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ABSTRACT

Mambo [4] is IBM’s full-system simulator which models Pow-
erPC systems, and provides a complete set of simulation
tools to help IBM and its partners in pre-hardware develop-
ment and performance evaluation for future systems. Cur-
rently Mambo simulates target systems on a single host
thread. When the number of cores increases in a target
system, Mambo’s simulation performance for each core goes
down. As the so-called "multi-core era” approaches, both
target and host systems will have more and more cores. It
is very important for Mambo to efficiently simulate a multi-
core target system on a multi-core host system. Paralleliza-
tion is a natural method to speed up Mambo under this
situation.

Parallel Mambo (P-Mambo) is a multi-threaded implemen-
tation of Mambo. Mambo’s simulation engine is imple-
mented as a user-level thread-scheduler. We propose a multi-
scheduler method to adapt Mambo’s simulation engine to
multi-threaded execution. Based on this method a core-
based module partition is proposed to achieve both high
inter-scheduler parallelism and low inter-scheduler depen-
dency. Protection of shared resources is crucial to both cor-
rectness and performance of P-Mambo. Since there are two
tiers of threads in P-Mambo, protecting shared resources
by only OS-level locks possibly introduces deadlocks due to
user-level context switch. We propose a new lock mecha-
nism to handle this problem. Since Mambo is an on-going
project with many modules currently under development,

co-existence with new modules is also important to P-Mambo.

We propose a global-lock-based method to guarantee com-
patibility of P-Mambo with future Mambo modules.

We have implemented the first version of P-Mambo in func-
tional modes. The performance of P-Mambo has been evalu-
ated on the OpenMP implementation of NAS Parallel Bench-
mark (NPB) 3.2 [12]. Preliminary experimental results show
that P-Mambo achieves an average speedup of 3.4 on a 4-
core host machine.

Keywords
architectural simulation, parallel simulation, dynamic bi-
nary translation
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1. INTRODUCTION

Both industry and academia have relied on architectural
simulators [5, 13, 10, 3, 7, 16, 11] in system architecture
design, software development and performance evaluation
during past decades. Mambo [4] is IBM’s full-system sim-
ulator which models the PowerPC-based [8] systems, and
provides a complete set of simulation tools to help IBM and
its partners in pre-hardware development and performance
evaluation for future systems [15, 1, 6, 14]. Mambo supports
both functional and cycle-accurate simulation modes:

e Functional modes emulate the PowerPC Instruction
Set Architecture [8] and devices necessary for execut-
ing the operation systems. The basic implementation
of functional modes is called "simple mode” , which is
based on per-instruction interpretation. An enhance-
ment called "turbo mode” has been made to signifi-
cantly improve the performance of simple mode by the
so-called "dynamic binary translation(DBT)” technol-
ogy [17, 9, 2]. Major ideas of DBT are to dynamically
translate target binary codes to host binary codes, and
directly execute the host binary codes on a host ma-
chine. Currently turbo modes support x86, x86_64,
POWER and PowerPC host systems;

e Cycle-accurate modes provide the capability to gather
detailed information of target systems, such as cycle
numbers, cache miss ratios and bus traffic. Cycle-
accurate modes require a detailed modeling of the Pow-
erPC processor micro-architecture, such as out-of-order
execution pipelines and memory-hierarchy with coher-
ent caches. A typical simulation of cycle-accurate modes
is 2~3 orders of magnitude slower than turbo modes.

Currently Mambo simulates target systems on a single host
thread. When the number of cores increases in a target sys-
tem, Mambo’s simulation performance for each core goes
down. As the so-called "multi-core era” approaches, both
target and host systems will have more and more proces-
sor cores. It is crucial for Mambo to efficiently simulate a
multi-core target system on a multi-core host system. Par-
allelization is a natural method to speed up Mambo under
this situation. However, there are challenges in parallelizing
Mambo:



1. Protecting shared resources from concurrent accesses
is critical to parallelizing a sequential program. The
simulation engine of Mambo is a user-level thread-
scheduler. A Mambo module can be regarded as a
user-level thread. There are 2 tiers of threads in P-
Mambo. One is OS-level, the other is user-level. Pro-
tection of share resources should be carefully designed
to avoid deadlocks and minimize overhead;

2. Parallelizing turbo modes of Mambo introduces some
unique challenges related to dynamic binary transla-
tion. For example, the PowerPC architecture supports
self-modifying codes, i.e. target binary codes are pos-
sibly generated on-the-fly. It is critical to both correct-
ness and performance of P-Mambo to detect the mod-
ified codes and keep coherency of translation caches
among multiple host threads; and

3. Mambo is an on-going project. Many teams are devel-
oping new modules for Mambo to support new target
processors and devices. Although the existing modules
can be modified to guarantee their correctness in par-
allel execution, a mechanism is needed to ensure that
P-Mambo can co-exist with new modules, which are
possibly not thread-safe in a parallel environment.

We have implemented the first version of P-Mambo in func-
tional modes. Some benchmarks have been tested to eval-
uate its performance. The host machine is an IBM Blade
Center LS21, which has two dual-core AMD Opteron 275
processors and 8GB memory. The target machine is a 4-
core PowerPC machine with 6GB memory. The benchmark
set is the OpenMP implementation of NAS Parallel Bench-
mark (NPB) 3.2 [12]. The experimental results show that
the maximum and average speedups of P-Mambo are 3.8
and 3.4 respectively.

The reminder of the paper is organized as follows. Section 2
presents our design and implementation of P-Mambo. Sec-
tion 3 shows the experimental results of P-Mambo on NPB
benchmark set. Finally, Section 4 concludes the paper.

2. DESIGN AND IMPLEMENTATION

In this section, we first present our design on simulation en-
gine enhancement and module partion in P-Mambo. Then
we describe implementation details to attack challenges men-
tioned in section 1, which are shared resource protection,
co-existence with new modules and handling of DBT-related
issues in P-Mambo.

2.1 Simulation Engine Enhancement

Mambo is a discrete event-driven simulator. A scheduler
(named tsim) sorts and schedules all modules (named jobs)
by their trigger time in Mambo. Figure 1 illustrates a job
queue of a tsim. To simplify the development effort while
still precisely modeling hardware events, tsim is implemented
as a user-level thread-scheduler [4]. Each job is regarded as
a user-level non-preemptive thread on tsim. Below is an
example job simulating a core.

Time

Figure 1: Ready queue of a tsim

while (! core->stop)

{
Fetch_Instruction(&core, &inst);
Decode_Instruction(&core, &inst);
Execute_Instruction(&core, &inst);
Check_Interrupt_Exception(&core, &inst);
do_delay(inst->delay);

}

After invoking do_delay(inst->delay), the job is switched
out and re-activated inst->delay cycles later. By this way,
multiple cores can be simulated in an interleaving manner.
Tsim also provides primitives for inter-job synchronization.
For example, a producer job can wake up a consumer job by
a counter [4] when data becomes ready.

As a user-level thread-scheduler, tsim supports only one
active job at any time. Mambo is implemented as a se-
quential simulator because there is only one tsim to sched-
ule Mambo’s modules. We have two choices to parallelize
Mambo:

1. creating multiple tsims, each of which runs on a dedi-
cated host thread; and

2. enhancing tsim to support the execution of multiple
active jobs on multiple host threads.

Both choices faces the same problem of what group of jobs
can be executed simultaneously. We prefer the first choice,
because the second introduces more complexity and over-
head in protection of tsim internal data structure. There are
three challenges once we have multiple concurrent tsims:

1. how to partition jobs among tsims to allow maximum
parallelism;

2. how to support job interactions across tsims with min-
imum overhead; and

3. how to protect shared resources accessed by multiple
jobs with minimum overhead.



2.2 Job Partition

Job partition determines parallelism and interaction between
different tsims, and thus is crucial to performance. We
choose core-based job partition due to following reasons: 1)
in functional modes, most workloads are from the simula-
tion of processor cores; 2) there exists natural parallelism
between different cores; and 3) the data dependency between
different cores is low.

The general rules to create jobs on tsims are as follows:

1. jobs belonging to the same target processor should be
created on the same tsim;

2. jobs belonging to different target processors can be cre-
ated on different tsims.

The number of tsims created can be customized in P-Mambo.
Users can create as many host threads as they want. By this
way, users can simulate a target machine with more proces-
sor cores than the host machine.

2.3 Job Interactions

There are two types of job interactions in tsim: 1) one job
wakes up another job; 2) one job blocks anther job. Both
of them are implemented by ready or waiting queue manip-
ulations. Thread-safety should be guaranteed for inter-tsim
job interactions. One possible implementation is to simply
serialize accesses to shared queues by locks. However, there
is only one ready queue in a tsim. Each time a tsim switches
from one job to another, the ready queue is accessed. Ob-
taining and releasing lock for each ready queue access intro-
duce too much overhead. We improve the implementation
by adding another ready queue named external ready queue
to tsim. A job is inserted into the external ready queue when
it is waken up by a job on another tsim. The ready queue
access in job switch is implemented as follows:

//Getting next ready job
if (tsim->external_readyq == NULL)

{
get_next_ready_job(tsim->internal_readyq) ;
}
else
{
lock(tsim->external_readyq) ;
get_next_ready_job(tsim->external_readyq) ;
unlock(tsim->external_readyq) ;
}

Since the external ready queue is empty in most cases, the
overhead of obtaining and releasing lock is low.

2.4 Shared Resource Protection

Protecting shared resources from concurrent accesses is crit-
ical to both correctness and performance of parallelizing a
sequential program. Lock is a common technique to serialize
all accesses to shared resources. However there are 2 tiers of
threads in P-Mambo. One is OS-level (inter tsim), the other
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is user-level (intra tsim). Due to these two tiers of threads,
deadlocks in P-Mambo are different from that in traditional
multi-threaded programming. Competition for one type of
shared resource introduces no deadlock in traditional multi-
threaded programming, however may result in deadlocks in
P-Mambo.

Here is an example of deadlock competing only one type
of shared resource in P-Mambo. Load Reserve (larx) and
Store Conditional (stcx) instructions are used in implement-
ing atomic operations in the PowerPC architecture [8]. A
larx instruction creates a reservation for an address. A stcx
instruction successfully performs a store to the address only
if the reservation created by the previous larx is not cleared
by another processor or mechanism. Therefore, stcx instruc-
tions should be serialized to guarantee the correctness in
P-Mambo. Below is the code segment of handling stcx in-
structions using OS-level lock to guarantee thread-safety.

// handling Store Conditional instructions
stcx(Address addr, Value v)
{

os_level_lock(reservation(addr));

clearing_reservation(reservation(addr));
if (core->reservation_addr != addr)
{
os_level_unlock(reservation(addr));
return (RESERVATION_LOST);
}
else
write_memory_with_latency(addr, v);

os_level_unlock(reservation);
return (SUCCESS);

Consider a scenario of simulating four cores on two tsims.
There are core job 1 and 2 on tsim 1. Deadlock occurs if the
events happen in the following sequence:

e job 1 obtains lock for a reservation;

e job 1 is switched out by write_memory_with_latency;

e job 2 is switched in and tries to obtain lock for the
same reservation.

This case shows that accesses to shared resource with tsim-
level context switch can not be protected by OS-level locks.
We propose job-level lock to attack the problem. The major
idea is that failure in competing job-level lock results in only
hanging up current job, instead of blocking host thread of
current tsim. Below are the pseudo codes of obtaining and
releasing a job-level lock.



job_level_lock(job_lock* 1)
{
os_level_lock(l->os_lock);

if (1->counter > 0) {
add_to_wait_queue(l->wait, current_job);
os_level_unlock(l->os_lock);
switch_to_next_ready_job();

}

else
1->counter = 1;

os_level_unlock(l->o0s_lock);

}

job_level_unlock(job_lock* 1)
{

os_level_lock(l->o0s_lock);

1->counter —-;
wake_up_the_first_job(l->wait);

os_level_unlock(l->o0s_lock);

}

2.5 Co-existence with New Modules

Mambo is an on-going project. Many teams are developing
new modules to support new target processors and devices.
Although existing jobs can be modified to guarantee their
correctness in parallel execution, the new jobs are possibly
not thread-safe. It would be a disaster that P-Mambo is
broken each time a new job is introduced.

We use a tsim-level-lock to solve this problem. A tsim-level-
lock can be regarded as a global lock among all tsims. Once
it is obtained by a tsim, all other tsims should wait until it
is released. Furthermore, an attribute thread-safety is added
to all jobs. Each job is set as thread-unsafe by default. A
job can be set as thread-safe only if its thread-safety can be
guaranteed. And two new scheduling rules are also needed:

1. before switching to a thread-unsafe job, a tsim should
ask all others to wait by requiring a tsim-level lock;
and

2. after leaving a thread-unsafe job, a tsim should wake
up all others by releasing the tsim-level lock.

By the rules above, P-Mambo can ensure that no thread-
unsafe job intervenes with each other, i.e., execution of all
thread-unsafe jobs is serialized. Therefore, the correctness
can be guaranteed.

2.6 Handling of DBT Issues

Mambo turbo mode is based on dynamic binary translation.
It includes two major components: binary translator and
translation cache. Binary translator is responsible for gen-
erating host binary codes based on target codes, so it can be
shared by multiple tsims in nature. Translation cache con-
tains the generated host codes for direct execution, and then
can not be shared by multiple tsims without any protection.
There are three cases that translation cache is modified:
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Figure 3: Handling of self-modifying codes and
translation cache flush

1. adding a new cache item by translating a new target
page;

2. flushing a cache item due to some reason, such as trans-
lation cache overflow; and

3. modifying a cache item due to self-modifying codes.

For the first case, it is impossible that when a tsim is go-
ing to translate a new page, some others are executing the
un-translated codes. Therefore, OS-level lock is enough to
handle this case. Figure 2 illustrates the basic idea to handle
the translation of a new target page in P-Mambo.

For the second and third cases, it is possible that some other
tsims are executing the codes of a cache item when a tsim
wants to modify or invalidate it. A tsim can only modify or
invalidate a cache item when there is no other executing the
codes of the item. Figure 3 shows the steps to handle self-
modifying codes and translation cache flush in P-Mambo.
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Figure 4: Speedups on 2 host threads

3. PERFORMANCE EVALUATION

We have implemented the first version of P-Mambo in func-
tional modes. Some benchmarks have been tested to eval-
uate the performance of P-Mambo. The benchmark set is
the OpenMP implementation of NAS Parallel Benchmark
(NPB) 3.2 [12]. The host machine is an IBM Blade Center
LS21, which has two dual-core AMD Opteron 275 proces-
sors and 8GB memory. The target machine is a 4-core Pow-
erPC machine with 6GB memory. The target OS is linux
2.6.16(ppc64), while the host OS is linux-2.6.18(x64_64).

We evaluate the performance of P-Mambo under two cases:
one is creating two host threads, the other is creating four
host threads. Figure 4 summarizes the speedup of P-Mambo
in the case of creating two host threads. Please note that
”bt.A” means benchmark bt with size of Class A. Since
P-Mambo is a full-system simulator, the whole simulation
time of a benchmark includes overhead of booting OS. The
speedup with overhead is calculated by the whole simula-
tion time of a benchmark, while the speedup without over-
head is calculated by the pure workload simulation time of
a benchmark. The results show that P-Mambo achieves the
maximum and average speedups (without overhead) of 1.9
and 1.8 respectively when running on two host threads.

Figure 5 summarizes the speedup of P-Mambo in the case of
creating four host threads. P-Mambo shows its scalability
and achieves the maximum and average speedups (without
overhead) of 3.8 and 3.4 respectively when running on four
host threads.

4. CONCLUSIONS

Mambo is IBM’s full-system simulator which supports both
functional and cycle-accurate simulation modes, and hence
helps IBM and its partners in both pre-hardware develop-
ment and performance evaluation for future systems. How-
ever, Mambo is a sequential program, its performance goes
down as the number of cores increases in a target system.
Thereby how to benefit from a multi-core host system in
simulating a multi-core target system is critical to Mambo,
when the so-called "multi-core era” approaches. Paralleliza-
tion is a natural way to speedup Mambo under this situa-
tion. We have implemented the first version of P-Mambo
in functional modes. The performance evaluation on NAS
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Figure 5: Speedups on 4 host threads

Parallel Benchmark (NPB) 3.2 shows promising speedups:
P-Mambo achieves the maximum and average speedups of
3.8 and 3.4 respectively, in the case of simulating a 4-core
PowerPC machine on a 4-core AMD Opteron machine.

Our next step is parallelizing Mambo in cycle-accurate modes.
It is much more difficult to parallelize cycle-accurate modes
than functional modes, because there are more dependen-
cies existing in cycle-accurate modes than functional modes.
There are possibly two critical issues of parallelizing cycle-
accurate Mambo: 1) how to efficiently exploit system-level
parallelism among different cores, as well as micro-architecture-
level parallelism among different core components; and 2)
how to achieve a reasonable trade-off between performance
and accuracy.
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