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Abstract ACACMpaper by Park and Miller
[6] advocated astandard for random number
generators based on the Lehmer generator [5] and
criticised a number of computer science
textbooks for presenting bad random number
generators. This paper advocates the proposed
standard and presents a set of generators based
on theoretically sound principles that are also
useful for microcomputer implementation and
classroom presentations at the introductory level.

Introduction
The article by Park and Miller [6] describes the
proliferation of bad random number generators in
subroutine libraries and in textbooks. They make
a strong case for standardizing on the Lehmer
generator [5] of the form

Zn+1 = azn mod m

where zn is the n th random number in the
sequence, m is the modulus, a large prime
integer, and a is the multiplier, an integer in the
range [2..m–l]. The pseudorandom integers
produced by such a generator lie in the range
[1..m–l] and must repeat with a cycle length of
at most m–1. Although shorter cycle lengths are
possible depending on the choice of a and m,
generators that achieve the maximum cycle length
are known as full-period generators.

Among the bad generators Park and Miller
describe are those that are based on the above
algorithm but are not full-period, those that are
Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy othsrwise, or to republish, requires a fee
and/or specific permission.
a 1992 ACM 0-89791 -468 -619210002/0142 ...S1 .50

full-period but that are not sufficiently random,
and those that are based on other algorithms. A
common example of an inferior algorithm is the
sequence

Zn+l = (azn + c) mod m

where the additive term c satisfies c mod m # O.
The effect of c is to allow z = O in the sequence,
so that a full-period sequence has a cycle length
of m instead of m–l. Implementations of
generators based on this algorithm usually have
vz equal to a power of 2 so the mod operation can
be done efficiently with a binary shift. Although
it seems intuitively that the presence of c should
“mix up” the sequence, it turns out that such a
term (when m is a power of 2) will always
introduce a highly nonrandom behavior in the
sequence. The least significant bit will cycle with
a period of 2, the next significant bit with a
period of 4, and so on. One result is that the
terms of the sequence will alternate perfectly
between odd and even.

Other bad generators include algorithms that
depend on the overflow arithmetic of a specific
processor and hence are not portable in high-level
languages, and algorithms that depend on the
uncontrolled precision of real computations such
as operations that use truncated approximations
of n. To show how widespread the bad
generators are, Park and Miller cite no fewer than
17 computer science textbooks with faulty
generators!

Park and Miller propose a standard generator
as that Lehmer generator with a = 75 = 16807
and m = 23 1–1 (a Mersenne prime). This
generator satisfies their three criteria for a good
generator: (1) a full-period sequence, (2) a
sufficiently random sequence, and (3)
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implemented efficiently with 32-bit arithmetic.

This generator has passed extensive statistical

tests and is known to be one of the best.

One good feature of the proposed minimal

standard is that m is in excess of 2 billion and is

therefore good for serious simulations. There is

an application, however, that requires a cycle

length that is much less than the cycle length of

the proposed standard, namely the problem of
teaching the concept of pseudorandom numbers.

This application requires a small value of m so

examples that illustrate the generator will involve

computations that are manageable on common

hand-held calculators.

Not wanting to present an inferior generator

as in the texts cited by Park and Miller, I

searched for values of a and m in the Lehmer

generator that would be suitable for teaching

purposes [9]. The three criteria of Park and
Miller were adopted with (3) modified to be

implemented efficiently with 16-bit arithmetic.

The resulting random number generators are

simple, easy to teach, and are based on a

theoretically sound algorithm. They have the

additional advantage of being useful for very

small simulations, such as interactive games of

chance.

The next section describes the spectral test, a

test for randomness used for criterion (2) in the

search for good values of a and m. The following

section gives the results of the search in the form

of a table of the best values of a and m over a

range of m that is suitable for 16-bit integer

arithmetic common on microcomputers.

The Spectral Test
Criteria (1) and (3) together provided the first
filter for the exhaustive search. Restricting m to a

prime number prevents z from ever becoming

zero, but does not guarantee a full-period

sequence. There are 560 primes between 10 and
4096. For each prime, m, the multipliers, a,
between 2 and min (m–l, trunc (32767/nz)) were
determined that produced a full-period sequence.
This restriction guarantees that the intermediate

multiplication, az, will not overflow a 16-bit
integer system. A few primes in this range have
no full-period multipliers, but most have several.

The next problem was to determine the
randomness test for criterion (2). Although many

chi-square tests are possible for testing the
randomness of a sequence, I selected the spectral

test as described in Knuth [3]. According to

Knuth, “not only do all good generators pass this

test, all generators now known to be bad actually

fail it.Thus it is by far the most powerful test
known ...”.

The spectral test is based on the position of

points in Euclidian space whose co-ordinates are

successive subsequences of the generated
numbers. As an illustration of the spectral test

consider the m = 17, a = 5 generator. This full-

period generator produces the sequence 1, 5, 8,

6, 13, 14, 2, 10, 16, 12, 9, 11, 4, 3, 15, 7, 1,

after which the cycle repeats. ‘The two-

(a)m=17, a=5

—

(b)rn=17, a=3

Figure 1. Two full-period multipliers for the

modulus 17.
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dimensional spectral test analyzes the points in

the plane whose coordinates are (1, 5), (5, 8),

(8, 6), (6, 13), ... . (7, 1). Each co-ordinate is

then normalized by dividing by m. The result is a

set of points in the unit square as shown in
Figure 1(a). For comparison, the points for the m

= 17, a = 3 generator are shown in Figure 1(b).

Its sequence is 1, 3, 9, 10, 13, 5, 15, 11, 16,

14, 8, 7, 4, 12, 2, 6, 1.

It would appear that the points in Figure l(a)

are in some sense more “spread out” than those

in Figure 1(b), and those in Figure 1(b) have

more of a regular pattern. The spectral test

quantifies this notion and determines that the a =
3 sequence is, in fact, less random than the a = 5
sequence.

The test constructs a family of parallel,

(a) d = 1/5= 0.200.

(b) d = 1/413= 0.277.

Figure 2. Two families of parallel straight lines

that cover the points from the m = 17, a = 5

equally-spaced lines that cover all the points in

the unit square. The length d is the distance

between adjacent lines. Figure 2(a) shows one
family of parallel lines that cover the points of the

m=17, a= 5 generator. This family has lines

spaced a distance d = 1/5 = 0.200 apart. Figure
2(b) shows another family covering the same set

of points, but whose line spacing is d = 1/413 =

0.277. Many other coverings are possible. For

example, you could cover the points with a

family of 16 vertical (or horizontal) lines spaced

1/17 = 0.059 apart since the coordinates are all

multiples of 1/17.
It turns out that the family of lines in Figure

2(b) is the one with the largest inter-line spacing

for the m = 17, a = 5 generator. It is readily

apparent from Figure 1(b) that the points for the

m =17, a= 3 generator can be covered with

several families of lines, but the family with the

maximum interline distance is the one with three

lines in the northeast direction. This family has d
= l/~10 = 0.316.

The spectral test defines l/v2 to be the

maximum distance between lines, taken over all
families of parallel lines that cover the points in

two dimensions. V2 is therefore the two-

dimensional accuracy of the sequence. Thea= 5
sequence is better than the a = 3 sequence

because its V2= 413 is greater than the V2= d10
of the a = 3 sequence.

The two-dimensional spectral test analyzes

adjacent pairs of pseudorandom integers. The
three-dimensional test analyzes adjacent triples.
For example, the co-ordinates in 3-space for the

points from the m = 17, a = 5 generator are (1,5,

8), (5, 8, 6), (8, 6, 13), (6, 13, 14), ... . (7, 1,

5). These 16 points can be covered by several

families of equally spaced parallel planes in the

unit cube. V3 is the reciprocal of the maximum
inter-plane distance over all familes of planes.

The idea generalizes to arbitrarily high
dimensions. Vt is the reciprocal of the maximum
inter-hyperplane distance taken over all parallel

hyperplane families that cover the points in t-

dimensional Euclidean space. Moving to the next
higher dimension in the test corresponds to

increasing the length of the analyzed

subsequences by 1. Standard practice is to

compute vt for values oft in the range 2s ts 6,
generator.
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corresponding to

length 6 and less.

Results

analyzing all subsequences of systems with only 16-bit integer arithmetic. Their

advice was to get a better system or use the 16-bit

generator presented by L’Ecuyer [4]. In
undergraduate teaching environments, however,

the first option is not always feasible.

Furthermore, L’Ecuver’s generator is

Knuth’s [3] figure of merit, pi, which is

proportional to v+/rn has the advantage of being

relatively independent of m. This figure of merit

was computed for all six dimensions of all full-

period Lehmer generators with rn between 10 and
4096. For a given dimension, a larger pr,

corresponds to a better generator. The smallest

Ut, of the six dimensions is therefore a “worst

case” value. The figure of merit for a given

generator is the minimum Ut over all six

dimensions, ~min. The results are shown in the

table below, which defines the best generator in a

subrange of m to be the one with the maximum

~min. Values of Vt2 are shown to indicate the

absolute accuracy of each generator.
Knuth considers the multiplier to pass the

spectral test if #t is 0.1 or more for 2 s ts 6 and

to be exceptional if pt is greater than 1. Although

these generators all pass the test, the caveat is that

their small cycle lengths make them good only

for illustrative purposes or for extremely small

applications like simulating some rolls of a pair

of dice, shuffling a deck of cards, or taking a

short random walk around the block.

Conclusions
Park and Miller’s paper elicited several letters in a

subsequent issue of CACM [1, 2, 8]. They

mention in their reply [7] that they had received

requests for random number generators on

Best

generator in
ran~e
10-20
20-50
50-100
100-200
200-500
500-1000
1000-2000
2000-4096

has
modulus

m of
17
37
83
139
467
797
1013
2027

unnecessarily” complicated fo; pedagogical

purposes. Besides, why teach a complex

algorithm when a simple one is being advocated

as a standard?

As computer science educators, we should
continually be on the alert so that the algorithms
we present to our introductory students are the
ones that are the best known. The generators

presented here are offered in that spirit. They will

not only allow you to present the standard

Lehmer algorithm but provide you with specific

good small values for m and a as well.
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