If the a-level and theb-level havex vertices in total,
then there exists a zig-zag path between them of size at most
A. Existence of a small sentinel set =
The following theorem states our main combinatorial result. b—a+1

So, how many vertices can a single level of ii#ine arrangement
have? Unfortunately, determining the asymptotic complexity of levels
in line arrangement is a notoriously difficult problem in computational

The proof of the theorem relies on a couple of technical lemmagometry [9]. The best known upper bound for the complexity of
about separators and levels. Considerdevel and ab-level in the & level is O(nkl/B) due to Dey [8], and the best lower bound is

Theorem 3.1:In an arrangement ok lines in the plane, there is
always a separator of sizZ@(1) between levelsn and fen.



Q(n - 2V™°2F) due to G. Bth [29]. On the other hand, theverage w1
size of the firstk level is always linear, by a result of Alon and
Gyodri [2]. In particular, they show that, for arfy, wherel < k < n, w2+
thetotal size(number of vertices) of the levels 1 throughs nk. We

use this result to show that there is a linear size level in the vicinity
of anen level and of an(en/2)-level.

w3
Lemma 3.4:In an arrangement of lines in the plane, there is
always a level of size at mostn between the level$en anden.
Similarly, there is always a level of size at mast between levels -
gsn and %an. w4

Proof: By the result of Alon and Ggri [2], the total complexity w5+
of the firsten levels is at mostn?. Clearly, this is also an upper
bound on the total complexity of théesn + 1 levels between levels
en andgsn. By the pigeon hole principle, at least one of these levels 6
must have size at T“OShQ/( en+1) < 6n. An analogous argument Fig. 4. The intersection of the half-planes determined by the sentinel lines
shows that there is a level of size at mdst between levelssen g cell of the arrangement.
and 1en. u

Intersection of half planes

We can now complete the proof of Theorem 3.1.
done inO(logm) time because the separatoraismonotone and it
hasm links: it is sufficient to find the linew* € W* (by binary
search) that lies directly above or belgyand test against that. if
. A . i h rator, we report that there is-aot. Otherwise,
is at most6n; sucha andb exist by the preceding lemma. The total's above the sepa ate we report that there is-aat Ot. erwise, we

. . 1 report that nc:-cut exists.Due to lack of space, we omit the detailed
size of these two levels is at mosbn, and (b — a + 1) > 2en

6= roof of correctness of this algorithm. Instead, we simply illustrate
By Lemma 3.3, we conclude that there is a zig-zag path of si g el
fe construction on an example.

0(6) between levela andb. This zig-zag path is clearly a separator Figure 4 shows an example with six sentinel nodes. Suppose that

between thern and the sen levels. only ws, ws, andws send signals to the base station, andisows,
The constant factors in Theorem 3.1 are quite loose. Our primaégdw, are assumed to be cut off. The dual of argut must lie above
goal is simply of prove the asymptotic result that sentinel sets of siffiee lineswi, w3j andwj, and it must lie below the lines below the
O(1) exist. Our simulations show that in practice the sentinels sdt8es w3, ws, andwg. The common intersection of these halfplanes
are significantly smaller than the worst-case bound would indicatds shown asC'. A point p € C' lies above thes-separator (drawn in
bold line), and so we report ascut.

Proof: [of Theorem 3.1] Consider an arrangementolines in
the plane. Choose and b such thatjen < a < 2en < b < en,
and the size of the level is at mostdn and the size of thé-level

B. Detectinge-cuts from a signature

The en sensors that are cut off may lie either below or above the IV. COMPUTING A SENTINEL SET

line. We, therefore, compute two separators, one to detect separatio®ur proof of Theorem 3.1 directly leads to a deterministic al-
of points below the cutting line, and the other to detect separatigorithm: we first compute the: and b levels, which are each
above the line. In order to avoid unnecessary replication, we descritfelinear size, then find all the zig-zag separators, and pick the
our scheme for the lower separator, with the understanding thsahallest one, which is guaranteed to have si¥el) size. In the
the complete construction involves a symmetric application of tHellowing, we present two improved schemes. @wn?logn) time
algorithm for the other case as well. deterministic algorithm for computingrainimum link separatgorand

We have shown that there is &I(1) size separator between levelsan O(2 logn) time randomizedalgorithm for computing arO(%)
en and 2 sen in the arrangement We choose our sentineli$eto size separator.
be the dual of thes€®(2) lines. Letw:,ws,...,wm, Wherem =

O(1/¢), denote the points (sensors) forming the sentinel set. We ndw Finding & Minimum Link Separator
show how to use the signatusg W) to determine whether there is  The algorithm implicit in our proof only uses the vertices of the
ane-cut or the cut is below thg-cut threshold. See Figure 4 for anand b-levels. A minimum link separator, however, can use any lines
illustration. and verticesbetweenthese two levels. Our new algorithm performs

Given a separator of S|z@( ) between levelgn and % seninthe a plane-sweep over the arrangeméntS™), and for every edge
arrangementd (S*), the setW* of lines spanned by the separator(between levels: and b) computes the minimum number of turns
edges (the dual lines of the sentinels), and a signature ve¢tdt), necessary to reach it from the left horizon boundary. In this way, we
we can reporte-cuts as follows. If a sensow; is dead, then we can compute the optimal separator between the leveladb. The
know that the dual of any possible linear dutmust beabovew;. algorithm processe®(n?) vertices from left to right. Sorting the
Otherwise, we know that the dual must beloww; . In either case, vertices byz-coordinates require®(n?logn) time, which can be
one of the twohalfplanesdefined byw; is where the dual point done either in advance or online by updating an event queue. At every
L* could possibly be. We determine the common interseafioaf  vertex, onlyO(1) work is done. We record all computation @(n?)
all the m halfplanes, one for each;, which can be computed in space in order to be able to back-track and output a minimum link
O(mlogm) time by a standard divide and conquer algorithm [26separator when the line-sweep terminates. We compute an optimal
We then choose an arbitrary pojne C in this common intersection, size minimum link separator i(n? logn) time andO(n?) space.
and determine ifp lies above or below the separator. This can bBue to lack of space, we omit further details from this abstract.



Sentinels A Sentinels A

Fig. 5. The leftmost figure shows the uniform data fo= 5000; the middle figures shows the non-uniform data fioe= 5000; the rightmost figure shows
the US Census data (we show only a randomly sampled subset of points for clarity). In each case, we show a sentinekge0ioandn = 5000.

B. A Randomized Algorithm for Computing a Separator than14 K. All the results shown in this experiment are averaged over

The basic idea of our randomized algorithm goes back to ogrdifferent seed values for the random number generator.

combinatorial proof presented in Section Ill. Every time we used the
pigeon hole principle to find a below-average size level and a zig-zag 40

path, we can usendomlevel and zig-zag path. The random choice 35 | Non-Bﬂggm ]

will return a level or path of expected (average) size with constant US-Census

probability. # 30f 1
In particular, we begin by choosing two integers uniformly at E 25 L |

randoma € [Len, 2en] andb € [2en,en], and a random integer £

k € [a, b]. We then compute the zig-zag pattk). We show that each 3 20 ¢ i

segment of this path can be traced{nlogn) time. Again, due % 15 ,__7 g

to lack of space, we omit further details from this abstract. Since the & | o e

zig-zag pathz(k) has expected complexity (1), the algorithm runs %)

in expected timeO (2 logn). It is important to note that although 5r 1

the size of sentinel has probabilistic guarantees, the resulting zig- 0 ‘ ‘ ‘

zag path is always a separator between Ie\éeiﬁ anden. In our 1 3 5 7 9 11 13 15

experiments, we found that in practice the size of dhgentinel set Network Size (X 1000)
is consistently smaller than the worst-case combinatorial bound.

Fig. 6. The size of sentinel set vs. the network size.
V. EXPERIMENTAL EVALUATION

In this section, we describe our simulations results that are intendedy g predicted by the theory, the results (Figure 6) show that the size
to evaluate the scalability of our sentinel based scheme. We al§ohe sentinel set is independent of Moreover, the observed size
performed experiments comparing our scheme with some sSimpieihe sentinel set isignificantlysmaller than the worst-case bound

sampling-based methods. o . of Theorem 3.1. In all cases, the sentinel set was smaller than even
The geometric distribution of sensors is likely to vary widely frorq/a_

application to application. We, therefore, generated several random
and non-random distributions of points in the plane to model a varieBy Scalability withe

of sensor networks. We used three main data sets in our simulationj, this experiment, we evaluated the behavior of our scheme with
(1) uniform, (2) non-uniform, and (3) US census data. Figure 5 showgferent values of the cut threshold These experiments were
example distributions of these three sets. The uniform set conﬁainf,erformed with networks of a fixed size = 5000. We variede
random points uniformly distributed in a square. The non-uniform sgbm 0.001 to 0.1, and the result is shown in Figure 7; again, all
containsn points, equally divided amonj clusters. Each cluster is the results are averaged ovedifferent seed values for the random
centered at a random point, and the points in the cluster are genergigghper generator.

using & Gaussian distribution. The last set is a US Tiger Census maps expected, the size of the sentinel set increases as the vaiue of
which includes locations df4, 000 geographical features in the USA. gecreases. Still, the size of the sentinel sets in all cases is significantly

We chose these locations as positions for the sensors. smaller than the worst-case bound of Theorem 3.1. Even for very
Our first set of experiments show the scalability of the sentinel sefgall values ofz, saye = 0.001, the algorithm generates sentinel

as a function ofr ande. sets of size less thasD.

A. Scalability with Network Size C. Comparison with Other Schemes

In order to isolate the effect of network size, we ran all experiments We mentioned earlier that the problem of detecting network cuts
with a fixed value ofe = .01; the results are nearly identical withhas been raised in several papers, but no algorithms seem to have
other values ot. We generated networks of all three types (uniformheen proposed for it. Thus, we don’t have any specific algorithm to
non-uniform, and tiger), with varying from1000 to 14000; for the compare with. (The-approximation is not a good scheme, because
census data, we randomly chasepoints from the set for. smaller it requires a very large set of sentinels.)
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Fig. 8. False negatives:cuts not detected by the random and radial sampling

schemes. Our sentinel scheme has no false negatives.
Instead, we implemented two natural heuristics to evaluate their
effectiveness in comparison to our sentinel algorithm. Both schemes

10 ‘

are based on sampling. In the first one, calleddom sampling Random =——
we choose a certain number of sensors uniformly at random and "Radigl =
designate them as sentinels. Whenever any one of these chosen 8t Sentingl Set =—

sentinels is cut off, the algorithm declaressanut. In order to make 83
a fair comparison with our sentinel scheme, we choose the same_;
number of random nodes as the size of our sentinel set. A second@ 6r 1

scheme doesadial sampling we choosdW| directions uniformly,
and for each direction choose the-th extreme point, wher8V| is R
the size of the sentinel set for that instance. s 47 |
) . . LL
For each test case, we first run our sentinel algorithm to compute o
the sentinel setl’, and then us&V samples for the random sampling © oL J
and the radial sampling schemes. We evaluated the effectiveness of
these schemes usitiglse negativesindfalse positivesThat is, how " d
manye-cuts are missed by these schemes (false negatives), and how 0
many cuts reported as-cut are smaller tharn/2. Our sentinel .001 .01 .05 1
scheme yields no false positives or negatives, as guaranteed by theory. €

We fixedn = 5000, and varieds in the range[0.001, 0.1]. We
show the results averaged over all the datasets, because we forigdo. False positives: the cuts reported by the random and the radial
that the characteristics of error is very similar across different segampling that were below the approximation threshgleh. Our sentinel
We simulated a large number of random linear cuts, and measuféfeme has no false positives.
the false positives and negatives in each case.

For false negatives, we generat2@ cuts by randomly sampling
between thesn and 2en levels of the arrangement. All these aresampling schemes yield many false positives and negatives. Because
true e-cuts and, therefore, should be detected. Figure 8 shows tita sentinel scheme chooses its sentinels carefully based on the
the sentinel scheme correctly detects all these cuts, but the randgigiribution of points, in more irregular distributions, it can have
and radial sampling miss a significant fraction (betwd®f%o and significantly fewer sentinels than random sampling based methods.
40%) of thesee-cuts. We also ran experiments where cuts welRor instance, consider an example with three clustersnopoints
chosen randomly betweem and 10en levels, and the results were each near the corners of an isosceles triangle; the remainingen
essentially identical. points lie in a cluster near the center of the triangle. Our scheme picks

A further study (results not shown here) revealed that theseconstant number of sentinels from the 3 corners, which are sufficient
incorrect decisions are also arbitrarily bad in terms of quality. Witto detect alle-cuts. In random sampling, it will tak&(1 log Z)

e = .01, for instance, nearly% of the false negatives were in factsamples to ensure with probability— § that nodes from all three
cuts where more thafen of the sensors were cutoff; and some cutsorner clusters are selected. Similar constructions are possible for
of size up tol0en remained undetected. radial sampling too.

For false negatives, we generatg cuts by randomly sampling
between level 1 and Ievegsn. These cuts are all below the
approximation threshold, and so should not be reported. However, agVe proposed a simple, low-overhead scheme for detecting cuts
Figure 9 shows the random and the radial sampling schemes misregpaititions) in sensor networks. We show that lineaguts can be
some of them as cuts. detected by monitoring jusD(1) nodes of the network, which is

In conclusion, even for relatively well-behaved distributions, thasymptotically the best possible; a simple examplenotensors

VI. DISCUSSION ANDFUTURE DIRECTIONS
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