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Abstract 

The goal of this paper is to predict future horizontal eye movement 

trajectories within a specified time interval. To achieve this goal a 

linear horizontal oculomotor plant mechanical model is developed. 

The model consists of the eye globe and two extraocular muscles: 

lateral and medial recti. The model accounts for such anatomical 

properties of the eye as muscle location, elasticity, viscosity, eye-

globe rotational inertia, muscle active state tension, length tension 

and force velocity relationships. The mathematical equations 

describing the oculomotor plant mechanical model are transformed 

into a Kalman filter form. Such transformation provides 

continuous eye movement prediction with a high degree of 

accuracy. The model was tested with 21 subjects and three 

multimedia files. Practical application of this model lies with direct 

eye gaze input and interactive displays systems as a method to 

compensate for detection, transmission and processing delays. 

CR Categories: I.6.4 [Simulation and Modeling]: Model 

Validation and Analysis; J.7 [Computers in Other Systems]: 

Process control, Real time. 

Keywords: Eye movement prediction, oculomotor plant, 

Kalman filter, human computer interaction. 

1 Introduction 

Direct eye-gaze input [Jacob 1995; Murtagh et al 2002; 

Komogortsev 2007a] and interactive display systems are prone to 

delays. The delays are comprised of detection, processing and 

transmission times. Depending on the specific case the delays can 

reduce a system’s performance and introduce interaction errors. 

Eye movement prediction is one of the ways to compensate for the 

delay effects.  

We explored the idea of the eye movement prediction in our 

previous work [Komogortsev 2007a], a live system was created 

[Komogortsev 2007b] using this concept for delay compensation. 

In that system the vertical and horizontal eye movement 

component was predicted by a Two State Kalman Filter (TSKF), 

two states being eye position and velocity. This paper improves the 

accuracy of the eye movement prediction in the horizontal plane by 

building a linear Oculomotor Plant Mechanical Model (OPMM). 

Oculomotor plant is defined here as an eye globe plus extraocular 

muscles. The model is adopted from Bahil’s work [Bahill 1980]. 

There are two major contributions added to the model a) the ability 

to start a saccade from any eye location b) the ability to make 

saccade in any direction in the horizontal plane. The mathematical 

equations describing the OPMM are transformed into a Kalman 

filter form that continuously predicts the eye movement signal. 

Kalman filter is selected because of its ability to minimize the error 

between the measured and the estimated eye position [Brown and 

Hwang 1997] and detect the onset of saccades [Sauter 1991]. We 

call the resulting model Oculomotor Plant Kalman Filter (OPKF). 

The OPKF has six states that consist of: angular eye position, 

velocity, muscles’ locations, and muscles’ forces. 

Our simulation results that consisted of 21 subjects and three test 

multimedia files show a 18-28% of increase in accuracy of 

prediction during saccades and 7-13% increase overall when 

OPKF model is used instead of the TSKF model. 

2 Human Visual System 

Our vision is provided by our eyes. There are three major eye 

movement types: fixations, saccades and pursuits [Duchowski 

2003], that move our eyes around and provide various quality of 

vision. The eye movement prediction model should be capable of 

predicting the eye movement signal during all eye movements, 

therefore the goal of this section is to describe mechanical 

elements modeling the anatomical structure of the eye and provide 

mathematical equations describing oculomotor plant during 

various eye movement types. 

2.1 Extraocular Muscles & Neuronal Control 

The eye globe rotates in its socket through the use of six muscles. 

These six muscles are: the medial and the lateral recti – the 

muscles responsible for horizontal eye movements; superior and 

inferior recti – the muscles responsible for vertical eye movements; 

superior and inferior oblique – the muscles responsible for eye 

rotations around its primary axis of sight; and vertical eye 

movements. The brain sends a neuronal control signal to each 

muscle to direct the muscle to perform its work. A neuronal control 

signal is anatomically implemented as a neuronal discharge that is 

sent through a nerve to a designated muscle from a specific part of 

the brain [Sparks 2002]. The frequency of this discharge 

determines the level of muscle innervation and results in a specific 

amount of work that a muscle can perform. During saccades the 

neuronal control signal for each muscle resembles a pulse-step 

function [Bahill 1980]. The eye position during the onset of a 

saccade, the saccade’s amplitude and direction define pulse and 

step parameters of the control signal. During eye fixations neuronal 

discharge is performed at a constant rate that is linearly related to 

the eye position. 
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2.2 Oculomotor Plant Mechanical 

Model 

The OPMM developed in this paper represents 

the anatomy of the right eye, though the model 

can be easily modified to work for the left eye 

as well. Positive amplitude saccades are 

defined as saccades that move the right eye 

rightwards. Such saccades are performed by the 

lateral rectus (the muscle that is closer to the 

ear) as the agonist and by the medial rectus (the 

muscle that is closer to the nose) as the 

antagonist. The agonist muscle pulls the eye 

globe in the required direction and the 

antagonist muscle resists the pull. Negative 

amplitude saccades are defined as saccades that 

move the right eye leftwards, they are executed 

by the lateral rectus as the antagonist and by 

the medial rectus as the agonist. The 

antagonist’s muscle parameters are identified 

with AG subscript (example NAG, BAG), 

antagonist with ANT, lateral rectus with LR 

and medial rectus with MR. Note that either the 

lateral or the medial recti can play the role of 

the agonist or the antagonist. Parameters 

without those subscripts are identical to both 

types of muscles. The eye globe’s radius is 

assumed to be 11mm. 

We present the neuronal control signal values 

and force equations necessary to generate 

fixations and saccades of the negative and 

positive amplitudes. The lateral and the medial 

recti are modeled through a system of 

mechanical components mimicking the 

anatomical properties of a muscle.  

2.2.1 Muscle Properties 

A muscle is a very complex structure [Wilkie 

1976]. The Muscle Mechanical Model (MMM) 

can be represented through several 

components. These components are the 

following: passive elasticity, active state 

tension, a series elasticity, a length-tension 

component and a force velocity relationship 

[Bahill 1980; Collins 1975; Robinson et al. 

1969].  

Passive Elasticity: Each body muscle in the rest 

state is elastic. The rested muscle can be 

stretched by applying force. The muscle 

extension is proportional to the force applied. 

The passive elasticity results largely from the 

meshwork of connective tissue within the 

muscle, whose fibers become progressively 

taut when the muscle is stretched [Wilkie 

1976]. The passive muscle component is non 

linear, but in this paper it is modeled as an 

ideal linear spring. The numerical value for the 

spring coefficient representing passive 

elasticity was estimated by Collins [Collins 

1975] to be Kp=0.5 grams of tension per 

degree. 

Figure 1. The Oculomotor Plant Mechanical Model employed for positive amplitude

saccades. Arrows show the direction of forces for each component. ∆θ – eye

rotation. J is the rotational inertia of the eye globe.
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Figure 2. The Oculomotor Plant Mechanical Model employed for negative

amplitude saccades.
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Active State Tension: Each muscle produces active state tension 

when it is stimulated. If  stimulated by a single wave of neurons a 

muscle twitches then relaxes. A muscle goes into the tetanic state, 

when it is stimulated by neurons at a specific frequency 

continuously [Wilkie 1976]. The frequency of the neuronal 

discharge is determined by the brain, depending of the type of the 

eye movement and eye position. When a tetanic stimulation 

occurs, a muscle develops tension, trying to contract. The resulting 

tension is called the active state tension. The intensity of the active 

state tension depends upon the frequency of the neuronal 

discharge. An ideal force generator component is used in the 

MMM to represent active state tension as FLR for lateral rectus and 

as FMR for medial rectus 

Length Tension Relationship: The tension that a muscle develops 

as a result of neuronal stimulation partially depends on its length. 

Usually the tension in a significantly contracted muscle is less than 

the maximum tension that a muscle is capable of creating at its 

optimal length. A length tension  effect occurs due to the following 

reasons: when a stimulated muscle is lengthened considerably, the 

area of overlap of thick and thin filaments (anatomical components 

responsible for muscle contraction) diminishes and as a result the 

muscle’s active state tension diminishes as well. When a 

stimulated muscle is shortened considerably the thin and thick 

filaments interfere with the series elastic elements of the muscle, 

absorbing part of the tension developed, thus reducing the overall 

active state tension. Additionally when a muscle is significantly 

shortened, neuronal stimulation does not reach inner muscle 

contractile fibers [Wilkie 1976]. Each of these phenomena 

contributes to a non linear relationship between the tension and 

length. Nonetheless, in this paper length tension relationship is 

modeled as an ideal linear spring. The linear coefficient KLE of the 

spring was measured by Bahill [Bahill 1980] to be 1.2 grams of 

tension per degree. 

Series Elasticity: The series elasticity is in series with the active 

force generator, hence the name. Anatomically, spring elasticity 

components are located on the tendon and in myosin and in the 

actin bridges of the muscle fibers. In the MMM series elasticity 

component is modeled as an ideal linear spring. The linear 

coefficient KSE of the spring was measured by Collins [Collins 

1975] to be 2.5 grams of tension per degree. 

Force Velocity Relationship: This relationship shows that a muscle 

is capable of producing larger forces at lower velocities. This 

dependency of force upon velocity varies for different levels of a 

neuronal control signal and depends on whether a muscle shortens 

or being stretched. It is believed that the force velocity relationship 

exists due to the different rates of chemical reactions inside a 

muscle at various length-changing velocities [Wilkie 1976]. Bahill 

suggests using linear dashpots BAG for the agonist muscle and 

BANT for the antagonist muscle [Bahill 1980]. In our model, the 

velocity of muscle contraction is connected to a change of length 

in the length tension component of the muscle and represented by 

the following variables: ∆θ LT _LR  - lateral rectus, ∆θ LT _MR - medial 

rectus. 

2.3 Saccades of the positive amplitude 

Saccades of the positive amplitude are performed by the OPMM 

presented in Figure 1. The eye is rotating by the distance of ∆θ 

degrees.  Prior to a saccade the displacement (distance from its 

equilibrium length) inside of the of series elasticity component of 

lateral rectus is θSE_LR, and legth tension component θLT_LR. 

Therefore the total displacement inside of the lateral rectus is 

θLR=θSE_LR+θLT_LR. Similar logic applies to the medial rectus. 

2.3.1 Agonist Muscle Mechanical Model of Lateral 

Rectus  

Right part of Figure 1 shows neronal firing inducing the 

contraction of the lateral rectus by generating the active state 

tension. During contraction the length tension component shortens 

by ∆θLT_LR, the series elasticity component lengthens by ∆θSE_LR, 

resulting in the eye rotation of ∆θ degrees.  

Forces that work inside of the agonist MMM during eye rotation 

can be broken into two force groups. The first group consists of the 

active state tension FLR; length tension force 𝐾𝐿𝑇 𝜃𝐿𝑇_𝐿𝑅 − ∆𝜃𝐿𝑇_𝐿𝑅 , 

working in the same direction as FLR; damping force 

−𝐵𝐴𝐺∆𝜃 𝐿𝑇_𝐿𝑅 , accounting for the force velocity relationship resists 

the contraction of lateral rectus. Note that the amount of resistive 

force produced by the damping component is based upon the 

velocity of contraction of the length tension ∆𝜃 𝐿𝑇_𝐿𝑅 . Summing the 

forces of the first group we get following equation:  

𝑇𝐿𝑅 = 𝐹𝐿𝑅 + 𝐾𝐿𝑇 𝜃𝐿𝑇_𝐿𝑅 − ∆𝜃𝐿𝑇_𝐿𝑅 − 𝐵𝐴𝐺∆𝜃 𝐿𝑇_𝐿𝑅   1 

The second force group consists of the series elasticity component 

that propagates force 𝑇𝐿𝑅 , generated by the first group, to the eye 

globe.  Series elasticity component is a linear spring therefore 𝑇𝐿𝑅  

can be computed as: 

𝑇𝐿𝑅 = 𝐾𝑆𝐸(𝜃𝑆𝐸_𝐿𝑅 + ∆𝜃𝑆𝐸_𝐿𝑅) 2 

Equations 1 and 2 can be rearranged in a form that calculates force 

TLR in terms of the eye rotation ∆𝜃, and displacement ∆𝜃𝐿𝑇_𝐿𝑅 . 

𝑇𝐿𝑅 =
𝐹 𝐿𝑅𝐾𝑆𝐸

𝐾𝑆𝐸 + 𝐾𝐿𝑇
−
∆𝜃𝐾𝑆𝐸𝐾𝐿𝑇
𝐾𝑆𝐸 + 𝐾𝐿𝑇

− 𝐵 𝐴𝐺∆𝜃 𝐿𝑇_𝐿𝑅  3 

𝑇𝐿𝑅 = 𝐾𝑆𝐸 ∆𝜃𝐿𝑇_𝐿𝑅 − ∆𝜃  4 

where 𝐹 𝐿𝑅 = 𝐹𝐿𝑅−𝐾𝑆𝐸 𝜃𝐿𝑅 − 𝜃𝐿𝑇_𝐿𝑅 + 𝐾𝐿𝑇𝜃𝐿𝑇_𝐿𝑅  

The detailed calculations can be found in [Komogortsev 2007c].  

2.3.2 Antagonist Muscle Mechanical Model of Medial 

Rectus 

Left part of Figure 1 presents the model. Medial rectus gets 

extended by the pull of the lateral rectus. Length tension 

component extends by ∆θLT_MR and the series elasticity component 

extends by ∆θSE_MR.  

Two groups of muslce forces similar to the agonist case are 

present. The first group consists of the active state tension –FMR, 

resisting the agonist pull; length tension force -𝐾𝐿𝑇 𝜃𝐿𝑇_𝑀𝑅 +

∆𝜃𝐿𝑇_𝑀𝑅 , resisting the agonist pull; damping force −𝐵𝐴𝑁𝑇∆𝜃 𝐿𝑇_𝑀𝑅 , 

accounting for the force velocity relationship, resists the 

lengthening of the medial rectus. Summing the forces of the first 

group we get following equation:  

𝑇𝑀𝑅 = −𝐹𝑀𝑅 − 𝐾𝐿𝑇 𝜃𝐿𝑇_𝑀𝑅 − ∆𝜃𝐿𝑇_𝑀𝑅 − 𝐵𝐴𝑁𝑇∆𝜃 𝐿𝑇_𝑀𝑅  5 

𝑇𝑀𝑅  can be also computed through the properties of the series 

elasticity component.  

𝑇𝑀𝑅 = −𝐾𝑆𝐸(𝜃𝑆𝐸_𝑀𝑅 + ∆𝜃𝑆𝐸_𝑀𝑅) 6 

Equations 5 and 6 can be rearranged in a form that calculates force 

TMR in terms of the eye rotation ∆𝜃, and displacement ∆𝜃𝐿𝑇_𝑀𝑅 . 

𝑇𝑀𝑅 = −
𝐹 𝑀𝑅𝐾𝑆𝐸
𝐾𝑆𝐸 + 𝐾𝐿𝑇

−
∆𝜃𝐾𝑆𝐸𝐾𝐿𝑇
𝐾𝑆𝐸 + 𝐾𝐿𝑇

− 𝐵 𝐴𝐺∆𝜃 𝐿𝑇_𝑀𝑅  7 

𝑇𝑀𝑅 = −𝐾𝑆𝐸 ∆𝜃−∆𝜃𝐿𝑇_𝑀𝑅  8 

where 𝐹 𝑀𝑅 = 𝐹𝑀𝑅 − 𝐾𝑆𝐸(𝜃𝑀𝑅 − 𝜃𝐿𝑇_𝑀𝑅) + 𝐾𝐿𝑇𝜃𝐿𝑇_𝑀𝑅 . 
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2.4 Saccades of the negative amplitude 

Saccades of the negative amplitude are performed by a mechanical 

model presented in Figure 2.  

2.4.1 Agonist Muscle Mechanical Model of Medial 

Rectus  

Left part of Figure 2 shows neronal firing inducing the contraction 

of the medial rectus by generating the active state tension. During 

contraction the length tension component shortens by ∆θLT_MR, the 

series elasticity component lengthens by ∆θSE_MR, resulting in the 

eye rotation of ∆θ degrees. Note that values of ∆θLT_MR, ∆θSE_MR, 

∆θ have negative sign. 

Using similar logic outlined for positive amplitude saccades and 

using the diagram represented by Figure 2 we can can write the 

equation accounting for active state tension, length tension and 

damping force inside of the lateral rectus: 

𝑇𝑀𝑅 = −𝐹𝑀𝑅 − 𝐾𝐿𝑇 𝜃𝐿𝑇_𝑀𝑅 + ∆𝜃𝐿𝑇_𝑀𝑅 +  −𝐵𝐴𝐺∆𝜃 𝐿𝑇_𝑀𝑅  9 

TMR value can be calculated by the properties of the series 

elasticity component as: 

𝑇𝑀𝑅 = −𝐾𝑆𝐸(𝜃𝑆𝐸_𝑀𝑅 − ∆𝜃𝑆𝐸_𝑀𝑅) 
10 

 

Equations 9 and 10 can be rearranged in a form that calculates 

force TMR in terms of the eye rotation ∆𝜃, and displacement 

∆𝜃𝐿𝑇_𝑀𝑅 . 

𝑇𝑀𝑅 =
𝐹 𝑀𝑅𝐾𝑆𝐸
𝐾𝑆𝐸 + 𝐾𝐿𝑇

+
∆𝜃𝐾𝑆𝐸𝐾𝐿𝑇
𝐾𝑆𝐸 + 𝐾𝐿𝑇

+ 𝐵 𝐴𝐺∆𝜃 𝐿𝑇_𝑀𝑅  
11 

 

𝑇𝑀𝑅 = 𝐾𝑆𝐸 ∆𝜃−∆𝜃𝐿𝑇_𝑀𝑅  
12 

 

2.4.2 Antagonist Muscle Mechanical Model of Lateral 

Rectus 

Using part of the Figure 2 presenting the antagonist muscle we can 

sum the forces of the first group: 

𝑇𝐿𝑅 = 𝐹𝐿𝑅 + 𝐾𝐿𝑇 𝜃𝐿𝑇_𝐿𝑅 − ∆𝜃𝐿𝑇_𝐿𝑅 +  −𝐵𝐴𝑁𝑇∆𝜃 𝐿𝑇_𝐿𝑅  13 

TLR can be also calculated as: 
𝑇𝐿𝑅 = 𝐾𝑆𝐸(𝜃𝑆𝐸_𝐿𝑅 − ∆𝜃𝑆𝐸_𝐿𝑅) 14 

Equations 13 and 14 allow to calculating the force TMR in terms of 

the eye rotation ∆𝜃, and displacement ∆𝜃𝐿𝑇_𝐿𝑅 . 

𝑇𝐿𝑅 =
𝐹 𝐿𝑅𝐾𝑆𝐸

𝐾𝑆𝐸 + 𝐾𝐿𝑇
−
∆𝜃𝐾𝑆𝐸𝐾𝐿𝑇
𝐾𝑆𝐸 + 𝐾𝐿𝑇

− 𝐵 𝐴𝑁𝑇∆𝜃 𝐿𝑇_𝐿𝑅  
15 

𝑇𝐿𝑅 = 𝐾𝑆𝐸 ∆𝜃𝐿𝑇_𝐿𝑅 − ∆𝜃  16 

2.5 Neuronal Control Signal 

2.5.1 Fixations 

During a fixation state the active state tension 𝐹 𝐿𝑅 , 𝐹 𝑀𝑅  are 

assumed to be same as the neuronal control signal sent to the 

muscle [Bahill 1980]. Using measured values of forces 𝑇𝐿𝑅 , 𝑇𝑀𝑅   

Bahill has calculated the neuronal control signal values during the 

eye fixation as: 
𝑁𝐴𝐺_𝑓𝑖𝑥  ∆𝜃 =  20.6 + 2.37 ∆𝜃   

𝑁𝐴𝑁𝑇_𝑓𝑖𝑥  ∆𝜃 =  
 20.6 − 0.74 ∆𝜃   𝑔𝑟𝑎𝑚𝑠 𝑖𝑓  ∆𝜃 ≤ 28° 

0 𝑔𝑟𝑎𝑚𝑠 𝑖𝑓  ∆𝜃 > 28°                            
  

|∆𝜃| is the absolute value of ∆𝜃. 

2.5.2 Saccades 

Each saccade is generated by a neuronal control signal that looks 

like a pulse step function [Robinson 1969]. This signal can be 

presented by the following equations: 

𝑁𝐴𝐺_𝑠𝑎𝑐  𝑡 =  

𝑁𝐴𝐺_𝑠𝑎𝑐 _𝑠𝑡𝑎𝑟𝑡 ,   𝑡𝑠𝑎𝑐 _𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡 < 𝑡𝐴𝐺_𝑠𝑎𝑐 _𝑝𝑢𝑙𝑠𝑒 _𝑠𝑡𝑎𝑟𝑡                   

𝑁𝐴𝐺_𝑠𝑎𝑐 _𝑝𝑢𝑙𝑠𝑒 ,   𝑡𝐴𝐺_𝑠𝑎𝑐 _𝑝𝑢𝑙𝑠𝑒 _𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡 < 𝑡𝐴𝐺_𝑠𝑎𝑐 _𝑝𝑢𝑙𝑠𝑒 _𝑒𝑛𝑑  

𝑁𝐴𝐺_𝑠𝑎𝑐 _𝑒𝑛𝑑 ,  𝑡𝐴𝐺_𝑠𝑎𝑐 _𝑝𝑢𝑙𝑠𝑒 _𝑒𝑛𝑑 ≤ 𝑡 < 𝑡𝑠𝑎𝑐 _𝑒𝑛𝑑                            

  

𝑁𝐴𝑁𝑇_𝑠𝑎𝑐  𝑡 =  

𝑁𝐴𝑁𝑇_𝑠𝑎𝑐 _𝑠𝑡𝑎𝑟𝑡 ,   𝑡𝑠𝑎𝑐 _𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡 < 𝑡𝐴𝑁𝑇_𝑠𝑎𝑐 _𝑝𝑢𝑙𝑠𝑒 _𝑠𝑡𝑎𝑟𝑡                     

𝑁𝐴𝑁𝑇_𝑠𝑎𝑐 _𝑝𝑢𝑙𝑠𝑒 ,   𝑡𝐴𝑁𝑇_𝑠𝑎𝑐 _𝑝𝑢𝑙𝑠𝑒 _𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡 < 𝑡𝐴𝑁𝑇_𝑠𝑎𝑐 _𝑝𝑢𝑙𝑠𝑒 _𝑒𝑛𝑑   

𝑁𝐴𝑁𝑇_𝑠𝑎𝑐 _𝑒𝑛𝑑 ,  𝑡𝐴𝑁𝑇_𝑠𝑎𝑐 _𝑝𝑢𝑙𝑠𝑒 _𝑒𝑛𝑑 ≤ 𝑡 < 𝑡𝑠𝑎𝑐 _𝑒𝑛𝑑                               

  

tname constants present time parameters for each type of muscle and 

action phase. t is the time elapsed from the beginning of the 

saccade. The OPMM developed in this paper uses the time 

constants values presented below. 
𝑡𝑠𝑎𝑐 _𝑠𝑡𝑎𝑟𝑡 = 0, 

𝑡𝑠𝑎𝑐 _𝑒𝑛𝑑 =  2.2 ∗  𝜃𝑠𝑎𝑐 _𝑎𝑚𝑝   +  21  𝑚𝑠𝑒𝑐., 

𝜃𝑠𝑎𝑐 _𝑎𝑚𝑝  is the amplitude of the saccade measured in degrees,  

The agonist and antagonist muscle related time constants are: 
𝑡𝐴𝐺_𝑠𝑎𝑐 _𝑝𝑢𝑙𝑠𝑒 _𝑠𝑡𝑎𝑟𝑡 = 𝑡𝑠𝑎𝑐 _𝑠𝑡𝑎𝑟𝑡 + 3 𝑚𝑠𝑒𝑐., 

𝑡𝐴𝐺_𝑠𝑎𝑐 _𝑝𝑢𝑙𝑠𝑒 _𝑒𝑛𝑑 =  𝑡𝐴𝐺_𝑠𝑎𝑐 _𝑝𝑢𝑙𝑠𝑒 _𝑠𝑡𝑎𝑟𝑡 +  𝜃𝑠𝑎𝑐 _𝑎𝑚𝑝  + 10  𝑚𝑠𝑒𝑐 
𝑡𝐴𝑁𝑇_𝑠𝑎𝑐 _𝑝𝑢𝑙𝑠𝑒 _𝑠𝑡𝑎𝑟𝑡 = 𝑡𝑠𝑎𝑐 _𝑠𝑡𝑎𝑟𝑡 ,  

𝑡𝐴𝑁𝑇_𝑠𝑎𝑐 _𝑝𝑢𝑙𝑠𝑒 _𝑒𝑛𝑑 = (𝑡𝐴𝐺_𝑠𝑎𝑐 _𝑝𝑢𝑙𝑠𝑒 _𝑠𝑡𝑎𝑟𝑡 +  𝜃𝑠𝑎𝑐 _𝑎𝑚𝑝  + 16) 𝑚𝑠𝑒𝑐.  

The value representing the width of the antagonist pulse 

(𝑡𝐴𝑁𝑇_𝑠𝑎𝑐 _𝑝𝑢𝑙𝑠𝑒 _𝑒𝑛𝑑 − 𝑡𝐴𝑁𝑇_𝑠𝑎𝑐 _𝑝𝑢𝑙𝑠𝑒 _𝑠𝑡𝑎𝑟𝑡 ) is selected as a result of 

physiological measurements that indicated that the agonist pulse  

starts 3 msec. after the start of the antagonist pulse and ends 3 

msec. before the end of the antagonist pulse.  

In live system a Kalman Filter detects future saccade’s parameters 

by a mechanism presented in our previous work [Komogortsev 

2007b]. The parameters such as amplitude, the eye position at 

beginning and the end of the saccade should be supplied to the 

OPMM in terms of neuronal control signal. Therefore, we have 

created the functions that transform saccade parameters into 

neuronal control signal: 𝑁𝐴𝐺_𝑠𝑎𝑐 _𝑠𝑡𝑎𝑟𝑡 , 𝑁𝐴𝑁𝑇_𝑠𝑎𝑐 _𝑠𝑡𝑎𝑟𝑡 , 𝑁𝐴𝐺_𝑠𝑎𝑐 _𝑒𝑛𝑑 ,
𝑁𝐴𝑁𝑇_𝑠𝑎𝑐 _𝑒𝑛𝑑 . 

𝑁𝐴𝐺_𝑠𝑎𝑐 _𝑠𝑡𝑎𝑟𝑡  𝜃𝑠𝑎𝑐 _𝑠𝑡𝑎𝑟𝑡  

=  
𝑁𝐴𝐺_𝐹𝐼𝑋 𝜃𝑠𝑎𝑐 _𝑠𝑡𝑎𝑟𝑡  , 𝑖𝑓 𝑎𝑔𝑜𝑛𝑖𝑠𝑡 𝑝𝑟𝑖𝑜𝑟 𝑡𝑜 𝑠𝑎𝑐𝑐𝑎𝑑𝑒       

𝑁𝐴𝑁𝑇𝐹𝐼𝑋  𝜃𝑠𝑎𝑐𝑠𝑡𝑎𝑟𝑡  , 𝑖𝑓 𝑎𝑛𝑡𝑎𝑔𝑜𝑛𝑖𝑠𝑡 𝑝𝑟𝑖𝑜𝑟 𝑡𝑜 𝑠𝑎𝑐𝑐𝑎𝑑𝑒 
  

 

𝑁𝐴𝐺_𝑠𝑎𝑐 _𝑝𝑢𝑙𝑠𝑒  𝜃𝑠𝑎𝑐 _𝑎𝑚𝑝  =  
55 + 11 𝜃𝑠𝑎𝑐 _𝑎𝑚𝑝  ,    𝑖𝑓 𝜃𝑠𝑎𝑐 _𝑎𝑚𝑝 ≤ 11° 

160 + 2 𝜃𝑠𝑎𝑐 _𝑎𝑚𝑝  ,   𝑖𝑓 𝜃𝑠𝑎𝑐 _𝑎𝑚𝑝 > 11° 
  

 

𝑁𝐴𝐺_𝑠𝑎𝑐 _𝑒𝑛𝑑  𝜃𝑠𝑎𝑐 _𝑒𝑛𝑑  

=  
𝑁𝐴𝐺_𝐹𝐼𝑋 𝜃𝑠𝑎𝑐 _𝑒𝑛𝑑  , 𝑖𝑓 𝑎𝑔𝑜𝑛𝑖𝑠𝑡 𝑎𝑓𝑡𝑒𝑟 𝑠𝑎𝑐𝑐𝑎𝑑𝑒       

𝑁𝐴𝑁𝑇_𝐹𝐼𝑋(𝜃𝑠𝑎𝑐 _𝑒𝑛𝑑 ), 𝑖𝑓 𝑎𝑛𝑡𝑎𝑔𝑜𝑛𝑖𝑠𝑡 𝑎𝑓𝑡𝑒𝑟 𝑠𝑎𝑐𝑐𝑎𝑑𝑒     
  

 

𝑁𝐴𝑁𝑇_𝑠𝑎𝑐 _𝑠𝑡𝑎𝑟𝑡  𝜃𝑠𝑎𝑐 _𝑠𝑡𝑎𝑟𝑡  

=  
𝑁𝐴𝐺_𝐹𝐼𝑋 𝜃𝑠𝑎𝑐 _𝑠𝑡𝑎𝑟𝑡  , 𝑖𝑓 𝑎𝑔𝑜𝑛𝑖𝑠𝑡 𝑝𝑟𝑖𝑜𝑟 𝑡𝑜 𝑠𝑎𝑐𝑐𝑎𝑑𝑒       

𝑁𝐴𝑁𝑇_𝐹𝐼𝑋(𝜃𝑠𝑎𝑐 _𝑠𝑡𝑎𝑟𝑡 ), 𝑖𝑓  𝑎𝑛𝑡𝑎𝑔𝑜𝑛𝑖𝑠𝑡 𝑝𝑟𝑖𝑜𝑟 𝑡𝑜 𝑠𝑎𝑐𝑐𝑎𝑑𝑒 
  

𝑁𝐴𝑁𝑇_𝑠𝑎𝑐 _𝑝𝑢𝑙𝑠𝑒  𝜃𝑠𝑎𝑐 _𝑎𝑚𝑝  = 0.5 

𝑁𝐴𝑁𝑇_𝑠𝑎𝑐 _𝑒𝑛𝑑  𝜃𝑠𝑎𝑐 _𝑒𝑛𝑑  

=  
𝑁𝐴𝐺_𝐹𝐼𝑋 𝜃𝑠𝑎𝑐 _𝑒𝑛𝑑  , 𝑖𝑓 𝑎𝑔𝑜𝑛𝑖𝑠𝑡 𝑎𝑓𝑡𝑒𝑟 𝑠𝑎𝑐𝑐𝑎𝑑𝑒       

𝑁𝐴𝑁𝑇_𝐹𝐼𝑋(𝜃𝑠𝑎𝑐 _𝑒𝑛𝑑 ), 𝑖𝑓 𝑎𝑛𝑡𝑎𝑔𝑜𝑛𝑖𝑠𝑡 𝑎𝑓𝑡𝑒𝑟 𝑠𝑎𝑐𝑐𝑎𝑑𝑒     
  

The values for 𝑁𝐴𝐺_𝑠𝑎𝑐 _𝑝𝑢𝑙𝑠𝑒 , 𝑁𝐴𝑁𝑇 _𝑠𝑎𝑐 _𝑝𝑢𝑙𝑠𝑒  and time constants 

except 𝑡𝑠𝑎𝑐 _𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑠𝑎𝑐 _𝑒𝑛𝑑  were taken from Bahill’s work [Bahill 

1980]. 

2.5.3 Pursuits 

Neuronal control signal during pursuit eye movements is not 

defined for the OPMM presented in this paper. Eye movement 

prediction during pursuits is solely done by the Two State Kalman 

Filter. 

2.6 Active State Tension 

Though the neuronal control signal 𝑁𝐴𝐺 _𝑠𝑎𝑐  𝑡  and 𝑁𝐴𝑁𝑇 _𝑠𝑎𝑐  𝑡 , 
rises and drops instantaneously, neither the forces that muscles 

apply to the eye globe nor active state tensions rise to their 
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maximum values immediately. This happens due to the anatomical 

characteristics of the neuronal signaling [Bahill 1980]. In the 

proposed model, the active state tension is a result of a low pass 

filtering process performed upon the neuronal control signal. 

Active state tension dynamics can be represented with the 

following differential equations at each time interval 

𝐹  𝐴𝐺 𝑡 =
𝑁𝐴𝐺_𝑠𝑎𝑐 − 𝐹 𝐴𝐺 𝑡 

𝜏𝐴𝐺_𝑠𝑎𝑐

 
17 

𝐹  𝐴𝑁𝑇 𝑡 =
𝑁𝐴𝑁𝑇_𝑠𝑎𝑐 − 𝐹 𝐴𝑁𝑇 𝑡 

𝜏𝐴𝑁𝑇_𝑠𝑎𝑐

 
18 

𝜏𝐴𝐺_𝑠𝑎𝑐  and 𝜏𝐴𝑁𝑇 _𝑠𝑎𝑐  are functions that define the low pass filtering 

process; they are defined by the activation and deactivation time 

constants. 

All presented activation/deactivation time constants are selected 

empirically to match human physiological data [Bahill 1980]. 

2.7 Oculomotor Plant Mechanical Model Equations 

2.7.1 Positive amplitude saccades Figure 1 

The lateral rectus as the agonist applies the force to the eye globe 

that can be calculated by Equations 3 and 4. Those equations can 

be combined together: 

𝐾𝑆𝐸 ∆𝜃𝐿𝑇_𝐿𝑅 − ∆𝜃 =
𝐹 𝐿𝑅𝐾𝑆𝐸

𝐾𝑆𝐸 + 𝐾𝐿𝑇
−
∆𝜃𝐾𝑆𝐸𝐾𝐿𝑇
𝐾𝑆𝐸 + 𝐾𝐿𝑇

− 𝐵 𝐴𝐺∆𝜃 𝐿𝑇_𝐿𝑅  19 

The medial rectus as the antagonist applies the force to the eye 

globe that can be calculated by Equations 7 and 8. Those equations 

can be combined together: 

𝐾𝑆𝐸 ∆𝜃−∆𝜃𝐿𝑇_𝑀𝑅 =
𝐹 𝑀𝑅𝐾𝑆𝐸
𝐾𝑆𝐸 + 𝐾𝐿𝑇

+
∆𝜃𝐾𝑆𝐸𝐾𝐿𝑇
𝐾𝑆𝐸 + 𝐾𝐿𝑇

+ 𝐵 𝐴𝑁𝑇∆𝜃 𝐿𝑇_𝑀𝑅  20 

Applying Newton’s second law, the sum of all forces acting on the 

eye globe equals the acceleration of the eye globe multiplied by the 

inertia of the eye globe. 

𝐽∆𝜃 = 𝑇𝐿𝑅 − 𝑇𝑀𝑅 − 𝐾𝑝∆𝜃 − 𝐵𝑝∆𝜃  21 

J=0.000043 grams-s2/degrees - eye globe’s inertia, ∆𝜃 - eye 

rotation, ∆𝜃  velocity of the eye rotation, ∆𝜃  eye rotation 

acceleration, Bp=0.06 grams-s/degrees – viscosity of the tissues 

around the eye globe. 𝑇𝐿𝑅  can be calculated by Equation 4 and 𝑇𝑀𝑅  

can be calculated by Equation 8. Thus Equation 21 can be 

transformed into: 

𝐽∆𝜃 = 𝐾𝑆𝐸 ∆𝜃𝐿𝑇_𝐿𝑅 − ∆𝜃 − 𝐾𝑆𝐸 ∆𝜃 − ∆𝜃𝐿𝑇_𝑀𝑅 − 𝐾𝑝∆𝜃 − 𝐵𝑝∆𝜃  22 

Equations - 17,18,19,20,22 are five differential equations with six 

variables (∆𝜃, ∆𝜃𝐿𝑇_𝐿𝑅 , ∆𝜃𝐿𝑇_𝑀𝑅 , ∆𝜃 , 𝐹 𝐿𝑅 , 𝐹 𝑀𝑅) A sixth differential 

equation can be added as:  

∆𝜃 = ∆𝜃  23 

These six differential equations completely describe the OPMM 

during saccades of the positive amplitude. 

2.7.2 Negative amplitude saccades Figure 2 

The logic presented in the previous section employed in deriving 

mathematical equations for saccades of negative amplitude 

[Komogortsev 2007c]: 

𝐾𝑆𝐸 ∆𝜃𝐿𝑇_𝐿𝑅 − ∆𝜃 =
𝐹 𝐿𝑅𝐾𝑆𝐸

𝐾𝑆𝐸 + 𝐾𝐿𝑇
−
∆𝜃𝐾𝑆𝐸𝐾𝐿𝑇
𝐾𝑆𝐸 + 𝐾𝐿𝑇

− 𝐵 𝐴𝑁𝑇∆𝜃 𝐿𝑇_𝐿𝑅  
24 

𝐾𝑆𝐸 ∆𝜃−∆𝜃𝐿𝑇_𝑀𝑅 =
𝐹 𝑀𝑅𝐾𝑆𝐸
𝐾𝑆𝐸 + 𝐾𝐿𝑇

+
∆𝜃𝐾𝑆𝐸𝐾𝐿𝑇
𝐾𝑆𝐸 + 𝐾𝐿𝑇

+ 𝐵 𝐴𝐺∆𝜃 𝐿𝑇_𝑀𝑅  
25 

𝐽∆𝜃 = 𝐾𝑆𝐸 ∆𝜃𝐿𝑇_𝐿𝑅 − ∆𝜃 −𝐾𝑆𝐸 ∆𝜃−∆𝜃𝐿𝑇_𝑀𝑅 + 𝐾𝑝∆𝜃 + 𝐵𝑝∆𝜃  26 

Equations 17,18,24,25,26 augmented by the identity ∆𝜃 = ∆𝜃  
describe the system completely.  

It is remarkable to note that Equation 19, representing the force 

dynamics of the lateral rectus, is almost the same as Equation 24, 

except the value of the dashpot coefficient. The same fact can be 

noted about the Equation 20 and Equation 25. This result indicates 

that the mechanical dynamics remain essentially the same for each 

muscle independent of the role this muscle plays during a saccade 

The equation mapping all forces acting on the eye globe to the eye 

acceleration and inertia during a saccade is the same for the 

saccades of both negative and positive amplitudes.  

3 Oculomotor Plant Kalman Filter 

3.1 Basics of Kalman Filtering 

The Kalman filter is a recursive estimator that computes a future 

estimate of the dynamic system state from a series of incomplete 

and noisy measurements. A Kalman Filter minimizes the error, 

between the estimation of the system’s state and the actual 

system’s state. Only the estimated state from the previous time step 

and the new measurements are needed to compute the new state 

estimate [Brown and Hwang 1997]. 

The challenge of using a Kalman filter lies in defining the linear 

stochastic difference equation governing the transition mechanics 

of the system from one state 𝑥 ∈ ℜ𝑛  to another.  

𝑥𝑘+1 = 𝐴𝑘+1𝑥𝑘+𝐵𝑘+1𝑢𝑘+1 + 𝑤𝑘+1 27 

with the measurement 

𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘  28 

The n-by-n state transition matrix Ak+1 relates the state at the 

previous time step k to the state at the current step k+1, in the 

absence of either a driving function or process noise. Bk+1 is an n-

by-m control input matrix, that relates m-by-l control vector uk+1 to 

the state xk. wk is an n-by-1 system’s noise vector with an n-by-n 

covariance matrix Qk. 𝑝 𝑤𝑘 ~𝑁 0,𝑄𝑘 . Not all variables in the 

state are visible to the measuring instruments. The measurement 

vector zk contains state variables that are measured by the 

instruments.  Hk is a j-by-n observation model matrix which maps 

the state xk into the measurement vector zk. vk is a measurement 

noise j-by-1 vector with covariance Rk. 𝑝 𝑣𝑘 ~𝑁 0,𝑅𝑘 . 

The Discrete Kalman filter has two distinct phases that compute 

the estimate of the next system’s state [Brown and Hwang 1997].  

Predict: 

Predict the state vector ahead: 

𝑥 𝑘+1
− = 𝐴𝑘+1𝑥𝑘+𝐵𝑘+1𝑢𝑘+1 29 

The 𝑥 𝑘+1
−  is used as the future eye position coordinate for 

predicting eye movement trajectories. 

Predict the error covariance matrix ahead: 

𝑃𝑘+1
− = 𝐴𝑘+1𝑃𝑘𝐴𝑘+1

𝑇 + 𝑄𝑘+1 30 

The predict phase uses the previous state estimate to predict the 

estimate of the next system’s state. 

Update: 

Compute the Kalman gain: 

𝐾𝑘+1 = 𝑃𝑘+1
− 𝐻𝐾+1

𝑇 (𝐻𝑘+1𝑃𝑘+1
− 𝐻𝑘+1

𝑇 + 𝑅𝑘+1)−1 31 

Update the estimate of the state vector with a measurement zk+1: 

𝑥 𝑘+1 = 𝑥 𝑘+1
− + 𝐾𝑘+1(𝑧𝑘+1 −𝐻𝑘+1𝑥 𝑘+1

− ) 32 

Update the error covariance matrix: 

𝑃𝑘+1 = (𝐼 − 𝐾𝑘+1𝐻𝑘+1)𝑃𝑘+1
−  33 

It should be pointed out that the Kalman Filter maintains first two 

moments of the state distribution 𝐸[𝑥𝑘] = 𝑥 𝑘 , 𝐸[(𝑥𝑘 −
𝑥 𝑘)(𝑥𝑘 − 𝑥 𝑘)𝑇] = 𝑃𝑘  and 𝑝(𝑥𝑘 |𝑧𝑘)~𝑁 𝐸[𝑥𝑘],𝐸[(𝑥𝑘 −
𝑥 𝑘)(𝑥𝑘 − 𝑥 𝑘)𝑇]  =N(𝑥 𝑘 , 𝑃𝑘 ). The choice of the Kalman gain Kk 
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minimizes error covariance matrix Pk. Kalman Filter framework 

assumes that xk, zk are normally distributed and  𝐸 𝑣𝑘𝑣𝑖
𝑇 =

 
𝑅𝑘  𝑖 = 𝑘
0   𝑖 ≠ 𝑘

 ,   𝐸 𝑤𝑘 ,𝑤𝑖
𝑇 =  

𝑄𝑘  𝑖 = 𝑘
0   𝑖 ≠ 𝑘

 ,   𝐸 𝑤𝑘𝑒𝑖
𝑇 = 0 ∀𝑖,𝑘. 

3.2 TSKF & OPKF 

Two State Kalman Filter (TSKF) employs the information about 

eye position and velocity. It has the capability to detect the onset 

and the parameters of a saccade by the mechanism described in our 

previous work [Komogortsev 2007b]. Once saccade is detected the 

Oculomotor Plant Kalman Filter (OPKF) uses mathematical 

equations describing the OPMM to define the transition matrix 

Ak+1, control matrix Bk+1 and control vector uk+1. Figure 3 

diagrammatically presents the difference between the TSKF and 

the OPKF models.   

3.2.1 State Vector 

Following values are selected to represent the state vector for both 

models: 
𝑥𝑘 =  𝑥1(𝑘) 𝑥2(𝑘) 𝑥3(𝑘) 𝑥4(𝑘) 𝑥5(𝑘) 𝑥6(𝑘) 𝑇  

𝑥1(𝑘) = ∆𝜃 – eye rotation, 𝑥2(𝑘) = ∆𝜃𝐿𝑇_𝐿𝑅  and 𝑥3(𝑘) =
∆𝜃𝐿𝑇_𝑀𝑅  – displacement of the length tension component for the 

lateral and medial recti respectively, 𝑥4(𝑘) = ∆𝜃  – eye velocity, 

𝑥5(𝑘) = 𝐹 𝐿𝑅  and 𝑥6 𝑘 = 𝐹 𝑀𝑅  active state tension for lateral and 

medial recti.  

 

3.2.2 Transition matrix, control matrix, control vector: 

Ak, Bk, uk. 

TSKF  

TSKF uses only angular eye position 𝑥1(𝑘) and velocity 𝑥4(𝑘) 

parameters. In its simplest form horizontal eye movement 

dynamics can be represented by a differential equation 𝑥 1 𝑘 =

𝑥4(𝑘). Approximating derivative as 𝑥  𝑘 =
𝑥 𝑘+1 −𝑥(𝑘)

∆𝑡
 the equation 

𝑥 1 𝑘 = 𝑥4(𝑘) can be rewritten as: 
𝑥1 𝑘 + 1 = 𝑥1 𝑘 + 𝑥4 𝑘 ∆𝑡. ∆𝑡 is the eye position sampling 

interval meaning that the samples 𝑥𝑖 𝑘 + 1 𝑖  and 𝑥𝑖 𝑘  are ∆𝑡 
seconds apart. The previous equation can be represented in form of 

Equation 29 with transition matrix  

Ak =

 

 
 

1 0 0 ∆t 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0 

 
 

 and zero control matrix and control 

vector. 

 

OPKF  
Positive amplitude saccades: 

Differential Equations 17,18,1920,22,23 derive Ak, Bk, uk for the 

OPKF model during saccades of the positive amplitude. First those 

equations are transformed into the following form: 
𝑥 1(𝑡) = 𝑥4(𝑡) 

𝑥 2(𝑡) =
𝐾𝑆𝐸

2

 𝐾𝐿𝑇 + 𝐾𝑆𝐸 𝐵 𝐴𝐺
𝑥1(𝑡) −

𝐾𝑆𝐸

𝐵 𝐴𝐺
𝑥2(𝑡) +

𝐾𝑆𝐸

 𝐾𝐿𝑇 + 𝐾𝑆𝐸 𝐵 𝐴𝐺
𝑥5(𝑡) 

𝑥 3(𝑡) =
𝐾𝑆𝐸

2

 𝐾𝐿𝑇 + 𝐾𝑆𝐸 𝐵 𝐴𝑁𝑇
𝑥1(𝑡) −

𝐾𝑆𝐸

𝐵 𝐴𝑁𝑇
𝑥3(𝑡) −

𝐾𝑆𝐸

 𝐾𝐿𝑇 + 𝐾𝑆𝐸 𝐵 𝐴𝑁𝑇
𝑥6(𝑡) 

𝑥 4(𝑡) = −
2𝐾𝑆𝐸 + 𝐾𝑝

𝐽
𝑥1(𝑡) +

𝐾𝑆𝐸
𝐽
𝑥2(𝑡) +

𝐾𝑆𝐸
𝐽
𝑥3(𝑡) −

𝐵𝑝

𝐽
𝑥4(𝑡) 

𝑥 5(𝑡) =
𝑁𝐴𝐺_𝑠𝑎𝑐 − 𝑥5(𝑡)

𝜏𝐴𝐺
 

𝑥 6(𝑡) =
𝑁𝐴𝑁𝑇_𝑠𝑎𝑐 − 𝑥6(𝑡)

𝜏𝐴𝑁𝑇
 

Second using the approximate definition of derivative as 𝑥  𝑘 =
𝑥 𝑘+1 +𝑥 𝑘 

∆𝜌
 (∆ρ is the OPMM internal sampling clock1) the transition 

matrix Ak, control matrix Bk, control vector uk are calculated. 

Transition matrix Ak is the following: 

 

 
 
 
 
 
 
 
 
 
 

1 0 0 ∆𝜌 0 0

∆𝜌
𝐾𝑆𝐸

2

 𝐾𝐿𝑇 + 𝐾𝑆𝐸 𝐵 𝐴𝐺
 1 − ∆𝜌

𝐾𝑆𝐸

𝐵 𝐴𝐺
 0 0 ∆𝜌

𝐾𝑆𝐸

 𝐾𝐿𝑇 + 𝐾𝑆𝐸 𝐵 𝐴𝐺
0

∆𝜌
𝐾𝑆𝐸

2

 𝐾𝐿𝑇 + 𝐾𝑆𝐸 𝐵 𝐴𝑁𝑇
0  1 − ∆𝜌

𝐾𝑆𝐸

𝐵 𝐴𝑁𝑇
 0 0 −∆𝜌

𝐾𝑆𝐸

 𝐾𝐿𝑇 + 𝐾𝑆𝐸 𝐵 𝐴𝑁𝑇

−∆𝜌
2𝐾𝑆𝐸 + 𝐾𝑝

𝐽
∆𝜌

𝐾𝑆𝐸
𝐽

∆𝜌
𝐾𝑆𝐸
𝐽

1 − ∆𝜌
𝐵𝑝

𝐽
0 0

0 0 0 0  1 −
∆𝜌

𝜏𝐴𝐺
 0

0 0 0 0 0  1 −
∆𝜌

𝜏𝐴𝑁𝑇
 

 

 
 
 
 
 
 
 
 
 
 

 

 

𝑢𝑘 =  0 0 0 0
∆𝜌

𝜏𝐴𝐺
𝑁𝐴𝐺_𝑠𝑎𝑐

∆𝜌

𝜏𝐴𝑁𝑇
𝑁𝐴𝑁𝑇_𝑠𝑎𝑐  

𝑇

 
 

The control matrix Bk is a 6x6 identity matrix. For more detailed 

calculations please look in [Komogortsev 2007c]. 

Negative amplitude saccades: 

Differential Equations 17,18,23,24,25,26 derive Ak, Bk, uk for the 

OPKF model during saccades of the positive amplitude. First those 

equations are transformed into the following form: 
𝑥 1(𝑡) = 𝑥4(𝑡) 

𝑥 2(𝑡) =
𝐾𝑆𝐸

2

 𝐾𝐿𝑇 + 𝐾𝑆𝐸 𝐵 𝐴𝑁𝑇
𝑥1(𝑡) −

𝐾𝑆𝐸

𝐵 𝐴𝑁𝑇
𝑥2(𝑡) +

𝐾𝑆𝐸

 𝐾𝐿𝑇 + 𝐾𝑆𝐸 𝐵 𝐴𝑁𝑇
𝑥5(𝑡) 

𝑥 3(𝑡) =
𝐾𝑆𝐸

2

 𝐾𝐿𝑇 + 𝐾𝑆𝐸 𝐵 𝐴𝐺
𝑥1(𝑡) −

𝐾𝑆𝐸

𝐵 𝐴𝐺
𝑥3(𝑡) −

𝐾𝑆𝐸

 𝐾𝐿𝑇 + 𝐾𝑆𝐸 𝐵 𝐴𝐺
𝑥6(𝑡) 

𝑥 4(𝑡) = −
2𝐾𝑆𝐸 + 𝐾𝑝

𝐽
𝑥1(𝑡) +

𝐾𝑆𝐸
𝐽
𝑥2(𝑡) +

𝐾𝑆𝐸
𝐽
𝑥3(𝑡) −

𝐵𝑝

𝐽
𝑥4(𝑡) 

𝑥 5(𝑡) =
𝑁𝐴𝑁𝑇_𝑠𝑎𝑐 − 𝑥5(𝑡)

𝜏𝐴𝑁𝑇
 

𝑥 6(𝑡) =
𝑁𝐴𝐺_𝑠𝑎𝑐 − 𝑥6(𝑡)

𝜏𝐴𝐺
 

Second the transition matrix Ak, control matrix Bk, control vect or 

uk are calculated. Transition matrix Ak is the following: 

 

 
 
 
 
 
 
 
 
 
 

1 0 0 ∆𝜌 0 0

∆𝜌
𝐾𝑆𝐸

2

 𝐾𝐿𝑇 + 𝐾𝑆𝐸 𝐵 𝐴𝑁𝑇
 1 − ∆𝜌

𝐾𝑆𝐸

𝐵 𝐴𝑁𝑇
 0 0 ∆𝜌

𝐾𝑆𝐸

 𝐾𝐿𝑇 + 𝐾𝑆𝐸 𝐵 𝐴𝑁𝑇
0

∆𝜌
𝐾𝑆𝐸

2

 𝐾𝐿𝑇 + 𝐾𝑆𝐸 𝐵 𝐴𝐺
0  1 − ∆𝜌

𝐾𝑆𝐸

𝐵 𝐴𝐺
 0 0 −∆𝜌

𝐾𝑆𝐸

 𝐾𝐿𝑇 + 𝐾𝑆𝐸 𝐵 𝐴𝐺

−∆𝜌
2𝐾𝑆𝐸 + 𝐾𝑝

𝐽
∆𝜌

𝐾𝑆𝐸
𝐽

∆𝜌
𝐾𝑆𝐸
𝐽

1 − ∆𝜌
𝐵𝑝

𝐽
0 0

0 0 0 0  1 −
∆𝜌

𝜏𝐴𝑁𝑇
 0

0 0 0 0 0  1 −
∆𝜌

𝜏𝐴𝐺
 

 

 
 
 
 
 
 
 
 
 
 

 

𝑢𝑘 =  0 0 0 0
∆𝜌

𝜏𝐴𝑁𝑇
𝑁𝐴𝑁𝑇_𝑠𝑎𝑐

∆𝜌

𝜏𝐴𝐺
𝑁𝐴𝐺_𝑠𝑎𝑐  

𝑇

 

                                                                 

1 The Oculomotor Plant Mechanical Model generates best results with 

internal clock ∆ρ=0.001 sec. due to neuronal control signal changing on the 

millisecond level. If the internal clock is larger than 1 msec. the difference 

between the actual eye movement trajectory and the trajectory generated by 

oculomotor plant mechanical model will increase. 
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Rightward saccade, trajectory
predicted by OPMM in KF form
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trajectory predicted
by OPMM in KF form

Fixation, trajectory
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parameters 
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Saccade 
parameters 

detected by TSKF

Figure 3. Eye movement prediction by the OPKF model i.e. all eye movements 
except saccades are predicted by TSKF and saccades are predicted by OPMM in 
the Kalman filter form. In case of pure TSKF model all eye movements would 
have been predicted by the TSKF.
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The control matrix Bk is a 6x6 identity matrix. 

3.2.3 Measurement vector, observation matrix: zk, Hk. 

The eye position measurement device is an eye tracker. An eye 

tracker reports horizontal and vertical eye position coordinates 

with a time stamp. In this paper only horizontal component of the 

recorded eye movements is considered, thus measurement vector 

zk is a scalar that represents horizontal eye coordinate recorded by 

the eye tracker at the time k. 

The angular eye position is the only variable that is observed, 

making observation matrix 𝐻𝑘 =  1 0 0 0 0 0 . 

3.2.4 Measurement noise covariance matrix, system’s 

noise covariance matrix: Rk, Qk. 

By definition the covariance matrix for the measurement noise is 

𝑅𝑘 = 𝐸[ 𝑣𝑘 − 𝐸(𝑣𝑘)  𝑣𝑘 − 𝐸(𝑣𝑘) 𝑇]. Because only eye position 

is measured 𝑣𝑘  is a scalar 𝑅𝑘 = 𝑉𝐴𝑅[𝑣𝑘] = 𝛿𝑣
2, where 𝛿𝑣 is the 

standard deviation of the measurement noise. We assume that the 

standard deviation of the measurement noise relates to the 

accuracy of the eye tracker and is bounded by one degree of the 

visual angle. Therefore 𝛿𝑣 was conservatively set to 1°. In case 

when the eye tracker fails to detect eye position coordinates the 

standard deviation of measurement noise is assigned to be 

𝛿𝑣 = 120° 34 

 The value of 120° is chosen empirically, allowing Kalman filter to 

“trust” more predicted eye position coordinate 𝑥 𝑘
−.  

By definition system’s noise covariance matrix is 𝑄𝑘 =
𝐸[ 𝑤𝑘 − 𝐸(𝑤𝑘)  𝑤𝑘 − 𝐸(𝑤𝑘) 𝑇], where 𝑤𝑘  is a 1x6 system’s 

noise vector   
𝑤𝑘 =  𝑤1(𝑘) 𝑤2(𝑘) 𝑤3(𝑘) 𝑤4(𝑘) 𝑤5(𝑘) 𝑤6(𝑘) 𝑇. We assume 

that variables 𝑤𝑖(𝑘) are uncorrelated between each other i.e. 

𝐸  𝑤𝑚(𝑘 𝑤𝑛 𝑘  = 𝐸  𝑤𝑚 (𝑘 ]𝐸[𝑤𝑛 𝑘   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≠ 𝑚. This 

assumption generates following system’s noise covariance matrix: 

𝑄𝑘 =  
𝛿1

2 … 0
… … …
0 … 𝛿6

2
 . Here 𝛿1

2,… , 𝛿6
2 are variances of variables 𝑤𝑖(𝑘). 

We assume that the standard deviation of the eye position noise 

𝑤1(𝑘) is connected to the characteristics of the eye fixation 

movement. This is done with the assumption that eye fixation is 

the most common type of the eye movement. Each eye fixation 

consists of three basic eye-sub-movements: drift, small involuntary 

saccades and tremor [Yarbus 1967]. Among those three, 

involuntary saccades have the highest amplitude - around half 

degree of the visual angle, therefore we conservatively set 𝛿1 to 1°. 

Standard deviation values for other variables are hard to assess, but 

the following values performed well in the simulation tests: 

𝛿2 = 𝛿3 = 1° degree, 𝛿4 = 1°/sec., 𝛿5 = 𝛿6 = 1 gram. 

3.2.5 Initial values for state vector and error covariance 

matrices: x0, P0. 

The TSKF model uses following initial state vector 𝑥0 =
 𝑥1(0) 𝑥2(0) 𝑥3(0) 𝑥4(0) 𝑥5(0) 𝑥6(0) 𝑇  Here last 

measured horizontal eye position coordinate is assigned to 𝑥1(0) 

and 𝑥2 0 = 𝑥3 0 = 𝑥4 0 = 𝑥5 0 = 𝑥6 0 = 0. 

The OPKF uses the following values at the beginning of each 

saccades: 𝑥1(0) - horizontal saccade onset eye position; 𝑥2 0 =
𝑥1 0 + 5.6° - initial displacement of the length of the lateral 

rectus length tension component; 𝑥3 0 = 𝑥1 0 − 5.6° - initial 

displacement of the length of the medial rectus length tension 

component; 𝑥4 0 = 0 - initial value of the eye velocity; initial 

active state tension for the lateral rectus is calculated as 𝑥5 0 =

𝑁𝐴𝐺_𝑠𝑎𝑐_𝑠𝑡𝑎𝑟𝑡 𝑥1(0) ; 𝑥6 0 = 𝑁𝐴𝑁𝑇_𝑠𝑎𝑐_𝑠𝑡𝑎𝑟𝑡 𝑥1(0) . 

4 Methodology 

4.1 Equipment & Test Media 

Eye movement prediction models were tested with a Tobii 1750 

Eye Tracker and the following video clips. Car: This video shows 

a moving car. It was taken from a security camera view point in the 

university’s parking lot. The visible size of the car is 

approximately one fifth of the screen. The car moves slowly. 

Several pedestrians and distant cars appeared on the background 

several times, often capturing the attention of the subject. Shamu: 

This video captures a spotlighted, evening performance of Shamu 

at Sea World. This video consists of several moving objects: 

Shamu, the trainer, and the audience. Each of them is moving at 

different speeds during various periods of time. Airplanes: This 

video depicts a performance of the Blue Angels on Lake Erie. The 

flight formation of supersonic planes changes rapidly as does their 

flight speeds. The camera movements were rapid zoom and 

panning. All three videos had a resolution of 720x480 pixels, 

presented with a frame-rate of 30fps, and were 1 minute long. The 

videos Participants & Evaluation 

The subject pool consisted of 21 volunteers of both genders and 

mixed ethnicities, aged 20-40 with normal, corrected and 

uncorrected vision. The subjects were instructed to watch the video 

clips in any way they wanted.  

For performance comparison both the TSKF and the OPKF eye 

movement prediction models were implemented in MATLAB. The 

horizontal movement component of the right eye was analyzed off-

line. Prediction interval for both models was 20 msec. 

4.2 Detection of Basic Eye Movement Types 

The IV-T model is used for the eye movement detection [Salvucci 

and Goldberg 2000]. The detection criteria is as follows: eye 

fixation is detected when the eye speed does not exceed 20°/sec 

and this velocity pattern lasts for at least 100 msec., which is 

considered to be the minimum duration interval for an eye fixation. 

A saccade is detected when the eye velocity exceeds 300°/sec. 

Pursuits are detected when the eye velocity is in the 20-300°/sec 

range.  

4.3 Eye Movement Prediction Accuracy Metric 

The root mean squared error (RMSE) between the predicted 

𝑥 1
−(𝑘), Equation 29, and measured zk, Equation 28, eye position 

coordinate represents the accuracy of an eye movement prediction. 

𝑅𝑀𝑆𝐸 =   
 𝑥 1

−(𝑘)−𝑧𝑘  
2

𝑗−𝑖

𝑗
𝑘=𝑖 . The ideal eye movement prediction 

model will have the RMSE of 0º. The percentage improvement in 

prediction accuracy (reduction of the RMSE) between various eye 

movement prediction models was calculated by the following 

formula: Λ = 100
𝑅𝑀𝑆𝐸𝑀𝑜𝑑𝑒𝑙_1−𝑅𝑀𝑆𝐸𝑀𝑜𝑑𝑒𝑙_2

𝑅𝑀𝑆𝐸𝑀𝑜𝑑𝑒𝑙_1

.  

5 Results 

5.1 Test Video Set Performance 

Fixations: Average fixation duration was approximately 130 

msec., deviating 30-40 msec. from the mean. The percentage of the 

fixations in the eye movement trace was 12-15%. Saccades: 

Saccade amplitude was the highest for the “Car” - 17°. 16° for the 

“Shamu” video and 14° for the “Airplanes” video. The percentage 
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of saccades in the eye movement trace was 3-4%. Pursuits: The 

percentage of saccades in the eye movement trace was 76-78%. 

Not Reported:The Not Reported category is the percentage of eye 

position samples for which the eye tracker failed to report the eye 

position coordinates. The amount of such samples on average was 

between 5-8%.  

5.2 Eye Movement Prediction Results 

5.2.1 Fixations & Pursuits 

We assume that the main source of the prediction error during 

fixations comes from the fact that the eye is not absolutely 

stationary during a fixation; there are various types of sub-

movements during a fixation i.e. tremor, drift and involuntary 

saccades with amplitudes of up to 0.5º [Yarbus 1967]. The TSKF 

and the OPKF models produced an RMSE in the range of 0.94-

0.97º during eye fixations and 2.65-3.12° during pursuits. This 

result indicates that the Two State Kalman Filter modeling the 

Human Visual System through just eye position and velocity can 

moderately predict the eye movement trajectory during eye 

fixations and pursuits. 

5.2.2 Saccades 

Saccades RMSE - TSKF RMSE - OPKF Accuracy imp. 

“Car” 14.50 10.55 27% 

“Shamu” 13.52 9.98 28% 

“Airplanes” 12.13 9.99 18% 

The RMSE was the highest for the “Car” video presumably due to 

highest saccade amplitudes. The RMSE reported for the “Shamu” 

video was lower, due to the lower saccade amplitudes, but the 

recorded accuracy improvement was the highest. In case of the 

“Airplanes” video the improvement in the accuracy prediction was 

the smallest due to the smaller saccade amplitudes exhibited by 

subjects during this video. The accuracy improvement achieved by 

the employment of the OPMM is most effective for saccades of 

large amplitudes. A valid question to ask is “What are the factors 

limiting further improvements in the prediction accuracy achieved 

by the OPKF model?” At least one of those factors is tied to how 

soon a saccade can be detected by the TSKF. Given an eye 

position sampling frequency of 50Hz the experiments indicate that 

the chi square test detects a saccade usually with the first measured 

eye position sample that is available after the beginning of the 

saccade. In the setup presented in this paper, 20 msec. of trajectory 

from the beginning of detected saccade is predicted by the TSKF. 

This limits the improvement achieved by the OPKF to the 

remaining part of the saccade trajectory. Results indicated that the 

TSKF is not very accurate in predicting saccadic eye movements. 

We believe higher eye position sampling frequency will allow 

saccade parameters to be estimated sooner and will result in more 

accurate prediction of the saccade trajectories by the OPKF. 

5.2.3 All Eye Movements 

The “All” category calculated the overall performance of each 

prediction model for all eye movements by calculating the RMSE 

for all eye position samples except “Not Reported” category.  
All RMSE - TSKF RMSE - OPKF Accuracy imp. 

“Car” 4.13 3.12 13% 

“Shamu” 3.82 3.06 12% 

“Airplanes” 3.29 2.65 7% 

 The “Car” video had the highest prediction error overall, but 

prediction accuracy improvement was the largest as well. The 

“Airplanes” video with smaller saccade amplitudes had the 

smallest accuracy improvement.  

6 Conclusion 

Eye tracking technology can successfully enhance already existing 

interaction methods. There are several issues that are needed to be 

resolved before this can happen. One of these issues is related to 

the fact that eye tracking equipment and interactive environments 

in general possess various types of delays. The delays can be 

compensated by an accurate eye movement prediction. In this 

paper we have designed an Oculomotor Plant Kalman Filter that 

provides a continuous accurate eye movement prediction. A key 

factor allowing achievement of a high degree of prediction 

accuracy is a mechanical model of oculomotor plant transformed 

into a Kalman filter form that is employed during saccades.  Such 

an approach improves eye movement prediction accuracy during 

saccades by 18-28% and by 7-13% overall. These results were 

achieved for 20 msec. prediction range, 21 subjects and passed the 

statistical significance test with the level of 0.01. 
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Figure 2. The Oculomotor Plant Mechanical Model employed during saccades of negative amplitude.

284


	Eye Movement Prediction by Kalman Filter with Integrated Linear Horizontal Oculomotor Plant Mechanical Model
	Abstract
	Keywords: Eye movement prediction, oculomotor plant, Kalman filter, human computer interaction.

	Introduction
	Human Visual System
	Extraocular Muscles & Neuronal Control
	/Oculomotor Plant Mechanical Model
	Muscle Properties

	Saccades of the positive amplitude
	Agonist Muscle Mechanical Model of Lateral Rectus
	Antagonist Muscle Mechanical Model of Medial Rectus

	Saccades of the negative amplitude
	Agonist Muscle Mechanical Model of Medial Rectus
	Antagonist Muscle Mechanical Model of Lateral Rectus

	Neuronal Control Signal
	Fixations
	Saccades
	Pursuits

	Active State Tension
	Oculomotor Plant Mechanical Model Equations
	Positive amplitude saccades Figure 1
	Negative amplitude saccades Figure 2


	Oculomotor Plant Kalman Filter
	Basics of Kalman Filtering
	TSKF & OPKF
	State Vector
	Transition matrix, control matrix, control vector: Ak, Bk, uk.
	Measurement vector, observation matrix: zk, Hk.
	Measurement noise covariance matrix, system’s noise covariance matrix: Rk, Qk.
	Initial values for state vector and error covariance matrices: x0, P0.


	Methodology
	Equipment & Test Media
	Detection of Basic Eye Movement Types
	Eye Movement Prediction Accuracy Metric

	Results
	Test Video Set Performance
	Eye Movement Prediction Results
	Fixations & Pursuits
	Saccades
	All Eye Movements


	Conclusion
	References

