
METRICS FOR COMPETITIVEhLESS

Rolland H. Berry

George H. Wedberg

Pltig Analysis Corporation

8200 Greensboro Drive, Suite 810
McLeq Va. 22102

I. Introduction

After briefly discussing how metrics support the
development of competitive software, this paper describes
the use of specific software metrics currently applied to
the development of the Standard Installation/DivkJon
Personnel System-3 (SIDPERS-3) for the US Army. The
development is being done in Ada using a tailored

Department of Defense System Software Development
Military Standard (DoD MIL-STD 2167A) approach.
The paper explains how the metrics were selected by the
contractor team, and how they are being implemented.

II. Competitiveness and Quality

As the amount of funding for Department of Defense
software development decreases, contractors will
increasingly have to demonstrate competitiveness. The
Deputy Secretary of Defense, Donald J. Atwood stated

the situation clearly in May 1989:

“The Department of Defense must

continuously seek measures to increase
productivity in the defense acquisition process to

live within budget constraints without
jeopardizing national defense and readiness...
Those contractors who provide “Best Value” to
the government by consistently demonstrating,
through performance on production contracts, an
ability to deliver on time while consistently
improving quality and reducing cost should be
rewarded for their accomplishments.”1

COPYRIG~ 1991BY THE ASSOCIATION FOR COMPUTING
MACHINERY. INC. Permission to copy without fee all or part
of this materiat is granted provided that the copies are not
made or dktributed for direct eonunerciat advantage, the ACM
copyright notice and the title of the publication and its date

appe~~ md notice is given tiat copying is by permission of
the ACM. To copy otherwise, or to republish, requires a fee
and or specific permission.

@ 1991 ACM 0-89791 -393-0/91/0600/0119 $1.50

Mr. Atwood extended the carrot in the quote above,
he also held up the stick

“DoD will continue to use competition...
Well crafted competitions should not be looked
upon as a threat, but rather, as opportunities
for the most efficient and highest quality
producers to gain and maintain increased DoD

business. As we sl~ucture our competitions,
past performance, including quality, cost and
delivery should be more significant
determinants in contract award decisions.”z

but

Mr. Frank Carluc~ former Secretary of Defense, agrees

and so states in a DoD policy memorandum: “Quality
must be a key element of competition.”3 Clearly,

competition is here to stay, and the way to be competitive
is to produce quality.

What then is quality? No answer to that question

could exclude the work of W. Edwards Deming, whose
teachings about quality process and its relationship to
competitiveness are well known. They are summarized
in a Department of the Navy publication on total quality
management (TQM) as follows:

- Quality is defined by customer requirements.
Top management has direct responsibfity for
quality improvement.

. Increased quality comes from systematic analysis and
improvement of work processes.

- Quality improvement is a continuous effort and
conducted throughout the organization.4

TQM is the method by which an organization Ln]roves
quality through continuous process improvement. It is
recognized that top management is key to quality
improvement. However, the concern here is the quality

improvement that comes from systematic analysis and
improvement of work processes. Lawrence H. Putnam,
identi6es in IEEE Softwaa, March 1991 the importance

of metrics in TQM:

“Throughout government and industry, the idea
of total quality management has caught on as
we face increasing competition in all segments

Washington Ada Symposium Proceedings - June 1991 119

http://crossmark.crossref.org/dialog/?doi=10.1145%2F134494.134505&domain=pdf&date_stamp=1991-06-01

of the eeonomy. The results of Japanese

refinement of this philosophy for the last 40 years
are clearly evident. So the concept is not new.

What is new is applying these principles and
those of W. Edwards Deming to the software
management process... This means:

taking quality seriously,
...
measuring progress with the right
metrics..”s

In software development, an important part of systematic
analysis is a well designed and implemented software
metrics program.

III. Metrics Program

This section outlines the basic assumptions,
underlying the metrics program,

A properly designed metries program measures a few

criticaJ aspects of the software development process in a
non-invasive manner. The required metrics data should

be obtainable without imposing a signifkant burden on
the technieal staff. Wherever possible, the metrics data
should be obtained directly from the development
process, rather than requiring a separate effort. The

metrics program will be slighted by the technical staff if
it is pereeived to take too much time and effort away
from the “real work” of the project.

For much the same reason, the number of metrics

employed should be constrained. Although it is possible
to measure dozens, if not hundreds, of project-related
quantities, the trick is to select a small number of metrics
that supply useful information and insights.

Metrics information is best obtained from data

derived from techniea.1 reviews that are held as part of the
normal development process, and from information
derived fkom software testing results. Our
implementation of this is that the data for the metrics
used throughout the software requirements analysis, and
desi~ code, and unit test phases are collected at
technical reviews, Test data is collected during quality
assurance testing.

A properly designed metrics program provides
simple, direct indications to management about the
quality of the process and the product, and the progress
of the project. Direet information about significant,
technical aspects of the software development process
facilitates communication between the technical staff and
the management of the project.

120

IV. Metrics Selection

For the SIDPERS-3 development effort, the project
team was directed to use the metrics in Army Materiel
Command Pamphlets 70-I.3 (Management Iasight), and
70-14 (Management Quality Insight) or to propose an
alternative metrics program. After examining the metries
in the pamphlets and consulting the literature, the Goal-
Question-Metric’ paradigm was identified as a useful
method for deftig metrics.

This method breaks up the metries selection process
into three steps. The fust step is to list the goals of the
metrics program. The second step is to formulate
questions regarding the goals that will help to define
relevant metrics, The third step is to identi& relevant
metrics. A one-to-one relationship does not necessarily
exist between a goal, a question that characterizes it, and
a single metric that answers the question and meets the
goal. Some metries may answer more than one question
or pertain to more than one goal.

In the course of using the method, several feasible
program goals, many possible questions, and a plethora of

metrics may be produced. Some of the feasible goals that
were considered are: an orderly software development
process, visibility into cost schedule deviations, a stable

staff, thorough understrmdmg of the requirements,
requirements traceability, unchanging requirements, good

desi~ correct code, and error detection as early in the
process as possible.

Four goals were selected.

1. Ensure clear understanding of the customer’s
requirements.

2. Track project progress.
3. Provide a basis for process and product

improvements.
4. Produce a high quality product.

Having devised a manageable list of program goals,
we asked the questions that suggested metries to achieve

the goals. Among the many possible questions produced
as part of the analysis were: Is the software development
plan being used effectively? Are we meeting our internal

deadlines? What has been planned/promised? How
correct is the code? How many defects are there in the
code? How well do we understand the requirements?
How stable are the requirements? When are the errors,
faults, etc. detected? How many errors are caught in each
inspection? Are we detecting errors as early as possible?
When should we stop testing?

,%dysis of the questions suggested eight key metrics
for implementation.

1. Requirements deftition.
2. Requirements stability.
3. Software progress.

Washington Ada Symposium Proceedings - June 1991

4. Testing progress.

5. Product issues.
6, Product defects.
7. Test failures.

8. Test stilciency.

V. Project Metrics

The remainder of this paper discusses the eight
metrics listed above. Each metric is dkcussed as follows

Use of the metric A brief synopsis of the use of
the ~etric by the project team is presented.

b. Actual data or data format A dscussion of the
actual data gathered to date is presented and the charts
used to portray the data are shown. If not enough data
is available at the time of publication to illustrate the use
of a metriq a sample chart is shown to illustrate the
format in which the data will be presented.

1, Rettuirements Definition

a. Use of the metric This metric is used during the
software requirements analysis phase. Its purpose is to
get a relatively early indication that the requirements are
well-understood by the project team. SIDPERS-3
customer requirements are in the form of narrative
summaries, structured English and data flow diagrams.
The developers’ task is to convert the customer
requirements into a set of clearly defined functional
capabilities required of the software product.

25!

22
22

ii

j

1
187
la

Cumulative R
Number of

capabilities

10(

53

32

0

CSC16Ac?wunfihgAcZ/bns
. ,.,.,,............

.
,,.,

.,
.. ..
...
..

..:.

.,.

...

.

.;

,,

....

.;...... .
.

,,:.
. .

...’....

,...

,,:...

!.

.:..-..,

We consider a capability to be defined when it has

been determined to be traceable and testable. A

capabfity is considered traceable if it is possible for
reviewers to trace that capabtity to a customer

requirement, A capability is considered testable when it

is suftlciently well understood to write a test description.

The determination of requirements deftition is made at
technical reviews during the software requirements
analysis phase of the project.

b. Actual data As shown in Figure 1, the chart to
present the requirements deftition graphically is a plot of

three pieces of data versus time. The three arc estimated
number of total capabilities (unshaded vertical box),
number of traceable capabilities, and number of
capabfities defined (both traceable and testable).
Investigation of the varying height of the unshaded bar

beginning in October revealed some uncertainty in the
deftition of functional capabilities, coupled with decXlons
to cornbme capabtities. Overall the chart shows

acceptable progress in preparation for the informal
requirements review planned for April.

2. Requirements Stability

a. Use of the metri~ The purpose of this metric is
to show the number of c..anges to project requirements
and to identify which capabfities change most often. The
number of changes to requirements indkates the degree
of requirements stability. The metric is employed only

after the software requirements analysis phase is
completed. The software requirements analysis phase

ends with a requirements technical review. After the

M4’f .NN JUL ALK SEP OCT NOV OEC MN FEB MAR APR WY

1
IRR

Figure 1. Requirements Definition Metric

Washington Ada Symposium Proceedings - June 1991
121

path analysis has been performed to determine the longest
thread through the path. The time constraints we useful as
design goals and testing criteria.

--HARD Path: Monitor the PH of the solution

-–Executes [PH Monitor] on [OEM Computer]
--ACTIVATES PE~IODICALLY

--C critical = 100.0 US
--C–tin = 10.0 US
-- T–= 125.0 MS

--U[’’OEM Computer”] =

-- MAX 0.080 PERCENT

–- MIN 0.008 PERCENT
-- AVE 0.044 PERCENT

AT 8 HZ -

ENTER WHEN((ON 8 Hz period))

-- BEGIN PATH DESCRIPTION
–-Scale PH sensor data to [1 . . 14]
CONVERT TO STD PH SCALE(in PH Sensor, out

PH_VALU~);=-Us~s ‘(OEM Compute=) 50.0 US
--CRITICAL PATH TIME: 50.0 US

if((PH_VALUE<5 .0))

THEN
--Handle PH alerts

SET_ALERT(out PH_Alert);–-Uses (OEM
Computer) 50.0 US

ELSE

if((PH_VALUE>5. 8))
THEN

––Handle PH alerts
SET_ALERT(out PH_Alert);––Uses (OEM

Computer) 50.0 US

ELSE

if((PH_VALUE>=5 .0)

AND (PH_VALUE<=5.8))
THEN

––Handle PH alerts

RESET_ALERT(out PH_Alert);--Uses

(OEM Computer) 50.0 US
END IF;

END_IF–

END IF;
-- END–PATH DESCRIPTION

Thestatementsin this PDLare thebehaviors in thelowest
level SADTactivity boxes. Hardreal-time behaviors must
be implemented with ceilings on CPU usethat do not
exceed thespecifiedusage inthePDL. Activation rules are
simplified by CPATH in a manner similar to what a
compiler’s optimizer might do to simplify expressions.
Activity names show up as comments. IF-THEN-ELSE
and CASE structures are identified by the CPATH
analyzer.

ThepresentCPATH rmalyzerisstill experimental Agood
deal ofdevelopment work is still going onto improve its
control path analysis using optimization techniques. The
present version separates soft and hard paths on individual
processors and inserts operating system calls to manage the
transition when a hard path calls a soft one, or vise-versa.

Slated for the future is the generation of tasking models
which incorporate the threads. We plan on implementing
heuristic approaches to both cyclic exec style process

control and event driven control which take into
consideration task coupling through shared data.

Experience.

SALDT has been operational in various forms for
approximately 3 years. The Rate Monotonic Analysis
capability was introducedin 1990. Ithasbeen applied to
requirements, design and reverse engineering problems in
both real-time and non-real-time situations. Preliminary
trials with Ada PDL generation (with time constraints
annotated in the PDL) have been successful in that coders
have been able to carry out the fabrication from the SALDT

specifications, Trials with the PDL have so far been
limited to small applications (a few hundred lines of code,
and in one case a system of seven programs.) One of the
trials was contractual work requiring the development of
example avionics code running at eight Hz on a MIL-STD-
1750A machine (the language happened to be Jovial).
Approximately 450 lines of code were written, including
the process control code for managing an eight Hz cyclic
process. The example was coded and tested on a simulator
in 24 man hours starting from the PDL generated from an

SALDT model of the software.

Our experience with the development of large Ada systems
suggests that the value of SALDT in large real-time
projects is probably not the benefits derived from PDL
generation, although the ability to produce good quality
PDL will indeed be a productive feature. We expect that
the highest value is simply the ability to specify timing
constraints appropriate for real-time engineering practice,
and the corresponding ability of management to measure

the completeness of this kind of a design through
application of verification tools.

The tool set and methodology was introduced to Academia
in the Autumn of 1990 in an undergraduate course in
Software Engineering at the SUNY Institute Of Technology
at Utica Rome. Students received 8 hours of lecture on
Rate Monotonic Scheduling, 4 hours on the essentials of
SADT, and four hours on SALDT methods and tools, They
were then assigned a problem involving the computation of
present position, velocity and heading from radio
navigation data. Students wem required to carry through a
functional requirements model and a design model with

real-time constraints. As is inevitable in an academic
setting, some resourceful students recognized the potential
to base lines of code estimates on SALDT models and
performed their COCOMO cost projections on these
estimates. Only about a third of the students, however,
were able to make appropriate use of the SALDT methods
and tools. Student feedback was consistent about neeclhg
more time and practice to acquire familiarity with the
methods and tools.

The SALDT tools have been made available commercially
and feedback has been received from users in the USA and
in Europe. Real-time users have universally expressed the

122 Washington Ada Symposium Proceedings - June 1991

need for an improvement in the editing capabilities for
activation and behavior rules. (The present editing

capability for these is “delete and try again.”) There has
been some acknowledged appreciation for the hierarchical
consistency checking of activation rules. There has been
some spirited appreciation for the automatic drawing
feature and the validators.

References.
(1) Ross, D. T. “Structured Analysis (SA): A Language For

Communicating Ideas,” IEEE Tramsact.ions on Software

Engineering, vol. 3, no. 1, January 1977, pp 16-34.

(2) L Liu, Layland, “Scheduling Algorithms For
Multiprocessing In A Hard Real-Time System.” J. ACM,
20(1), 1973.

(3) Lui Sha, R. Rajkumar, and J.P. Lehoczky, “Priority
Inheritance Protocols, An Approach to Real-Time
Synchronization,” Technical Report CMU-CS-87- 181,

Carnegie Mellon University (NOV 1987).

(4) Baker, T.P., “Preemption vs. Priority, and the
Importance of Earily Blocking.” “Real-Time Systems
Newsletter, Volume 6, Number 2, IEEE Computer Society.

(5) Lui Sha, John B. Goodenough, “The Priority Ceiling
Protocok A Method for Minimizing The Blocking Of High
Order Ada Tasks.” Ada Letters, Special Issue:
Proceedings of the 2nd International Workshop on Real-
Time Ada Issues VIII, vol. 7, Fall 1988, pp 20-31.

(6) P. Puschner, R. Zainkinger, “Developing Software with
Predictable Timing Behavior.” “Real-Time Systems
Newsletter, Volume 6, Number 2, IEEE Computer Society.

(7) L.D. Molesky, K. Ramamritham, C. Shen, J. A.
Stankovic, and G. Zlokapa, “Implementing a Predicable
Real-Time Multiprocessor Kernal - The Spring
Kernel,’’Real-Time Systems Newsletter, Volume 6,
Number 2, IEEE Computer Society.

(8) D.A. Marca, C. L. McGowan, “Structured Analysis and
Design Technique.” McGraw Hill Book Company, New
York, St. Louis, 1987. ISBN 0-07-040235-3.

(9) Wallace, W.H., Stockenburg, J.E., and Charette, R.N.,
“A Unified Methodology for Developing Systems.”
Intertext McGraw Hill. 1987. ISBN 0-070-010646-0.

(10) Software Engineering Institute, “Rate Monotonic
Scheduling Theory Tutorial: Exercises and Case Studies.
Tri Ada “90”, 1990.

(11) J. A. Stankovic, K. Ramamrithm, “Hard Real-Time
Systems.” Computer Society Order Number 819, Computer
Society Press of the IEEE, 1730 Mass Avenue N.W.,
Washington DC 20036-1903

Washington Ada Symposium Proceedings - June 1991
123

