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Abstract— We propose a low overhead scheme for detecting a network
partition or cut in a sensor network. Consider a network S of n sensors,
modeled as points in a two-dimensional plane. Anε-cut, for any 0 < ε <
1, is a linear separation of εn nodes in S from a distinguished node,
the base station. We show that the base station can detect whenever an
ε-cut occurs by monitoring the status of justO( 1

ε
) nodes in the network.

Our scheme is deterministic and it is free of false positives: no reported
cut has size smaller than1

2
εn. Besides this combinatorial result, we also

propose efficient algorithms for finding the O( 1
ε
) nodes that should act

as sentinels, and report on our simulation results, comparing the sentinel
algorithm with two natural schemes based on sampling.

I. I NTRODUCTION

Wireless sensor networks (WSN) have emerged as an important
new technology for instrumenting and observing the physical world.
The basic building block of these networks is a tiny microprocessor
integrated with one or more MEMS (micro-electromechanical sys-
tem) sensors, actuators, and a wireless transceiver. These devices can
be embedded or scattered in large quantities in a physical space,
where they self-organize into anad hocmulti-hop wireless network,
allowing us to observe and monitor the world at an unprecedented
spatial and temporal resolution. A rich variety of scientific, commer-
cial, and military applications [7], [11], [25], [32] has been proposed
for sensor networks, and many experimental prototypes are under
development in academia and industry. Realizing the full potential of
the sensor networks, however, requires solving several challenging
research problems. Many of these challenges stem from two major
limitations of the sensor nodes: low power and low bandwidth.
Consequently, a number of proposals have been made for improving
the data collection and information processing in sensor networks,
including power-aware routing and scheduling [16], [24], [27], in-
network aggregation [15], [23], [28], query processing [13], data
storage management [12], etc.

In this paper, we address a different kind of challenge for sensor
networks, which does not seem to have received adequate attention.
How to monitor the sensor network itself, and how to detect when the
network has suffered a significant “cut”?After all, if sensor networks
are to act as our remote “eyes and ears,” then we need to ensure that
any significant failure (natural or adversarial) suffered by the network
is promptly and efficiently detected. Tracking the operational health
of the infrastructure is important in any communication network, but
it is especially important in sensor networks due to their unique
characteristics, and the need to perform this duty with very little
overhead.

In our view, power efficiency, scalability, and absence offalse
positivesare the three most important considerations for a scheme to
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detect network cuts. Because a sensor network’s lifetime is largely
determined by how well it conserves power, solutions where all sen-
sors are continuously monitored are both inefficient and unscalable.
Because sensor networks can vary in size from few hundred nodes
to hundreds of thousands, it is also desirable to design schemes that
are highly scalable, so that the task of cut detection does not end
up consuming a large part of the network resources. Finally, because
many sensor network applications envision unmanned and remote
deployment, failure detection schemes that yieldfalse positive, or
false negatives, are highly undesirable. With this motivation, we now
describe our problem setting.

A. Cuts in Sensor Networks

Consider a setS of n sensors, which are modeled as points in
the two-dimensional plane. (More generally, we can assume that the
sensors lie on a surface or terrain that is topologically equivalent to
the plane.) An adversary can make alinear cut through the sensor
network, disabling all the sensors on one side of the line; the base
station is assumed to lie on the other (safe) side. Formally, given a
line L, let L− andL+ denote the two half-planes defined byL, and
let L−(S) andL+(S) denote the subset of sensors that lie in these
half-planes. We will adopt the convention that the linear cut induced
by L disables all the sensors inL−(S). Alternatively, the adversary
can disrupt the communication so that sensors on one side of the line
cannot communicate with sensors on the other side, including the base
station. These two formulations are equivalent for our purpose. There
are other natural forms of cuts, such as circular cuts, rectangular cuts,
polygonal cuts. We will briefly discuss them in Section VI.

Fig. 1. 1000 sensor nodes, distributed uniformly at random, and a linear
cut. The sentinel nodes forε = 0.05 are shown as triangles.

We call a linear cut anε-cut if at leastε fraction of the sensors
are cut off, where0 < ε < 1 is a user-specified parameter. Formally,
L is an ε-cut if |L−(S)| ≥ ε|S|. Our primary focus in this paper



is to develop a low-overhead scheme for detectingε-cuts in sensor
networks.

Our scheme for detectingε-cuts will choose a small subset of
sensors, which act assentinels. Each sentinel will communicate with
the base station at a regular time interval. We assume that the base
station is not attacked, and it always lies in the safe halfplaneL+.
A communication failure from a sentinel is taken to mean that the
sentinel has been cut off. Our problem now becomes: can one choose
a small number of sensor nodes as sentinels so that (1) everyε-cut
can be detected based solely on the live/dead status of sentinels, and
(2) the algorithm does not report false positives. In Figure 1, we show
a collection of1000 sensor nodes, distributed uniformly at random,
and its sentinel set forε = 0.05.

Before describing our results, we first briefly discuss why we chose
ε-cuts as our definition, why avoiding false positives is challenging,
and why the detection scheme requires an approximation slack.

B. ε-Cuts

Theε-cuts are motivated both by practical and theoretical concerns.
It makes practical sense to treat failures as significant only when a
fraction of the network is cut. It may be tempting to ask for schemes
that detect failure of a fixed (user-specified)number of sensors,
regardless of the network size. However, no efficient and scalable
solution is theoretically possible in this case, as the following simple
example shows. Imaginen sensors arranged in a circle, and suppose
we want to detect cuts of sizem. Then, at least one sensor for every
m consecutive sensors must be chosen as a sentinel, which scales
very poorly with the network size.

C. False Positives

By monitoring sufficiently many randomly chosen sensors, one can
detect allε-cuts with high probability. For instance, a random sample
of sizeO( 1

ε
log 1

δε
) is sufficient to catch anyε-cut with probability

at least1 − δ [21], [22]. The algorithm simply declares anε-cut
whenever at least one of the chosen sensors fails. Unfortunately, this
simple scheme suffers from the false positives problem. Many cuts
reported by this algorithm, however, are false positives, where the
size of the failed network can be arbitrarily smaller thanεn. Indeed,
if one of the random samples happens to lie on the boundary of the
sensor field, then it can cause an alarm even if a single sensor is cut
off.

A more sophisticated form of sampling can effectively eliminate
false positives, but at the expense of a very large number of
sentinels. In particular, the concept ofε-approximationcan be used to
distinguish between all cuts larger thanεn and those smaller than, say,
1
2
εn. But anε-approximation requiresΘ( 1

ε2 log 1
εδ

) sentinel nodes. A
simple calculation, including the actual constants involved, however,
shows that even for modest values ofε = 0.1 andδ = 0.05, the size
of the sentinel set is at least10, 000! Thus, random sampling based
schemes are infeasible, due to false positives or due to unscalably
large size.

D. The Need for Approximation

Finally, we point out that we need to allow some approximation
slack between anε-cut and a false positive. If we demand that all
ε-cuts be reported, andno cut of size smaller thanεn be reported,
then no scalable solution exists. Consider, once again, the setting of
n sensors arranged in a circle. We claim that in this caseevery other
sensormust act as a sentinel. Otherwise, suppose that neither of the
two consecutive sensorsa andb is a sentinel. Now consider two cuts:
one, wherea is not cut butb and theεn−2 predecessors ofb are cut;

and second where the cut includesa, b and theεn− 2 predecessors
of b. These two cuts differ only ina but neithera nor b is a sentinel,
so the algorithm cannot distinguish between the two cuts. But, by the
strict ε-cut definition, the former is not a reportable cut, while the
latter is. We adopt the standard convention and set alower boundon
the size of any cut reported. Specifically, our algorithm successfully
will report every ε-cut and, at the same time, every reported cut
comes with a guarantee:at leastε/2 fraction of the network must
have been cut.The fraction1/2 is chosen to simplify our analysis,
and it can be replaced by any user specified parameter.

E. Our Contribution

Our paper makes three contributions. First, we prove a combi-
natorial result: for any positive real numberε < 1, there exists a
sentinel set of sizeO( 1

ε
), which can detect everyε-cut. Moreover,

every cut reported as anε-cut includes at least1
2
εn failed sensors. A

key point to note is that the size of the sentinel set depends only on
the parameterε, andnot onn, the size of the sensor network. Thus,
our construction is highly scalable. It is easy to see that the sentinel
size ofO( 1

ε
) is asymptotically optimal.

Second, we describe two efficient algorithms, a deterministic
algorithm for constructing a minimal sentinel set and a faster ran-
domized algorithm for computing a sentinel set of sizeO( 1

ε
). All

our algorithms are centralized, because we envision the entire process
taking place at a base station.

Finally, we implemented our scheme and ran simulations using a
variety of synthetic sensor network models. In our simulations, we
found that the size of sentinel set was always significantly smaller
than the worst-case bound of Theorem 3.1. We also compared our
sentinel algorithm with two variants of sampling-based schemes:
random sampling, and radial sampling. Our experiments show that
even for rather well-behaved sensor distributions, these methods
produce a significant number of false positives and false negatives.

F. Related Work

The problem of network partition in sensor networks has been
raised in several papers, but it appears not to have been investigated
formally. In their survey paper [6], Chong and Kumar raise this
problem with a security focus: sensor networks may operate in
hostile environments and schemes to detect tampering should be
built into the design. In [5], Cerpa and Estrin propose schemes for
self-configuring sensor network topologies. They mention network
partition as an important problem for which “complementary system
mechanisms will be needed,” but leave that as a future research
direction. In [19], Lifton, Broxton and Paradiso consider a network
disconnection problem, but with a very different focus: the nodes
are cooperative. For instance, sensor nodes with low battery power
communicate with the network to determine whether the network will
be partitioned if they failed. This is also an experimental paper, with
no formal algorithm analysis.

Our research is inspired by some recent work by Kleinberg et
al. [17], [18] on detecting failures in awired network. In Kleinberg’s
setting, the network is modeled as an undirected graph onn nodes;
an adversary can destroy up tok edges (or vertices); and the
detection algorithm installs a set of detection agents (equivalent
to our sentinels) that engage inpairwise communication. They are
interested in detecting when the graph is disconnected into two
subsets, each of size at leastεn. The main result in [17], [18] is that
every graph has a(ε, k)-detection set (number of sentinels) of size
O(k3 1

ε
log 1

ε
+ 1

ε
log 1

δ
), which can detect anε-cut with probability

1 − δ. There are three important differences between these results



and our results. One, because of the inherent geometric structure
of sensor networks, linear or other geometric partitions are more
natural than thek independent edge failures. Second, due to the
geometric structure of our problem, justO( 1

ε
) sentinels suffice in

our case, while in Kleinberg’s case, they require a much larger set
of monitoring nodes, as well as pairwise communication between
those nodes. Finally, our scheme yields nofalse positives, while the
algorithms proposed in [17], [18] suffer from false positives: every
ε-cut is detected, but not every cut detected in anε-cut. Indeed, they
do not provide any lower bound on the size of the cut.

The network partition problem has connections with the theory
of VC-dimension [31] andε-nets [22]. Unfortunately,ε-nets provide
only 1-sided guarantees:|R ∩ N | > 0 does not imply that|R ∩
S| ≥ εn. Thus,ε-nets make poor sentinels: they raise too many false
alarms.

An ε-approximation is a stronger form of sample. Given a set of
n points S, the ε-approximation intersects any range in (roughly)
the same proportion as it intersectsS, and so it would make a
nice sentinel set. Unfortunately, theε-approximation usually requires
too many points (sentinels): it has sizeO( d

ε2 log 1
εδ

). As mentioned
earlier, with constant factors included, even with modest values of
ε = 0.1 andδ = 0.05, the size ofε-approximation exceeds10, 000!

In [4], the notion of sensitive ε-approximations is introduced
as a generalization ofε-approximation. However, even sensitive
approximations haveO( 1

ε4/3 log 1
δε

) size for linear cuts, whereas our
sentinel sets have optimalO( 1

ε
) size. In addition, the deterministic

construction of sensitive approximations is quite involved.

II. GEOMETRIC PRELIMINARIES

The network topology and the communication protocol are not
directly relevant to our result. We simply assume that the sensor
network is connected and that every sensor is able to communicate
with a base stationthrough multi-hop routing, as long as a valid
communication path exists. We also assume that the location of every
sensor is available to the base station. A setS of n sensors scattered
in a terrain is modeled as a set ofn points in the plane (ignoring the
altitude of each sensor). Our problem of monitoring the integrity of
the sensor field is best studied in a geometric setting.

A. Sentinel Sets

We wish to detect if the sensor network has suffered a linear cut
of size at leastεn. We do so by monitoring a small subset of sensor
nodes, called thesentinel setW . An adversary can introduce a linear
cut, by disabling all sensors lying on the right sideL− of a lineL. It
is assumed that the base station lies on the safe side,L+. We call a
directed lineL anε-cut if its halfplaneL− contains at leastε fraction
of all the sensors; formally,L is a ε-cut if |L−(S)| ≥ εn.

We would like to point out that the base station hasno explicit
information about the lineL. It only learns thesignature vector
σ(W ) that represents the alive or dead status of the sentinel sensors;
that is,σ(W ) is a binary vector of length|W |. Our goal is to compute
a sentinel set ofsmall size that can detect everyε-cut correctly, but
never reports a cut of size less thancεn, for some constantc < 1.
For ease of presentation, we choosec = 1/2 in this paper, but all
our results generalize to any fixed value ofc, 0 < c < 1. With this
motivation, we have the following definition.

Definition 2.1: SupposeS is a set ofn sensors, andε > 0 is a
user-specified parameter. A subset of sensorsW , whereW ⊆ S, is
called anε-sentinel setif, for any linear cutL, we can decide whether
L is an ε-cut or thatL is a smaller thanε

2
-cut, by observing only

the signatureσ(W ).

Thus, the signature of anε-sentinel set will let us detect every cut
of size at leastεn. Furthermore, we would also know which cuts
have size less thanε

2
. In the gray area where the size of the cut is

betweenε
2
n andεn, the algorithm is free to go either way: report it

or ignore it.
Because the sentinels are points (sensor locations) in the plane,

there are preciselym(m − 1) = O(m2) combinatorially distinct
signaturesσ(W ) that correspond to linear cuts. Because the base
station cannot distinguish linear cuts that yield identical signatures,
the family of lines corresponding to a specific signatureσ(W )
cannot contain anε-cut and a less-than(ε/2)-cut simultaneously.
This insight suggests that the sentinel problem becomes aseparation
problem in a transformed space, which we describe next.

B. A Duality Transform

We use a point-line duality of the Euclidean plane. The dual of a
point p(a, b) is the linep∗ : y = ax − b and, conversely, the dual
of a (non-vertical) lineL : y = ax − b is the pointL∗ : (a, b).
The vertical lines can be handled by using a slightly more involved
projective duality. Instead, we use the simpler transform here, and
assume that all sensor nodes have distinctx-coordinates. In this way,
for every vertical line, there is a slightly perturbed non-vertical line
with the same signatureσ(S). It can be easily checked that the duality
transform inverts theabove-below relation: if point p lies above (resp.
below) lineL, then the dual linep∗ is below (resp. above) the dual
point L∗. A similar transform is used in Liu et. al. [20] for tracking
a linear shadow over a sensornet.

The duality transform maps our setS of n sensors into a setS∗

of n lines. Conversely, a linear cutL is transformed into a point
L∗. We point out that theorientation of L is lost in the duality.
We assume throughout that the lineL is oriented so that the right
halfplaneL− lies abovethe line L. Thus, in the linear cut induced
by L, all the sensors aboveL are cut off. A similar argument holds
when the halfplaneL− lies belowL. Thus, to cover both cases, we
will consider cuts where eitherεn points lie below the cut, orεn
points lie above the cut.
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Fig. 2. A set of7 points (left), and the corresponding dual arrangement
(right). The lines` and m dualize to points̀ ∗ and m∗, respectively. The
duality transform inverts the above-below relation; for instance, pointp5 lies
above line`, and its dual linep∗5 lies below the dual point̀∗. The 3-level of
the arrangement is shown in bold.

C. Line Arrangements and Levels

The set ofn lines S∗ in the dual plane form aline arrangement,
denotedH(S∗). The arrangement is a dissection of the plane into
convex polygons, some of which are unbounded. Thevertices of
the arrangement are the intersection points between pairs of lines;
the edgesof the arrangement are the line segments between two
consecutive vertices on a line. An arrangement ofn line has at most
n(n − 1)/2 vertices and at mostn(n + 1) edges. For technical



simplification, we assume that no more than 2 lines pass through
a vertex.

The set of edges in the arrangement that lie above exactlyk − 1
other lines form anx-monotone polygonal curve. This curve is called
thek-level of the arrangement. (A point(a, b) is abovek lines if the
ray {(a, y) : y < b} crosses exactlyk lines of the setS∗.) The 1-
level, for instance, is thelower envelopeof the arrangement. Ak-level
bends at every vertex along its way. See Figure 2 for illustration.

Consider a sentinel setW ⊆ S, and some linear cutL. The
signatureσ(W ) of W with respect toL tells us which sensors are
below the line L and which ones areaboveL. In the transformed
plane, this tells us which lines ofW ∗ pass above the dual pointL∗,
and which ones pass belowL∗. In order forW to be anε-sentinel,
we should be able to decidefor any pointL∗ whether at leastεn
lines ofS∗ pass belowL∗ or fewer thanεn/2 lines ofS∗ pass below
L∗, based solely on the signatureσ(W ). Thus,W is anε-sentinel if
for any pointL∗ we can tell ifL∗ lies above the(εn)-level or below
the (εn/2)-level of H(S∗) based on the location of the pointL∗ in
the arrangement formed byW ∗. The important point here is that we
want to determine the location of a point in the arrangement ofS∗,
but do so by looking only at the arrangement formed by the much
smaller setW ∗.

D. Minimum Link Separators in Arrangements

Given two disjoint simple polygonal curves,γ1 and γ2, in the
plane, aseparator% is a polygonal curve that partitions the plane
into two parts such thatγ1 and γ2 lie on opposite sides of%. A
minimum link separatorfor γ1 and γ2 is such a separator with the
minimum number of vertices (i.e., bends).

A minimum link separator% between theεn and theεn/2 levels
of the arrangementH(S∗) can efficiently distinguishε-cuts from
the less than(ε/2)-cuts. Specifically, ifL∗ lies belowρ then L is
certainly not anε-cut; and if L∗ lies aboveρ then L is surely an
(ε/2)-cut. A minimum link separator, in general, is free to use any
lines. However, in our setting, this separator will be used to form a
sentinel set, and therefore wemust use only the lines ofS∗ in the
minimum link separator. (Indeed, the previously known algorithms
for constructing separators did not require the separator be part of
the arrangement [10], [21].) Therefore, in the following discussion,
we define theseparator in an arrangementH to be a polygonal curve
that only uses the edges of the arrangementH.

III. C OMBINATORICS OFSENTINEL SETS

In this section, we prove our first main result and show that
there is a separator withO( 1

ε
) links. The sentinel set is formed by

choosing the points whose dual lines contain these links. We next
show that based on the signatureσ(W ) of this set, we can determine
in O( 1

ε
log 1

ε
) time if there is a linear cut of size at leastεn, or that

the cut is smaller thanεn/2. Since we do not know the orientation
of the cut, we make two sentinel sets: one for the separator of top
levels and and the other for bottom levels. If the signature of any one
of them indicates a cut of size at leastεn, then we declare there is
an ε-cut in the network.

A. Existence of a small sentinel set

The following theorem states our main combinatorial result.

Theorem 3.1:In an arrangement ofn lines in the plane, there is
always a separator of sizeO( 1

ε
) between levelsεn and 1

2
εn.

The proof of the theorem relies on a couple of technical lemmas
about separators and levels. Consider ana-level and ab-level in the

arrangement ofn lines in the plane, where0 ≤ a < b ≤ n. For
any integerk, wherea ≤ k ≤ b, we define a specificx-monotone
zig-zagseparator, denotedz(k), between thea-level and theb-level.
Informally, the separatorz(k) starts with the leftmost segment of the
k-level, follows that line until it runs into either thea-level or the
b-level at a vertex, at which point it “reflects” and follows the other
line determining that vertex. Thus, the pathz(k) zig-zags between
thea-level and theb-level. We note thatz(k) is anx-monotone path,
it only uses the lines of the arrangementH(S∗), and all its “bends”
are at convex vertices of thea-level or at reflex vertices of theb-
level; indeed, it can also have several consecutive bends along the
same level, on the reflex vertices ofa-level and the convex vertices
of b-level. See Figure 3 for an example.

zig−zag path z(k)

a−level

b−level

level

1
4
εn

2
3
εn

5
6
εn

εn

Fig. 3. A zig-zag path between two levels.

Altogether there are(b−a+1) such paths between thea-level and
the b-level, one for each value ofk betweena andb. The following
lemma notes that these paths are pairwise edge-disjoint.

Lemma 3.2:The(b−a+1) zig-zag separators between thea-level
and theb-level are pairwise non-overlapping; that is, they can only
intersect at vertices.

Proof: The leftmost edges of the zig-zag paths are pairwise
disjoint by definition. If two zig-zag paths, say,z(k) andz(k′) meet
at a vertexv and they reachv from the left on different lines, then
v cannot be a convex vertex of thea-level nor a reflex vertex of the
b-level, and so bothz(k) andz(k′) pass throughv without a bend.
If v is a convex vertex of thea-level or a reflex vertex of theb-level,
then only one zig-zag path can reach it from the left, and so only
one path leaves it on the right.

Thus, the total number of bends in all the(b−a+1) zig-zag paths
is upper-bounded by the number of convex vertices of thea-level and
the reflex vertices of theb-level. We, therefore, have the following
lemma.

Lemma 3.3:If the a-level and theb-level havex vertices in total,
then there exists a zig-zag path between them of size at most

x

b− a + 1
.

So, how many vertices can a single level of then-line arrangement
have? Unfortunately, determining the asymptotic complexity of levels
in line arrangement is a notoriously difficult problem in computational
geometry [9]. The best known upper bound for the complexity of
k level is O(nk1/3) due to Dey [8], and the best lower bound is



Ω(n · 2
√

log k) due to G. T́oth [29]. On the other hand, theaverage
size of the firstk level is always linear, by a result of Alon and
Győri [2]. In particular, they show that, for anyk, where1 ≤ k ≤ n,
the total size(number of vertices) of the levels 1 throughk is nk. We
use this result to show that there is a linear size level in the vicinity
of an εn level and of an(εn/2)-level.

Lemma 3.4:In an arrangement ofn lines in the plane, there is
always a level of size at most6n between the levels5

6
εn and εn.

Similarly, there is always a level of size at most4n between levels
2
3
εn and 1

2
εn.

Proof: By the result of Alon and Gy̋ori [2], the total complexity
of the first εn levels is at mostεn2. Clearly, this is also an upper
bound on the total complexity of the1

6
εn + 1 levels between levels

εn and 5
6
εn. By the pigeon hole principle, at least one of these levels

must have size at mostεn2/( 1
6
εn+1) ≤ 6n. An analogous argument

shows that there is a level of size at most4n between levels2
3
εn

and 1
2
εn.

We can now complete the proof of Theorem 3.1.

Proof: [of Theorem 3.1] Consider an arrangement ofn lines in
the plane. Choosea and b such that1

2
εn ≤ a ≤ 2

3
εn ≤ b ≤ εn,

and the size of thea level is at most4n and the size of theb-level
is at most6n; sucha andb exist by the preceding lemma. The total
size of these two levels is at most10n, and (b − a + 1) ≥ 1

6
εn.

By Lemma 3.3, we conclude that there is a zig-zag path of size
O( 1

ε
) between levelsa andb. This zig-zag path is clearly a separator

between theεn and the1
2
εn levels.

The constant factors in Theorem 3.1 are quite loose. Our primary
goal is simply of prove the asymptotic result that sentinel sets of size
O( 1

ε
) exist. Our simulations show that in practice the sentinels sets

are significantly smaller than the worst-case bound would indicate.

B. Detectingε-cuts from a signature

The εn sensors that are cut off may lie either below or above the
line. We, therefore, compute two separators, one to detect separation
of points below the cutting line, and the other to detect separation
above the line. In order to avoid unnecessary replication, we describe
our scheme for the lower separator, with the understanding that
the complete construction involves a symmetric application of the
algorithm for the other case as well.

We have shown that there is anO( 1
ε
) size separator between levels

εn and 1
2
εn in the arrangement. We choose our sentinel setW to

be the dual of theseO( 1
ε
) lines. Letw1, w2, . . . , wm, wherem =

O(1/ε), denote the points (sensors) forming the sentinel set. We now
show how to use the signatureσ(W ) to determine whether there is
an ε-cut or the cut is below theε

2
-cut threshold. See Figure 4 for an

illustration.
Given a separator of sizeO( 1

ε
) between levelsεn and 1

2
εn in the

arrangementH(S∗), the setW ∗ of lines spanned by the separator
edges (the dual lines of the sentinels), and a signature vectorσ(W ),
we can reportε-cuts as follows. If a sensorwi is dead, then we
know that the dual of any possible linear cutL must beabovew∗i .
Otherwise, we know that the dual must bebeloww∗i . In either case,
one of the twohalfplanesdefined byw∗i is where the dual point
L∗ could possibly be. We determine the common intersectionC of
all the m halfplanes, one for eachw∗i , which can be computed in
O(m log m) time by a standard divide and conquer algorithm [26].
We then choose an arbitrary pointp ∈ C in this common intersection,
and determine ifp lies above or below the separator. This can be
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Fig. 4. The intersection of the half-planes determined by the sentinel lines
is a cell of the arrangement.

done inO(log m) time because the separator isx-monotone and it
has m links: it is sufficient to find the linew∗ ∈ W ∗ (by binary
search) that lies directly above or belowp, and test against that. Ifp
is above the separator, we report that there is anε-cut. Otherwise, we
report that noε-cut exists.Due to lack of space, we omit the detailed
proof of correctness of this algorithm. Instead, we simply illustrate
the construction on an example.

Figure 4 shows an example with six sentinel nodes. Suppose that
only w2, w5, andw6 send signals to the base station, and sow1, w3,
andw4 are assumed to be cut off. The dual of anyε-cut must lie above
the linesw∗1 , w∗3 andw∗4 , and it must lie below the lines below the
lines w∗2 , w∗5 , andw∗6 . The common intersection of these halfplanes
is shown asC. A point p ∈ C lies above theε-separator (drawn in
bold line), and so we report anε-cut.

IV. COMPUTING A SENTINEL SET

Our proof of Theorem 3.1 directly leads to a deterministic al-
gorithm: we first compute thea and b levels, which are each
of linear size, then find all the zig-zag separators, and pick the
smallest one, which is guaranteed to have sizeO( 1

ε
) size. In the

following, we present two improved schemes. anO(n2 log n) time
deterministic algorithm for computing aminimum link separator, and
an O(n

ε
log n) time randomizedalgorithm for computing anO( 1

ε
)

size separator.

A. Finding a Minimum Link Separator

The algorithm implicit in our proof only uses the vertices of thea
and b-levels. A minimum link separator, however, can use any lines
and verticesbetweenthese two levels. Our new algorithm performs
a plane-sweep over the arrangementH(S∗), and for every edgee
(between levelsa and b) computes the minimum number of turns
necessary to reach it from the left horizon boundary. In this way, we
can compute the optimal separator between the levelsa and b. The
algorithm processesO(n2) vertices from left to right. Sorting the
vertices byx-coordinates requiresO(n2 log n) time, which can be
done either in advance or online by updating an event queue. At every
vertex, onlyO(1) work is done. We record all computation inO(n2)
space in order to be able to back-track and output a minimum link
separator when the line-sweep terminates. We compute an optimal
size minimum link separator inO(n2 log n) time andO(n2) space.
Due to lack of space, we omit further details from this abstract.
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Fig. 5. The leftmost figure shows the uniform data forn = 5000; the middle figures shows the non-uniform data forn = 5000; the rightmost figure shows
the US Census data (we show only a randomly sampled subset of points for clarity). In each case, we show a sentinel set forε = 0.01 andn = 5000.

B. A Randomized Algorithm for Computing a Separator

The basic idea of our randomized algorithm goes back to our
combinatorial proof presented in Section III. Every time we used the
pigeon hole principle to find a below-average size level and a zig-zag
path, we can use arandomlevel and zig-zag path. The random choice
will return a level or path of expected (average) size with constant
probability.

In particular, we begin by choosing two integers uniformly at
randoma ∈ [ 1

2
εn, 2

3
εn] and b ∈ [ 5

6
εn, εn], and a random integer

k ∈ [a, b]. We then compute the zig-zag pathz(k). We show that each
segment of this path can be traced inO(n log n) time. Again, due
to lack of space, we omit further details from this abstract. Since the
zig-zag pathz(k) has expected complexityO( 1

ε
), the algorithm runs

in expected timeO(n
ε

log n). It is important to note that although
the size of sentinel has probabilistic guarantees, the resulting zig-
zag path is always a separator between levels1

2
εn and εn. In our

experiments, we found that in practice the size of theε-sentinel set
is consistently smaller than the worst-case combinatorial bound.

V. EXPERIMENTAL EVALUATION

In this section, we describe our simulations results that are intended
to evaluate the scalability of our sentinel based scheme. We also
performed experiments comparing our scheme with some simple
sampling-based methods.

The geometric distribution of sensors is likely to vary widely from
application to application. We, therefore, generated several random
and non-random distributions of points in the plane to model a variety
of sensor networks. We used three main data sets in our simulation:
(1) uniform, (2) non-uniform, and (3) US census data. Figure 5 shows
example distributions of these three sets. The uniform set containsn
random points uniformly distributed in a square. The non-uniform set
containsn points, equally divided amongk clusters. Each cluster is
centered at a random point, and the points in the cluster are generated
using a Gaussian distribution. The last set is a US Tiger Census map,
which includes locations of14, 000 geographical features in the USA.
We chose these locations as positions for the sensors.

Our first set of experiments show the scalability of the sentinel sets
as a function ofn andε.

A. Scalability with Network Size

In order to isolate the effect of network size, we ran all experiments
with a fixed value ofε = .01; the results are nearly identical with
other values ofε. We generated networks of all three types (uniform,
non-uniform, and tiger), withn varying from1000 to 14000; for the
census data, we randomly chosen points from the set forn smaller

than14K. All the results shown in this experiment are averaged over
5 different seed values for the random number generator.
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Fig. 6. The size of sentinel set vs. the network size.

As predicted by the theory, the results (Figure 6) show that the size
of the sentinel set is independent ofn. Moreover, the observed size
of the sentinel set issignificantlysmaller than the worst-case bound
of Theorem 3.1. In all cases, the sentinel set was smaller than even
1/ε.

B. Scalability withε

In this experiment, we evaluated the behavior of our scheme with
different values of the cut thresholdε. These experiments were
performed with networks of a fixed sizen = 5000. We variedε
from 0.001 to 0.1, and the result is shown in Figure 7; again, all
the results are averaged over5 different seed values for the random
number generator.

As expected, the size of the sentinel set increases as the value ofε
decreases. Still, the size of the sentinel sets in all cases is significantly
smaller than the worst-case bound of Theorem 3.1. Even for very
small values ofε, say ε = 0.001, the algorithm generates sentinel
sets of size less than30.

C. Comparison with Other Schemes

We mentioned earlier that the problem of detecting network cuts
has been raised in several papers, but no algorithms seem to have
been proposed for it. Thus, we don’t have any specific algorithm to
compare with. (Theε-approximation is not a good scheme, because
it requires a very large set of sentinels.)
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Instead, we implemented two natural heuristics to evaluate their
effectiveness in comparison to our sentinel algorithm. Both schemes
are based on sampling. In the first one, calledrandom sampling,
we choose a certain number of sensors uniformly at random and
designate them as sentinels. Whenever any one of these chosen
sentinels is cut off, the algorithm declares anε-cut. In order to make
a fair comparison with our sentinel scheme, we choose the same
number of random nodes as the size of our sentinel set. A second
scheme doesradial sampling: we choose|W | directions uniformly,
and for each direction choose theεn-th extreme point, where|W | is
the size of the sentinel set for that instance.

For each test case, we first run our sentinel algorithm to compute
the sentinel setW , and then useW samples for the random sampling
and the radial sampling schemes. We evaluated the effectiveness of
these schemes usingfalse negativesand false positives. That is, how
manyε-cuts are missed by these schemes (false negatives), and how
many cuts reported asε-cut are smaller thanεn/2. Our sentinel
scheme yields no false positives or negatives, as guaranteed by theory.

We fixed n = 5000, and variedε in the range[0.001, 0.1]. We
show the results averaged over all the datasets, because we found
that the characteristics of error is very similar across different sets.
We simulated a large number of random linear cuts, and measured
the false positives and negatives in each case.

For false negatives, we generated250 cuts by randomly sampling
between theεn and 2εn levels of the arrangement. All these are
true ε-cuts and, therefore, should be detected. Figure 8 shows that
the sentinel scheme correctly detects all these cuts, but the random
and radial sampling miss a significant fraction (between10% and
40%) of theseε-cuts. We also ran experiments where cuts were
chosen randomly betweenεn and10εn levels, and the results were
essentially identical.

A further study (results not shown here) revealed that these
incorrect decisions are also arbitrarily bad in terms of quality. With
ε = .01, for instance, nearly8% of the false negatives were in fact
cuts where more than7εn of the sensors were cutoff; and some cuts
of size up to10εn remained undetected.

For false negatives, we generated250 cuts by randomly sampling
between level 1 and level1

2
εn. These cuts are all below the

approximation threshold, and so should not be reported. However, as
Figure 9 shows the random and the radial sampling schemes misreport
some of them as cuts.

In conclusion, even for relatively well-behaved distributions, the
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sampling schemes yield many false positives and negatives. Because
the sentinel scheme chooses its sentinels carefully based on the
distribution of points, in more irregular distributions, it can have
significantly fewer sentinels than random sampling based methods.
For instance, consider an example with three clusters ofεn points
each near the corners of an isosceles triangle; the remainingn−3εn
points lie in a cluster near the center of the triangle. Our scheme picks
a constant number of sentinels from the 3 corners, which are sufficient
to detect allε-cuts. In random sampling, it will takeΩ( 1

ε
log 1

εδ
)

samples to ensure with probability1 − δ that nodes from all three
corner clusters are selected. Similar constructions are possible for
radial sampling too.

VI. D ISCUSSION ANDFUTURE DIRECTIONS

We proposed a simple, low-overhead scheme for detecting cuts
(partitions) in sensor networks. We show that linearε-cuts can be
detected by monitoring justO( 1

ε
) nodes of the network, which is

asymptotically the best possible; a simple example ofn sensors



arranged in a circle gives a matching lower bound. In practice,
however, we expect even fewer than1

ε
sentinels, which is borne out

by our simulation results.
An important feature of our algorithm is the lack of false positives

or false negatives. Thus, every cut of sizeεn or larger is detected,
and no cut is reported unless it includes at least1

2
εn nodes.

One issue that we did not address is the noise or the inherent
instability of individual sensor nodes. If one of the sentinel nodes
dies naturally, it can mislead our algorithm. One possible way to
deal with the inherent unreliability of individual sensors is touse
multiple copies of sentinel sets. For instance, instead of one, we can
computek disjoint sentinel sets. Whenever anε-cut occurs, each
set independently will detect it. We can adopt the policy that we
report anε-cut only allk sets (or a majority of them) agree. Finding
cut-detection schemes that are inherently fault-tolerant to multiple
individual node failures is a challenging research problem, and a topic
of our future work. We have implicitly assumed that the network cut
does not destroy the communication path between any live sentinel
and the base station. If a live sentinel’s path does get disrupted, we
can use any of the reactivead hocnetwork protocols to discover and
set up a new path to the base station.

In this paper, we have tried to minimize the communication cost
for detecting linear cuts by using only a small number of sentinel
nodes. Different sets of sentinels, however, may lead to different
communication costs, and an important second-order optimization
would take this effect into account. Another way to minimize the
communication in the network would be to make the cut detection
more decentralized. These are both very practical questions and
natural directions for future work.

In this paper we have limited ourselves tolinear cuts. This is
an important and natural class of cuts, but a richer set of cuts
would includecircular cuts, rectangular cuts, and polygonal cuts.
These classes, including the polygonal cuts as long as the polygons
have only a constant number of sides, are ranges with a finite VC
dimension. Therefore, the basic method ofε-approximation can be
used to construct sentinel sets for each of these classes. Unfortunately,
as we mentioned earlier, the worst-case bounds forε-approximations
and sensitive approximations are not very attractive. We plan to
investigate if, using additional geometric insights, we can construct
near-linear size sentinel sets for these more general forms of cuts.
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