
A Course in Software Portability

James D. Mooney
Dept. of Statistics and Computer Science

West Virginia University
Morgantown, WV 26506

ABSTRACT

This paper describes an experimental course on the topic of

software portability, and inkial experience in teaching this
course. With the continuing proliferation of both applications

and computing environments, the need for portability is being
increasingly recognized. A large proportion of the software
now being developed will eventually need to be ported to new

environments. Yet this topic is missing from most computer
science and software engineering curricula.

The course described here was designed to explore
practical issues in the development of portable software.

Lectures and discussions on portability topics are combmed
with the ongoing development of a simple software project

designed to expose a variety of portability problems. During

the course the project is ported to several environments and
redesigned to improve its portability.

This course has been taught experimentally with
encouraging results. Student assignments have used novel and
effective methods to overcome portability barriers. Feedback

from students indicates that they have become more aware of
portability issues to be considered in software development,
and have gained experience with system interface issues in
several programming environments.

1. INTRODUCTION

The continuing proliferation of both applications and
computing environments creates an urgent need to overcome

the barriers to software portability. It is increasingly likely that
much of the software now in use or being developed will face
the need to be ported to new environments during its lifetime.
In a recent survey conducted to identify important future
challenges for software development [Lewis and Oman 90], the
problem of portability placed high on the list.

It is often believed that the portability problem has been

solved by the development of standardized programming
languages, or by the emergence of universal computing
environments such as UNIX. Each of these factors are

important, but they still fall far short of supplying complete
solutions to the portability problem. This is especially true
when it is necessary to port current software with complicated

requirements such as timing constraints or interactive user
interfaces. Some of the problems of software portability are
discussed in a recent survey by the author [Mooney 90].

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing

Machinery. To copy otherwise, cr to republish, requires a fee
and/or specific permission.
01992 ACM 0-89791 -468 -61921000210053 . ..S7 .50

53

In spite of the recognized importance of portability,

knowledge and awareness of portability issues and tcctilques is

not widespread. Much research remains to be done, but even
the knowledge that has been developed on this topic is not
being well disseminated. Portability considerations are

important in the software development process, but they are not
a clear part of common methodologies or curricula in softwa~e
engineering. As a consequence, much software is being

produced that is not as portable as it could be, and the task of
porting existing programs remains difficult.

The course described in this paper is al contribution

towards solving this problem. The course combines a series of
lectures and dkcussions on portability topics with laboratory

experience in the actual development and porting of a simple
portable program. In the laboratory series a single program is
designed for a single environment, ported to at least two

additional environments, and redesigned to improve its
portability. During initial class testing, many students devised
novel and effective strategies for overcoming portability
barriers encountered in these projects.

2. OUTLINE OF THE COURSE

2.1 Textbooks

A principal problem to be solved in the design of a new
course is the choice of a suitable text. There are a limited
number of books devoted to the subject of software portability,

and most of these address a limited body of issues. A classic but

now dated treatment of portability issues is given by [Brown
77]. Other more recent books on the topic include [Dshlstrend

84], [Henderson 88], [LeCarme et al 90], and ~allis 82].

None of these books is designed as a textbook, and each
has its strengths and weaknesses. LeCarme was selected for the
course because it offers up-to-date coverage of a reasonable
range of topics, and especially because it includes a number of
case studies on the porting of commercial microcomputer
software. Information in these studies was obtained by
interviews, since few such studies have been openly published.

2.2 Course Content

There are several points of view that can be taken for
software portability, which depend on the specific objectives to
be attained. Our course focuses on two principal objectives ‘m
the software development and maintenance process:

1. To develop original software in such a way that
it can be” mor~ easily
target environments;

ported to a vari&y of

http://crossmark.crossref.org/dialog/?doi=10.1145%2F135250.134522&domain=pdf&date_stamp=1992-03-01

2. To choose effective strategies for porting
existing software to specific new environments.

Topics for the course were selected to meet these
objectives. Course material was taken both from the text and

other available sources, including the instructor’s research and
experience in standardization projects. The text was

supplemented with several class handouts.

A complete list of topics covered in the course is given in

the Appendix.

2.3 Presentation Format

The course was initially taught during a six-week intensive
summer session (five 90-minute classes per week). A standard
lecture format was used during most class sessions. However,
since the topic includes many unresolved issues, some subjects
were best explored by open discussion. One open area of

particular interest is the problem of how to specify and measure
portability attributes and requirements. Students were
encouraged to contribute their own ideas to this discussion,

leading to a better understanding of the issues by class and

instructor alike.

3. PROJECT DESCRIPTION

This section describes the laboratory project used in the
course to provide students with direct experience in
overcoming the problems of portability. The chosen strategy
was based on a sequence of assignments all using the same basic

program. The goal was to develop an initial version of the
program, investigate the problems of porting it to various
environments, and improve its intrinsic portability based on
that experience.

3.1 Resources and Support

To perform experiments in software porting, it is necessary
to make use of multiple computing environments. Moreover,
to enable students to complete a meaningful set of experiments
in the time frame of a single course (especially a six-week

session), a reasonable and consistent infrastructure must be
provided.

The need for a variety of computing environments may
seem imposing at first, but the majority of Computer Science
and related departments now have access to a reasonable

assortment of personal computers, as well as one or more

timesharing systems available via networking. In our
department we made use of four distinct environments:

1. A cluster of VAX systems running VMS,
available to the entire university via network;

2. A distributed UNIX environment available in
our department, including both VAX and SUN
computers;

3. A large assortment of Macintosh computers

available in our undergraduate labs;

4. A limited assortment of IBM-PC-Compatible
systems.

An essential element for providing a consistent

infrastructure is the selection of a suitable programming
language. Such a language must be suitable for the

application, and well standardized; moreover, it must be
available for each target environment. Language conversion
was not considered to be a reasonable porting strategy within
the context of this course.

The only language which came close to meeting the

necessary requirements for our facility was C. C compilers were
available for all four of the chosen target environments. Most

of the compilers were reasonably conformant to the ANSI C

standard. Moreover, the comprehensive standard C library, also
available in reasonably consistent form, enhances the

portability of various operations such as character input or file
access, that may create problems when other languages are used.
For all of these reasons C was chosen as the project

implementation language.

An addhional problem to be faced was the physical
transport of files among the various environments to be used.

Since our goal clearly was source portability, not binary

portability, it was sufficient to provide transport for text files
only. No common media exists among such diverse systems.

However, the department network facilities linked the larger
systems with at least some of the Macintoshes and PCs. File
transfer software was available (either ftp or kertnit) to provide
reasonable support for all of the &msfers required.

3.2 Problem Description

The goal in selecting a programming problem for the
portability assignments was to compose a specification in
which the basic functionality was not complex, but elements
were included which would expose a number of specific

portability problems.

The problem chosen for the initial course was the design of
a simple interactive quiz program. The program was required to

read a set of multiple choice questions from a file, and then
conduct an interactive quiz based on a random selection from

these questions. At the end of the quiz, statistics were to be
displayed showing the results of the quiz. To focus attention
on portability issues in the limited time available, a skeleton
for the program was provided by the instructor.

The first version of the program was developed using VMS,
then ported to the UNIX network. Later assignments combined
functional enhancements, additional porting, and redesign for
improved portability.

The primary portability problems included in the first
version of the program were:

1.

2.

3.

Acquisition of command line parameters
(question file name, number of questions to
ask~

Display formatting (especially, a common
procedure for “clearing the screen”);

Time measurement (the final statistics had to
include the actual t~e taken for the quiz).

Students were required to recognize during this
assignment that perfect portability did not always imply

identical behavior in all respects. In particular, the preferred
method for processing command line parameters was to use the
conventional syntax for each environment, rather than a

common convention for the particular program.

54

Later assignments included functional enhancements
which led to additional portability problems:

1. Setting a time lirnig after which the quiz was to
be terminated (with extra credit for immediate

interruption);

2. Maintaining an auxiliary score file to record
the ten highest quiz scores (using an
appropriate name for each environment);

3. Graceful termination and proper reporting of
error conditions.

The final assignment required porting to a personal

computer environment. Extra credh was offered for conversion
to a menu-driven user interface, in which the quiz could be

conducted repeatedly using various options. Most students
took advantage of this opportunity.

4. ADDITIONAL ISSUES

Our quest for maximum portability during the
assignments led to exploration of some problems and issues that
were not originally anticipated.

4.1 Version Management

The question of how to manage different versions of a

program module for multiple systems led to examination of the

role of conditional compilation. This facility, available
through the C language preprocessor, enables code to be
optionally compiled depending on the condition of certain
preprocessor variables. This strategy can be used to support
multiple versions by defining a variable for each version to be
used, the disadvantage is that all versions must be combined in
a common source file, which will change as each new version is
defined. We concluded that conditional compilation can
sometimes be a useful tool for version management, but should

not be considered as a primary strategy for portable design.

4.2 Hiding Processor Differences

Our UNIX environment includes several different

processor types serving a common set of users and sharing a
network file system. Users can freely log on to any processo~
however, executable files prepsred for one processor type
cannot be executed on another. This led to confusion for
students who habitually used different processors. It clearly is
necessary to compile programs separately for each intended
target processor. The related problem we explored was how to

make the difference invisible to subsequent users, so that

identical commands could be used regardless of the processor

being run.

In a similar vein, subtle differences across microcomputer

families led to cases in which programs developed using one

model would not execute properly on another. These
differences ranged from different operating system versions to
different types of graphic hardware. In some cases, students had
to confront the choice between taking advantage of special
capabilities such as color graphics, or maintaining a wider
range of portability.

4.3 Ownership and Location

Some peripheral but interesting problems were
encountered through attempts by the instructor to test student

programs on the timesharing systems, when those programs were

owned by different accounts and placed in different file
directories. This type of access was always possible, but
required careful attention to file protection settings and file
name specification. A common mistake was to place the quiz
score file in the current directory (which could vary) rather
than in a fixed location.

5. DISCUSSION AND CONCLUSIONS

This paper has presented an outline for a course on Softwiire.

portability, and some experience gained during its initial

implementation. This course will continue to be developed,
and further refinements will of course come from further

experience.

A fully suitable textbook is an unfulfilled requirement.
LeCarme contains much beneficial material, but excessive space
(for our purposes) is devoted to issues of language translaticm,
and some other issues are not treated as fully as desired. Mc)re
significantly, the book is not a text it is not always tutorisf in
its approach, and it contains no assignments, summaries, or

detailed suggestions for class use. The same is true for the other

books available; no true text for teaching software portability

has yet appeared.

Student feedback from the initial presentation of the

course has been quite positive. Students found that they not
only developed an awareness of portability issues, but also
gained useful experience in programming for a variety of
specific environments. Several students produced outstanding
(and impressively portable) project implementations. Some
found themselves scanning volumes of system documentation
and contacting vendors or discussion groups to answer subtle

questions about timer interrupts or command handling.

The course has been taught only in a six-week summer

session, but it should be easily adaptable to a longer term Tlhe
class hours would be about the same, but students would have
more time to digest the material, and especially more time to
work on laborato~ assignments. The assignments consumed
the greatest share of time, it is likely that more lecture maten al
could be covered in the longer calendar span of a normal
semester.

The resources required for this course are significant, but
the course can be adapted to many different configurations as

long as a few distinct system types are available. This

requirement should be met by most institutions. This year the
C Language was the only feasible choice for the project. More

affordable Ada compilers are now appearing for smaller

environments, which may make this language a reasonable
alternative in the future.

Even if this course is beneficial, however, the questiun
remains: how could it fit into a typical curriculum? Software
portability deserves a clearer place in the spectrum of software
engineering education. A course like this could be an optional
offering in a sequence of development-oriented courses.
Alternately, a shortened version of this course could be used as

one component of a broader course in software engineering.

55

Software portability is not an identified topic in older
curriculum proposals, but this course can easily fiid a place in

the new Computing Curricula 1991, jointly developed by
ACM and IEEE/CS flucker 91]. The course can stand alone as
an Advanced Software Engineering wurse, or its content can be
integrated into basic software engineering courses. It
contributes to knowledge units SE2 and SE4. Its central

recurring concept is reuse, but it also deals with aspects of

binding, efficiency, evolution, levels of abstraction, and trade-
offs and consequences.

Perhaps only limited material on this topic can be used in
most existing curricula. Nonetheless, our experience has shown
that some explicit attention to portability issues is valuable,
and that this topic can most effectively be explored through
actual experimentation.

ACKNOWLEDGMENTS

I would like to thank the students of CS 291/391 and the

anonymous referees for their helpful comments.

REFERENCES

[Brown 77] P.J. Brown (cd.), Sof$wzre Portability, Cambridge
University Press, Cambridge, England 1977.

[Dahlstrand 84] I. Dahlstrand, Software Portability and
Standards, Ellis Horwood, Chichester, England 1984.

[Henderson 88] J. Henderson,, Software Portability, Gower
Technical Press, Hants, England 1988.

[LeCarme et al 89] O. LeCarme, M. Pellissier GarG and M. Gart,
Software Portability with Microcomputer Issues.
McGraw-Hill, New York 1989.

[Lewis and Groan 90] T.G. Lewis and P. Oman, The Challenze
of soft ar elo- , IEEE Sojlware, Vol. 7, No. 6,

NOV. l~90~pp~-12.

[Mooney 90] J. Mooney, _zies for Support&g
Auulication Portability, IEEE Computer, Vol. 23, No.

11, pp. 59-70.

[Tucker 91] A. Tucker, (cd.), Computing Curricula 1991,
ACM/IEEE-CS Joint Curriculum Task Force, ACM, Order
No. 201880, 1991.

APPENDIX: TOPIC OUTLINE

GENERAL CONCEPTS

What and why; The growing importance of
portability Degrees of portability; Binary and

source portability; Transportation and

adaptation, Program interfaces Program design,
system desig~ and installation.

THE ROLE OF STANDARDS

What is a standard? Defacto and formal
standards; Principal standards organizations;
Examples.

TRANSPORTATION ISSUES

Media compatibility; File systems;

Transportable media vs. networks.

REPRESENTATION ISSUES

Standard languages and their limitations; Use

of “portable subsets”; Portable compilers;
Changing languages; The linking problem:
standard intermediate forms.

INTERFACE ISSUES

Standard libraries; The operating system
interface; Portable operating systems; Standard
environments; Interface levels (low and high);
The hardware interfacq Interpreters and abstract

machines.

SPECIAL REQUIREMENTS

Memory managemen~ User interaction; Real-
time applications; Multitasking applications;
Architecture-independent parallelism, Changes
of algorithm.

OTHER ISSUES

Specification and metrics; Dynamic portability
across a network; People portability; Data
portability; Portability vs. reusability; Cultural

adaptation: internationalization, user interface;
Non-technical issues (copyright, etc.).

CASE STUDIES

Portable applications; Portable compilers;
Portable operating systems; Portable libraries;
Standard representations; Standard interfaces.

[Wallis 82] P. J. L. Wallis, Portable Progr~”ng. John Wiley
& Sons, 1982.

56

