
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

ingénieur informaticien diplômé EPF
de nationalité suisse et originaire de Charmey (Lac) (FR)

acceptée sur proposition du jury:

Lausanne, EPFL
2007

Prof. E. Telatar, président du jury
Prof. U. Nestmann, Prof. T. Henzinger, directeurs de thèse

Prof. S. Artëmov, rapporteur
Prof. R. Küsters, rapporteur

Prof. L. Moss, rapporteur

Logical Concepts in Cryptography

Simon Kramer

THÈSE NO 3845 (2007)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 4 juillet 2007

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

Laboratoire de modèles et théorie de calculs

SECTION D'INFORMATIQUE

To my teachers

Abstract

Subject This thesis is about a breadth-first exploration of logical concepts
in cryptography and their linguistic abstraction and model-theoretic combina-
tion in a comprehensive logical system, called CPL (for Cryptographic Proto-
col Logic). We focus on two fundamental aspects of cryptography. Namely,
the security of communication (as opposed to security of storage) and crypto-
graphic protocols (as opposed to cryptographic operators). The primary logical
concepts explored are the following: the modal concepts of belief, knowledge,
norms, provability, space, and time. The distinguishing feature of CPL is that
it unifies and refines a variety of existing approaches. This feature is the result
of our wholistic conception of property-based (modal logics) and model-based
(process algebra) formalisms.

Keywords applied formal logic, information security.

URL http://library.epfl.ch/en/theses/?nr=3845

http://library.epfl.ch/en/theses/?nr=3845

Résumé

Sujet Cette thèse a comme sujet une exploration en largeur de concepts lo-
giques en cryptographie et leur abstraction et combinaison linguistique en un
système logique syncrétique, appelé CPL (pour Cryptographic Protocol Logic).
Nous nous intéressons à deux aspects fondamentaux de la cryptographie. D’une
part, à la sécurité de la communication (par opposition à la sécurité du stockage)
de données, et d’autre part, aux protocoles cryptographiques (par opposition aux
opérateurs cryptographiques). Les concepts logiques primaires explorés sont les
suivants : les concepts modaux de la croyance, de la connaissance, des normes,
de la prouvabilité, de l’espace, et du temps. Le trait distinctif de CPL est d’uni-
fier et de raffiner une variété d’approches existantes. Ce trait est le résultat de
notre conception holistique des formalismes basés sur les propriétés (logiques
modales) et de ceux basés sur les modèles (algèbres de processus).

Mots-clefs logique formelle appliquée, sécurité d’information.

URL http://library.epfl.ch/en/theses/?nr=3845

http://library.epfl.ch/en/theses/?nr=3845

Synopsis

This thesis is about a breadth-first exploration of logical concepts in cryptog-
raphy and their linguistic abstraction and model-theoretic combination in a
comprehensive logical system, called CPL (for Cryptographic Protocol Logic).
We focus on two fundamental aspects of cryptography. Namely, the security
of communication (as opposed to security of storage) and cryptographic pro-
tocols (as opposed to cryptographic operators). The logical concepts explored
are the following. Primary concepts: the modal concepts of belief, knowl-
edge, norms, provability, space, and time. Secondary concepts: belief with
error control, individual and propositional knowledge, confidentiality norms,
truth-functional and relevant (in particular, intuitionistic) implication, multiple
and complex truth values, and program types. The distinguishing feature of
CPL is that it unifies and refines a variety of existing approaches. This feature
is the result of our wholistic conception of property-based (modal logics) and
model-based (process algebra) formalisms. We illustrate the expressiveness of
CPL on representative requirements engineering case studies. Further, we ex-
tend (core) CPL (qualitative time) with rational-valued time, i.e., time stamps,
timed keys, and potentially drifting local clocks, to tCPL (quantitative time).
Our extension is conservative and provides further evidence for Lamport’s claim
that adding real time to an untimed formalism is really simple. Furthermore,
we sketch an extension of (core) CPL with a notion of probabilistic polynomial-
time (PP) computation. We illustrate the expressiveness of this extended logic
(ppCPL) on tentative formalisation case studies of fundamental and applied con-
cepts. Fundamental concepts: (1) one-way function, (2) hard-core predicate, (3)
computational indistinguishability, (4) (n-party) interactive proof, and (5) (n-
prover) zero-knowledge. Applied concepts: (1) security of encryption schemes,
(2) unforgeability of signature schemes, (3) attacks on encryption schemes, (4)
attacks on signature schemes, and (5) breaks of signature schemes. In the light
of logic, adding PP to a formalism for cryptographic protocols is perhaps also
simple and can be achieved with an Ockham’s razor extension of an existing
core logic, namely CPL.

Moreover, we define: (1) message meaning ; (2) message information content ;
(3) protocol meaning ; and, based on all that, (4) protocol information content .
From the meaning of a cryptographic message, we obtain (1) an equational
definition of its context-sensitivity , and (2) a formalisation of the first of Abadi
and Needham’s principles for prudent engineering practice for cryptographic
protocols. From the meaning of a cryptographic protocol, we obtain natural
definitions of the concepts of (1) a protocol invariant , (2) protocol safety , and
(3) protocol refinement . Last but not least, we show that protocol agents can
be conceived as evolving Scott information systems.

Synthèse

Cette thèse a comme sujet une exploration en largeur de concepts logiques en
cryptographie et leur abstraction et combinaison linguistique en un système lo-
gique syncrétique, appelé CPL (pour Cryptographic Protocol Logic). Nous nous
intéressons à deux aspects fondamentaux de la cryptographie. D’une part, à
la sécurité de la communication (par opposition à la sécurité du stockage) de
données, et d’autre part, aux protocoles cryptographiques (par opposition aux
opérateurs cryptographiques). Les concepts logiques explorés sont les suivants.
Concepts primaires : les concepts modaux de la croyance, de la connais-
sance, des normes, de la prouvabilité, de l’espace, et du temps. Concepts se-
condaires : la croyance avec contrôle d’erreur, la connaissance individuelle
et propositionnelle, les normes de confidentialité, l’implication vérifonctionnelle
et pertinente (en particulier, intuitionniste), les valeurs de vérité multiples et
complexes, et les types de programmes. Le trait distinctif de CPL est d’uni-
fier et de raffiner une variété d’approches existantes. Ce trait est le résultat de
notre conception holistique des formalismes basés sur les propriétés (logiques mo-
dales) et de ceux basés sur les modèles (algèbres de processus). Nous illustrons
l’expressivité de CPL à l’aide d’études de cas représentatives de type require-
ments engineering. Ensuite, nous étendons CPL (temporisée qualitativement)
avec du temps à nombres rationnels, c’est-à-dire, avec des étiquettes temporelles,
des clefs temporisées, et des horloges locales potentiellement dérivantes dans le
temps, à tCPL (temporisée quantitativement). Notre extension est conserva-
trice et va dans le sens de la thèse de Lamport qui affirme qu’ajouter du temps
réel à un formalisme est vraiment simple. En outre, nous esquissons une exten-
sion de CPL avec une notion de calcul probabiliste et polynomial. Nous illus-
trons l’expressivité de cette logique étendue (ppCPL) à l’aide d’études de cas
expérimentales de concepts fondamentaux et appliqués. Concepts fondamen-
taux : (1) les fonctions à sens unique, (2) les prédicats de type hard-core, (3)
l’indistinguabilité computationnelle, (4) les preuves interactives (à n entités),
et (5) les preuves à divulgation nulle de connaissance (à n entités). Concepts
appliqués : (1) la sécurité du et les attaques des algorithmes de chiffrage ; et (2)
la non-falsifiabilité, les attaques des algorithmes de création, et les falsifications
des signatures électroniques. À la lumière de la logique, le rajout d’une notion
de calcul probabiliste et polynomial à un formalisme pour protocoles cryptogra-
phiques est peut-être aussi simple et peut être réalisé avec une extension selon
le principe du rasoir d’Ockham d’une logique existante, à savoir CPL.

De plus, nous définissons : le sens d’un message ; le contenu en information
d’un tel message ; le sens d’un protocole ; et sur base de tout cela, le contenu en
information d’un tel protocole. À partir du sens d’un message cryptographique,
nous obtenons (1) une définition équationnelle de sa dépendance du contexte, et
(2) une formalisation du premier des principes d’ingénierie prudente pour pro-
tocoles cryptographiques d’Abadi et Needham. À partir d’un protocole crypto-
graphique, nous obtenons des définitions naturelles des concepts (1) d’invariant
de protocole, (2) de sûreté de protocole, et (3) de raffinement de protocole. En-
fin, nous montrons que les agents de protocole peuvent être conçus comme des
systèmes d’information de Scott.

Contents

Contents 13

List of Tables 17

List of Slogans 19

I Prologue 21

1 Preface 23

2 Introduction 27
2.1 Motivation: problem . 27

2.1.1 Symptom . 28
2.1.2 Cause . 28
2.1.3 Remedy . 28

2.2 Goal: solution . 29
2.2.1 Logic . 29
2.2.2 Extent . 29

2.2.2.1 Scope . 29
2.2.2.2 Grain . 30

2.3 Methodology . 30
2.3.1 Approach . 30
2.3.2 Formalism . 30

2.3.2.1 Unifying modal logics for cryptography 31
2.3.2.2 Integrating modal logic and program semantics . 31

2.4 Prerequisites . 32
2.4.1 Logic and program semantics 32
2.4.2 Cryptography . 32

2.4.2.1 Prehistory . 32
2.4.2.2 Classical cryptography 33
2.4.2.3 Modern cryptography 33

2.5 Preview . 34
2.5.1 Cryptographic states of affairs 34
2.5.2 Cryptographic concepts 34
2.5.3 Research highlight . 35
2.5.4 Peer-review . 35

13

14 CONTENTS

II Cryptographic Protocol Logic 37

3 Dolev-Yao cryptography 39
3.1 Introduction . 39

3.1.1 Historical context . 39
3.1.2 Topical context . 40

3.1.2.1 Requirements engineering—ideally 40
3.1.2.2 Requirements engineering—really 41
3.1.2.3 Requirements engineering—CPL 43

3.2 Logic . 45
3.2.1 Syntax . 45
3.2.2 Semantics . 48
3.2.3 Discussion . 55

3.2.3.1 Expressiveness 55
3.2.3.2 Relevant implication 55
3.2.3.3 Conflicting obligations 57
3.2.3.4 Logical omniscience 57
3.2.3.5 Other connections 58

3.3 Application: formalisation case studies 59
3.3.1 Trust-related affairs . 59
3.3.2 Confidentiality-related affairs 59
3.3.3 Authentication-related affairs 60
3.3.4 Commitment-related affairs 62
3.3.5 Compositionality-related affairs 64

3.3.5.1 A popular attack scenario 65
3.4 tCPL: an extension of CPL with real time 68

3.4.1 Historical and topical context 69
3.4.2 Extension . 70
3.4.3 Expressiveness . 72
3.4.4 Application: a timed attack scenario 73

4 Calculus of Cryptographic Communication 77
4.1 Core calculus . 78

4.1.1 Syntax . 78
4.1.2 Semantics . 79
4.1.3 Observational equivalence 82
4.1.4 Application: an algebraic attack scenario 82

4.2 tC3: an extension of C3 with real time 83
4.2.1 Extension . 85
4.2.2 Application: a timed, algebraic attack scenario 86

4.3 Denotational semantics . 87
4.3.1 Message meaning . 88
4.3.2 Protocol meaning . 90

5 Towards PP-cryptography 93
5.1 Introduction . 93

5.1.1 Symbolic logic . 94
5.1.2 Probability theory . 95
5.1.3 Probabilistic polynomial-time cryptography 95

5.2 ppCPL: an extension of CPL with PP 96

CONTENTS 15

5.2.1 Syntax . 96
5.2.2 Semantics . 97

5.3 Application: formalisation case studies 99
5.3.1 Fundamental concepts . 99
5.3.2 Applied concepts . 103

III Epilogue 109

6 Conclusion 111
6.1 Review of achievements . 111
6.2 Future work . 114

A Proofs 115

B Specification Library (Glossary) 123

C Bibliography 125

D Index 134

Curriculum Vitæ 145

16 CONTENTS

List of Tables

3.1 Message language . 46
3.2 Predicate language . 47
3.3 Derivation of individual knowledge 50
3.4 Truth denotation . 51
3.5 Parsing cryptographic messages 52
3.6 Deriving a plaintext . 56
3.7 Protocol narration for core NSPuK 65
3.8 Protocol template for core NSPuK 66
3.9 Prehistory for core NSPuK . 67
3.10 Attack narration for NSPuK . 67
3.11 Definability of durations . 73
3.12 Protocol narration for WMF . 73
3.13 Protocol template for WMF . 74
3.14 Prehistory for WMF . 75
3.15 Attack narration for WMF . 75

4.1 C3-processes . 79
4.2 Pattern matching . 79
4.3 Lookup predicate . 80
4.4 Process and thread execution . 81
4.5 Attack trace for NSPuK . 83
4.6 Timed lookup predicate . 85
4.7 History template for WMF . 87

5.1 Syntactic representation of individual concepts 94
5.2 Probabilistic process reduction 95
5.3 Probabilistic message denotation 96
5.4 PP derivation of individual knowledge 98
5.5 Expressing properties of protocols, operators, and messages . . . 99

17

18 LIST OF TABLES

List of Slogans1

Logic is . 23
Proof of concept is . 24
The subject-matter of applied formal logic is 24
The purpose of logic is . . . The purpose of machines is 27
Proving with Turing machines is . 29
The subject-matter of programming languages is 31
Cryptography is . 32
The purpose of a cryptographic protocol is 39
In theory, . . . In practice, . 40
Cryptographic protocol correctness: . 40
Belief can be used to show . 43
The formal method for any science is . 43
Logic for engineering necessarily is . 44
Trustworthiness = . 45
Meaning, when communicable, is . . . Semantics is 49
Authenticity is . . . Secrecy is . 62
Stating the possibly weakest exo-condition 65
Debatable requirements entail . 65
Actions are . . . Events are . 80
In cryptography, individual knowledge is the key to 90
Predicates speak of . . . Propositions talk about 99
Proves should be written like . 122

1meant

• to connote (not to denote) scientific content

• to denote (not to connote) scientific intent

19

20 LIST OF TABLES

Part I

Prologue

21

Chapter 1

Preface

Studies in the foundations of mathematics divide symmetrically
into two sorts, conceptual and doctrinal. The conceptual studies
are concerned with meaning, the doctrinal with truth. The concep-
tual studies are concerned with clarifying concepts by defining them,
some in terms of others. The doctrinal studies are concerned with
establishing laws by proving them, some on the basis of others. Ide-
ally the obscurer concepts would be defined in terms of the clearer
ones so as to maximize clarity, and the less obvious laws would be
proved from the more obvious ones so as to maximize certainty. Ide-
ally the definitions would generate all the concepts from clear and
distinct ideas, and the proofs would generate all the theorems from
self-evident truths. The two ideals are linked.1

Willard V. Quine
(cf. [Gib04, Page 259])

This thesis is the inception of a conceptual study in the logical foundations
of cryptography. Our perspective is meta-theoretic; our concern applied; and
our approach formal, and based on the following conviction2, formulated as a
slogan:

Slogan 1 Logic is the interdisciplinary and unifying scientific discipline par
excellence.

Our perspective is meta-theoretic because such a perspective is conducive to
the perception of pertinent connections between disciplines that the members
of their respective communities typically claim to perceive as safely unconnected.
Our concern is applied for the sake of practical relevance. And our approach is
formal for the sake of scientific rigour.

Our conceptual study is concerned with the clarification of the meaning
of cryptographic intuitions by reducing them to logical concepts and defining
them in terms of logical constructions. According to Quine: “It is valuable to

1the link is “the duality between concept and doctrine, between knowing what a sentence
means and knowing whether it is true.” [Gib04, Page 273]

2The community-centered reader uprooted by this individual declaration of faith can be
reassured that our conviction is socially well-founded — in another community, namely the
one of mathematical foundationalists (though not necessarily fundamentalists).

23

24 CHAPTER 1. PREFACE

show the reducibility of any principle to another through definition of erstwhile
primitives, for every such achievement reduces the number of our presupposi-
tions and simplifies and integrates the structure of theories.” [Gib04, Page 30].
Our enterprise is clearly in the spirit of mathematical foundationalism and thus
consistent with the maxim of the first quotation to define the obscurer (i.e.,
cryptographic) concepts in terms of the clearer (i.e., logical) ones so as to max-
imise clarity. Our ambition is concomitant with the maxim of the first quotation
that ideally, the (logical) definitions would generate all the concepts (those rel-
evant to cryptographic protocols) from clear and distinct ideas. Our study is
conceptual because (and that is the link in the first quotation):

Slogan 2 Proof of concept3 is necessary for the concept of proof.

And the concept of proof is well-understood, as opposed to cryptographic con-
cepts, which according to Goldreich are not: “To summarize, the basic concepts
of cryptography are indeed very natural, but they are not self-evident nor well
understood. Hence, we do not yet understand these concepts well enough to be
able to discuss them correctly without using precise definitions and rigorously
justifying every statement made.” [Gol01]. This thesis is our humble contribu-
tion to the discussion in the form of a logical conceptualisation of the security
of communication at the level of cryptographic protocols and its crystallisa-
tion into a comprehensive logical theory . Logic is about correct (and hopefully,
inter-communal) discourse and conversation (and hopefully, dialogue). Our at-
titude is curiosity in — and service to — cryptography. Our hope is to awake
awareness of the relevance of formal logic applied to cryptography.

Slogan 3 The subject-matter of applied formal logic is pragmatics of cognition.
Its purpose is empowerment of the human mind in the formulation, validation,
and communication of statements.

Audience

Our target audience is the community of logically inclined engineers, computer
scientists, cryptographers, logicians, and philosophers. Our (meta-)community
is the one of all those who believe that thinking in terms of closed scientific
communities is imprisonment of the mind and ultimately anti-scientific. The
concept of a closed scientific community is a strong logical paradox, i.e., non-
sense.

Acknowledgements

I would like to thank: Johannes Borgström for his contribution to our joint
work, and for teaching me through that work what I know about process al-
gebra; Mika Cohen for our stimulating discussions about crypto logics and his
constructive criticism of my work; Marc De Falco for his exploratory (now super-
seded) contribution to my work at an experimental stage; Christoph Frei for his
elder-brotherly advice on the practice of being a Ph.D. student; Henrik Imhof
for his abiding Upanishads on mathematical logic; Michael Mendler for our early

3or at least, evidence for concept

25

discussions about crypto logics; and Jacques Zahnd for his nonpareil teachings
of elementary logic [Zah03], which have gained the status of true urelements in
my education.

Last but not least, I would like to thank the members of my thesis committee
for their appreciation of my thesis, and my supervisors for their logistic support
during my thesis. I am especially grateful to Johan van Benthem and Lawrence
Moss (this thesis is a tribute to his manifesto for applied logic [Mos05]) for their
valuable comments and encouraging opinion about my work.

The research documented in this thesis has been funded by the Swiss Na-
tional Science Foundation.

Ecole Polytechnique Fédérale de Lausanne Simon Kramer4

Lausanne, Switzerland July 2007

!!!!!Trancher

S pour K

Unifier

♦

!!!!!Trancher

S pour K

Unifier

♦

!!!!!Trancher

S pour K

Unifier

♦

!!!!!Trancher

S pour K

Unifier

♦

!!!!!Trancher

S pour K

Unifier

♦

!!!!!Trancher

S pour K

Unifier

♦

4simon.kramer@a3.epfl.ch

26 CHAPTER 1. PREFACE

Chapter 2

Introduction

Mechanisms come and go, are improved upon, rarely become pop-
ular, and are never really basic and compelling enough to bring satis-
faction. Theorems are ignored or strengthened, forgotten, and hardly
anyone reads their proofs or cares. What lasts, at least for a little
while, are the notions of the field and that which is associated to
making those notions precise: definitions.

Phillip Rogaway
(cf. [Rog04])

This thesis proposes definitions (and a few theorems with proofs) for crypto-
graphic notions that are heretical w.r.t. the established canon of modern cryp-
tography. Our definitions are heretical in the sense that we choose to formulate
them in terms of logical constructions, rather than in terms of the canonical Tur-
ing machines. The benediction of our heresy is to provide linguistic abstractions
of cryptographic concepts. The benefit of linguistic abstractions is to produce
diction (idioms) for intuitions. Additionally, our linguistic abstractions have
the benefit of being declarative abstractions (i.e., they focus on the what) of
operational (focusing on the how) aspects.1 The benefit of logic is to enable
humans to think and communicate with each other as humans rather than as
machines. Humans, perhaps with the exception of computer geeks and nerds,
think and communicate in the language of the mind, i.e., logic, rather than in
the (programming) language of (Turing) machines.

Slogan 4 The purpose of logic is understanding. The purpose of machines is
control.2

2.1 Motivation: problem

The motivation for our heresy is a certain dissatisfaction with the canonical
definitions of modern cryptography. Our diagnosis of the purported problem is
the following.

1our intention is in the spirit of descriptive rather than computational complexity theory
2no negative connotation intended

27

28 CHAPTER 2. INTRODUCTION

2.1.1 Symptom

Traditional definitions of modern cryptographic concepts yield proofs (that is
the link in the first quotation of Chapter 1) that are obscure, in the sense
that they are mentally intractable. Even cryptographers themselves have come
to argue for “taming the complexity of security proofs that might otherwise
become so messy, complicated, and subtle as to be nearly impossible to verify.”
[Sho04]. In other words, the decision problem consisting in the question of
whether or not a traditional security proof is correct typically has no succinct
certificate. In particular, the candidate proof itself is then no such certificate.
This is an empirical fact and a dissatisfactory state of affairs. It means that
traditional security proofs, which aim at establishing certain (computational)
intractability results, are themselves (mentally) intractable. In other words,
(modern) cryptography disproves itself with its own (traditional) proofs. An
empirical corollary is the dominance of proofs (by example) of the presence of
attacks on cryptographic constructions and on proofs thereof, over proofs (by
argument) of the absence of such attacks.

2.1.2 Cause

The cause of this self-inflicted obscurity of modern cryptography is deep-rooted
— in its definitions. Traditional security proofs are mentally intractable because
they rely on definitions that aim at capturing extremely high-level declarative
concerns (e.g., trust, confidentiality, identity, commitment) with extremely low-
level operational linguistic abstractions (i.e., Turing machine instructions). The
generated gap between the what and the how is abysmal. A fortiori, formal
proofs relying on traditional definitions are mentally intractable because the
literal programming of Turing machines, on which such proofs would depend,
is. As a matter of fact, writing formal proofs is unpopular. This would involve
unpopular formal logic. An empirical corollary is the dominance of indirect
property statements about cryptographic constructions. That is, the statement
of properties in terms of how they are supposed to be established, rather than
just the statement of what they are supposed to establish. As a matter of fact,
direct property statements are unpopular. Again, this would involve unpopular
formal logic.

2.1.3 Remedy

A deep-rooted problem (definitions) must be administered a radical remedy:
redefinition — at least at first sight and stage. It is preconceived usage that
defines the concepts of modern cryptography in terms of Turing machines. This
need not be so. In Quine’s words: “Preconceived usage may lead us to stack the
cards, but does not enter the rules of the game.” [Gib04, Page 22]. And: “There
are indefinitely many ways of framing definitions [. . .] choice among these ways
is guided by convenience or chance.” [Gib04, Page 13]. That is, definition is by
definition heretical; it requires the ability to choose (a priori), and is an act of
choice (a posteriori).

The heresy of modern cryptography was guided by chance because compu-
tational complexity theory, which it is based on, happens to be defined in terms
of (probabilistic) Turing machines by the mainstream of computer scientists.

2.2. GOAL: SOLUTION 29

On account of the (proof-)technical inconvenience that Turing machines entail
in cryptography, this is lamentably bad luck.

Slogan 5 Proving with Turing machines is like programming with µ-calculus3.

That is, formal proofs with Turing machines are (doubly) inadequate because
they are mentally intractable (too low-level) and — because they are — inappro-
priate (they use the wrong tool). Turing machines are appropriate as a model
of computation, not as a means to proofs. A fortiori, informal proofs with Tur-
ing machines are inadequate because the are, besides being mentally intractable
and inappropriate, also inaccurate. In view of the theoretical subtleties and
practical pitfalls of cryptography, this is pitiful bad practice.

2.2 Goal: solution

The cure for proof-technical inconvenience is, of course, logic, more precisely
proof theory. That is our ultimate goal. Our intermediate goal and the one of
this thesis must be the synthesis of the remedy, i.e., the synthesis of a logical
system powerful enough to allow for the meaningful redefinition of cryptographic
concepts.

2.2.1 Logic

The logical solution to a problem of meaning is a relation of satisfaction (or
modelling relation). That is, a relation between a model (of a cryptographic
protocol in our case) and a formula (expressing a statement about that protocol)
asserting that the formula is a true statement about the considered model. Thus
this thesis is about model theory for cryptography, although we shall also address
provability but from a model-theoretic point of view.

2.2.2 Extent

The “redefinition” of the whole of modern cryptography is, of course, out of the
scope of a Ph.D. thesis.

2.2.2.1 Scope

We shall focus on logical constructions for the security of communication (as op-
posed to security of storage) at the level of cryptographic protocols (as opposed
to cryptographic operators). A cryptographic operator is to a cryptographic
protocol what a brick is to a brick-house. Good bricks are necessary but not
sufficient for good brick-houses.

3a powerful fixpoint logic famous for its computational tractability and its mental tractabil-
ity at the meta-level, but infamous for its mental intractability at the object level (frequently
referred to as the machine-code-level language of program logics)

30 CHAPTER 2. INTRODUCTION

2.2.2.2 Grain

The focus on cryptographic protocols provides a macroscopic view on the secu-
rity of communication. At this scale of sight, cryptographic operators are ideally
perceived as black boxes with perfect functionality (the so-called Dolev-Yao ab-
straction). Perfect operator functionality guarantees functionality of operators
in spite of ideal (i.e., information-theoretic) adversaries and discharges the pro-
tocol functionality from the assumed perfect functionality of the operators the
protocol employs. In contrast, imperfect operator functionality only guarantees
functionality of operators in spite of real (i.e., complexity-theoretic) adversaries.
In consequence, operator functionality might infringe on protocol functionality.

We shall construct two optics of different cryptographic grain for our logical
system. The first optic will have a lens to accommodate the grain of perfect
cryptography, and the second a tentative lens to accommodate the grain of
probabilistic polynomial-time cryptography.

2.3 Methodology

We shall derive the synthesis of our logical system from a comprehensive analysis
of the cryptographic concepts that are relevant to the security of communica-
tion. Preceding analysis is necessary for successful synthesis. For example, the
synthesis should respect conceptual orthogonality and hierarchy.

2.3.1 Approach

Our conceptual analysis resembles Leibniz’s approach described in his magnus
opus, namely the Monadology . There, Leibniz describes the analysis of concepts
as a breaking down into their atomic constituents (the so-called monads) com-
parable to the factorisation of natural numbers into their primes. Proceeding
this way, Leibniz ultimately arrives at primitive concepts.

Our approach is goal-oriened in the sense that we discover logical concepts
in natural-language formulations of goals for cryptographic protocols. We then
cast these natural-language formulations (in mental step-wise refinement of pre-
cision) into formulae of an imaginary logical language and invent an adequate
semantics (the relation of satisfaction) for these formulae.

The challenge in this enterprise is to find the right primitive linguistic ab-
stractions and the right method of their logical combination. Metaphorically
speaking, our task is to find the right “cryptographic” prime factors and the
right notion of — and algorithm for — their factorisation. This is a non-trivial
task.

2.3.2 Formalism

A distinguishing feature of our approach is that we use formal logic in a doubly
unifying sense. That is, in the sense of the unification of different (modal) logics
and in the sense of the integration of logic with (formal) program semantics.

Manifesto There is a fictive schism between the so-called formal-methods
community and the hard-core cryptography community on the subject of for-
malism. The formal-methods community professes that formalism is good be-

2.3. METHODOLOGY 31

cause formalism means abstraction from bit-strings and thus automation. The
hard-core cryptography community professes that formalism is bad because for-
malism means abstraction from bit-strings and thus imprecision. The schism is
fictive because both professions proclaim a mirage, namely the one of imagining
that possibility be necessity. Formalism possibly, but not necessarily, means
abstraction. When it means abstraction, it effectively means automation and
possibly imprecision; otherwise it means neither of both. It is a misconception
to believe that bit-strings cannot be reasoned about formally. A bit-string can
be simply and faithfully modelled as a syntactic term, i.e., as a string of symbols
over the alphabet {0, 1}. And that bit of syntax does not require big bites of
formalism. Both professions need confession: this schism is nonsense4.5

2.3.2.1 Unifying modal logics for cryptography

As our imaginary logical language we shall “use the language of modal logic as
an aid to precision” [BvBW07, Page xvi]. Modal logics are logics with modal
operators (modalities), i.e., operators that are not truth-functional. A non-
truth-functional operator is an operator that, when applied to operands, yields
a formula whose truth value cannot be established as a mere function of the
truth values of its operands. Many modal logics are relevant to the purpose
of our conceptual investigation. Thereof, we shall demonstrate the relevance of
the modal logics of knowledge, norms, provability, space, and time. Unifying
these logics in a single many-dimensional modal logic for that purpose is clearly
desirable.

2.3.2.2 Integrating modal logic and program semantics

As a complement to our logical language, we shall introduce a programming
language, with adequate semantics, for cryptographic protocols. The programs
of this programming language are the models for our logical formulae.

Slogan 6 The subject-matter of programming languages is pragmatics of control
(of action for effect). Their purpose is empowerment of the human mind in the
formulation of instructions for machines.

The complementary nature of our two languages is explained by five nat-
ural, but notwithstanding novel (except for Item 4 and 5), integrating design
decisions: (1) define the meaning of a cryptographic protocol (its denotational
semantics) in terms of the meaning of the cryptographic messages it produces
during its execution, i.e., define the what (denotation) in terms of the how (op-
eration); (2) define the meaning of a cryptographic message in terms of the
propositional knowledge a protocol agent would acquire from the (individual)
knowledge of that message; (3) define dynamic observational equivalence (indis-
tinguishability of execution paths) in terms of static observational equivalence

4we mean scientific (as opposed to political) nonsense
5The executive reader might object that both sides have found a terrain d’entente in

soundness (and incompleteness) results w.r.t. the “formal view” on cryptography in the sense
of Dolev-Yao (so cryptographers still do the real stuff). That reader is urged to consider that
that view is not necessarily a limit to the formal view in the sense of Gödel. The question
thus is: “Is cryptography completely axiomatisable at the level of cryptographic protocols?”
(At the level of cryptographic operators it is not due to the involved number theory.)

32 CHAPTER 2. INTRODUCTION

(indistinguishability of execution states); (4) identify static observational equiv-
alence with epistemic accessibility (the semantics of propositional knowledge);
and (5) identify the operational semantics (protocol execution) with temporal
accessibility (the semantics of temporal propositions).

2.4 Prerequisites

The prerequisites for this thesis are, by the very nature of our exposition, ba-
sic knowledge of logic, program semantics, and cryptography. We shall not
restate that basic knowledge here, but rather confine ourselves to pointing the
needful reader to the relevant literature here and to introducing more advanced
knowledge on the fly in our exposition ahead.

2.4.1 Logic and program semantics

A classical, comprehensive reference for general mathematical logic is [Bar99].
The relevant chapters for our exposition are: A.1 (first-order logic, by J. Bar-
wise), B.1 (set theory, by J. R. Shoenfield), and C.7 (inductive definitions, by
P. Aczel). A recent, comprehensive reference for modal logic is [BvBW07]. The
relevant chapters for our exposition are: 1 (semantics, by P. Blackburn and J.
van Benthem), 9 (first-order modal logic, by T. Braüner and S. Ghilardi), 11
(temporal logic, by I. Hodkinson and M. Reynolds), 16 (provability and spatial
logic, by S. Artëmov), and 18 (deontic, doxastic, and epistemic logic, by J.-J.
Meyer and F. Veltnam). A classical, comprehensive reference for program se-
mantics is [vL90]. The relevant chapters for our exposition are: Denotational
Semantics by P. D. Mosses, and Operational and Algebraic Semantics of Con-
current Processes by R. Milner.

2.4.2 Cryptography

Slogan 7 Cryptography is a technological means to information security.

A two-volume foundational reference for modern cryptography is [Gol01, Gol04].
A comprehensive reference for applied cryptography is [MvOV96] (where from
we shall often quote in this thesis). A comprehensive reference for cryptographic
protocols is [BM03]. And an encyclopaedic reference for the whole field is [vT05].

2.4.2.1 Prehistory

The prehistory of cryptography (i.e., message obfuscation) is steganography (i.e.,
message hiding). In general, a steganographic message is hidden in another,
apparent, message, whereas a cryptographic message is apparent as such. It is
possible to combine steganography with cryptography, e.g., by encrypting the
steganographic message. With the advent of redundant, digital representation
of information, steganography has regained relevance in modern times. Data
compression on the contrary makes steganography more difficult.

2.4. PREREQUISITES 33

2.4.2.2 Classical cryptography

Classical cryptography is based on information theory6. Its first published,
mathematical treatment appeared in 1949 under the title “Communication The-
ory of Secrecy Systems” by C. Shannon. Classical cryptography guarantees
perfect secrecy of the encrypted plaintext {|M |}k under the assumptions of the
perfect secrecy of the encrypting key k required to be of the same length as
the plaintext M . A corollary of the equal-length assumption is that the key be
used only once. That is, using the key a second time divides its entropy (i.e.,
information indeterminacy) by two. Whence the name one-time pad of this
(XOR-based) encryption scheme. A property of classical encryption schemes is
that they are symmetric, i.e., the same key is used for en- and decryption.

2.4.2.3 Modern cryptography

Modern cryptography is based on (computational) complexity theory . It does
not guarantee perfect secrecy, but, besides “computational” secrecy, aims at
guaranteeing many more desirable properties related to information security.
The assumptions of modern cryptography are the existence of one-way func-
tions and of true randomness. One-way functions are functions whose inversion
is computationally intractable. An important result of modern cryptography
is that true randomness can be arbitrarily well approximated by pseudo ran-
domness, i.e., the randomness furnished by classical (as opposed to quantum)
computers. Security of cryptographic schemes is demonstrated by reduction to
computational problems whose hardness is an empirical fact. A property of
modern encryption schemes is that they are possibly asymmetric, i.e., different
keys are used for en- and decryption. The first published treatment of asymmet-
ric schemes appeared in 1976 under the title “New Directions in Cryptography”
by W. Diffie and M. Hellman. The first published implementation of an asym-
metric scheme appeared in 1978 and is due to R. Rivest, A. Shamir, and L.
Adleman.

Cryptographic operators The traditional occupation of cryptographers is
the construction of operators for cryptographic tasks such as en- and decryption,
electronic signature generation and verification, and irreversible obfuscation and
destructive compression of data (data hashing). The traditional occupation of
cryptanalysts is the “destruction” of those operators, i.e., the breaking of their
intended functionality.

Cryptographic protocols A more modern occupation of cryptographers is
the construction of protocols for cryptographic concerns (e.g., trust, confiden-
tiality, identity, and commitment) by employing cryptographic operators. Such
concerns arise in the context of communication in hostile environment. The oc-
cupation of hostile communicators (so-called adversaries) is the “destruction”
of those protocols, i.e., the breaking of their intended functionality. Adver-
saries can be passive and active. A passive adversary may eavesdrop, i.e., (1)

6there is also a relation to coding theory: “Cryptography distinguishes itself from coding
theory in the sense that the presence of random noise in the latter is replaced by malicious
adversaries in the former.” [Vau05, Page 1]

34 CHAPTER 2. INTRODUCTION

read any message, (2) decompose a message into parts (analysis) and remem-
ber them. An active adversary may also (3) block message transmission, (4)
generate fresh data as needed, and (5) compose new messages from known data
(synthesis) and send messages. That is, eavesdropping is unaltered (no tamper-
ing) eventual forwarding (at most temporary blocking) of intercepted messages.
It is common, theoretical practice to assume the existence of one, archetypical
adversary, and to identify that adversary with the communication network. It
has been reasoned that this is reasonable practice [CLC04].

Our interest with cryptographic protocols is the declarative description (the
what) of their intended functionality. Such declarative statements have the
advantage of being mentally tractable (and hopefully, compelling to bring satis-
faction eventually) as we will show. In contrast, cryptographic protocols them-
selves, i.e., their operational descriptions (the how), despite their small size, are
mentally intractable, as experience has amply shown.

2.5 Preview

We produce the following declarative descriptions of cryptographic states of af-
fairs and cryptographic concepts that are relevant to the functionality of cryp-
tographic protocols.

2.5.1 Cryptographic states of affairs

Trust-related affairs maliciousness, honesty, faultiness, prudency, and trust-
worthiness of protocol agents (cf. Section 3.3.1).

Confidentiality-related affairs shared secret, secrecy, anonymity, data deri-
vation, non-interaction, perfect forward secrecy, known-key attack, and
agent corruption (cf. Section 3.3.2).

Authentication-related affairs key confirmation, key authentication (impli-
cit and explicit), message integrity, message authorship, message authenti-
cation (authenticity), key transport (unacknowledged and acknowledged),
key agreement (unacknowledged and acknowledged), entity authentica-
tion (identification) (unilateral, weakly mutual, and strongly mutual) (cf.
Section 3.3.3).

Commitment-related affairs cryptographic proof, cryptographic evidence,
provability, non-repudiation, contract signing, (optimism, completion, ac-
countability, and abuse-freeness) (cf. Section 3.3.4).

Compositionality-related affairs key separation, compositional correctness
(existential composability, conditional composability, and universal com-
posability), and attack scenario (cf. Section 3.3.5).

2.5.2 Cryptographic concepts

Fundamental concepts one-way function, hard-core predicate, computatio-
nal indistinguishability, (n-party) interactive proof, interactive provabil-
ity, proof of knowledge, and (n-prover) zero-knowledge (cf. Section 5.3.1).

2.5. PREVIEW 35

Applied concepts security of encryption schemes (standard, semantic, via in-
distinguishability, and via non-malleability), unforgeability of signature
schemes, attacks on encryption schemes (ciphertext-only attack, known-
plaintext attack, chosen-plaintext attack, adaptive chosen-plaintext at-
tack, chosen-ciphertext attack, and adaptive chosen-ciphertext attack),
attacks on signature schemes (key-only attack, known-message attack,
chosen-message attack, and adaptive chosen-message attack), and breaks
of signature schemes (existential forgery, selective forgery, universal for-
gery, and total break) (cf. Section 5.3.2).

2.5.3 Research highlight

Our research highlight is having demonstrated the macro-definability of a Gödel-
style provability modality within the spatio-epistemic fragment of CPL (cf. The-
orem 2). With this modality, CPL can capture the provability meaning of intu-
itionistic implication, and provability is shown to be the key to the formalisation
of commitment and related cryptographic states of affairs (cf. Section 3.3.4).

2.5.4 Peer-review

The content of this thesis has been validated through the publication of three
peer-reviewed short papers [Kra03], [Kra06a], and [Kra06b]; four workshop pa-
pers [Kra04], [BKN06], [BGK06], and [Kra07a, Kra07b]; and one journal paper
[Kraar].

36 CHAPTER 2. INTRODUCTION

Part II

Cryptographic Protocol
Logic

37

Chapter 3

Dolev-Yao cryptography

3.1 Introduction

We give a comprehensive motivation for our approach to the correctness of
cryptographic protocols by placing the approach in its historical and topical
context. The length of the introduction reflects our desire to expose a wide and
deep perspective on the highly interdisciplinary field of cryptographic protocols.

3.1.1 Historical context

“A cryptographic protocol [. . .] is a distributed algorithm defined by a sequence
of steps precisely specifying the actions required of two or more entities to
achieve a specific security objective.” [MvOV96, Page 33]. Principal security
objectives are secrecy of confidential information, authenticity of received mes-
sages w.r.t. their origin, and non-repudiation of message authorship. Our slogan
is:

Slogan 8 The purpose of a cryptographic protocol is to interactively compute,
via message passing1, knowledge of the truth of desired — and, dually, knowledge
of the falsehood of undesired — cryptographic states of affairs.

In 1996, Anderson and Needham assert that cryptographic protocols typi-
cally “involve the exchange of about 2–5 messages, and one might think that a
program of this size would be fairly easy to get right. However, this is absolutely
not the case: bugs are routinely found in well known protocols, and years after
they were first published. The problem is the presence of a hostile opponent, who
can alter messages at will. In effect, our task is to program a computer which
gives answers which are subtly and maliciously wrong at the most inconvenient
possible moment.” [AN96b]. Indeed, designing a correct cryptographic proto-
col (i.e., “programming Satan’s computer” [AN96b]), is extremely more difficult
than designing a correct, ordinary computer program (i.e., “programming Mur-
phy’s [computer]” [AN96b]) of the same size. In fact, at the end of the 1980s,
i.e., 20 years after the surge of the software crisis in the software-engineering
community, the communication-security community was also shaken by a soft-
ware crisis, though a different one. The first software crisis was provoked by the

1rather than shared memory

39

40 CHAPTER 3. DOLEV-YAO CRYPTOGRAPHY

(increasing) size of computer programs [Dij72], whereas the second crisis was
triggered by the (sudden, e.g., [BAN90]) awareness about the complexity of the
structure of a certain class of such programs, namely cryptographic protocols.
Our slogan, especially applying to cryptographic protocols, is:

Slogan 9 In theory, it is possible to construct a correct computer program with-
out knowing a theory of program correctness; in practice, it rarely is.

The answer to both software crises has really been the formal-methods move-
ment. In 1999, McLean affirms that “[o]ne of the biggest success stories of formal
methods in the computer security community is the application of them to cryp-
tographic protocols. Cryptographic protocols are small enough to be susceptible
to complete formal analysis, and such analyses have turned up flaws that would
have, otherwise, gone undetected.” [McL99]. However, McLean also points out
“the need for more research in the specification arena.” in the same paper. In
2003, Meadows reaffirms and strengthens the importance of that issue by ob-
serving that “[. . .] although it is difficult to get cryptographic protocols right,
what is really difficult is not the design of the protocol itself, but of the require-
ments. Many problems with security protocols arise, not because the protocol
as designed did not satisfy its requirements, but because the requirements were
not well understood in the first place.” [Mea03] (consider also, more generally,
[Rog04]). Our slogan is:

Slogan 10 Cryptographic protocol correctness: a killer application for formal
methods.

3.1.2 Topical context

3.1.2.1 Requirements engineering—ideally

Indeed, the construction of a cryptographic protocol begins (and “ends” if this
stage is not mastered) with requirements engineering , i.e., the definition of the
requirements (global properties) the protocol is supposed to meet. In particu-
lar, understanding protocol requirements is necessary for understanding protocol
attacks, which can be looked at as falsifications of necessary conditions for the
requirements to hold. Protocol specification (requirements engineering), design
(modelling), verification, and implementation (programming) are engineering
tasks (the spirit of [MvOV96]). In contrast, the construction of a cryptographic
operator (for encryption, signing, and hashing) is a scientific task (the spirit
of [Gol01, Gol04]) requiring profound expertise from different fields of discrete
mathematics.2 Protocol engineers do (and should) not have (to have) this exper-
tise. For example, it is legitimate for a protocol engineer to “abstract” negligible
probabilities and consider them as what they are — negligible. Ideally, engi-
neers should only have to master a single, common, and formal language for
requirements engineering that adequately abstracts “hard-core” mathematical
concepts.

2consider also [Riv90]: “The design of protocols and the design of operators are rather
independent [. . .]. The protocol designer creates protocols assuming the existence of operators
with certain security properties. The operator designer proposes implementations of those
operators, and tries to prove that the proposed operators have the desired properties.”

3.1. INTRODUCTION 41

Since logic is what all sciences have in common, it is natural to stipulate
that such a lingua franca for requirements-engineering cryptographic protocols
be an appropriate logical language.

Program statement We argue that a good candidate language is a can-
didate that is technically adequate and socially acceptable. By a technically
adequate candidate we mean a candidate that (1) is semantically and pragmat-
ically sufficiently expressive, i.e., versatile and yielding intuitive specifications,
respectively; (2) has a cryptographically intuitive semantics; (3) is completely
axiomatisable; and (4) has important decidable fragments (e.g., the temporal
fragment). By a versatile candidate we mean a candidate that allows all de-
sirable specifications to be directly expressed, or else defined, in terms of the
primitives of the candidate. By intuitive specifications we mean that the con-
ceptual dimensions of a specification are apparent in distinctive forms in the
formula that expresses the specification — succinctly. By a socially acceptable
candidate we mean a candidate that unifies and possibly transcends previous
specification languages.

Our task shall be to synthesise the relevant logical concepts in cryptogra-
phy into a cryptographic protocol logic with a temporal-logic skeleton. Our
preference of temporal logic over program logics such as Hoare and dynamic
logic is motivated by the success of temporal logic as a specification language
for (non-cryptographic) interactive systems. We will validate our language, at
least at a first stage, on specification (stress on different requirements) rather
than verification (stress on different protocols) case studies, since program spec-
ification must in theory, and should in practice—where it unfortunately rarely
does—precede program verification. Nonetheless, the existence of verification
examples is guaranteed by subsumption under CPL of other logics from authors
with the opposite focus.

3.1.2.2 Requirements engineering—really

We briefly survey requirements engineering (the practice of the specification) of
cryptographic protocols. Protocol designers commonly define a cryptographic
protocol jointly by a semi-formal description of its behaviour (or local prop-
erties) in terms of protocol narrations, and by an informal prescription of its
requirements (or global properties) in natural language [BM03]. Informal spec-
ifications present two major drawbacks: they do not have a well-defined, and
thus a well-understood meaning, and, therefore, they do not allow for verifica-
tion of correctness. In formal specifications of cryptographic protocols, local and
global properties are expressed either explicitly as such in a logical (or property-
based) language, or implicitly as code, resp. as encodings in a programming (or
model -based) language (e.g., applied λ-Calculus [SP03]; process calculi: CSP
[RSG+00], applied π-Calculus [AF01], Spi-Calculus [AG99], and [MRST06]).

Model-based languages The most popular examples of such encodings are
equations between protocol instantiations [Aba00]. However, such encodings
present four major drawbacks: (1) they have to be found for each protocol anew;
worse, (2) they may not even exist; (3) they are neither directly comparable
with other encodings in the same or in other programming languages, nor with
properties expressed explicitly in logical languages; and (4) they are not easy to

42 CHAPTER 3. DOLEV-YAO CRYPTOGRAPHY

understand because the intuition of the encoded property is not explicit in the
encoding; yet “[r]obust security is about explicitness.” [AN96b]! On the other
hand, process calculi are ideal design formalisms. That is, they offer — due
to their minimalist, linguistic abstractions of modelling concepts (syntax) and
their mathematical, operational notion of execution (semantics) — a win-win
situation between the (pedantic) rigour of (Turing) machine models and the
(practical) usability of mainstream programming languages.

Property-based languages Still, informal language and programming (or
effect) languages are inadequate for expressing and comparing cryptographic
properties. It is our belief that only a logical (or truth) language equipped with
an appropriate notion of truth, i.e., a cryptographic logic, will produce the nec-
essary adequacy. A number of logics have been proposed in this aim so far,
ranging from special-purpose, cryptographic logics: the pioneering BAN-logic
[BAN90], a unification of several variants of BAN-logic [SvO96], and a recent
reworking of BAN-logic [KS06]; over general-purpose propositional, modal, pro-
gram, and first- and higher-order logics used for the special purpose of crypto-
graphic protocol analysis: propositional (“logic programming”) [AM01, AB05];
modal : deontic [BC93], doxastic [ABV01, ZV01], epistemic [SS99, HO02], lin-
ear [BD04], temporal [GM95]; program: dynamic [FHJ02, ADM03], Hoare-
style [DMP03, LA05]; first-order [CJM98, Sel01, Coh03]; higher-order [Pau98,
IK06]; to combinations thereof: doxastic-epistemic [CS97], doxastic-temporal
[BGPS00], distributed temporal [CVB05], dynamic-epistemic [Bal01], epistemic-
temporal [DGMF04, LW06] first-order-temporal [GLL01], dynamic-epistemic-
temporal [Bie90], and deontic-epistemic-temporal [GMP92].

All these logics have elucidated important concerns of the security of com-
munication and proved the relevance of logical concepts to that security. In
particular, mere enunciation of maybe the three most fundamental protocol
requirements, namely secrecy, authenticity, and non-repudiation, reveals the
paramount importance of the concept of knowledge, both in its propositional
(so-called knowledge de dicto) and in its individual (so-called knowledge de re)
manifestation. Possible3 enunciations in natural language of these requirements
are the following (cf. Section 3.3 for their formalisation in CPL). Secrecy for a
protocol: “Always and for all messages m, if it is forbidden that the adversary
(Eve) know m then Eve does not know m.” (knowledge de re in the present
subjunctive and the present indicative mode, respectively). Authenticity of a
message m from the viewpoint of agent a w.r.t. agent b: “a knows that once only
b knew m.” (knowledge de dicto in the present and knowledge de re in the past
indicative mode). Non-repudiation of authorship of a message m′ by b w.r.t. a,
corroborated by a proof m (m is a proof for a that b is the author of m′): “If
a knew m then a would know that once only b knew m′.” (knowledge de re in
the past subjunctive and then in the past indicative mode, and knowledge de
dicto in the conditional mode). However, general-purpose/standard epistemic
logic is inadequate in a cryptographic setting due to weak paradoxes, as is, for
the same reason, (standard) deontic logic (cf. Section 3.2.3). (We recall that a
weak paradox in a logic is a counter-intuitive statement in the logic, whereas
a strong paradox is an inconsistency in the logic.) And doxastic logic is in-
adequate because the above requirements are ineffable in it, as these crucially

3as a matter of fact unique, canonical formulations of these requirements do not exist (yet)

3.1. INTRODUCTION 43

rely on knowledge, i.e., necessarily true, and not possibly false, belief (no error
control!). Our slogan, and pun4, is:

Slogan 11 Belief (without error control) can be used to show the presence of
attacks, but, as opposed to knowledge, never to show their absence.5

Further, linear logic has, for our approach, a flavour that is too operational to
the extent that it is possible that “the combinators of a process calculus are
mapped to [linear] logical connectives” [Mil06]. Our approach is diametric, i.e.,
we aim at providing declarative abstractions (the what) of operational aspects
(the how). Finally, special-purpose logics have been limited in their adequacy
due to their choice of primitive concepts, e.g., belief, no negation/quantification,
too specific primitive concepts at the price of high extension costs.

Logical limitations originate in design decisions of syntactic (language-defi-
ning operators) and/or semantic (meaning-defining notion of truth) nature. The
advantages (or disadvantages) of the cited logics are corollaries of the respec-
tive advantages (or disadvantages) of capturing (or not) the discussed and to-
be-discussed concepts. In particular, crucial advantages are to capture: (1)
individual and propositional knowledge, with a treatment of weak paradoxes;
(2) permission and prohibition, with a treatment of weak paradoxes; (3) proof
and provability; (4) protocol composition (either with dynamic/Hoare-logic con-
structs, or with spatial-logic constructs as in CPL); and (5) time (both qualita-
tive and quantitative).

3.1.2.3 Requirements engineering—CPL

Our goal is to supply a formal synthesis of (mono-dimensional) concepts in a
single, poly-dimensional6 modal logic, namely CPL, that yields requirements
that are intuitive but (syntactically) abstract w.r.t. particular conceptions of
cryptography7. First, our belief, expressed as a slogan, is:

Slogan 12 The formal method for any science is, ultimately, logic.

Logic, as defined by a relation of satisfaction (model -theoretic approach8, effec-
tuated via model-checking [CGP99]) or a relation of deduction (proof -theoretic
approach, effectuated via automated theorem-proving [Fit96]). Second, given
that requirements engineering is mainly about meaning, i.e., understanding and
formalising properties, we believe that a model-theoretic approach is, at least
at a first stage, more suitable than a proof-theoretic approach. We argue that
propositional and higher-order (at least beyond second order) logic, and set the-
ory are unsuitable as front-end formalisms for requirements engineering. Propo-
sitional logic is simply too weak as a specification language but is well-suited for

4on the slogan “Program testing can be used to show the presence of bugs, but never to
show their absence!” by Dijkstra

5this is the deeper reason for the well-known limitations of BAN-logic
6cf. [GKWZ03] for a research monograph on poly-dimensional modal logic, characterised

in [BdRV01] as “. . . a branch of modal logic dealing with special relational structures in which
the states, rather than being abstract entities, have some inner structure. . . . Furthermore,
the accessibility relations between these states are (partly) determined by this inner structure
of the states.”

7such logics are called endogenous (or mono-modal), as opposed to exogenous (or poly-
modal)

8not to be confused with a model-based formalism

44 CHAPTER 3. DOLEV-YAO CRYPTOGRAPHY

fully-automated, approximative verification. Higher-order logic and set theory
may well be semantically sufficiently expressive; however, we opine that they
are unsuitable for engineers in charge of capturing meaning of protocol require-
ments within an acceptable amount of time (i.e., financial cost per specification)
and space (i.e., intelligibility of specifications). The intuitiveness of the specifi-
cations that a formalism yields is not just luxury, but the very (and difficult to
distil) essence and a measure of its pragmatics, i.e., practical usefulness. Our
slogan9 is:

Slogan 13 Logic for engineering necessarily is, possibly first-order, modal logic.

Modal operators (modalities) are object-level abstractions of meta-level quanti-
fiers. In effect, they eliminate variables (and the quantifiers that bind them) in
logical (truth) languages as combinators do in programming (effect) languages,
and delimit quantification to the relevant (i.e., accessible) parts of the interpre-
tation structure. Their benefits are intelligibility of the expressed statement,
and effectiveness and relative efficiency of truth establishment, respectively.
The concept of a cryptographic protocol is very rich. A suitable formalism
must organise and hard-wire/pre-compile this conceptual variety in its seman-
tics and provide succinct and intuitive linguistic abstractions (syntax) for them.
The resulting added value of such a formalism is empowerment of the engineer
(speed-up of the mental process of requirements formalisation)10, and more
powerful tools (speed-up of model-checking and automated theorem-proving).
Higher-order logic and set theory, having been conceived as general-purpose
formalisms, obviously lack this special-purpose semantics and syntax. How-
ever, they are well-suited as logical frameworks (meta-logics/back-ends) for such
special-purpose formalisms (object logics/front-ends). For example, our candi-
date language has a model-theoretic (i.e., relying on set theory) semantics.

CPL has a first-order fragment for making statements about protocol events
and about the (individual) knowledge (“knows”) and the structure of crypto-
graphic messages induced by those events; and four modal fragments for making
statements about confidentiality norms (cf. deontic logic [BC93]); propositional
knowledge (“knows that”), i.e., knowledge of cryptographic states of affairs, (cf.
epistemic logic [FHMV95]); execution space (cf. spatial logic [Dam89]); and ex-
ecution time (cf. temporal logic [MP84]). That is, CPL unifies first-order and
four modal logics in a single, first-order, poly-dimensional modal logic. Further,
CPL refines standard epistemic and deontic logic in the sense that it resolves
the long-standing problem of weak paradoxes (caused by logical omniscience and
conflicting obligations, respectively) that these logics exhibit when applied in
a cryptographic setting (cf. Section 3.2.3). Yet CPL (a property-based formal-
ism) goes even further in its wholistic ambition in that it integrates the perhaps
most important model-based framework, namely process algebra [BPS01], in
a novel co-design. First, CPL’s temporal accessibility relation (the semantics
of its temporal modalities) can be defined by an event-trace generating process
(reduction) calculus, for example C3 (cf. Chapter 4) whose reduction constraints
can moreover be checked via CPL-satisfaction; and second11, CPL’s epistemic

9and pun on the two cornerstones of modal logic, namely possibility and necessity
10in analogy with high-level programming languages versus machine-code languages
11This idea seems to have been published first in [HS04b]. However, the authors adopt a

very different approach based on so-called function views.

3.2. LOGIC 45

accessibility relation (the semantics of its epistemic modality “knows that”) is
the definitional basis for C3’s observational equivalence, which can be used for
the model-based (process-algebraic and complementary to property-based) for-
mulation of protocol requirements. We believe that this co-design is also the
key to a genuine modal model theory for cryptography.

Justification A cryptographic protocol involves the concurrent interaction of
agents that are physically separated by — and exchange messages across —
an unreliable and insecure transmission medium. Expressing properties of con-
current interaction (i.e., interactive computation) requires temporal modalities
[MP84]. The physical separation by an unreliable and insecure transmission
medium (i.e., unreliable computation) in turn demands the epistemic and de-
ontic modalities. To see why, consider that the existence of such a separating
medium introduces an uncertainty among agents about the trustworthiness of
the execution of protocol actions (sending, receiving) and the contents of ex-
changed messages, both w.r.t. actuality (an epistemic concern) and legitimacy
(a deontic concern).

Slogan 14 Trustworthiness = Actuality + Legitimacy

The purpose of a cryptographic protocol is to reëstablish this trustworthiness
through the judicious use of cryptographic evidence, i.e., essential information
(e.g., ciphers, signatures and hash values) for the knowledge of other information
(e.g., messages or truth of formulae), bred in a crypto system (e.g., a shared-key
or public-key system) from cryptographic germs such as keys and nonces, them-
selves generated from cryptographic seeds (or seed values). However, any use of
keys (as opposed to hash values and nonces) requires that the knowledge of those
keys be shared a priori. This sharing of key knowledge is established by crypto-
graphic protocols called key-establishment protocols (comprising key-transport
and key-agreement protocols) [MvOV96, Chapter 12], which are executed before
any cryptographic protocol that may then subsequently use those keys. Thus
certain cryptographic protocols must be considered interrelated by a notion of
composition in a common execution space; hence the need of spatial opera-
tors. Another argument for spatial operators comes from the fact that a correct
protocol should conserve its sole correctness even when composed with other
protocols, i.e., a compositionally correct protocol should be stable in different
execution contexts [Can01, BPW03].

3.2 Logic

3.2.1 Syntax

The language F of CPL is parametric in the language M of its individuals,
i.e., cryptographic messages. It is chiefly relational, and functional in exactly
the language M of cryptographic messages it may be instantiated with. The
temporal fragment of F coincides with the syntax of LTLP (linear temporal logic
with past). We shall fix our mind on the following, comprehensive languageM.

Definition 1 (Cryptographic messages) We form messages M ∈ M with
the term constructors displayed in Table 3.1. There, names n ∈N denote agent

46 CHAPTER 3. DOLEV-YAO CRYPTOGRAPHY

names a, b, c ∈ A, the (for the moment Dolev-Yao [DY83]) adversary’s name
Eve, symmetric short-term (session) (K1) and long-term (K∞) keys k ∈ K,
(asymmetric) private keys p ∈ K−, and nonces x ∈ X (also used as session
identifiers).

We assume that given a private key p, one can compute the corresponding
public key p+, as in DSA and Elgamal. Shared and private keys shall be referred
to as confidential keys CK, i.e., keys that must remain secret. Symmetric keys
may be compound for key agreement (as opposed to mere key transport). Mes-
sage forms (open messages) F are messages with variables v ∈ V.

Table 3.1: Message language

M ::= n (names, i.e., logical constants)˛̨
� (the abstract message)˛̨
p+ (public keys)˛̨
dMe (message hashes)˛̨
{|M |}M (symmetric message ciphers)˛̨
{|M |}+

p+ (asymmmetric message ciphers)˛̨
{|M |}−p (signed messages)˛̨
(M, M) (message tuples)

We use the terms privacy , confidentiality , and secrecy to qualify cryptographic
information w.r.t. the legitimacy , the intention, resp. the actuality of the knowl-
edge of that information (status of discreetness). For example, in asymmetric-
key cryptography, the knowledge of a key for decrypting or signing cryptographic
information is limited to the discretion of a single entity, say a. Thus, such a key
qualifies as the private key of entity a; and to-be-encrypted plaintext is by def-
inition cryptographic information whose knowledge is intended to be limited to
the discretion of the sender and the recipient(s), i.e., it is qualified confidential
a priori, and may be qualified secret by vigour of verification a posteriori.

The abstract message is a computational artifice to represent the absence of
intelligibility , just as the number zero is a computational artifice to represent the
absence of quantity. The abstract message is very useful for doing knowledge-
based calculations (cf. Definition 5), just as the number zero is very useful (to
say the least) for doing number-based calculations.

The focus on cryptographic protocols rather than cryptographic operators
leads us (for the moment) to (1) making abstraction from the exact representa-
tion of messages, e.g., bit strings; and assuming (2.1) perfect hashing , i.e., col-
lision resistance (hash functions are injective) and strong pre-image resistance
(hash functions are not invertible, or given dMe, it is infeasible to compute M),
and (2.2) perfect encryption (given {|M |}k but not the shared key k or given
{|M |}+p+ but not the private key p corresponding to the public key p+, it is
infeasible to compute M).

We introduce a type language for messages to increase the succinctness of
statements about the structure of messages.

3.2. LOGIC 47

Definition 2 (Message types) Message types τ have the following structure.

τ, τ ′ ::= ∅
˛̨

σ
˛̨
H[τ]

˛̨
SCM [τ]

˛̨
ACp+ [τ]

˛̨
Sp[τ]

˛̨
T[τ, τ ′]

˛̨
τ ∪ τ ′

˛̨
τ ∩ τ ′

˛̨
τ \ τ ′

˛̨
M

σ, σ′ ::= A
˛̨
Adv

˛̨
ς

˛̨
K
+

ς, ς ′ ::= K
1

˛̨
K
∞ ˛̨

K
− ˛̨

X

Message type forms θ shall be message types with variables in key position.

Observe that (1) for each kind of message there is a corresponding type (e.g.,
H[τ] for hashes, SCM [τ] for symmetric and ACp+ [τ] for asymmetric ciphers, Sp[τ]
for signatures, and T[τ, τ ′] for tuples); (2) encryption and signature types are
parametric; and (3) the union, intersection, and difference of two message types
is again a message type. In short, message types are structure-describing depen-
dent types closed under union, intersection, and difference. ς and ς ′ denote types
of dynamically generable names. We macro-define AAdv := A∪Adv, K := K1∪K∞,
CK := K ∪ K−, K∗ := CK ∪ K+, and N := AAdv ∪ K∗ ∪ X.

Definition 3 (Logical formulae) The set of formulae F contains precisely
those propositions that are the closed predicates formed with the sentence con-
structors displayed in Table 3.2. There, β denotes basic, α action, and δ data
formulae; and o denotes tuples of agent names (key owners).

Table 3.2: Predicate language

φ, φ′ ::= β
˛̨
¬φ

˛̨
φ ∧ φ′

˛̨
∀v(φ)˛̨

Pφ|{z}
norms

˛̨
Ka(φ)

˛̨
φ ⊇ φ′| {z }

knowledge

˛̨
φ⊗ φ′

˛̨
φ B φ′| {z }

space

˛̨
φ S φ′

˛̨
©−φ

˛̨
©+ φ

˛̨
φ U φ′| {z }

time

β, β′ ::= α
˛̨

δ

α, α′ ::= a � n.o
˛̨

a
F−→
6Eve

b
˛̨

a
F←−
6Eve

b| {z }
private comm.

˛̨
a

F−→
Eve

b
˛̨

a←
Eve

F| {z }
public comm.

δ, δ′ ::= n : σ
˛̨

a k F
˛̨

F 4 F ′ ˛̨
a@x

Predicates can be transformed into propositions either via binding of free vari-
ables, i.e., universal (generalisation) or existential (abstraction) quantification,
or via substitution of individuals for free variables (individuation). In accor-
dance with standard logical methodology, basic predicates express elementary
facts12.

Our symbols are — and their intuitive meaning is as they are — pronounced
¬ “not”, ∧ “and”, ∀v “for all v”, P “it is permitted that”, Ka “a knows that”, ⊇
“epistemically implies”, ⊗ “conjunctively separates”, B “assume—guarantee”,
S “since”, ©− “previous”, ©+ “next”, U “until”, a � n.o “a freshly generated
the name n for owner(s) o”, a

F−→
6Eve

b “a securely (i.e., over some private channel)

sent F as such (i.e., not only as a strict sub-term of another message) to b”,

12a fact is a contingent (particular) truth as opposed to a logical (universal) truth

48 CHAPTER 3. DOLEV-YAO CRYPTOGRAPHY

a
F←−
6Eve

b “a securely received F as such from b”, a
F−→
Eve

b “a insecurely (i.e., over

some public channel) sent off F as such to b”, a ←
Eve

F “a insecurely received F

as such”, : “has type”, k “knows”, 4 “is a subterm of”, and @ “is in protocol
run/session”.

Our predicate language is 1-sorted thanks to the standard technique of sort
reduction13 and to the fact that agents are referred to by their name and names
are transmittable data, i.e., messages.

The modality K expresses propositional knowledge, i.e., the knowledge that
a certain proposition is true. In contrast, the relational symbol k expresses indi-
vidual knowledge. Individual knowledge conveys understanding of the purpose
and possession of a certain piece of cryptographic information up to crypto-
graphically irreducible parts. It is established based on the capability of agents
to synthesise those pieces from previously analysed pieces. By ‘understanding
of the purpose’ we mean (1) knowledge of the structure for compound, and (2)
knowledge of the identity for atomic (names) information. Note that such un-
derstanding requires that there be a minimal redundancy in that information.
The conditional φ ⊇ φ′ is epistemic in the sense that the set of evidence cor-
roborating truth of the consequent φ′ (e.g., the knowledge of a key) is included
in the set of evidence corroborating truth of the antecedent φ (e.g., the knowl-
edge of a plaintext derived from that key). The epistemic conditional captures
the epistemic dependence of the truth of the antecedent on the truth of the
consequent.

The formula φ⊗φ′ is satisfied by a (protocol) model if and only if the model
can be separated in exactly two parts such that one part satisfies φ (e.g., key es-
tablishment/production) and the other satisfies φ′ (e.g., key use/consumption).
The spatial conditional φ B φ′ is satisfied by a model if and only if for all mod-
els that satisfy φ the adjunction of the second to the first model satisfies φ′ (cf.
compositional correctness of a protocol, as mentioned earlier).

Typing formulae F : θ have an essential and a pragmatic purpose. Typing
of atomic data, i.e., when F designates a name n and θ an atomic type σ, is
a linguistic abstraction for the above-mentioned essential modelling hypothesis
of minimal redundancy. Typing of compound data simply increases succinct-
ness of statements about message structure. It is actually macro-definable in
terms of typing of atomic data, equality (itself macro-definable), and existential
quantification (cf. Appendix B).

3.2.2 Semantics

Our definition of satisfaction14 is anchored (or rooted) and defined on protocol
states, i.e., tuples (h, P) ∈ H × P of a protocol model P (i.e., a process term
of parallel-composable, located threads a.x[T]) and a protocol history h (i.e., a
trace of past protocol events). Note that history-dependency is characteristic of
interactive computation [GSW06].

The logically-inclined reader will notice that CPL has a Herbrand-semantics,
i.e., logical constants and functional symbols are self-interpreted rather than
interpreted in terms of (other, semantic) constants and functions.

13introduction of unary relational symbols (· : σ in our case) emulating the different sorts
14the concept was invented by Tarski

3.2. LOGIC 49

Slogan 15 (Symbolic Foundationalism) Meaning, when communicable, is
symbolic. Semantics is interpretation of syntax via rewriting.

For the present purpose, we presuppose a notion of execution, for example
the one of Section 4.1, −→ ⊆ (H × P)2 (or relation of temporal accessibility
in the jargon of modal logic) producing protocol events of a certain kind and
chaining them up to form protocol histories. We stress that the locality and
parallel-composability of processes (denoted P 9 P ′), and the kind of protocol
events are the only particularities of −→ that we presuppose.

Protocol events are of the following kind: generation of a name n for owners
o (recall that o is a tuple of agent names) in session x by a, written N(a, x, n, o);
insecure input of M by a, written I(a, x,M); secure input of M from b by a,
written sI(a, x,M, b); insecure output of M to b by a, written O(a, x,M, b); and
secure output of M to b by a, written sO(a, x,M, b). By definition, an event ε
is secure if and only if ε is unobservable by the adversary Eve. By convention,
name generation is a secure event. We write ε(a) for any of the above protocol
events, ε(a, n) for any of the above name-generation events, ε(a,M) for any of
the above communication events, and ε̂(a) for any of the above secure events.
Protocol histories h ∈ H are simply finite words of protocol events ε, i.e., event
traces h ::= ε

∣∣ h · ε, where ε designates the empty protocol history.
We define satisfaction in a functional style (with a function of truth deno-

tation) on the structure of formulae. Satisfaction employs complex (and thus
multiple15) truth values. Truth values are complex in the sense that they are
tuples of a simple truth value (i.e., ‘true’ or ‘false’) and a set of those events
(the evidence/witnesses) that corroborate that simple truth.

Note that the definition employs macro-defined predicates (cf. Appendix B;
the reader is urged to consult it).

Definition 4 (Satisfaction) Let |= ⊆ (H × P) × F designate satisfaction of
a formula φ ∈ F by a protocol state s ∈ H × P (the anchor/root of an implicit
execution path model16 for φ):

s |= φ :iff there is a set E of protocol events s.t. s |=E φ

s |=E φ :iff for all p ∈ paths(s), JφK0p = (true, E)

where paths(s) := { p | p@0 = s and for all i < |p|, p@0 −→∗ p@i } designates
the set of paths p achored/rooted in s and induced by −→, and J·K designates
our function of truth denotation from formulae to complex truth values (cf.
Table 3.4). There,

• p@i designates the state, say—please memorise—(h, P), at position i in p

• ḣ designates the set of events derived from the trace of events h

• h `Ea M designates derivation of M by a from—this is a novel idea—the
set E of events in a’s view on h, i.e., the extraction, analysis, and synthesis
of the data that a has generated, received, or sent in h (cf. Table 3.3)17

15multi-valued logic was invented by Post
16notice the two notions of a model: namely, the one of a model for a logical formula (i.e.,

a protocol state (h, P)), and the one of a model of a cryptographic protocol (i.e., a process
term P)

17We could easily account for individual knowledge modulo an equational theory of cryp-

50 CHAPTER 3. DOLEV-YAO CRYPTOGRAPHY

Table 3.3: Derivation of individual knowledge

Data extraction

h · ε(a, M) `{ε(a,M)}
a (a, M)

h `Ea M

h · ε `Ea M

Data synthesis Data analysis

h `Ea M h `E
′

a M ′

h `E∪E′a (M, M ′)

h `Ea (M, M ′)

h `Ea M

h `Ea (M, M ′)

h `Ea M ′

h `Ea p

h `Ea p+

h `Ea M

h `Ea dMe

h `Ea M h `E
′

a M ′

h `E∪E′a {|M |}M′

h `Ea {|M |}M′ h `E
′

a M ′

h `E∪E′a M

h `Ea M h `E
′

a p+

h `E∪E′a {|M |}+
p+

h `Ea {|M |}+p+ h `E
′

a p

h `E∪E′a M

h `Ea M h `E
′

a p

h `E∪E′a {|M |}−p
h `Ea {|M |}−p h `E

′
a p+

h `E∪E′a M

• ◦ designates concatenation of histories conserving uniqueness of events

• Σ := ∃(k : CK)(Eve k k ∧¬ k ck Eve) designates a state formula expressing
the state of violation in a Dolev-Yao adversarial setting, namely the one
where the adversary has come to know a confidential key not of her own

• ≈a ⊆ (H×P)2 designates the relation of epistemic accessibility associated
with the modality Ka; it is defined hereafter

• L · Mh
a designates a unary function (inspired by [AR02]) of cryptographic

parsing defined on protocol states and on logical formulae; it is defined
hereafter on messages and tacitly lifted onto protocol states and logical
formulae

• ≡ designates a relation of structural equivalence defined on process terms
and on event traces. On process terms, it designates the smallest equiva-
lence relation expressing associativity and commutativity of processes. On
event traces, it designates shuffling.

The permission modality is included in the logic because we want to highlight
that each new notion of state of violation will give rise to a new notion of
permission, such as the one for real time (cf. Section 3.4.2) or the ones for

tographic messages, i.e., a set of algebraic properties of cryptographic operators expressed

with an equivalence relation ≡ ⊆ M ×M, by adding a rule
h `Ea M

h `Ea M ′ M ≡ M ′. Further,

agent-name guessing could be modelled by adding an axiom h `Ea b
b ∈ AEve.

3.2. LOGIC 51

Table 3.4: Truth denotation

Ja � n.oKi
p := (E 6= ∅, E) where E := ∪x∈X{N(a, x, n, o)} ∩ ḣ

Ja M−→
6Eve

bKi
p := (E 6= ∅, E) where E := ∪x∈X{sO(a, x, M, b)} ∩ ḣ

Ja M←−
6Eve

bKi
p := (E 6= ∅, E) where E := ∪x∈X{sI(a, x, M, b)} ∩ ḣ

Ja M−→
Eve

bKi
p := (E 6= ∅, E) where E := ∪x∈X{O(a, x, M, b)} ∩ ḣ

Ja←
Eve

MKi
p := (E 6= ∅, E) where E := ∪x∈X{I(a, x, M)} ∩ ḣ

Jn : σKi
p := (n has type σ, ∅)

Ja k MKi
p := (E 6= ∅, E) where E := ∪{ E ′ | h `E

′
a M }

JM 4M ′Ki
p := (M is a subterm of M ′, ∅)

Ja@xKi
p := (there is a thread T s.t. P = a.x[T] and h = h|a.x, ∅)

J¬φKi
p := (not vφ, ḣ \ Eφ) where JφKi

p = (vφ, Eφ)

Jφ ∧ φ′Ki
p := (vφ and vφ′ , Eφ ∪ Eφ′) where

JφKi
p = (vφ, Eφ) and

Jφ′Ki
p = (vφ′ , Eφ′)

J∀v(φ)Ki
p := (for all M ∈M, vM ,

S
M∈MEM) where J

˘M
/v

¯
φKi

p = (vM , EM)

JPφKi
p := J(φ ∧ ¬ �Σ) B �(Σ→ (Σ 6⊇ φ))Ki

p

JKa(φ)Ki
p := (for all s, if p@0 −→∗ s and s ≈a p@i then s′ |=E′ φ′, E ′(s,φ))

where (s′, φ′) :=

(
(s, φ) if s = p@i, and

(L s Mh
a, L φ Mh

a) otherwise.

Jφ ⊇ φ′Ki
p := (if vφ then vφ′ and ∅ 6= Eφ′ ⊆ Eφ, Eφ) where

JφKi
p = (vφ, Eφ) and

Jφ′Ki
p = (vφ′ , Eφ′)

Jφ⊗ φ′Ki
p := (there are Q, Q′ ∈ P and h′, h′′ ∈ H s.t. P ≡ Q 9 Q′ and h ≡ h′ ◦ h′′

and (h′, Q) |=Eφ φ and (h′′, Q′) |=Eφ′ φ′, Eφ ∪ Eφ′)

Jφ B φ′Ki
p := (for all (h′, Q) ∈ H× P and h′′ ≡ h′ ◦ h, if (h′, Q) |=E′ φ then

(h′′, Q 9 P) |=E′′ φ′,
S
E ′′ ∪

S
E ′)

Jφ S φ′Ki
p := (there is k s.t. 0 ≤ k ≤ i and vk and for all j, if k < j ≤ i then vj ,S

j Ej ∪ Ek) where JφKj
p = (vj , Ej) and Jφ′Kk

p = (vk, Ek)

J©−φKi
p :=

(
JφKi−1

p if i > 0, and

(false, ∅) otherwise.

J©+ φKi
p :=

(
JφKi+1

p if i < |p| − 1, and

(false, ∅) otherwise.

Jφ U φ′Ki
p := (there is k s.t. i ≤ k and vk and for all j, if i ≤ j < k then vj ,S

j Ej ∪ Ek) where JφKj
p = (vj , Ej) and Jφ′Kk

p = (vk, Ek)

52 CHAPTER 3. DOLEV-YAO CRYPTOGRAPHY

probabilistic polynomial-time settings (cf. Section 5.2.2). That is, we look at
the state formula Σ as a parameter of the logic.

The epistemic accessibility relation has, as previously mentioned, a double
use. It not only serves as the definitional basis for the epistemic modality of
CPL, but also as the definitional basis for the observational equivalence of C3

(cf. Section 4.1.3).
Notice that the spatial conditional is monotonic w.r.t. positive antecedents,

e.g., |= a k M B a k M , but 6|= ¬ a k M B ¬ a k M due to the possibility for a
of learning additional information from the adjunction.

Cryptographic parsing captures an agent’s capability to understand the
structure of a cryptographically obfuscated message. It allows the definition
of a cryptographically meaningful notion of epistemic accessibility via the inter-
mediate concept of structurally indistinguishable protocol histories. The idea is
to parse unintelligible messages to the abstract message �.

Definition 5 (Cryptographic parsing) The cryptographic parsing function
L · Mh

a associated with an agent a ∈ P and a protocol history h ∈ H (and comply-
ing with the assumptions of perfect cryptography) is an identity on names, the
abstract message, and public keys; and otherwise acts as defined in Table 3.5.

Table 3.5: Parsing cryptographic messages

L dMe Mh
a :=

(
dL M Mh

ae if h |= a k M , and

� otherwise.

L {|M |}M′ Mh
a :=

(
{|L M Mh

a|}L M′ Mh
a

if h |= a k M ′, and

� otherwise.

L {|M |}+
p+ Mh

a :=

(
{|L M Mh

a|}+p+ if h |= a k p ∨ (a k M ∧ a k p+), and

� otherwise.

L {|M |}−p Mh
a :=

(
{|L M Mh

a|}−p if h |= a k p+, and

� otherwise.

L (M, M ′) Mh
a := (L M Mh

a, L M ′ Mh
a)

A particularity of this notion of cryptographic parsing is that if h 6|= a k k and
h′ 6|= a k k then L {|M |}k Mh

a = � = L {|M ′|}k Mh′

a . That is, two different plaintexts
(M and M ′) encrypted under the same symmetric key (k) are parsed to the same
(abstract) message (�), when the parsing agent does not know the decrypting
key. This is justified by the fact that in reality, and in an extension of CPL
with a notion of probabilistic (polynomial-time) computation (cf. Chapter 5),
encryption is probabilistic anyway, which has precisely the effect of rendering
the above ciphers (computationally) indistinguishable to a parsing agent.

Definition 6 (Structurally indistinguishable protocol histories) Two
protocol histories h and h′ are structurally indistinguishable from the viewpoint
of an agent a, written h ≈a h′, :iff a observes the same event pattern and
the same data patterns in h and h′. Formally, for all h, h′ ∈ H, h ≈a h′ :iff
h ≈(h,h′)

a h′ where,

3.2. LOGIC 53

• given that a is a legitimate agent or the adversary Eve,

1. ε ≈(h,h′)
a ε

2.
hl ≈(h,h′)

a hr

hl · ε(a, n) ≈(h,h′)
a hr · ε(a, n)

3.
hl ≈(h,h′)

a hr

hl · ε(a,M) ≈(h,h′)
a hr · ε(a,M ′)

L M Mh
a = LM ′ Mh′

a

• given that a is a legitimate agent,

4.
hl ≈(h,h′)

a hr

hl · ε(b) ≈(h,h′)
a hr

a 6= b
hl ≈(h,h′)

a hr

hl ≈(h,h′)
a hr · ε(b)

a 6= b

• given that a is the adversary Eve,

5.
hl ≈(h,h′)

Eve hr

hl · ε̂(b) ≈(h,h′)
Eve hr

Eve 6= b
hl ≈(h,h′)

Eve hr

hl ≈(h,h′)
Eve hr · ε̂(b)

Eve 6= b

6.
hl ≈(h,h′)

Eve hr

hl · I(b, x,M) ≈(h,h′)
Eve hr · I(b, x, M ′)

L M Mh
Eve = L M ′ Mh′

Eve

7.
hl ≈(h,h′)

Eve hr

hl · O(b, x,M, c) ≈(h,h′)
Eve hr · O(b, x,M ′, c)

L M Mh
Eve = L M ′ Mh′

Eve

Note that the observations at the different (past) stages hl and hr in h and h′,
respectively, must be made with the whole (present) knowledge of h and h′ (cf.
hl ≈(h,h′)

· hr). Learning new keys may render intelligible past messages to an
agent a in the present that were not to her before.

Remark 1 For all a ∈ AEve, ≈a ⊆ H×H is

1. an equivalence with an infinite index due to fresh-name generation

2. not a right-congruence due to the possibility of learning new keys

3. a refinement on the projection H|a of H onto a’s view [FHMV95]

4. decidable.

We lift structural indistinguishability from protocol histories to protocol
states, i.e., tuples of a protocol term and a protocol history, and finally ob-
tain our relation of epistemic accessibility.

54 CHAPTER 3. DOLEV-YAO CRYPTOGRAPHY

Definition 7 (Observationally equivalent protocol states) Let P1 and
P2 designate two cryptographic processes, i.e., models of cryptographic protocols,
of some set P. Then two protocol states (h1, P1) and (h2, P2) are observationally
equivalent from the viewpoint of an agent a, written (h1, P1) ≈a (h2, P2), :iff
h1 ≈a h2.

Proposition 1 Let for all φ, φ′ ∈ F ,

• JφK = Jφ′K :iff for all p and i, JφKi
p = Jφ′Ki

p

• |= φ, pronounced “φ is a logical truth (or tautology) in CPL”, :iff for all
s ∈ H × P, s |= φ.

Then for all φ, φ′ ∈ F ,

1. if |= φ ≡ φ′ then JφK = Jφ′K

2. if JφK = Jφ′K then |= φ↔ φ′.

Proof. almost by definition

Definition 8 (Logical consequence and equivalence) Let φ, φ′ ∈ F .
Then,

• φ′ is a logical consequence of φ, written φ⇒ φ′, :iff for all s ∈ P ×H, if
s |= φ then s |= φ′.

• φ′ is logically equivalent to φ, written φ⇔ φ′, :iff φ⇒ φ′ and φ′ ⇒ φ.

Remark 2 φ ⊇ φ′ ⇒ φ→ φ′ but φ→ φ′ 6⇒ φ ⊇ φ′.

Definition 9 (CPL: logic and logical theory)

• logic (a body of truth):

CPL := { φ | |= φ }

• logical theory (a system of inference):

CPL := { φ | there is s ∈ H × P s.t. s |= φ }
(For all φ ∈ CPL and φ′ ∈ F , if φ⇒ φ′ then φ′ ∈ CPL.)

Theorem 1 (Barcan and relativised Co-Barcan)

Barcan |= ∀m(Ka(φ))→ Ka(∀m(φ))

Co-Barcan |= Ka(∀m(a k m→ φ))→ ∀m(a k m→ Ka(φ))

Proof. see Appendix A

The Barcan property w.r.t. propositional knowledge (Ka) is quite standard.
However, the relativisation to individual knowledge (k) to obtain the converse
Barcan property is novel. (The plain converse Barcan property obviously does
not hold in a cryptographic context.)

Corollary 1 |= Ka(∀m(a k m→ φ))↔ ∀m(a k m→ Ka(φ))

In words: propositional knowledge commutes with universal (and analogously
with existential) quantification when that quantification is relativised to (or:
guarded by) individual knowledge.

Remark 3 CPL-satisfaction (“model-checking”) is undecidable, as secrecy, be-
ing CPL-definable (cf. Section 3.3.2), is.

3.2. LOGIC 55

3.2.3 Discussion

3.2.3.1 Expressiveness

The undecidability of the model-checking problem of CPL is intriguing because
CPL is overtly first-order and the model-checking problem of plain first-order
logic is decidable, in fact PSPACE-complete18 [BvBW07]. The deeper reason
for this intriguing state of affairs is that CPL is actually covertly weak second-
order! To see why, consider that the truth condition of the spatial conditional
(B) involves universal quantification over (adjoint) protocols, which, and that
is the reason, generate via their execution finite sets of messages (CPL’s official
first-order individuals). The implicit (at the meta-level) and indirect (via the
spatial conditional and protocols) universal quantification over finite sets of
individuals induces weak second-order expressiveness.19 Regarding secrecy, we
will see in Section 3.3.2 that the source of its undecidability is nicely pinpointed
by the prohibition (negated permission) modality, which employs the (negated)
spatial conditional, required for its formalisation. In CPL, weak second-order
expressiveness is available on demand of the spatial conditional and remains
nicely confined to the use of that conditional.

3.2.3.2 Relevant implication

In the terminology of relevant logics, both the spatial conditional B and the
epistemic conditional ⊇ are relevant (as opposed to the truth-functional material
conditional →) in the sense that information based on which the antecedent
is evaluated is relevant to the information based on which the consequent is
evaluated. In B, the relevant (and potential) information is represented by the
adjoint state (h′, Q). In ⊇, the relevant (and actual) information is represented
by the event subset Eφ′ .

As an example, consider (session identifier and process term omitted) the
assertion

ε · I(Eve, {|M |}k) |= Eve k k B Eve k M

which states what primary knowledge, namely k, Eve requires to derive the
(secondary) knowledge M in the given model. In other words, if Eve knew k
then Eve would know M in the given model. (Notice the conditional mode!)
This is a property of Eve’s cryptographic knowledge w.r.t. its potentiality . That
is, the addition of information potentially leads to multiplication of knowledge.
In comparison, consider the assertion

ε · I(Eve, {|M |}k) · I(Eve, k) |= Eve k M ⊇ Eve k k

which states how Eve actually derives the secondary knowledge M from the
primary knowledge in the given model (cf. Table 3.6, where it becomes evident
that if Eve knows the plaintext M then possibly because Eve knows the key
k, because: first, Eve can derive M from the set {I(Eve, k), I(Eve, {|M |}k)}
of events and k from the set {I(Eve, k)} of events in her view; and second,
{I(Eve, k)} ⊆ {I(Eve, k), I(Eve, {|M |}k)}). In other words, if Eve knows M then
possibly (not only probably) because Eve knows k in the given model. (Notice

18however, FOL-satisfiability is undecidable
19That a certain form of spatial conjunction (conjunctive separation) also yields second-

order expressiveness has been argued in [KR04].

56 CHAPTER 3. DOLEV-YAO CRYPTOGRAPHY

T
able

3.6:
D

eriving
a

plaintext

ε·
I
(E
v
e
,{|M

|}
k
)·

I
(E
v
e
,k

)
`
{
I
(
E
v
e
,k

)}
E
v
e

(E
v
e
,k

)

ε·
I
(E
v
e
,{|M

|}
k
)·

I
(E
v
e
,k

)
`
{
I
(
E
v
e
,k

)}
E
v
e

k

ε·
I
(E
v
e
,{|M

|}
k
)
`
{
I
(
E
v
e
,{|M
|}

k
)}

E
v
e

(E
v
e
,{|M

|}
k
)

ε·
I
(E
v
e
,{|M

|}
k
)
`
{
I
(
E
v
e
,{|M
|}

k
)}

E
v
e

{|M
|}

k

ε·
I
(E
v
e
,{|M

|}
k
)·

I
(E
v
e
,k

)
`
{
I
(
E
v
e
,{|M
|}

k
)}

E
v
e

{|M
|}

k

ε·
I
(E
v
e
,{|M

|}
k
)·

I
(E
v
e
,k

)
`
{
I
(
E
v
e
,k

),I
(
E
v
e
,{|M
|}

k
)}

E
v
e

M

3.2. LOGIC 57

the indicative mode!) This is a property of Eve’s cryptographic knowledge w.r.t.
its actuality . In contrast, consider the tautology (i.e., universal assertion)

|= (Eve k {|M |}k ∧ Eve k k)→ Eve k M

which states a property of a cryptographic operation, namely encryption. We
believe that B and ⊇ are (perhaps the) two natural — and incidentally, relevant
— notions of implication for cryptographic knowledge.

3.2.3.3 Conflicting obligations

A particularly interesting use of the spatial and the epistemic conditional is the
definition of a cryptographically meaningful notion of permission (cf. Table 3.4)
and prohibition (cf. Appendix B). Our definition says that it is permitted that
φ is true if and only if if φ were true then whenever a state of violation would
be reached, it would not be due to φ being true. This (reductionistic) notion
of permission is inspired by [MDW94, Page 9] where a notion of prohibition
is defined in the framework of dynamic logic. The authors resume their basic
idea as “. . . some action is forbidden if doing the action leads to a state of
violation.” Observe that [MDW94] construe a notion of prohibition based on
actions, whereas we construe a notion of permission based on propositions. We
recall that the motivation of reductionistic approaches to (standard) deontic
logic (SDL) is the existence of weak paradoxes in SDL. That is, SDL actually
contains true statements that are counter to the normative intuition it was
originally intended to capture.

In SDL permission, prohibition, and obligation are interdefinable, whereas
in CPL only permission and prohibition are. In fact, there is no notion of obli-
gation in CPL because (faulty) cryptographic protocols create a context with
conflicting obligations whose treatment would require machinery from defeasible
deontic logic [Nut97]. Consider that it must be obligatory that (1) a state of vio-
lation be never reached during protocol execution, and (2) agents always comply
with protocol prescription. These two obligations are obviously conflicting in a
context created by the execution of a faulty protocol, which by definition does
reach a state of violation.

3.2.3.4 Logical omniscience

Our semantics for the epistemic modality reconciles the cryptographically intu-
itive but incomplete semantics from [AT91] with the complete (but less com-
putational), renaming semantics from [CD05a]. We achieve this by casting the
cryptographic intuition from [AT91] in a simple (rule-based) and visibly com-
putational formulation of epistemic accessibility. Similarly to [AT91], we parse
unintelligible data in an agent’s a individual knowledge M into abstract mes-
sages �. In addition, and inspired by [CD05b, CD05a], we parse unintelligible
data in an agent’s a propositional knowledge Ka(φ). Thanks to this additional
parsing, our epistemic modality avoids weak paradoxes in the context of Dolev-
Yao cryptography that, like in SDL, exist in standard epistemic logic (SEL). In
the context of Dolev-Yao cryptography, these paradoxes are due to epistemic
necessitation

|= φ

|= Ka(φ)

58 CHAPTER 3. DOLEV-YAO CRYPTOGRAPHY

i.e., the fact that an agent a knows all logical truths (logical omniscience) such
as ∃v({|M |}k = {|v|}k). To illustrate, consider the following simple example.
Let P ∈ P and M ∈ M. Then paradoxically (ε, P) |= Ka(∃v({|M |}k = {|v|}k))
“in” SEL but truthfully (ε, P) 6|= Ka(∃v({|M |}k = {|v|}k)) in CPL because |=
¬∃v(� = {|v|}k) (cf. “otherwise”-clause in the truth denotation of Ka(φ) in
Table 3.4). In a cryptographic setting, epistemic necessitation should — and in
CPL does — take the following form [CD05a]:

|= φ

|= a k M → Ka(φ)
M is a tuple of the key values in φ

In the context of Dolev-Yao cryptography, the presence of logical omni-
science in SEL seems, interestingly, to be due to the absence of relevance in
the truth condition of the epistemic modality. The condition is in fact a truth-
functional (meta-level) implication, which is true whenever its consequent is
true, which in turn is always the case for a tautological consequent. There-
fore, any solution to the problem of logical omniscience must break the truth-
functionality of the meta-level implication and make it relevant. This is pre-
cisely what we do: the relevant information is represented by the history h
of protocol state p@i from the antecedent, used for cryptographic parsing in
the consequent. Note that our truth condition for the epistemic modality is
a simplification of the one of [CD05b, CD05a] in the sense that we eliminate
one universal quantifier (the one over renamings) thanks to the employment of
cryptographic parsing. Further note that our epistemic modality does capture
knowledge, i.e., |= Ka(φ)→ φ, due to the reflexivity of its associated accessibility
relation. Treating logical omniscience has a price:

Proposition 2 Logical equivalence (⇔) is not a congruence.

Proof. see Appendix A

3.2.3.5 Other connections

What is more, our (basic) location predicate a@x enables us to invent, by
macro-definition, spatial freeze quantifiers (in analogy to the well-known tem-
poral freeze quantifiers, which we are also able to macro-define, analogously,
in the real-time setting, cf. Section 3.4.3): �a.x(φ) := �(a@x → φ) and
�a.x(φ) := ¬�a.x¬(φ), and further �a(φ) := ∀x(�a.x(φ)) which corresponds

to the location modality @a[φ] of distributed temporal logic [CVB05]. Spa-
tial freeze quantifiers are, for example, useful for the macro-definition of action
predicates restricted to particular sessions, e.g., a.x

M−→
Eve

b := �a.x(a M−→
Eve

b).

Finally, the popularity of strand spaces [FHG99] as an execution model for
cryptographic protocols justifies that we briefly compare our classical, trace-
based execution model to strand spaces. According to [FHG99, Definition 2.2],
a strand space over a set of message terms (in our case M) is a set (say S)
(of strand names) with a so-called trace mapping tr : S → (±M)∗, where
±M := { +M | M ∈ M } ∪ { −M | M ∈ M } designates the set of so-
called signed message terms. In our terminology, the intended meaning of a
strand (name) is the one of a located session name (a.x), and the one of a
positive (resp. negative) message term is insecure output (resp. input). With

3.3. APPLICATION: FORMALISATION CASE STUDIES 59

these intended meanings and S := { a.x | a ∈ AEve and x ∈ X }, strands (and its
concept) are obviously strictly included in our (concept of) traces of insecure and
secure message input/output events. The inclusion is strict because [FHG99,
Definition 2.2] does not allow for secure message input/ouput.

3.3 Application: formalisation case studies

We exemplify the expressiveness of CPL on a selection of tentative formalisations
of fundamental cryptographic states of affairs. To the best of our knowledge,
(1) no other existing crypto logic is sufficiently expressive to allow for the defi-
nition of the totality of these properties, and (2) the totality of these properties
has never been expressed before in any other formalism. In fact, entire logics
(e.g., [BAN90], [SS99], [HO02]) have been designed to capture a single crypto-
graphic state of affairs (e.g., authenticity, anonymity, resp. secrecy). We invite
the reader to validate our formalisations on the criteria of intuitiveness and suc-
cinctness, but also to discern that the simplicity of the formalisation results is in
sharp contradistinction to the difficulty of their formalisation process. However,
thanks to the empowerment that CPL confers, a formalisation process involving
such a large number of conceptual degrees of freedom has become tractable at
an engineering level. Observe that our formalisations of cryptographic states of
affairs, except for the one of key separation and those of trust-related affairs,
involve no actions, just pure knowledge. Note that the formalisations employ
macro-defined predicates (cf. Appendix B; the reader is urged to consult it) and
that α(b) abbreviates disjunction of name generation, sending, and receiving
performed by b.

3.3.1 Trust-related affairs

Maliciousness Agent b is malicious, written malicious(b), :iff b knowingly per-
forms a forbidden action at some time, written �(α(b)∧Fα(b)∧Kb(Fα(b))).

Honesty Agent b is honest, written honest(b), :iff b is not malicious, written
¬malicious(b).

Faultiness b is faulty, written faulty(b), :iff b performs a forbidden action at
some time, written �(α(b) ∧ Fα(b)).

Prudency b is prudent, written prudent(b), :iff b is not faulty, written ¬faulty(b).

Trustworthiness Agent a trusts b, written a trusts b, :iff a knows that b is
prudent, written Ka(prudent(b)).20

3.3.2 Confidentiality-related affairs

Shared Secret Datum M is a shared secret among agents a and b, written
M sharedSecret (a, b), :iff only a and b know M , written a k M ∧ b k
M ∧ ∀(c : AAdv)(c k M → (c = a ∨ c = b)).

20this is about justified trust (a rightly trusts b) as opposed to blind trust (a possibly wrongly
trusts b)

60 CHAPTER 3. DOLEV-YAO CRYPTOGRAPHY

Secrecy A protocol has the (reachability-based) secrecy property :iff the ad-
versary Eve never knows any classified information, written �∀m(F(Eve k
m)→ ¬ Eve k m).

Our formalisation is an instance of the pattern Fφ→ ¬φ, relating illegiti-
mate to actual states of affairs, and expressing that if something must not
be then it actually is not. The pattern is equivalent to φ→ Pφ.

Anonymity Agent b is anonymous to agent a in state of affairs φ(b) :iff if
a knows that some agent is involved in φ then a cannot identify that
agent with b, written Ka(∃(c : A)(φ(c))) → ¬Ka(φ(b)), which is logically
equivalent to ¬Ka(φ(b)).

Data Derivation Agent b knows M ′ due to agent a knowing M (when a 6= b
then necessarily due to communication from a to b), written M ′ ⊇(a,b)

M := b k M ′ ∧ (b k M ′ ⊇ a k M)21 (when a = b we just write M ′ ⊇a M).

Non-Interaction There is absence of interaction between agents a and b, writ-
ten a | b := ¬∃m∃m′(m ⊇(a,b) m′ ∨m ⊇(b,a) m′).

Perfect Forward Secrecy “[. . .] compromise of long-term keys [k] does not
compromise past session keys [k′].” [MvOV96, Page 496], written ¬ �∃(k :
K∞)∃(k′ : K1)(k′ ⊇Eve k)

Known-Key Attack “[. . .] an adversary obtains some keys used previously
and then uses this information to determine new keys.” [MvOV96, Page 41],
written ∃(k : CK)∃(k′ : CK)(k′ 6= k ∧ k′ ⊇Eve k)

Agent Corruption The adversary, somehow, comes to know all what an agent
(say a) knows in state of affairs φ, written ∀m(a k m→ (Eve k m I φ)).

3.3.3 Authentication-related affairs

Key Confirmation “[. . .] one party [a] is assured that a second (possibly un-
identified) party [b] actually has possession of a particular secret22 key
[k].” [MvOV96, Page 492], written k : K ∧ Ka(b k k)

Key Authentication

• implicit : “[. . .] one party [a] is assured that no other party [c] aside
from a specifically identified second party [b] (and possibly additional
identified trusted parties) may gain access to a particular secret key
[k].” [MvOV96, Page 492], written k : K∧Ka(∀(c : AAdv)(c k k → (c =
a ∨ c = b)))

• explicit : “[. . .] both (implicit) key authentication and key confirma-
tion hold.” [MvOV96, Page 492], written simply as conjunction of
implicit key authentication and key confirmation

Message Integrity Agent b knows that M is an intact message from agent a,
written Kb(M ⊇(a,b) M).

21A material conditional would not do here because the antecedent and the consequent are
epistemically — and thus not truth-functionally — related via data derivation.

22in our terminology, ‘secret’ here means ‘symmetric’

3.3. APPLICATION: FORMALISATION CASE STUDIES 61

Message Authorship Agent a authored datum M , written a authored M , :iff
once a was the only one to know M , written �− (a k M ∧ ∀(b : AAdv)(b k
M → b = a)).

Message Authentication (or Authenticity) Datum M is authentic w.r.t.
its origin (say agent a) from the viewpoint of agent b :iff b can authentically
attribute (i.e., in the sense of authorship) M to a, i.e., b knows that a
authored M , written Kb(a authored M).

Key Transport (safety) between agents a and b initiated by a

• unacknowledged uaKT(a, b):

�∀(k : K)(Kb(a authored k)→ Kb(k sharedSecret (a, b)))

• acknowledged aKT(a, b):

�∀(k : K)(Ka(Kb(a authored k))→ Ka(Kb(k sharedSecret (a, b))))

Key Agreement (safety) between agents a and b initiated by a

• unacknowledged uaKA(a, b):

�∀ma∀mb((Kb(a authored ma) ∧ Ka(b authored mb))→
Ka((ma,mb) sharedSecret (a, b)))

• acknowledged aKA(a, b):

�∀ma∀mb((Kb(a authored ma) ∧ Kb(Ka(b authored mb)))→
Kb(Ka((ma,mb) sharedSecret (a, b))))

Entity Authentication (or Identification) (safety) via a shared secret be-
tween agents a and b initiated by a

• unilateral (or weak) entity authentication uEA(a, b): “[. . .] the pro-
cess whereby one party [b] is assured (through acquisition of corrob-
orative evidence [m]) of the identity of a second party [a] involved in
a protocol, and that the second has actually participated (i.e., is ac-
tive at, or immediately prior to, the time the evidence is acquired).”
[MvOV96, Page 386], written

�∀m(Kb(a authored m)→ Kb(m sharedSecret (a, b)))

Notice that unilateral entity authentication is unacknowledged trans-
port of an arbitrary secret, e.g., not necessarily a symmetric key.

• weakly mutual (or strong-weak) entity authentication wmEA(a, b):
“[. . .] [one party (say a)] has fresh assurance that [the other party
(say b)] has knowledge of [a] as her peer entity.” [BM03, Page 39],
written

�∀ma∀mb((Kb(a authored ma) ∧ Kb(Ka(b authored mb)))→
Kb(Ka((ma,mb) sharedSecret (a, b))))

Notice that weakly mutual entity authentication coincides with ac-
knowledged key agreement.

62 CHAPTER 3. DOLEV-YAO CRYPTOGRAPHY

• strongly mutual (or strong-strong) entity authentication smEA(a, b):

�∀ma∀mb((Ka(Kb(a authored ma)) ∧ Kb(Ka(b authored mb)))→
Ka(Kb(Ka((ma,mb) sharedSecret (a, b)))))

Notice that our formalisations of key transport/agreement and entity authen-
tication only address safety , but not liveness, i.e., that some key actually gets
transported/agreed upon and that some entity is authenticated. The reason is
that due to the adversary, liveness cannot be guaranteed.

Visibly, both key transport/agreement and entity authentication rely on
message authentication as well as a shared secret, and authentication-related
affairs rely on confidentiality-related affairs.

Slogan 16 Authenticity is epistemic accessibility between agents and their data.
Secrecy is epistemic inaccessibility to agents and their data. The two states of
affairs are linked.

3.3.4 Commitment-related affairs

Proof Datum M is a cryptographic23 proof for the truth of proposition φ, writ-
ten M proofFor φ, :iff assuming an arbitrary agent a knows M guarantees
that a knows that φ is true, written ∀(a : AAdv)(a k M B Ka(φ)).

Evidence Datum M is cryptographic evidence for the truth of proposition φ,
written M evidenceFor φ, :iff assuming an arbitrary agent a knows that φ
is true guarantees that a knows M , written ∀(a : AAdv)(Ka(φ) B a k M).

Provability Agent a can prove that proposition φ is true, written Pa(φ), :iff a
knows a (cryptographic) proof for φ, written ∃m(m proofFor φ ∧ a k m).

Non-Repudiation Agent b cannot repudiate authorship of M to agent a :iff
a can prove that b authored M , written Pa(b authored M).

Notice that non-repudiation is authenticity strengthened (from knowledge)
to provability.

Contract Signing “[. . .] two players [say a and b] wish to sign a contract m
in such a way that either each player obtains the other’s signature [S], or
neither player does.” (fair exchange of electronic signatures FEES(a, b)),
written �((a k Sb ∧ b k Sa) ∨ (¬ a k Sb ∧ ¬ b k Sa))

• Optimism: “[. . .] no honest party [neither a nor b] interacts with the
trusted third party [say c].” [ASW00], written a | c ∧ b | c
• Fairness: “[. . .] it is infeasible for the adversary [Eve] to get the

honest player’s [a] signature [Sa], without the honest player getting
the adversary’s signature [SEve].” [ASW00], written �(Eve k Sa →
�(a k SEve))

• Completion: “[. . .] it is infeasible for the adversary [. . .] to prevent
[a] and [b] from successfully exchanging their signatures.” [ASW00],
writtten �(a k Sb ∧ b k Sa)

23as opposed to propositional proof (i.e., a sequence of propositions that is compliant with
a relation of deduction); cryptographic proofs can be viewed as cryptographic encodings (i.e.,
cryptographic Gödel-numberings) of propositional proofs

3.3. APPLICATION: FORMALISATION CASE STUDIES 63

• Accountability : “[. . .] if the trusted third party misbehaves [i.e.,
the contract signing property FEES is violated] then this can be
proven.” [ASW00], written �(¬FEES(a, b) → �(Pa(¬FEES(a, b)) ∧
Pb(¬FEES(a, b))))

• Abuse-freeness: “[. . .] [b] does not obtain publicly verifiable informa-
tion about (honest) [a] signing the contract until [b] is also bound by
the contract.”24 [GJM99], written ¬Pb(a authored Sa)Ub authored Sb

It has been argued that contract signing requires branching time [CKW07].
However, our tentative formalisation of contract signing suggests that
branching-time logic is not necessary for this purpose. It has even been ar-
gued that linear-time is preferable (implying “sufficient”) over branching-
time logic in general [Var01]. We shall not settle this argument here, but
confine ourselves to alimenting it. In any case, it would be easy to replace
CPL’s linear-time skeleton with a branching-time skeleton such as CTL∗.

Visibly, cryptographic proof and evidence are dual concepts, and commitment-
related affairs rely on authentication-related affairs.

Then, we have actually been able to macro-define a Gödel-style provability
modality , and, with it, are able to macro-define the intuitionistic conditional in
CPL!

Theorem 2 The operator Pa is compliant with the modal system S4 adapted to
Dolev-Yao cryptography (i.e., with the necessitation rule N replaced by NDY)25.

Proof. Pa complies with (cf. Appendix A for an elementary, Fitch-style proof)

K |= Pa(φ→ φ′)→ (Pa(φ)→ Pa(φ′))

T |= Pa(φ)→ φ

4 |= Pa(φ)→ Pa(Pa(φ))

NDY |= φ

|= a k M → Pa(φ)
M is a tuple of the key values in φ

Hence, (the classical logic) CPL can capture the provability meaning of intu-
itionistic implication via the following macro-definition:

φ 7→ φ′ := ∃(a : AAdv)(Pa(φ→ φ′))

The intuitionistic conditional is another example of relevant implication: infor-
mation (a proof of φ) based on which the antecedent is evaluated is relevant to
the information (a proof of φ′) based on which the consequent is evaluated in
the sense that any proof of φ is also a proof of φ′ (cf. K).

The obvious temptation is to attempt a Curry-Howard isomorphism [dG95]
between cryptographic protocols and propositions. That is, to look

24symmetrically for “(honest) [b]”
25As Pa is defined in terms of Ka, Pa is compliant with S4 simpliciter when Ka is compli-

ant with S5 simpliciter. Our Ka can be (re)made compliant with S5 simpliciter by simply
removing the treatment of logical omniscience (i.e., the cryptographic parsing) in its definition.

64 CHAPTER 3. DOLEV-YAO CRYPTOGRAPHY

1. at a proposition φ ∈ F for which there are (h, P), (h′, P ′) ∈ H × P, a ∈
AEve, and M ∈ M s.t. (h, P) −→ (h′, P ′) and (h′, P ′) |= M proofFor
φ ∧ a k M as a type for process term P , and

2. at process term P as an interactive proof procedure (to the benefit of agent
a) for the cryptographic proof M of φ.

Our (macro-defined) concepts of cryptographic proof and provability are
related to [AN05], where a notion of justification for propositional knowledge
is introduced as a primitive concept in the (propositional) epistemic logic S4
resulting in a hybrid modality for both knowledge and provability. That notion of
justification roughly corresponds in our (first-order, epistemic-S5) setting to the
notion of cryptographic proof. However, [AN05] is currently not quite suitable
for cryptography due to standard epistemic necessitation and an unsuitable
form of positive introspection, namely the one that the existence of a proof of
a proposition implies the (hybrid) knowledge-provability of that proposition.
Hence, given that Gödel’s 1933 paper on a modal logic of provability left the26

open problem of finding “a precise provability semantics for the modal logic S4”
[BvBW07, Page 932], we can justly claim having solved via macro-definition,
i.e., via syntactic translation, a cryptographic analogue of that problem. Gödel’s
problem was solved in its original, non-cryptographic format in [Art95, Art01].

3.3.5 Compositionality-related affairs

Key Separation The protocol space can be separated in an establishment
(production) and a use (consumption) part w.r.t. the key k, written

�∀m((∃(a, b : A)(a m−→
Eve

b) ∧ k K∗ m)→ ¬ k J∗ m) ⊗
�∀m((∃(a, b : A)(a m−→

Eve
b) ∧ k J∗ m)→ ¬ k K∗ m)

Compositional Correctness Protocol (plug-in) P with prehistory h is

1. solely correct w.r.t. an internal correctness criterion, i.e., endo-condi-
tion φ :iff (h, P) |= φ

2. compositionally correct , i.e., either
(a) existentially composable w.r.t. an external correctness criterion,

i.e., exo-condition φ′ :iff (h, P) |= φ′ I φ,27 or
(b) conditionally composable, i.e., composable w.r.t. exo-condition

φ′, :iff (h, P) |= φ′ B φ, or
(c) universally composable :iff (h, P) |= > B φ.28

The concept of an exo-condition (endo-condition) is to interactive
programs what a pre-condition (post-condition) is to non-interactive
programs.29 Our slogan, especially applying to cryptographic proto-
cols, is:

26actually two open problems (cf. [BvBW07, Page 932])
27the case where φ′ is > is obviously uninteresting
28the name of this notion of correctness coincides with the one from [Can01], and should

roughly correspond to the notion of robust satisfaction [GL91]
29(h, P) |= φ′ B φ roughly corresponds to a Hoare triple φ′{P}φ. Observe the absence

of a computation history in Hoare triples: non-interactive programs are characteristically
history-independent; interactive programs are characteristically history-dependent !

3.3. APPLICATION: FORMALISATION CASE STUDIES 65

Slogan 17 Stating the possibly weakest exo-condition for an inter-
active program is at least as necessary as stating the possibly weakest
pre-condition for a non-interactive program.

Attack Scenario Protocol P with prehistory h and internal correctness cri-
terion φ is vulnerable in a protocol context — de facto constituting a
potential attack scenario — with property φ′ :iff (h, P) |= φ′ I ¬φ.

Notice that a statement of an attack scenario is a negated statement of
conditional composability.

Remark 4 The concept of a chosen-protocol attack [KSW98], understood
as the adversarial choice of a different (attacking) protocol than P is an
instance of the concept of an attack scenario, and understood as the adver-
sarial choice of an arbitrary attacking protocol coincides with the concept
of an attack scenario.

3.3.5.1 A popular attack scenario

We exemplify our concept of attack scenario with the perhaps most popular
attack on a cryptographic protocol, namely the man-in-the-middle attack on
the Needham-Schroeder public-key protocol (NSPuK) for (weakly mutual) en-
tity authentication (acknowledged key agreement). Our choice is motivated by
the fact that we wish to explain the unfamiliar (our approach) with the famil-
iar (a paradigmatic attack). Notwithstanding the popularity of the attack, we
believe that its contextual formalisation in CPL explicates it to a novel extent
of explicitness. The attack is also particularly interesting because the protocol
requirement that it violates is particularly challenging to formalise — satis-
factorily. We contend that common formulations of entity authentication are
unsatisfactory. They usually purport to formalise an intuition expressed as “I
know who I’m talking to.”. However the actual formulations then only involve
belief to varying degrees of explicitness [Low97]. Our slogan, and fact, is:

Slogan 18 Debatable requirements entail debatable attacks.

Table 3.7 displays the protocol narration (i.e., an intended run) of core
NSPuK, i.e., NSPuK where the public keys of the initiator (e.g., Alice) and
the responder (i.e., Bob) are assumed to have already been established. The

Table 3.7: Protocol narration for core NSPuK

1. Alice → Bob : {|(xAlice, Alice)|}+
p+
Bob

2. Bob → Alice : {|(xAlice, xBob)|}+
p+
Alice

3. Alice → Bob : {|xBob|}+
p+
Bob

narration describes (elliptically) that first, Alice sends to Bob the encryption
under Bob’s public key p+

Bob of a tuple of a freshly-generated nonce xAlice and her
name Alice; (upon reception, Bob decrypts the message with his private key,
stores the first component of the tuple, gets the public key p+

Alice corresponding

66 CHAPTER 3. DOLEV-YAO CRYPTOGRAPHY

to the second component from his key store, generates a fresh nonce xBob, and
encrypts the tuple of Alice’s and his nonce with Alice’s public key;) second, Bob
sends his reply to Alice; (upon reception, Alice decrypts the message with her
private key, checks that the first component of the tuple is her nonce previously
sent to Bob, and encrypts the second component xBob with Bob’s public key
p+
Bob;) third, Alice sends her reply to Bob. Protocol narrations are elliptical in

the sense that non-interactive protocol actions are visibly not explicit.
The intention of each protocol step is as follows: the intention of the first

step is to challenge the responder (e.g., Bob) to authenticate with the initiator
(e.g., Alice); the intention of the second step is twofold, i.e., to accomplish au-
thentication of the responder with the initiator, and to challenge the initiator to
authenticate with the responder; the intention of the third step is twofold, i.e.,
to acknowledge authentication of the responder with the initiator to the respon-
der, and to accomplish authentication of the initiator with the responder. The
protocol intends to achieve weakly (due to the uni lateral acknowledgement) mu-
tual entity authentication (acknowledged key agreement) between an initiator
and a responder.

The protocol narration of NSPuK can be transcribed into a (non-elliptic)
formal language, for example into the one of Section 4.1 by instantiating the
protocol template displayed in Table 3.8 via substitution of Alice for init and
Bob for resp. Features of that language are: a primitive for key lookup, an
input primitive with pattern-matching and guard, and primitives for out-of-
band communication. The left (right) column of the table defines the ini-

Table 3.8: Protocol template for core NSPuK

NSPuKINIT(slf , oth) := NSPuKRESP(slf) :=

New (xslf : X).
Getoth (koth : K+, oth) in Getslf (kslf : K−, slf) in
Outoth {|(xslf , slf)|}+koth

. In {|(xoth , oth)|}+
kslf

when xoth : X ∧ oth : A.

New (xslf : X).
Getslf (kslf : K−, slf) in Getoth (koth : K+, oth) in
In {|(xslf , xoth)|}+

kslf
when xoth : X. Outoth {|(xoth , xslf)|}+koth

.

Outoth {|xoth |}+koth
.1 In {|xslf |}+kslf

.1

NSPuK(init , resp, xinit , xresp) := init .xinit [NSPuKINIT(init , resp)] 9
resp.xresp [NSPuKRESP(resp)]

tiator (responder) role. The bottom row defines the protocol template, dis-
tributing (via parallel composition) the roles at the corresponding locations
init .xinit [·] and resp.xresp [·], respectively. The protocol template assumes that
each agent has generated her own private and public key, and that each agent’s
public key has been established with the other agent. The actions of the ini-
tiator role are the following: New (xslf : X) generation — and binding in vari-
able xslf — of a new nonce; Getoth (koth : K+, oth) in look up — and binding
in variable koth — of the other agent’s (cf. subscript oth) public key gener-
ated by the other agent herself (cf. parameter oth); Outoth {|(xslf , slf)|}+koth

out-
put of the message {|(xslf , slf)|}+koth

to the other, hopefully responding, agent;

3.3. APPLICATION: FORMALISATION CASE STUDIES 67

Getslf (kslf : K−, slf) in look up — and binding in variable kslf — of the local
agent’s (cf. subscript slf) private key generated by that agent herself (cf. param-
eter slf); In {|(xslf , xoth)|}+

kslf
when xoth : X guarded (cf. guard xoth : X) input of

a message with pattern30 {|(xslf , xoth)|}+
kslf

and binding in variable xoth of the

other, apparently responding, agent’s nonce; Outoth {|xoth |}+koth
output of the

message {|xoth |}+koth
to the other agent; and, finally, 1 — termination. The ac-

tions of the responder role are (almost) symmetrical to the ones of the initiator
role.

The previously mentioned assumptions about preliminary generation and
(authenticated, of course) establishment of public keys can be modelled by
means of corresponding key-generation and out-of-band communication events,
chained up to form the protocol prehistory displayed in Table 3.9. We recall
that out-of-band (or private) communication is, by definition, authenticated
(and secret), and that the adversary (Eve) can, as in the mentioned attack, also
be an insider.

Table 3.9: Prehistory for core NSPuK

h := ε · N(Alice, xa0, pAlice, Alice) · N(Bob, xb0, pBob, Bob)·
sO(Alice, xa0, p

+
Alice, Bob) · sI(Bob, xb0, p

+
Alice, Alice)·

sO(Bob, xb0, p
+
Bob, Alice) · sI(Alice, xa0, p

+
Bob, Bob)·

sO(Alice, xa0, p
+
Alice, Eve) · sI(Eve, xe0, p

+
Alice, Alice)·

sO(Bob, xb0, p
+
Bob, Eve) · sI(Eve, xe0, p

+
Bob, Bob)

This completes the definition of the initial state

(h,NSPuK(Alice, Bob, xa1, xb1))

of (our attack scenario for) core NSPuK.
Table 3.10 displays the narration of the actual attack. The attack can be

Table 3.10: Attack narration for NSPuK

1. Alice → Eve : {|(xAlice, Alice)|}+
p+
Eve

1′. EveAlice → Bob : {|(xAlice, Alice)|}+
p+
Bob

2′. Bob → EveAlice : {|(xAlice, xBob)|}+
p+
Alice

2. Eve → Alice : {|(xAlice, xBob)|}+
p+
Alice

3. Alice → Eve : {|xBob|}+
p+
Eve

3′. EveAlice → Bob : {|xBob|}+
p+
Bob

orchestrated by an active insider adversary that performs denial of service and
impersonation across two different, interleaved sessions, cf. (un)primed number-
ing. It consists in:

30with pattern-matching effectuating the identity check on the received nonce

68 CHAPTER 3. DOLEV-YAO CRYPTOGRAPHY

1. Eve tricking (wrongly trusting) Alice (believing that Eve is a legitimate
agent) to initiate a regular session

Q := Alice.xa2[NSPuKINIT(Alice, Eve)]

with Eve

2. Eve disabling the execution (denial of service) of the regular session initi-
ation

Alice.xa1[NSPuKINIT(Alice, Bob)]

3. Eve impersonating Alice in the face of (wrongly trusting) Bob (lead to
believe that he is talking only to Alice while in fact talking also to Eve)
by enabling the execution of the regular session response

Bob.xb1[NSPuKRESP(Bob)]

concurrently with Q.

In result, Alice is lead to believe that she is talking only to Eve (via session xa2)
while in fact talking also to Bob (via impersonator Eve and session xb1), and
Bob is lead to believe that he is talking only to Alice (via session xb1) while in
fact talking also to Eve (via impersonator Eve and session xa1). The protocol
obviously fails to achieve its requirement.

The assumption about private- and public-key generation and public-key
establishment is, of course, also valid for Eve and regular interactions between
Alice and Eve, respectively. That is, the protocol context is assumed to con-
tain the prehistory h′ := ε · N(Eve, xe0, pEve, Eve) · sO(Eve, xe0, p

+
Eve, Alice) ·

sI(Alice, xa0, p
+
Eve, Eve) · sO(Eve, xe0, p

+
Eve, Bob) · sI(Bob, xb0, p

+
Eve, Eve). More

formally,

• (h′, Q) ∈ H × P and

• (h′, Q) |= uEA(Alice, Eve) and

• (h ◦ h′,NSPuK(Alice, Bob, xa1, xb1) 9 Q) |= ¬wmEA(Alice, Bob)

by which we obtain

(h,NSPuK(Alice, Bob, xa1, xb1)) |= uEA(Alice, Eve) I ¬wmEA(Alice, Bob)

representing our (property-based or logical) attack scenario for NSPuK. We
invite the reader to compare this scenario to the corresponding, model-based
(or process-algebraic) attack scenario described in Section 4.1.4.

3.4 tCPL: an extension of CPL with real time

We extend (core) CPL (qualitative time) with real time, i.e., time stamps, timed
keys, and potentially drifting local clocks, to tCPL (quantitative time). Our ex-
tension is conservative and really simple (a single section is enough to describe
it!). It requires only the refinement of two relational symbols (one new defining
rule resp. parameter) and of one modality (one new conjunct in its truth condi-
tion), and the addition of two relational symbols (but no operators!). Our work

3.4. TCPL: AN EXTENSION OF CPL WITH REAL TIME 69

thus provides further evidence for Lamport’s claim that adding real time to an
untimed formalism is really simple [Lam05]. The special-purpose machinery for
timed (including cryptographic) settings need not be built from scratch nor be
heavy-weight.

3.4.1 Historical and topical context

The formal specification, modelling, and verification of general-purpose timed
systems has received considerable attention from the formal methods commu-
nity since the end of the nineteen-eighties. See [Wan04] for a survey of timed
system models (automata, Petri nets), model- and property-based specification
languages (process calculi, resp. logics), and verification tools; and [BMN00] for
a survey of timed property-based specification languages (logics).

However, the formal methods community has paid comparatively little, and
only recent (since the end of the nineteen-nineties), attention to the timed as-
pects of cryptographic systems, e.g., cryptographic protocols, which due to their
complexity deserve special-purpose models, and formalisms31 for their specifica-
tion and verification.

We are aware of the following special-purpose formalisms for timed crypto-
graphic protocols.

• Model-based formalisms (process calculi): [ES00], [GM04], [HJ05] with
discrete time; [Sch99], [BEL05], and our own contribution (cf. Section 4.2)
with dense time

• Property-based formalisms (logics): interval -based [HS04a]; time-parame-
trised epistemic modalities [KM99] and a second-order logic [BEL05] both
point-based, and our hereby presented logic tCPL allowing for both tem-
poral points and intervals.

Clearly, “[d]ense-time models are better for distributed systems with multiple
clocks and timers, which can be tested, set, and reset independently.” [Wan04].
Specifically in cryptographic systems, “[c]locks can become unsynchronized due
to sabotage on or faults in the clocks or the synchronization mechanism, such
as overflows and the dependence on potentially unreliable clocks on remote sites
[. . .]” [Gon92]. Moreover, “[e]rroneous behaviors are generally expected during
clock failures [. . .]” [Gon92].

Timed logics can be classified w.r.t. their order and the nature of their
temporal domain.

Order Propositional logic is simply too weak for specification purposes (but
is good for fully-automated, approximative verification); modal logics provide
powerful abstractions for specification purposes, but are still not expressive
enough (cf. Section 3.1.2); higher-order logics are too expressive at the cost of
axiomatic and algorithmic incompleteness (but are good as logical frameworks);
finally “[f]irst-order logics seem a good compromise between expressiveness and
computability, since they are [axiomatically] complete in general.” [Wan04]. We

31In our view, a formalism consists of exactly three components: a formal (e.g., program-
ming or logical) language, a mathematical model (or interpretation structure), and a formal
semantics (e.g., effect or truth) for the language in terms of the model.

70 CHAPTER 3. DOLEV-YAO CRYPTOGRAPHY

recall that core CPL is a first-order, poly-dimensional modal (norms, knowledge,
space, qualitative time) logic.

Temporal domain We recall that core CPL can be instantiated with a transi-
tive, irreflexive, linear and bounded in the past, possibly branching (but a priori
flattened) and unbounded (depending on the protocol) in the future, discrete
(due to event-induced protocol states) temporal accessibility relation (cf. Sec-
tion 4.1). That is, CPL has a hybrid (state- and event-based) temporal domain:
“[. . .] neither pure state-based nor pure event-based languages quite support
the natural expressiveness desirable for the specification of real-world systems
[. . .]” [Wan04]. tCPL can be instantiated with a temporal accessibility relation
that additionally accounts for quantitative time (cf. Section 4.2). That is, time is
(1) rational-number valued, yielding a dense temporal grain; (2) referenced ex-
plicitly (the truth of a timed formula does not depend on its evaluation time),
but implicit-time operators are macro-definable (cf. Section 3.4.3); (3) mea-
sured with potentially drifting local clocks (one per agent), where the (standard
Dolev-Yao) adversary’s local clock has drift rate 1; (4) advanced monotonically
by letting the adversary choose the amount by which she desires to increase
her local clock (de facto the system clock); and (5) determinant for adversarial
break of short-term keys, enabled jointly by key expiration and ciphertext-only
attacks (the weakest reasonable attack).

Rational versus real numbers Cryptographic messages have finite length,
which implies that real numbers, e.g., real-valued time stamps, are not
transmittable as such, and real clocks only have finite precision.

Timed adversary model Our model amounts to a natural generalisation of
the adversary’s scheduling power from the control of the (relative) tempo-
ral order of protocol events in the network (space) to the control of their
(absolute) temporal issuing (time).

The following section describes the extension of CPL to tCPL. The extension
depends on the core described in the previous sections (the reader is urged to
consult them) and parallels the extension from C3 (cf. Section 4.1) to tC3 (cf.
Section 4.2).

3.4.2 Extension

The notion of execution from Section 4.2, which we adopt as the temporal ac-
cessibility relation for tCPL, generates the following two kinds of timed events:
N(a, x, n, (o, V)) for the generation of name n with intended owners o and tem-
poral validity V := (tb, te) for the declaration of the intended beginning (tb) and
end (te) of validity of the generated name (typically a key) by agent a in session
x, and S(a, x, t) for the setting of a’s local clock to clock value t by a in session
x. By convention, these events are unobservable by the adversary, i.e., they are
secure. t ∈ CV := Q denotes clock values having the associated type CV, and
tb, te ∈ T V := CV ∪ {−∞,∞} denote time values having the associated type
TV. Time values are transmittable as messages.

The syntactic and semantic novelties are the following:

1. addition of two new, binary relational symbols ≤ and @ (overloading the
session locality symbol) forming atomic formulae E ≤ E′ and E@a, for

3.4. TCPL: AN EXTENSION OF CPL WITH REAL TIME 71

the comparison of temporal expressions (calculation of temporal intervals
and bounds) E ::= t

∣∣ E + E
∣∣ E − E and the testing of agent a’s local

clock with time E, respectively. Their truth denotation is as follows:

JE ≤ E′Ki
p := (JEK is smaller than or equal to JE′K, ∅)

where J·K designates the obvious evaluation function from temporal ex-
pressions to time values (not to be confused with the function of truth
denotation J·Ki

p); and

JE@aKi
p := (JEK = t + δa ·∆, {S(a, x, t), S(Eve,�, ti)})

where

• t designates the clock value of a’s last clock-set event in h, i.e., there
are h1, h2, x s.t. h = h1 · S(a, x, t) ◦ h2 and there is no x′, t′ s.t.
S(a, x′, t′) ∈ ḣ2

• δa ∈ T V designates the drift rate of a’s local clock

• ∆ designates the temporal difference between Eve’s last clock-set
event before S(a, x, t) and Eve’s last clock-set event so far in h, i.e.,

∆ =


t2 − t1 if for i ∈ {1, 2} there are hi′ , h

′′
i , ti s.t.

hi = h′i · S(Eve,�, ti) ◦ h′′i and there is no t′i s.t.
S(Eve,�, t′i) ∈ ḣ′′i , and

0 otherwise.

• � serves as a dummy session identifier for Eve’s clock-set events

2. refinement (i.e., one new parameter) of the relational symbol for new-
name generation � with a validity tag V := (tb, te) for the declaration of
the intended beginning (tb ∈ T V) and end (te ∈ T V) of validity of the
generated name (typically a key). Its truth denotation is the following:

Ja � n.o.V)Ki
p := (E 6= ∅, E) where E := ∪x∈X {N(a, x, n, (o, V))} ∩ ḣ

3. refinement (i.e., adding of one new defining rule) of the relation `Ea⊆
H × M for the derivation of individual knowledge (cf. Table 3.3) with
adversarial break of short-term keys (k) enabled jointly by key expira-
tion (expired(k)) and the existence of a ciphertext-only attack on the key
(h′ `EEve {|M |}k):

h′ `EEve {|M |}k
h `EEve k

h′ is a prefix of h, and there is t ∈ T V s.t.
h′ |= t@Eve and
h |= expired(k) ∧

∃tv(tv validityOf k ∧ ∃tn(tn@Eve ∧ tv < tn − t))

where tv designates the duration of validity of the considered key (i.e., the
strength of the key, corresponding to its length in a bit-string representa-
tion), and tn− t the duration of the attack on the considered key (i.e., the
time during which the corresponding ciphertext has been known to the
adversary, and during which the adversary has potentially been attacking

72 CHAPTER 3. DOLEV-YAO CRYPTOGRAPHY

— i.e., performing computations on — the ciphertext in order to recover
the desired key); and

expired(k) := ∃tn(tn@Eve ∧ ∃te(k validUntil te ∧ te < tn))
k validUntil te := ∃tb(k validBetween (tb, te))

k validBetween (tb, te) := ∃a∃o(a � k.o.(tb, te))
tv validityOf k := k validBetween (tb, te) ∧ te − tb = tv

4. refinement (i.e., one new conjunct) of the state of violation Σ with key
expiration in the truth condition of the permission modality (cf. Table 3.4):

Σ := ∃(k : CK)(Eve k k ∧ ¬ k ck Eve ∧ ¬expired(k))

3.4.3 Expressiveness

We demonstrate the expressiveness of tCPL on the macro-definability of impor-
tant modalities from general-purpose timed logics:

• point-parametrised future-time (similarly for past-time) modalities (so-
called freeze quantifiers):

�t(φ) := �(t@Eve→ φ) �t(φ) := ¬�t (¬φ)

• interval -parametrised future-time (similarly for past-time) modalities with
an:

– absolute-time understanding of closed (similarly for open) intervals
[t1, t2]:

�[t1,t2](φ) := ∀t(t1 ≤ t ≤ t2 → �t(φ))

�[t1,t2](φ) := ¬�[t1,t2] (¬φ)

– understanding of intervals that is relative to the current time t@Eve:

�[∆](φ) := ∀t(t@Eve→ �[t,t+∆](φ))

�[∆](φ) := ∀t(t@Eve→ �[t,t+∆](φ))

• the chop connective:

φ _[t,t′] φ′ := ∃t′′(�[t,t′′](φ) ∧�[t′′,t′](φ′))

• durations [ZHR91], [ZH04] (cf. Table 3.11)

The cryptographic states of affairs involving qualitative temporal modalities
from Section 3.3 can easily be quantitatively adapted by replacing the qualitative
temporal modalities by the above quantitative ones with actual time values
(points and/or intervals) as desired.

3.4. TCPL: AN EXTENSION OF CPL WITH REAL TIME 73

Table 3.11: Definability of durations

∆ duration(t,t′) φ := �− t(∆ durationt′ φ) ∨ �t(∆ durationt′ φ)

∆ durationt′ φ := (φ→ ∀td(td@Eve→
©+ ((φ→ ∀tm((tm@Eve ∧ tm ≤ t′)→

∆− (tm − td) durationt′ φ)) ∧
(¬φ→©+ (∆ durationt′ φ))))) ∧

(¬φ→©+ (∆ durationt′ φ))

3.4.4 Application: a timed attack scenario

We exemplify our concept of attack scenario in the timed setting with another
popular attack on a cryptographic protocol, namely the man-in-the-middle at-
tack on the Wide-Mouthed-Frog protocol (WMF) (cf. Table 3.12). WMF is a
server-based, (session) key-transport protocol employing symmetric cryptogra-
phy intended to guarantee timely, unacknowledged transport of a session key be-
tween an initiator and a responder mediating a trusted third party (the server).
Timeliness of key transport means that the responder only accepts session keys
within a fixed interval of time. The protocol presumes that the long-term sym-

Table 3.12: Protocol narration for WMF

1a. Alice → Trent : Alice

1b. Alice → Trent : {|((tAlice, Bob), kAliceBob)|}kAliceTrent

2. Trent → Bob : {|((tTrent, Alice), kAliceBob)|}kBobTrent

metric keys (e.g., kAliceTrent and kBobTrent) between the initiator (Alice) and
the server (Trent) and between the responder (Bob) and the server have al-
ready been generated by the server and established with all other corresponding
clients.

The intention of each protocol step is as follows: the intention of the first
step is to announce the initiator to the server; the intention of the second step
is twofold, i.e., to transport the session key (e.g., kAliceBob) from the initiator to
the server and to solicit the server to transport the session key to the responder;
the intention of the third step is twofold, i.e., to transport the session key from
the server to the responder and to transmit from the server to the responder
the intention of the initiator to communicate securely with the responder by
means of the transported session key. The time stamps are from the initiator’s
and the server’s local clock, respectively. Their purpose is to ensure freshness
of the session key.

The protocol narration can be transcribed into a formal language, for exam-
ple into the one of Section 4.2, a timed extension of the one of Section 4.1, by
instantiating the protocol template displayed in Table 3.13 via substitution of
Alice for init , Trent for serv , and Bob for resp; and choice of a positive time
value for ∆v, i.e., half the desired duration of validity of the transported key.
Features of that language are: a double-purpose primitive for lookup of stored

74 CHAPTER 3. DOLEV-YAO CRYPTOGRAPHY

T
able

3.13:
P

rotocol
tem

plate
for

W
M

F

W
M

F
I
N
I
T (slf

,srv
,o

th
,∆

v)
:=

W
M

F
S
E
R
V (slf

,∆
v)

:=
W

M
F
R
E
S
P (slf

,srv
,∆

v)
:=

G
e
t
slf

(t
s

:
C
V
,�

)
i
n

N
e
w

(k
so

:
K
,((slf

,o
th

),(t
s ,t

s
+

∆
v

+
∆

v))).
G
e
t
sr

v
(k

ss
:
K
,(slf

,srv
))

i
n

O
u
t
sr

v
slf

.
I
n

fst
w
h
e
n

fst
:
A
.

G
e
t
slf

(k
sf

:
K
,(slf

,fst))
i
n

O
u
t
sr

v
{|((t

s ,o
th

),k
so)|}

k
ss .1

I
n
{|((t,sn

d
),key

)|}
k
sf
w
h
e
n

t
:
T
V
∧

∃
t
s (t

s
:
T
V
∧

t
s @

slf
∧

t
+

∆
v
≤

t
s)
∧

sn
d

:
A
∧

key
:
K
.

G
e
t
slf

(k
ss

:
K
,(slf

,sn
d
))

i
n

G
e
t
srv

(k
ss

:
K
,(slf

,srv
))

i
n

O
u
t
sn

d
{|((t

s ,fst),key
)|}

k
ss .1

I
n
{|((t,o

th
),key

)|}
k
ss
w
h
e
n

t
:
T
V
∧

∃
t
s (t

s
:
T
V
∧

t
s @

slf
∧

t
+

∆
v
≤

t
s)
∧

o
th

:
A
∧

key
:
K
.1

W
M

F
(in

it,srv
,resp

,x
in

it ,x
se

rv ,x
re

sp ,∆
v)

:=
in

it.x
in

it [W
M

F
I
N
I
T (in

it,srv
,resp

,∆
v)

]9
srv

.x
srv [W

M
F
S
E
R
V (srv

,∆
v)

]9
resp

.x
re

sp [W
M

F
R
E
S
P (resp

,srv
,∆

v)
]

3.4. TCPL: AN EXTENSION OF CPL WITH REAL TIME 75

keys and (local) time, an input primitive with pattern-matching and guard,
and primitives for out-of-band communication. The left (right) column of the
table defines the initiator (responder) role, and the middle column the server
role. The bottom row defines the protocol template, distributing (via parallel
composition) the roles at the corresponding locations init .xinit [·], srv .xsrv [·],
and resp.xresp [·], respectively. Observe that lookup of local time is done in
two different ways, namely imperatively by means of the get-instruction (with
� serving as a dummy owner), and declaratively by means of the @-predicate.

The previously mentioned assumption about preliminary symmetric key gen-
eration and establishment can be modelled by means of corresponding key-
generation and out-of-band communication events, chained up to form the pro-
tocol prehistory displayed in Table 3.14. Observe that the prehistory includes
set events for the resetting of all local clocks (with � serving as a dummy session
identifier for Eve’s set event).

Table 3.14: Prehistory for WMF

h := ε · N(Trent, xt0, kAliceTrent, ((Trent, Alice), (−∞,∞)))·
N(Trent, xt0, kBobTrent, ((Trent, Bob), (−∞,∞)))·
sO(Trent, xt0, kAliceTrent, Alice) · sI(Alice, xa0, kAliceTrent, Trent)·
sO(Trent, xt0, kBobTrent, Bob) · sI(Bob, xb0, kBobTrent, Trent)·
S(Eve,�, 0) · S(Alice, xa0, 0) · S(Bob, xb0, 0) · S(Trent, xt0, 0)

This completes the definition of the initial state

(h,WMF(Alice, Trent, Bob, xa1, xt1, xb1,∆v))

of (our attack scenario for) WMF.
Table 3.15 displays the narration of the actual attack. The attack can be

orchestrated by an active outsider adversary that performs interception, imper-
sonation, and reflection (i.e., replay to the same agent) across three different,
interleaved sessions. However, the attack does not exploit drifting of local clocks
(i.e., all drift rates are 1). It consists in:

1. Eve impersonating Bob in the face of Trent by reflecting back to Trent a
previously intercepted service reply {|((tTrent, Alice), kAliceBob)|}kBobTrent

—

Table 3.15: Attack narration for WMF

1a′. EveBob → Trent : Bob

1b′. EveBob → Trent : {|((tTrent, Alice), kAliceBob)|}kBobTrent

2′. Trent → EveAlice : {|((t′Trent, Bob), kAliceBob)|}kAliceTrent

1a′′. EveAlice → Trent : Alice

1b′′. EveAlice → Trent : {|((t′Trent, Bob), kAliceBob)|}kAliceTrent

2′′. Trent → Bob : {|((t′′Trent, Alice), kAliceBob)|}kBobTrent

76 CHAPTER 3. DOLEV-YAO CRYPTOGRAPHY

perceived as a service request from Bob by (forgetful) Trent — from Trent
to Bob to a service request from Alice

2. Eve intercepting Trent’s service reply {|((t′Trent, Bob), kAliceBob)|}kAliceTrent

destined to Alice

3. Eve impersonating Alice in the face of Trent by reflecting back to Trent
Trent’s service reply destined to Alice — perceived as a service request
from Alice by (forgetful) Trent — and Trent marshalling the corresponding
service reply {|((t′′Trent, Alice), kAliceBob)|}kBobTrent

to Bob.

In result, Bob accepts a session key that possibly is stale due to Eve achieving
first delay of key delivery through repeated reflection of service replies from
Trent back to Trent, and second prolongation of key validity through Trent,
who, on each reflection, trustingly restamps the key with a new time stamp
(cf. t′Trent and t′′Trent) of his, each time more advanced, local clock. The session
key necessarily is stale when Eve delays each reflection by ∆v time units. In
sum, the protocol fails to achieve its requirement of timely, unacknowledged key
transport between initiating Alice, mediating Trent, and responding Bob.

More formally, let

tuaKT∆(a, b) := �∀(k : K)((Kb(a authored k)→ Kb(k sharedSecret (a, b)))→
�− [∆](a authored k))

Q := Trent.xt2[WMFSERV(Trent,∆v)] 9
Trent.xt3[WMFSERV(Trent,∆v)]

Then:

• (h, Q) ∈ H × P and

• (h, Q) |= tuaKT∆v (Eve, Trent)⊗ tuaKT∆v (Eve, Trent) and

• (h ◦ h,WMF(Alice, Trent, Bob, xa1, xt1, xb1,∆v) 9 Q) |=
¬tuaKT∆v+∆v

(Alice, Bob)

by which we obtain

(h,WMF(Alice, Trent, Bob, xa1, xt1, xb1,∆v)) |=
(tuaKT∆v

(Eve, Trent)⊗ tuaKT∆v
(Eve, Trent)) I

¬tuaKT∆v+∆v
(Alice, Bob)

representing our (property-based or logical) attack scenario for WMF. We in-
vite the reader to compare this scenario to the corresponding, model-based (or
process-algebraic) attack scenario described in Section 4.2.2.

Chapter 4

Calculus of Cryptographic
Communication

We exemplify the temporal accessibility relation −→ ⊆ (H×P)2 of CPL with a
reduction relation, defined by a reduction calculus1 C3 (or operational semantics
in the jargon of formal program semantics), on protocol states s ∈ H × P.

Based on the operational semantics, we define an observational equivalence
≈∗a ⊆ (H × P)2 on protocol states w.r.t. some observing agent a ∈ AEve. The
purpose of that observational equivalence is algebraic analysis of cryptographic
protocols. We illustrate this purpose on the application of the observational
equivalence to the algebraic analysis of the attack scenario analysed logically in
Section 3.3.5.1. Further, we extend C3 with real time to tC3, and illustrate the
use of this timed calculus on the application of the (timed) observational equiv-
alence to the algebraic analysis of the timed attack scenario analysed logically
in Section 3.4.4. Furthermore, we define a denotational semantics of crypto-
graphic protocols. The purpose of denotational semantics in general is to define
meaning — in our case, the meaning of a cryptographic protocol. From the
meaning of a cryptographic protocol, we obtain natural definitions of the con-
cepts of (1) a protocol invariant , (2) protocol safety , (3) protocol refinement ,
and (4) protocol information content .

Co-design The programming language P for cryptographic protocols that we
define is complementary to the logical language F of CPL. The complementar-
ity of the two languages is the result of five natural, but notwithstanding novel
(except for Item 4 and 5) integrating design decisions: (1) define the meaning
of a cryptographic protocol (its denotational semantics) in terms of the mean-
ing of the cryptographic messages it produces during its execution, i.e., define
the what (denotation) in terms of the how (operation); (2) define the meaning
of a cryptographic message in terms of the propositional knowledge a protocol
agent would acquire from the (individual) knowledge of that message; (3) de-
fine dynamic observational equivalence (indistinguishability of execution paths)
in terms of static observational equivalence (indistinguishability of execution

1In general, a calculus is a set of axioms and rules inductively defining a set. Typically, the
defined set is a binary relation, e.g., a relation of deduction (a proof system for some logical
language) or reduction (an operational semantics for some programming language).

77

78 CHAPTER 4. CALCULUS OF CRYPTOGRAPHIC COMMUNICATION

states); (4) identify static observational equivalence with epistemic accessibility
≈a ⊆ (H × P)2 (the semantics of propositional knowledge); and (5) identify
the operational semantics (protocol execution) with temporal accessibility (the
semantics of temporal propositions).

From the (denotational) meaning of a cryptographic message, we obtain (1)
an equational definition of its context-sensitivity , and (2) a formalisation of the
first of Abadi and Needham’s principles for prudent engineering practice for
cryptographic protocols. Last but not least, we show that protocol agents can
be conceived as evolving Scott information systems.

4.1 Core calculus

4.1.1 Syntax

Our programming language P for cryptographic protocols provides high-level
linguistic abstractions P for the computation and agent-based communication
of cryptographic messages M ∈ M. We refer to its programs P ∈ P as C3-
processes. Our communication model is based on agents rather than channels
for the sake of separating specification (high-level) from implementation (low-
level) concerns.

C3-processes are parallel compositions of located threads. A non-idle thread
T located at the agent c and session x, written c.x[T], has either an action
prefix or a lookup prefix. The action prefixes Outa F and sOuta F stipulate
insecure (intercepted by the adversary) resp. secure (unobservable by the ad-
versary) output of F 2 to a; In Π when ϕ and sIna Π when ϕ stipulate insecure
resp. secure input (from a) of a message matching the pattern Π and having the
property ϕ; and New (v : ς, O) stipulates the generation and binding to the vari-
able v of a fresh name of type ς tagged with O, where O (a tuple of agent names)
stipulates intended ownership. The lookup prefix Geta (v : ς, O) in stipulates
the lookup and binding to v of a name of type ς generated by a with ownership
tag O.

Definition 10 (C3-processes) C3-processes P ∈ P are defined in Table 4.1.
There, a, b ∈ A ∪ V. A process P is epistemically local :iff for all located
threads c.x[T] in P and for all a � n.O and a k F in T , a = c. So-called
implementation processes must be epistemically local, whereas so-called specifi-
cation processes need not be. In addition, in implementation processes ∀v may
not bind v in any F , whereas in specification processes this need not be.

Action prefixes π, as opposed to the lookup prefix, generate events when
executed. Action prefixes for secure I/O generate unobservable events; they
model out-of-band communication such as trusted couriers, personal contact
between communicating parties, and dedicated communication links. The same
prefixes can also be used for (1) encoding extensions to the core calculus, such
as vertical composition, i.e., sub-protocol calls (cf. [BKN06, Section 3.2]), and
conditionals (i.e., execution guards); (2) defining specification processes relied
upon by equivalence-based specification of secrecy à la Spi-Calculus; and (3)
defining initialisation traces (cf. Table 3.9 and 3.14). The purpose of including

2recall that F denotes message forms, i.e., messages with variables, which are used in
processes where they may instantiate to (transmittable) messages

4.1. CORE CALCULUS 79

Table 4.1: C3-processes

P ::= c.x[T]
˛̨

P 9 P

T ::= 1
˛̨

π.T
˛̨
Geta (v : ς, O) in T

π ::= Outa F
˛̨
sOuta F

˛̨
In Π when ϕ

˛̨
sIna Π when ϕ

˛̨
New (v : ς, O)

Π ::= F
˛̨

(Π, Π)
˛̨
{|Π|}F

˛̨
{|Π|}+

F

˛̨
{|Π|}−

F

ϕ ::= a � n.O
˛̨

n : σ
˛̨

a k F
˛̨

F 4 F
˛̨
¬ϕ

˛̨
ϕ ∧ ϕ

˛̨
∀v(ϕ)

session identifiers x in locations c.x[T] is to enable the factorisation of the
history of a protocol execution into individual sessions (cf. Section 3.2.3.5).

Remark 5 Names in C3 are pure logical constants. In contrast, the concept
of names in classical process calculi such as the Pi- and the Spi-Calculus is
hybrid in the sense that their names have both bound-variable character via
α-convertibility and logical-constant character via substitutability in free (in-
put) variables. Philosophically speaking, a bound variable has no individuality,
whereas a logical constant has only individuality. The advantage of the classi-
cal concept of names is that it does not demand a new (Pitts-style) new-name
quantifier in the logical language.

4.1.2 Semantics

C3 provides pattern-matching in the style of [HJ04] as a high-level linguistic
abstraction for cryptographic computation. The result of a pattern-message
match is a substitution relating variables to matched subterms. Substitutions
are partial functions from variables to messages, and are tacitly lifted to terms in
the standard way. Matching is computed by the partial function match defined
in Table 4.2. There,] denotes composition, if the domains of the operands are
disjoint, and is otherwise undefined. For example, the pattern {|Π|}−v matches
any message signed with the private key corresponding to the public key v. The
line over the letter v is part of the pattern, recalling that the pattern matches
a message encrypted with the key dual to v without needing this key (e.g., the
private key of another agent) occur in the pattern term.

Table 4.2: Pattern matching

match(v, M) :=
˘M

/v
¯

match(M, M) := ∅
match((Π, Π′), (M, M ′)) := match(Π, M)]match(Π′, M ′)

match({|Π|}M′ , {|M |}M′) := match(Π, M)

match({|Π|}+p , {|M |}+
p+) := match(Π, M)

match({|Π|}−
p+

, {|M |}−p) := match(Π, M)

80 CHAPTER 4. CALCULUS OF CRYPTOGRAPHIC COMMUNICATION

A novel, integrating feature of C3 is that all its reduction constraints (e.g.,
freshness of new names, input guards, key lookup constraints) are CPL-definable
and decidable, and thus checkable via CPL-satisfaction.

The key store of an agent is induced (on the syntactic object level) by the
protocol history. (The popular alternative of a lookup table on the semantic
meta-level is, for syntactic purists, an obnoxious alternative because it would
harm the syntactic uniformity of their framework.) Keys are looked up in the
protocol history w.r.t. the local view of the retrieving agent and by referring to
their creator and the tag they were given at creation. A lookup succeeds only
if the desired tag is a subterm of the one used at the creation of the key. Our
lookup policy is CPL-definable: looksUp(c, x, n, ς, d, O) ∈ F , pronounced “c in
session x looks up n of type ς generated by d with a tag containing O”, is defined
in Table 4.3 (cf. Appendix B for the macro-definitions of the employed auxiliary
predicates). The policy enforces that the retrieved key (1) has the desired type
(n : ς); (2) was known by c (c k n); (3) was generated by d (d � v.o); (4) has
a compatible, intended ownership (O 4 o); and (5) when a session key, was
received in the current session (∃m(c.x← m ∧ n 4 m)).

Table 4.3: Lookup predicate

looksUp(c, x, n, ς, d, O) := n : ς ∧ c k n ∧ ∃v∃o(d � v.o ∧ (n = v ∨ n = v+) ∧
O 4 o ∧ (n : K1 → ∃m(c.x← m ∧ n 4 m)))

Definition 11 (Calculus of Cryptographic Communication) Let −→ ⊆
(H×P)2, defined in Table 4.4, designate reduction of protocol states s ∈ H×P.
Then,

C3 := 〈H × P,−→〉.

The generation of a new name (Rule New and New-Eve) is possible only
if that name has not been generated yet, i.e., generated names are always fresh
w.r.t. the current state. The adversary Eve may generate a new name at any
time. Insecure input (Rule In) is incepted by the adversary and may consist
in any message from her knowledge that matches the input pattern Π and that
satisfies the input constraint ϕ. Successful input results in the substitution of
the matching message parts for the matched variables in the receiving thread.
Secure communication (Rule sOut, sIn and sCom-L, with sCom-r being tacit)
is synchronous. To achieve this, we introduce two auxiliary transition relations
sI−→ and sO−→ not visible on the top level. Insecure communication between two

legitimate agents is asynchronous because it goes through the adversary, and
secure communication is synchronous because it does not. Reduction of paral-
lel processes happens via interleaving concurrency (Rule Par-l, Par-r being
tacit). Finally, observe how non-determinism abstracts away three determin-
ing choices in the execution of a protocol, i.e., the choice of (1) the message
sent by the adversary in an insecure input, (2) the new name selected at name
generation time, and (3) the scheduling of located threads.

Slogan 19 Actions are potentiality of effect — events, actuality.

4.1. CORE CALCULUS 81

Table 4.4: Process and thread execution

Below,
α−→ ∈ {−→,

sO−→,
sI−→}.

New
h |= n : ς ∧ ¬∃a∃o(a � n.o)„

c.x[New (v : ς, O).T]
h

«
−→

„
c.x[

˘n
/v

¯
T]

h · N(c, x, n, O)

«

New-Eve
h |= Eve k O ∧ ¬∃a∃o(a � n.o)„
P
h

«
−→

„
P

h · N(Eve,�, n, O)

«

Out „
c.x[Outd M.T]

h

«
−→

„
c.x[T]

h · O(c, x, M, d) · I(Eve,�, M)

«

In
h |= Eve k M ∧match(Π, M)ϕ„

c.x[In Π when ϕ.T]
h

«
−→

„
c.x[match(Π, M)T]

h · O(Eve,�, M, c) · I(c, x, M)

«

sOut „
c.x[sOutd M.T]

h

«
sO−→

„
c.x[T]

h · sO(c, x, M, d)

«

sIn
h |= match(Π, M)ϕ„

d.x[sInc Π when ϕ.T]
h · sO(c, x′, M, d)

«
sI−→

„
d.x[match(Π, M)T]

h · sO(c, x′, M, d) · sI(d, x, M, c)

«

sCom-l

„
P
h

«
sO−→

„
P ′

h′

« „
Q
h′

«
sI−→

„
Q′

h′′

«
„

P 9 Q
h

«
−→

„
P ′ 9 Q′

h′′

«

LookUp

„
c.x[

˘n
/v

¯
T]

h

«
α−→

„
c.x[T ′]

h′

«
h |= looksUp(c, x, n, ς, d, O)„

c.x[Getd (v : ς, O) in T]
h

«
α−→

„
c.x[T ′]

h′

«

Par-l

„
P
h

«
α−→

„
P ′

h′

«
„

P 9 Q
h

«
α−→

„
P ′ 9 Q

h′

«

82 CHAPTER 4. CALCULUS OF CRYPTOGRAPHIC COMMUNICATION

4.1.3 Observational equivalence

Our notion of observational equivalence is a compromise between trace equiva-
lence and standard bisimilarity. More precisely, it is a bisimilarity on protocol
states w.r.t. the execution paths (as opposed to single execution steps) pro-
ducible from those states, and w.r.t. a given observing protocol agent.

Definition 12 (Dynamic observational equivalence) Let s1, s2 ∈ H × P
and a ∈ AEve. Then,

• s1 observationally refines s2 from the viewpoint of a, written s1 /∗
a s2, :iff

for all s′1 ∈ H × P, if s1 −→∗ s′1 then there is s′2 ∈ H × P s.t. s2 −→∗ s′2
and s′1 ≈a s′2; and

• s1 and s2 are observationally equivalent from the viewpoint of a, written
s1 ≈∗a s2, :iff s1 /∗

a s2 and s2 /∗
a s1.

Observe how dynamic observational equivalence (on protocol states) is defined
in terms of static observational equivalence on protocol states, i.e., epistemic
accessibility (≈a, cf. Definition 7) between protocol states. As previously stated,
the idea of identifying an observational equivalence with epistemic accessibility
seems to have been published first in [HS04b]. However, the authors adopt a
very different approach based on so-called function views.

4.1.4 Application: an algebraic attack scenario

We recall that algebraic correctness statements of cryptographic protocols enun-
ciate a purported observational equivalence between two models (processes) of
the protocol under scrutiny. The choice of the actual processes depends on the
cryptographic requirement that the correctness statement is intended to encode.
For example, authenticity can be encoded as an observational equivalence be-
tween, on the one side, an obviously (via different kinds of “magic”) correct
specification and, on the other side, an implementation expressing the proto-
col as it would be coded in a realistic, and thus possibly less-obviously correct
implementation.

In our case, we use our observational equivalence w.r.t. Eve’s point of obser-
vation ≈∗Eve and create the specification and implementation via a minor adap-
tation of the responder process. More precisely, we introduce an additional,
formal parameter oth ′ in the template NSPuKRESP(slf) (cf. Table 3.8) and an
additional conjunct ϕ in the guard of its first (insecure) input prefix

In {|(xoth , oth)|}+
kslf

when xoth : X ∧ oth : A.

The modified responder process thus is

NSPuKRESP(slf , oth ′) := . . . In {|(xoth , oth)|}+
kslf

when xoth : X ∧ oth : A ∧ ϕ . . .

where ‘. . .’ designates the parts left unchanged by the modification. The spec-
ification process NSPuKspec is then obtained from NSPuKRESP by stipulating
that ϕ := (oth ′ = oth) (the authentication guarantee), and the implementation
process NSPuKimpl by stipulating that ϕ := >. Observe that the kind of magic

4.2. TC3: AN EXTENSION OF C3 WITH REAL TIME 83

in our specification is represented by the passing of the name of the actual corre-
spondent oth ′ to the responder at the meta-level (as opposed to the object level
of message communication provided by the calculus), i.e., as a formal parameter.

An implementation set-up simpl ∈ H×P that potentially yields, via process
reduction, a trace corresponding to the attack narration displayed in Table 3.10
is

simpl := (h ◦ h′, Alice.xa1[NSPuKINIT(Alice, Eve)] 9
Bob.xb1[NSPuKimpl(Bob, Eve)])

where h ◦ h′ is the same protocol prehistory as the one in the logical analysis
of the same attack scenario (cf. Section 3.3.5.1). The trace being considered is
defined in Table 4.5.

Table 4.5: Attack trace for NSPuK

himpl := h ◦ h′·
N(Alice, xa1, xAlice,�)·
O(Alice, xa1, {|(xAlice, Alice)|}+

p+
Eve

, Eve) · I(Eve,�, {|(xAlice, Alice)|}+
p+
Eve

)·

O(Eve,�, {|(xAlice, Alice)|}+
p+
Bob

, Bob) · I(Bob, xb1, {|(xAlice, Alice)|}+
p+
Bob

)·

N(Bob, xb1, xBob,�)·
O(Bob, xb1, {|(xAlice, xBob)|}+

p+
Alice

, Alice) · I(Eve,�, {|(xAlice, xBob)|}+
p+
Alice

)·

O(Eve,�, {|(xAlice, xBob)|}+
p+
Alice

, Alice) · I(Alice, xa1, {|(xAlice, xBob)|}+
p+
Alice

)·

O(Alice, xa1, {|xBob|}+
p+
Eve

, Eve) · I(Eve,�, {|xBob|}+
p+
Eve

)·

O(Eve,�, {|xBob|}+
p+
Bob

, Bob) · I(Bob, xb1, {|xBob|}+
p+
Bob

)

In contrast, our specification set-up

sspec := (h ◦ h′, Alice.xa1[NSPuKINIT(Alice, Eve)] 9
Bob.xb1[NSPuKspec(Bob, Eve)])

cannot, due to the failure of the authentication guarantee (Eve 6= Alice), yield
a trace hspec that matches the implementation trace himpl beyond the event
I(Eve,�, {|(xAlice, Alice)|}+p+

Eve

). Hence, simpl 6≈∗Eve sspec .

4.2 tC3: an extension of C3 with real time

For practical usability, special-purpose models of timed cryptographic proto-
cols are preferable over their general-purpose counterparts because (untimed)
general-purpose models tend to create considerable (en)coding overhead: “[. . .]
the coding up required would make the complex behaviour difficult to under-
stand, and it is preferable to use a language designed to express such real-time
behaviour.” [ES00].

84 CHAPTER 4. CALCULUS OF CRYPTOGRAPHIC COMMUNICATION

Related work In tock-CSP [ES00], tCryptoSPA [GM04], and the timed Spi-
Calculus [HJ05] time is natural -number valued, yielding a discrete time domain.
tock-CSP and tCryptoSPA provide local processes that globally synchronise
through so-called tock events resp. tick actions, which represent the passage
of one unit of time. And the timed Spi-Calculus provides a process construc-
tor for querying a global clock. Thus, tock-CSP, tCryptoSPA, and the timed
Spi-Calculus lack local clocks that potentially advance at different rates across
different processes/locations. As pointed out in Section 3.4.1, this lack becomes
a deficiency in distributed systems. Hence, a faithful model of timed crypto-
graphic protocols must allow for potentially desynchronised, local clocks.

In [BEL05] (which we will refer to as tBEL), time — in particular, a time
stamp — is real -number valued, yielding a dense time domain. We contend that
real-valued time-stamps are too fine-grained because cryptographic messages
have finite length, which implies that real numbers are not transmittable as
such. Moreover, real clocks only have finite precision. tBEL does provide local
clocks, yet they “advance at the same rate as time.” [BEL05, Page 2]. Further,
adversarial break of short-term keys is modelled only indirectly with a parallel
process rather than directly as part of the adversary model. Furthermore, tBEL
lacks a process equivalence. On the other hand, tBEL comes with a (second-
order) special-purpose logic for reasoning about tBEL models, and a decision
procedure for a class of reachability properties of bounded protocols based on
syntactic control points. In our opinion, tBEL and its associated logic are
unnecessarily domain-specific. They seem to have been built from scratch rather
than as Occham’s-razor extensions of untimed formalisms. Adding real-time to a
model or logic without explicit time can be simple [Lam05]. Moreover, the logic’s
— according to the authors, main — modality is actually not a modality (i.e.,
a non-truth-functional operator on formulae), but rather a relational symbol
between individuals (and finite sets thereof).

Our approach In contrast to the models discussed, tC3 (1) inherits the ob-
servational equivalence of its core C3, and (2) extends C3 with (2.1) rational -
number valued time (which still is dense), (2.2) local clocks that may progress
at different rates across different locations, and (2.3) adversarial break of short-
term keys based on ciphertext-only attacks enabled by key expiration. C3 neatly
extends to tC3 by maintaining backwards compatibility. Essentially, only two
additional axioms (and no modified axioms/rules!) are needed in its operational
semantics.

We extend C3 to tC3 according to the following two design principles: first,
for every legitimate participant and the adversary, we introduce a rational-
number valued, local clock with an associated drift rate, where the adversary’s
clock always displays the actual time; and second, we model the advancement
of (real) time by means of the adversary, who, at any (logical) time of protocol
execution, may advance the time by an arbitrary but always finite amount
by advancing her local clock. In this way, the adversary is de facto in full
control of time though subject to monotonicity. Adding communication and/or
computation delays imposes non-zero lower bounds on the advancement of time
between certain pairs of actions, and could be handled by only considering traces
where the adversary respects these bounds.

4.2. TC3: AN EXTENSION OF C3 WITH REAL TIME 85

4.2.1 Extension

Syntax

1. addition of an action prefix Set E for the (re)setting of local clocks to a
value E (cf. Section 3.4.2 for temporal expressions E)

2. extension of the ownership tag O of the action prefix New (v : ς, (O, V))
for new-name generation with a tag V for the validity of the generated
name (cf. Section 3.4.2 for validity tags V)

A process P is epistemically local :iff for all located threads c.x[T] in P and for
all a � n.(O, V), a k F , and t@a in T , a = c (cf. Section 3.4.2 for the time
predicate t@a and the associated concept of drift rate).

Semantics

1. addition of the axiom Set to the operational semantics:

Set (
a.x[Set t.T]

h

)
−→

(
a.x[T]

h · S(a, x, t)

)
2. addition of the axiom Time to the operational semantics:

Time (
P
h

)
−→

(
P

h · S(Eve,�, t)

) h |= ∃t′(t′@Eve ∧ t′ ≤ t <∞)

where � acts as a dummy session identifier.

Notice that the choice of the time value by which the adversary advances
time is abstracted away by non-determinism.

3. adaptation of the lookup predicate (cf. Table 4.6) so that the retrieved
name n either is the locally-measured time (n@c), or is a key that (1) has
the desired type (n : ς); (2) was known by c (c k n); (3) was generated by
d (d � v.(o, (tb, te))); (4) has a compatible, intended ownership (O 4 o);
and (5) is perceived as timely by c (∃tc(tc@c ∧ tb ≤ tc ≤ te)).

Table 4.6: Timed lookup predicate

looksUp(c, x, n, ς, d, O) := n : ς ∧ c k n ∧ (n@c ∨

∃v∃o∃tb∃te(d � v.(o, (tb, te)) ∧

(n = v ∨ n = v+) ∧O 4 o ∧ ∃tc(tc@c ∧ tb ≤ tc ≤ te)))

Observe that thanks to sorts (cf. Section 3.4.2 for timed sorts), tags, and the
abstract message the new-name and the lookup-prefix can also elegantly handle
timed information: new-timed-key generation as New (v : K, (O, V)), timed-key
lookup as Geta (v : K, O) in , and time lookup as Geta (v : CV,�) in with �
acting as a dummy ownership tag.

86 CHAPTER 4. CALCULUS OF CRYPTOGRAPHIC COMMUNICATION

Observational equivalence No redefinition is required: clock-set events are,
by convention (cf. Section 3.4.2), unobservable, and unobservable events are
generically covered by Clause 5 of Definition 6.

4.2.2 Application: a timed, algebraic attack scenario

We are interested in the timeliness requirement for WMF, namely that the
responder only accepts the session key within a fixed interval of time (cf. Sec-
tion 3.4.4). It turns out that the requirement can be checked in a similar set-up
as for authenticity, i.e., as an equivalence from Eve’s viewpoint (≈∗Eve) between
a specification and an implementation.

We create the specification and implementation again via a minor adaptation
of the responder process. More precisely, we introduce (again) an additional
guard-conjunct ϕ and (additionally) an additional action-prefix OutEve t in the
(insecure) input prefix

In {|((t, oth), key)|}kss
when t : TV ∧

∃ts(ts : TV ∧ ts@slf ∧ t + ∆v ≤ ts) ∧
oth : A ∧
key : K.1

of the template WMFRESP(slf , srv ,∆v) (cf. Table 3.8).
The modified responder process thus is

WMFRESP(slf , srv ,∆v) := . . . In {|((t, oth), key)|}kss
when t : TV ∧

∃ts(ts : TV ∧ ts@slf ∧ t + ∆v ≤ ts) ∧
oth : A ∧
key : K ∧
ϕ.
OutEve t .1

where ‘. . .’ designates the part left unchanged by the modification. The spec-
ification process WMFspec is then obtained from WMFRESP by stipulating that
ϕ := ∃t∃t′(oth � key .((slf , oth), (t, t′)) ∧ ∃ts(ts@slf ∧ t ≤ ts ≤ t′), and the
implementation process WMFimpl by stipulating (again) that ϕ := >.

The “magic” in our specification process is the non-trivial and epistemically
non-local guard of the input of the responder process. In the implementation,
we only check the types of the atoms in the message and that the time stamp is
recent. In the specification, we additionally check that the key has been created
by the initiator for communication with the responder and that the locally-
measured time is within the validity interval of the key, as expressed by the
additional guard-conjunct. It is possible to have the simple time stamp check
succeed but the “more obviously correct” validity check fail, namely with the
set-up

(h,WMF(Alice, Trent, Bob, xa1, xt1, xb1,∆v) 9
Trent.xt2[WMFSERV(Trent,∆v)] 9
Trent.xt3[WMFSERV(Trent,∆v)])

from Section 3.4.4.
This set-up can, via process reduction, produce the family of traces that is

generated by instantiating the parameters t1, t2, and t3 of the history template

4.3. DENOTATIONAL SEMANTICS 87

Table 4.7: History template for WMF

h := hinit · N(Alice, xa1, k(Alice,Bob), ((Alice, Bob), (−∞, 2∆v)))·
O(Alice, xa1, Alice, Trent)·
O(Alice, xa1, {|((0, Bob), k(Alice,Bob))|}k(Alice,Trent) , Trent) · S(Eve,�, ∆v)·
I(Trent, xt1, Alice) · I(Trent, xt1, {|((0, Bob), k(Alice,Bob))|}k(Alice,Trent))·
O(Trent, xt1, {|((t1, Alice), k(Alice,Bob))|}k(Bob,Trent) , Bob) · S(Eve,�, 2∆v)·
I(Trent, xt2, Bob) · I(Trent, xt2, {|((t1, Alice), k(Alice,Bob))|}k(Bob,Trent))·
O(Trent, xt2, {|((t2, Bob), k(Alice,Bob))|}k(Alice,Trent) , Alice) · S(Eve,�, 3∆v)·
I(Trent, xt3, Alice) · I(Trent, xt3, {|((t2, Bob), k(Alice,Bob))|}k(Alice,Trent))·
O(Trent, xt3, {|((t3, Alice), k(Alice,Bob))|}k(Bob,Trent) , Bob)·
I(Bob, xb1, {|((t3, Alice), k(Alice,Bob))|}k(Bob,Trent)) · O(Bob, xb1, t3, Eve)

shown in Table 4.7 — for clarity, without interception events (cf. Rule Out and
In in Table 4.4). The only possible time values for the parameters t1, t2, and t3
in this history template are those mentioned in the set-events of the adversary.
For the implementation, we may have t1 = ∆v, t2 = 2∆v, and t3 = 3∆v,
where t3 is observed by the adversary in clear in the last event. However, the
specification cannot accept a stale key, i.e., a key older than 2∆v. Hence, the
specification cannot generate a history that conforms to the above template, in
particular a history such that the respondent outputs 3∆v as her last action.
Thus the implementation and the specification are not equivalent from the point
of view of the adversary, so the specification is not met.

4.3 Denotational semantics

Our definition of the meaning of a cryptographic protocol is motivated by our
definition of the meaning of a cryptographic message, which in turn is moti-
vated by Abadi and Needham’s Principle 1 for designing cryptographic protocols
[AN96a]. The principle says:

Every message should say what it means: the interpretation of the
message should depend only on its contents. [. . .]

With a clin d’œil and thus for the nonce, one-eyed, we observe that the principle
is both self-denying and not self-denying and thus paradoxical, and that this fact
can be proven by applying the principle to itself. Here is an informal proof, by
contradiction:

Assume that the principle is not self-denying. Apply it
to itself by particularising it with itself. (The principle
is itself a message3 and employs universal quantification
over messages.) The message of the principle does not say

3Observe that the principle speaks about messages tout court rather than cryptographic
messages. If the principle is to speak about cryptographic messages, then it must depend on
a context (which [AN96a] of course constitutes) that properly frames it (which [AN96a] of
course does). Yet, that very dependence the principle denies.

88 CHAPTER 4. CALCULUS OF CRYPTOGRAPHIC COMMUNICATION

what it means: the interpretation of the message does not
depend only on its contents. (The principle does not say
what message meaning means.) Hence, the principle is
self-denying. Contradiction.

Deduce that the principle is self-denying. Yet, by this very fact the
principle is not self-denying. (Every message, as the example of the
principle demonstrates, should really say what it means.) Conclude
that the principle is paradoxical.

This recreational proof is paradoxical in the (double) sense that it demonstrates
the paradoxical nature of Principle 1 and paradoxically the importance of the
subject matter of the principle. That is, explicitness and context-sensitivity of
meaning. Our task shall be to define, in a unique sense, the meaning4 of a
cryptographic message relative to an execution state and communicating agent.

Related work The most relevant work (though not addressing the problem of
logical omniscience) related to ours is [PR03], where, according to the authors,
the meaning of a message is given in terms of how it affects the knowledge of the
agents involved in the communication. This idea is spiritually close to ours (and
is given a very nice philosophical treatment by the authors), but has incarnated
in a very different body (of knowledge, so to say) as will become clear in the
sequel. The authors define the denotation of a message at a state and w.r.t. an
agent as a so-called view transformer. And a view transformer is a set of ordered
pairs (α, β) of propositions α and β such that “if knowledge of α is part of the
view that [agent] i has of the global system state before the communication
event, then knowledge of β is part of its view after the communication.”

Another relevant work related to ours is [Gro92]. There, the so-called (1)
objective semantics of a message is defined to be the set of all points, states
in our terminology, where the message was sent; and (2) KS-semantics of a
message is defined to be the set of pairs of a point and an agent such that that
agent sends the message at that point. The problem with this approach is,
according to the authors, that it is not yet suitable for cryptography.

The relevant commonality between [PR03], [Gro92], and our approach is that
all approaches employ epistemic logic as a means to defining message meaning.
The difference is how each approach does so, as we shall see now with the
presentation of our approach.

4.3.1 Message meaning

Definition 13 (The meaning of a cryptographic message) The (com-
municable) meaning of a cryptographic message M ∈ M w.r.t. an agent a ∈
AEve and a protocol state s ∈ H × P shall be the set of equivalence classes [φ]
of those propositions φ ∈ F whose truth a would know (resp., be able to prove)
if a knew M in s. (Notice the conditional mode!) Formally,

JMKs
a := { [φ] | φ ∈ F and s |= a k M B Ka(φ) }, and

JMKs
Pa

:= { [φ] | φ ∈ F and s |= a k M B Pa(φ) } respectively.

4in the sense of Frege’s sense (a message makes to an agent) as opposed to reference (to
a bit-string)

4.3. DENOTATIONAL SEMANTICS 89

Message meaning is defined as a set of equivalence classes of propositions rather
than as a set of propositions because we are concerned with just what a message
means rather than with the manifold how it may mean it.

Message meaning is communicable when defined in terms of provability be-
cause provability requires the capability to produce an actual proof (i.e., a mes-
sage of a certain cryptographic form), which, by definition, is communicable.

Theorem 3 Message meaning is a distributive proper filter (and thus a proper
sub-lattice and a topped

⋂
-structure) w.r.t. the Boolean lattice 〈F/≡,≤〉, i.e.,

it is (1) a non-empty proper sub-set of F/≡, (2) closed under meet and partial
ordering (and thus is directed), and (3) distributive. Formally, let5

[φ] := [¬φ] (complement)

[φ] ∧ [φ′] := [φ ∧ φ′] (meet) [φ] ∨ [φ′] := [φ ∨ φ′] (join)

[φ] ≤ [φ′] :iff φ⇒ φ′ and keys(φ′) ⊆ keys(φ) (partial ordering)

φ ≡ φ′ :iff [φ] ≤ [φ′] and [φ′] ≤ [φ] (congruence w.r.t. meet and join)

where keys(φ) designates the set of all key constants occurring in φ. Then,

1. ∅ 6= JMKs
a ⊂ F/≡

2. (a) if [φ], [φ′] ∈ JMKs
a then [φ] ∧ [φ′] ∈ JMKs

a

(b) if [φ] ∈ JMKs
a and [φ′] ∈ F/≡ and φ ≤ φ′ then [φ′] ∈ JMKs

a

3. if [φ] ∨ [φ′] ∈ JMKs
a and [φ] ∨ [φ′′] ∈ JMKs

a then [φ] ∨ ([φ′] ∧ [φ′′]) ∈ JMKs
a.

Proof. see Appendix A

Filters represent deductively closed (cf. Condition 2.(b)), consistent (i.e.,
[⊥] 6∈ JMKs

a, otherwise JMKs
a = F/≡ by Condition 2.(b), which would violate

Condition 1.), but possibly incomplete (unless they are maximal) theories.

Theorem 4 Communicable message meaning is a distributive proper filter
w.r.t. the Boolean lattice 〈F/≡,≤〉.

Proof. see Appendix A

Proposition 3 Communicable message meaning is order-embedded strictly
within message meaning. Formally, JMKs

Pa
⊂ JMKs

a and JMKs
Pa

↪→ JMKs
a.

Proof. see Appendix A

Definition 14 (Context-sensitivity of message meaning) A cryptogra-
phic message M ∈ M is context-sensitive :iff there are a, b ∈ AEve and s, s′ ∈
H×P s.t. JMKs

a 6= JMKs′

b . A cryptographic message M ∈M that is not context-
sensitive is context-free.

5this is a refinement of the classical Lindenbaum-Tarski-algebra construction: the partial
ordering is not mere logical consequence (⇒); thus the resulting equivalence (≡) is finer than
logical equivalence (⇔)

90 CHAPTER 4. CALCULUS OF CRYPTOGRAPHIC COMMUNICATION

Note that our notion of context-sensitivity is semantic as opposed to the classical
notion of formal language theory, which is syntactic.

Formalisation 1 (Abadi and Needham’s Principle 1)

“Every message should say what it means: the interpretation of the message
should depend only on its contents. [. . .]” [AN96a]

Every cryptographic message should be context-free (cf. Definition 14). y

Examples of context-sensitive cryptographic messages abound. Perhaps the
starkest example is the one of sending a bare nonce as the opening of a cryp-
tographic protocol. See [BM03] for several different, and reportedly flawed pro-
tocols with such identical openings. Another way of creating context-sensitive
cryptographic messages is the use of indexicals (i.e., phrases in natural lan-
guage that refer to past or future messages, or to extra-protocol out-of-band
communication such as personal contact and trusted couriers) in plaintexts. An
advantage of our definition of the context-sensitivity of a cryptographic message
is that the definition is, being equational, indifferent to the many ways of how
context-sensitivity is created. It6 only cares about that context-sensitivity is
created.

Definition 15 (The information content of a cryptographic message)
The information content (in the sense of Kolmogorov-complexity [LV97]) of a
cryptographic message M ∈M to agent a ∈ AEve, written Ka(M), is defined to
be the smallest7 state s ∈ H × P s.t. s |= a k M .

Note that [PR03] also define the information content of a message, but their
definition is, as opposed to ours, in the sense of Shannon.

4.3.2 Protocol meaning

Recall Slogan 8. In other words, cryptographic protocols aim at inducing propo-
sitional knowledge, i.e., knowledge of cryptographic states of affairs expressed
as propositions, by means of individual knowledge, i.e., knowledge of messages
(values). Values are only the means — not the ends — of cryptographic8 com-
putation.

Slogan 20 In cryptography, individual knowledge is the key to propositional
knowledge.

Definition 16 (The meaning of a cryptographic protocol) The mea-
ning (or denotational semantics) JsK∗a of a cryptographic protocol s ∈ H × P
w.r.t. to an agent a ∈ AEve shall be the (directed) union of the meanings w.r.t. a
of all those messages that a comes to know during protocol execution. Formally,
let T (·) := · ∪ {

∧
Min(·)} designate a template for the meet-completion of ·.

6“It”, the footnote marker in this line, and “this” are three examples of indexicals.
7bear in mind that our protocol states are just finite strings of symbols, each string con-

taining a process term (the program) as a substring
8and possibly of interactive computation [GSW06] in general

4.3. DENOTATIONAL SEMANTICS 91

Then,

JsKa := T

 ⋃
M ∈ M

s |= a k M

JMKs
a

 JsKn
a := T

 ⋃
s′ ∈ H× P
s −→n s′

Js′Ka

 JsK∗a := T

 ⋃
s′ ∈ H× P
s −→∗ s′

Js′Ka


JsK :=

⊎
a∈AEve

JsKa JsKn :=
⊎

a∈AEve

JsKn
a JsK∗ :=

⊎
a∈AEve

JsK∗a.

The meet-completion ensures that each collective meaning has again a least
element, by taking the meet of the set of minimal elements in the union of
individual meanings. (The least element in each individual meaning becomes a
minimal element in the union of individual meanings.)

Note that our definition of the meaning (or denotational semantics) of a
cryptographic protocol

1. is defined in terms of

(a) the meaning of cryptographic messages

(b) the operational semantics −→ of that protocol, which is a very nat-
ural, but nevertheless, a novel idea. It is natural to define the what
(the denotation) in terms of the how (the operations), rather than
the other way round or defining them independently of each other.

2. has the advantage of being syntax-independent . The denotational seman-
tics does not require inductive definition on the structure of cryptographic
protocol terms P ∈ P.

Theorem 5 JsKa = Js′Ka iff [for all φ ∈ F , s |= Ka(φ) iff s′ |= Ka(φ)]

Proof. see Appendix A

In other words, two protocol states (worlds) that make equal sense to a protocol
agent are epistemically indistinguishable (w.r.t. to language F) to that agent.
In Wittgenstein’s words: “The limits of my language mean the limits of my
world.” [Wit75, Paragraph 5.6].

Theorem 6

1. JsKn
a ↪→ JsKn+1

a is order-continuous9

2. JsKa, JsKn
a , and JsK∗a are topped algebraic

⋂
-structures (thus algebraic lat-

tices, thus complete lattices, and thus complete partial orders [DP02])

3. JsK, JsKn, and JsK∗ are pre-CPOs

Proof. see Appendix A

An algebraic
⋂

-structure S can be presented as a Scott information system
IS(S) with “the idea of identifying an object with a set of propositions true of

9order-continuity guarantees the existence of fixpoints

92 CHAPTER 4. CALCULUS OF CRYPTOGRAPHIC COMMUNICATION

it and adequate to define it. These propositions are to be thought of as tokens,
each bearing a finite amount of information.” [DP02]:

IS(S) := 〈
⋃

S, { Γ | there is S ∈ S s.t. Γ b S },` 〉

where Γ ` φ :iff φ ∈
⋂
{ S | S ∈ S and Γ b S } and b designates finitary set-

inclusion. In other words, protocol meaning induces a Scott information system
for each protocol agent at each protocol state. And protocol execution induces
the continuous (cf. Theorem 6.1) evolution of those information systems in time.

The definition of a denotational semantics for cryptographic protocols is not
only a useful exercise of conceptual clarification, but is also useful for the actual
engineering (verification, refinement) of safe cryptographic protocols:

Protocol invariant A formula φ ∈ F is a subjective protocol invariant w.r.t.
agent a ∈ AEve and initial protocol state s ∈ H × P :iff for all n ∈ N,
φ ∈ JsKn

a . A formula φ ∈ F is a universal protocol invariant w.r.t. initial
protocol state s ∈ H × P :iff for all a ∈ AEve, φ is a subjective protocol
invariant w.r.t. a and s.

Protocol safety A protocol state s ∈ H×P is subjectively safe to agent a ∈ A
:iff the negation of every cryptographic state of affairs undesirable to a is
a subjective protocol invariant w.r.t. a. A protocol state s ∈ H × P is
universally safe :iff the negation of every cryptographic state of affairs
undesirable to some a ∈ A is a subjective protocol invariant w.r.t. a.

Protocol refinement A protocol state s′ ∈ H × P refines protocol state s ∈
H × P, written s ≤ s′, :iff the meaning of s is included in the meaning of
s′. Formally,

s ≤ s′ :iff JsK∗ ⊆ Js′K∗.

It is well-known that refinement orderings on a set of specification processes
on the one side and on a set of implementation processes on the other side
induce a Galois-connection between the two sides of sets (cf. [DP02]).

Definition 17 (The information content of a cryptographic protocol)
The information content (in the sense of Kolmogorov-complexity [LV97]) of a
protocol state s ∈ H×P, containing the protocol(s), to agent a ∈ AEve, written
Ka(s), is defined to be the smallest message M ∈M s.t. JMKs

a = JsK∗a.

Chapter 5

Towards Probabilistic
Polynomial-time
Cryptography

5.1 Introduction

We sketch an Ockham’s razor extension of core CPL (cf. Chapter 3) with a
notion of probabilistic polynomial-time (PP) computation. We hope to intrigue
the reader that adding a notion of PP-computation to a (property-based) formal-
ism for cryptographic protocols can perhaps be simple and conceived through a
refinement of the Dolev-Yao conception of cryptographic operators. The special-
purpose machinery for PP (as for real time, cf. Section 3.4 and [Lam05]), need
not be built from scratch nor be heavy-weight.

Related work We are aware of the following existing formalisms1 for the
specification and verification of cryptographic constructions.

• Property-based: [DMP03, DDMP05, DDM+05] in the tradition of Hoare
logic, with satisfaction and deduction relations, and originally conceived
for cryptographic protocols; and [IK06] a higher -order logic, deduction-
based, and originally conceived for cryptographic operators

• Model-based: [MRST06] a process algebra for equivalence-based specifi-
cation and verification.

Our approach In contrast, ppCPL is in the tradition of first-order2, temporal
— more precisely, poly-dimensional (i.e., norms, knowledge, space, qualitative
and possibly quantitative time, cf. Section 3.4) mono-modal — logic, (for the
moment still) satisfaction-based, and originally conceived for cryptographic pro-
tocols but here extended to encompass cryptographic operators to some extent.

1In our view, a formalism consists of exactly three components: a formal (e.g., program-
ming or logical) language, a mathematical model (or interpretation structure), and a formal
semantics (e.g., effect or truth) for the language in terms of the model.

2higher-order logics are too expressive at the cost of axiomatic incompleteness

93

94 CHAPTER 5. TOWARDS PP-CRYPTOGRAPHY

Our general idea is to identify agents with feasible algorithms and, con-
sequently, to resource-bound only the truth establishment of individual and
propositional knowledge. That is, the machinery for probabilistic polynomial-
time computation does not affect the whole logic (as opposed to [DDM+05],
[IK06], where it does), but remains nicely confined to — and is observable only
through the looking glass of — epistemic operators.

5.1.1 Symbolic logic

We qualify a logic as symbolic3 when its language allows quantification over
individuals that are represented as syntactic terms formed with term construc-
tors (i.e., functional symbols). In this sense, CPL is symbolic; its language
allows quantification over individuals, i.e., cryptographic messages, represented
as message terms.

Core CPL (cf. Chapter 3) can further be qualified as abstract (in the sense
of Dolev-Yao) because message terms are not interpreted as bit-strings. In
contrast, ppCPL is concrete (in the sense of PP-computation) because mes-
sage terms are interpreted as bit-strings. More precisely, in ppCPL message
terms are denoted to probability distributions of bit-strings by interpreting log-
ical constants as bit-strings and functional symbols as possibly probabilistic
polynomial-time, i.e., feasible, algorithms on bit-strings (cf. Table 5.14).

Table 5.1: Syntactic representation of individual concepts

Concept Representation

formal variable possibly primed letters ‘v’

ad-hoc variable lowercase roman letter except ‘v’s (e.g., ‘m’ for messages)

meta-variable roman letter except ‘v’s (e.g., ‘M ’ for messages)

abstract value atomic or compound message term

concrete value bit-string

Furthermore, core CPL can be qualified as positive about truth and knowl-
edge because false positives, i.e., false statements wrongly established as true,
and false belief respectively, are impossible. In contrast, ppCPL is probabilis-
tic about truth and knowledge because false positives are, w.r.t. truth, possible
(though only) with negligible probability, and w.r.t. knowledge, (im)probable
with variable degrees of support.

Finally, we highlight that in the language of ppCPL probability is implicit
except for belief where it parametrises the (new) doxastic modality. In partic-
ular, there is no likelihood operator (cf. [Hal03]) in ppCPL. The reason is that
in modern cryptography truth must be established with overwhelming proba-
bility, whereas belief of a human being may be established with possibly non-
overwhelming degrees of support. Philosophically speaking (cf. Carnap5), prob-

3traditional usage of the term is philosophical and not standardised
4“[T]o be is to be the value of a variable. More precisely, what one takes there to be are

what one admits as values of one’s bound variables.” [Gib04, Page 111]
5Incidentally, Carnap “wrote a [first] thesis setting out an axiomatic theory of space and

time. The physics department said it was too philosophical, and [. . .] the philosophy depart-
ment said it was pure physics.” (cf. http://en.wikipedia.org/wiki/Rudolf Carnap). . .

http://en.wikipedia.org/wiki/Rudolf_Carnap

5.1. INTRODUCTION 95

ability can be an (epistemological) measure of our (subjective) belief of states
of affairs as well as an (ontological) measure of their (objective) possibility. The
refinement of the doxastic modality with probability allows the expression of
degrees of certitude that an agent may experience w.r.t. her apprehension of
cryptographic states of affairs.

5.1.2 Probability theory

A fundamental concept of probability theory is the one of a probabilistic ex-
periment characterised by the indeterminacy of its outcome, i.e., its entropy .
The fact that such experiments are probabilistic implies that they are stateful,
i.e., they represent states (with an inherent potential future) of the considered
model, and their execution means probabilistic state transition. A priori, an ex-
perimenter, i.e., a human being about to experience the considered experiment,
typically has an uncertainty about the actual outcome of the experiment, and
makes a hypothesis about its expected outcome. A posteriori, the experimenter
typically makes an epistemic error about the actual outcome of the experiment
w.r.t. the hypothesis made a priori.

In ppCPL, exactly two kinds of probabilistic experiments are relevant: pro-
cess reduction, i.e., protocol execution, (cf. Table 5.2) and message denotation,
i.e., message evaluation, (cf. Table 5.3).

Table 5.2: Probabilistic process reduction

Probability theory CPL

sample space H×P
variable (experiment) X protocol state (h, P)

atomic event transition (h, P) −→ (h′, P ′)
possible value (outcome) of X (h′, P ′) s.t. (h, P) −→ (h′, P ′)
probability distribution P(X) { ((h′, P ′), p) | (h, P) −→ (h′, P ′) and p ∈]0, 1] }

such that Σp∈P((h,P))p = 1

hypothesis h about outcome proposition φ
hypothesis H about outcome { (h′, P ′) | (h, P) −→ (h′, P ′) |= φ }

Note that interleaving concurrency implies that atomic events are mutually
exclusive and independent within each branching. Applying the principle of
indifference, we fix P(s) to the uniform distribution for all s ∈ H × P.

In Table 5.3, J·K designates the function of message denotation.

5.1.3 Probabilistic polynomial-time cryptography

The distinguishing features of probabilistic polynomial-time cryptography are
that (1) key and signature generation, and encryption are probabilistic (or ran-
domised); (2) the execution time of the operations under Item 1 and decryption
are polynomially bounded in a security parameter (the length of the key) used
for key generation; (3) adversaries are PP Turing machines with oracle access;
and (4) oracles are PP Turing machines.

96 CHAPTER 5. TOWARDS PP-CRYPTOGRAPHY

Table 5.3: Probabilistic message denotation

Probability theory CPL

sample space {0, 1}∗
variable (experiment) X message term M ∈M

atomic event JMK = s where J·K ⊆M× {0, 1}∗
possible value (outcome) of X s ∈ {0, 1}∗ s.t. s = JMK
probability distribution P(X) { (s, p) | s = JMK and p ∈]0, 1] }

such that Σp∈P(M)p = 1

hypothesis h about outcome JMK = s
hypothesis H about outcome { s | s = JMK }

5.2 ppCPL: an extension of CPL with proba-
bilistic polynomial-time

This section describes the extension of CPL to ppCPL. The extension depends
on the core described in Chapter 3 (the reader is urged to consult it).

5.2.1 Syntax

The syntactic novelties are the following:

1. logical constants (atomic message terms): refinement of the abstract mes-
sage �l with a length indication l ∈ N; addition of bit-strings s ::=
0

∣∣ 1
∣∣ s • s and of probability values q ∈ PV := [0, 1] ∩ Q with the

associated sort PV

2. functional symbols: refinement of hashes dMeHA, symmetric [M]SEA
M ′ and

asymmetric [M]AEA
p+ encryptions, and signatures]M [SA

p with a parame-
ter HA ∈ {SHA1, MD5, . . .}, SEA ∈ {DES(MOO), AES(MOO), . . .}, AEA ∈
{RSA, Elgamal, . . .}, resp. SA ∈ {RSA, Elgamal, . . .} for the name of the
employed algorithm. MOO ∈ {ECB, CBC, CFB, OFB, . . .} is a parameter for
the name of the employed mode of operation of a block cipher.

3. relational symbols:

(a) refinement of the predicate a
ι
�

NGA
n.o for new-name generation with a

security parameter ι ∈ N, and a parameter NGA ::= SEA
∣∣ AEA

∣∣ SA
for the name of the employed generation algorithm

(b) addition of a binary relational symbol ≤ for the comparison of proba-
bility values (actually the same as for the comparison of time values,
cf. Section 3.4)

4. logical operators: addition of a modality Bq
a for belief with error control

q, where q is the probability for agent a not to err in her apprehension of
the truth of the considered proposition (say φ), written Bq

a(φ)

5.2. PPCPL: AN EXTENSION OF CPL WITH PP 97

5.2.2 Semantics

The principal semantic novelties are the following:

1. (backwards-compatible) refinement of temporal accessibility simpliciter to
PP temporal accessibility: addition of denotation events D(a,M, s,ALGO)
stating that agent a denoted the message term M to the string s ∈ {0, 1}∗
by application of the algorithm ALGO ::= NGA

∣∣ �, where ALGO ∈ NGA
if M is a name and ALGO = � otherwise

2. refinement of individual knowledge simpliciter to PP individual knowledge
(cf. Table 5.4) relying on (stateful) PP message denotation:

JMKh
a :=

{
choose s s.t. D(a, n, s,NGA) ∈ ḣ or else n if M = n, and
choose s s.t. there is p s.t. (s, p) ∈ P(M ′) otherwise.

where M ′ :=
⋃

n∈names(M)

{JnKh
a/n

}
M designates the message that results

from the substitution of all names n in M with the corresponding deno-
tations JnKh

a. (The act of choosing s could be made strictly formal with
Hilbert’s choice operator [Sla06].)

3. let

Ka(p, i) := { s | p@0 −→∗ s and s ≈a p@i }
Ba(p, i) := { s | p@0 −→∗ s and s ≈a p@i and

there is a polynomial p : N→ N s.t. |s| ≤ p(|p@i|) }
|(h, P)| := |ḣ|

(a) refinement of propositional knowledge simpliciter

JKa(φ)Ki
p := (for all s, if s ∈ Ka(p, i) then s′ |=E′ φ′, E ′(s,φ))

where (s′, φ′) :=

{
(s, φ) if s = p@i, and
(L s Mp@i

a , Lφ Mp@i
a) otherwise.

to PP propositional knowledge

JKa(φ)Ki
p := (for all s, if s ∈ Ka(p, i)

then s′ |=E′ φ′ and there is a polynomial
p : N→ N s.t. |s| ≤ p(|p@i|), E ′(s,φ))

where (s′, φ′) :=

{
(s, φ) if s = p@i, and
(L s Mp@i

a , Lφ Mp@i
a) otherwise.

(b) addition of believe with error control q ∈ PV

JBq
a(φ)Ki

p := (q = |Ba(p,i)|
|Ka(p,i)| and

for all s, if s ∈ Ba(p, i) then s′ |=E′ φ′, E ′(s,φ))

where (s′, φ′) :=

{
(s, φ) if s = p@i, and
(L s Mp@i

a , L φ Mp@i
a) otherwise.

98 CHAPTER 5. TOWARDS PP-CRYPTOGRAPHY

Table 5.4: PP derivation of individual knowledge

Random coin tossing

h `(∅,1)
a 0 h `(∅,1)

a 1

Input data extraction

h · ε(a, M) `({ε(a,M)},0)
a (a, M)

h `(E,r)
a M

h · ε `(E,r)
a M

Data synthesis Data analysis

h `(E,r)
a M h `(E′,r′)

a M ′

h `(E∪E′,r+r′)
a (M, M ′)

h `(E,r)
a (M, M ′)

h `(E,r)
a M

h `(E,r)
a (M, M ′)

h `(E,r)
a M ′

h `(E,r)
a p

h `(E,r)
a p+

h `(E,r)
a M

h `(E,r)
a dMe

h `(E,r)
a M h `(E′,r′)

a M ′

h `(E∪E′,r+r′)
a [M]M′

h `(E,r)
a [M]M′ h `(E′,r′)

a M ′

h `(E∪E′,r+r′)
a M

h `(E,r)
a M h `(E′,r′)

a p+

h `(E∪E′,r+r′)
a [M]p+

h `(E,r)
a [M]p+ h `(E′,r′)

a p

h `(E∪E′,r+r′)
a M

h `(E,r)
a M h `(E′,r′)

a p

h `(E∪E′,r+r′)
a]M [p

h `(E,r)
a]M [p h `(E′,r′)

a p+

h `(E∪E′,r+r′)
a M

Data concretisation Data abstraction

h `(E,r)
a M

h `(E,r)
a s

s = JMKh
a

h `(E,r)
a s

h `(E,r)
a M

JMKh
a = s

PP-abstraction

h `(E,r)
a M

h `Ea M
there is a polynomial p : N→ N s.t. r ≤ p(Σε(a,M)∈E |J(a, M)Kh

a|)

4. redefinition of the state of violation with the desired kind(s) of breaks (i.e.,
successful attacks) of cryptographic schemes as formalised in Section 5.3.2.

The polynomial bound on the computational complexity of individual resp.
propositional knowledge (cf. Item 2 resp. 3) induces a corresponding bound on
the complexity of cryptographic proofs resp. provability (cf. Section 3.3.4).

Remark 6 In analogy to non-standard analysis, it could be worthwhile to in-
vestigate the introduction of infinitesimals for negligible probabilities.

5.3. APPLICATION: FORMALISATION CASE STUDIES 99

5.3 Application: formalisation case studies

Definitions can be worthwhile even in the absence of theorems and
proofs.

Phillip Rogaway
(cf. [Rog04])

We illustrate the expressiveness of ppCPL on tentative formalisation case
studies of fundamental and applied concepts. Fundamental concepts: (1) one-
way function, (2) hard-core predicate, (3) computational indistinguishability,
(4) (n-party) interactive proof, and (5) (n-prover) zero-knowledge. Applied
concepts: (1) security of encryption schemes, (2) unforgeability of signature
schemes, (3) attacks on encryption schemes, (4) attacks on signature schemes,
and (5) breaks of signature schemes.

Note that in core CPL we focused on cryptographic protocols and their
requirements, but here (in ppCPL) we focus on cryptographic operators and
their attacks and breaks. Naturally, properties of good operators take the form
of tautologies, i.e., propositions that hold in any (protocol) model (cf. Table 5.5).

Table 5.5: Expressing properties of protocols, operators, and messages

Subject
Expression of a
property as a

Linking concept Style of expression

Protocol
proposition φ in an
assertion (h, P) |= φ

(true statement)
satisfiability

endogenous (i.e.,
point-free/intensional

w.r.t. protocols)

Operator
proposition φ in an

assertion |= φ
(tautology)

validity
point-wise/extensional

w.r.t. messages
(quantification!)

Message unary predicate φ(·) substitution
(φ(M))

Slogan 21 Predicates speak of individuals (e.g., messages). Propositions talk
about models (e.g., protocols). Both express purported facts.

Our formalisations illustrate the dramatic expressive power that results from
the combined use of epistemic and spatial operators.

5.3.1 Fundamental concepts

This section is in the spirit of [Gol01].

Definition 18 (Random propositional guessing)

RGa(φ) := ¬∃(q : PV)(
1
2

< q ∧ Bq
a(φ))

Definition 19 (Hard proposition) A proposition φ is hard :iff in any model,
any agent a can only guess the truth of φ. That is, RGa(φ) is a tautology.

|= RGa(φ)

100 CHAPTER 5. TOWARDS PP-CRYPTOGRAPHY

We generalise the concept of a hard proposition (a closed formula) to the
concept of a hard predicate (an open formula).

Definition 20 (Hard predicate) An n-ary predicate φ(M1, . . . ,Mn) is hard
on M1, . . . ,Mn satisfying the (n + 1-ary) predicate ϕ(M1, . . . ,Mn, a) :iff in any
model, if ϕ(M1, . . . ,Mn, a) then any a can only randomly guess the truth of
φ(M1, . . . ,Mn).

|= ϕ(M1, . . . ,Mn, a)→ RGa(φ(M1, . . . ,Mn))

Formalisation 2 (One-way function)

“[. . .] a function that is easy to compute but hard to invert.” [Gol01, Page 32]

Ease of computation |= a k M → a k f(M)

Hardness of invertibility f−1(M ′) = M is hard on M and M ′ satisfying
f(M) = M ′ ∧ ¬ a k M .

y

Notice that the standard definition of one-way functions only requires the op-
erator f to be computable in deterministic polynomial-time, whereas the satis-
fiability of a k f(M) may be computable only in probabilistic polynomial-time
(cf. Table 5.4). We could easily provide a deterministic variant of k by simply
disallowing random coin tossing. Further, observe that our definition implies
that cryptographic operators are common knowledge among agents. In order to
express (individual) knowledge of operators, we would need quantification over
functional symbols, which would make our logic higher-order.

Formalisation 3 (Hard-core predicate)

“[. . .] a polynomial-time predicate b is called a hard-core of a function f if
every efficient algorithm, given f(x), can guess b(x) with success probability
that is only negligibly better than one-half.” [Gol01, Page 64]

Let the satisfiability of φ(M) be computable in polynomial-time. Then φ(M) is a
hard-core of a function f :iff φ(M) is hard on M satisfying a k f(M)∧¬ a k M .
y

Notice that we identify agents with feasible algorithms!

Formalisation 4 (Computational indistinguishability)

“Objects are considered to be computationally equivalent if they cannot be dif-
ferentiated by any efficient procedure.” [Gol01, Page 103]

M and M ′ are computationally indistinguishable :iff ¬(M = M ′) is hard on M
and M ′ satisfying ¬(M = M ′). y

5.3. APPLICATION: FORMALISATION CASE STUDIES 101

Definition 21 (Cryptographic evidence and proof)

M necessaryEvidenceFor φ := ∀a(Ka(φ) B (Ka(φ) ⊇ a k M))
M sufficientEvidenceFor φ := ∀a(Ka(φ) B (a k M ⊇ Ka(φ)))

M strictEvidenceFor φ := M necessaryEvidenceFor φ ∧
M sufficientEvidenceFor φ

M evidenceFor φ := M necessaryEvidenceFor φ ∨
M sufficientEvidenceFor φ

M necessaryProofFor φ := ∀a(a k M B (Ka(φ) ⊇ a k M))
M sufficientProofFor φ := ∀a(a k M B (a k M ⊇ Ka(φ)))

M strictProofFor φ := M necessaryProofFor φ ∧
M sufficientProofFor φ

M proofFor φ := M necessaryProofFor φ ∨
M sufficientProofFor φ

Observe that these concepts of cryptographic evidence and proof are refinements
of the respective (basic) concepts defined in Section 3.3.4.

Conjecture 1

1. |= M necessaryProofFor φ→M necessaryEvidenceFor φ

2. |= M sufficientProofFor φ→M sufficientEvidenceFor φ

3. |= M strictProofFor φ↔M strictEvidenceFor φ

Formalisation 5 (2-party interactive proof)
“A 2-party interactive proof (or 2-party computation or 2-party protocol) M
between a verifier a and prover b (initiated by a) for a proposition φ (protocol
goal) is a (possibly minimal) finite chain M = (M0, . . . ,Mn) of messages s.t. (1)
Mn is a proof of φ for a, and (2) for all consecutive pairs (Mi,Mj) in M , Mj

derives from Mi due to communication between a and b.” [author’s formulation]

M ::= (M,�)
∣∣ (M,M)

I ::= �
∣∣ M

M iProofFor(a,b) φ := M iProofFora(a,b) φ

(M,�) iProofForc(a,b) φ := c k M ∧M proofFor φ

(M, (M ′, I)) iProofForc(a,b) φ := M ′ ⊇(a,b) M ∧ (M ′, I) iProofForc(b,a) φ

y

Definition 22 (Interactive provability)

IP(a,b)(φ) := ∃m(m iProofFor(a,b) φ)

Our (macro-defined) operator for interactive provability is a tentative general-
isation to the interactive setting of our macro-definition of Gödel’s provability
modality (cf. Section 3.3.5).

102 CHAPTER 5. TOWARDS PP-CRYPTOGRAPHY

Proposition 4 |= IP(a,b)(φ)→ Pa(φ)

Conjecture 2 (Characteristics of interactive proofs) For “certain” φ,

Soundness |= ¬φ→ ¬IP(a,b)(φ)

Completeness |= φ→ IP(a,b)(φ)

Formalisation 6 (Proof of knowledge)

“[. . .] [interactive] proofs in which the prover [b] asserts “knowledge” of some
object [. . .] and not merely its existence [. . .]” [Gol01, Page 262]

IP(a,b)(b k M)

y

Formalisation 7 (Zero-Knowledge)

“Zero-knowledge proofs are defined as those [interactive] proofs that convey no
additional knowledge other than the correctness of the proposition [φ] in ques-
tion.” [GMR89]

ZK(a,b)(φ) := IP(a,b)(Ka(∃m′(Kb(m
′ proofFor φ))) ∧

¬∃m′′(Ka(Kb(m
′′ evidenceFor φ))))

y

Spelled out, a (the verifier) knows through interaction with b (the prover) that
b knows a proof (m′) for the proposition φ, however a does not know that proof
nor any evidence (m′′) that could corroborate the truth of φ. (Observe the
importance of the scope of the existential quantifiers.) Philosophically speaking,
a has pure propositional knowledge of φ, i.e., a has zero individual (and thus zero
intuitionistic—no witness!) knowledge relevant to the truth of φ. In Goldreich’s
words, it is “as if [the verifier] was told by a trusted party that the assertion
holds” [Gol05, Page 39].

Standard zero-knowledge, i.e., zero-knowledge w.r.t. a malicious verifier is an
instance of the above scheme where a = Eve. Zero-knowledge w.r.t. an honest
verifier is definable as ZK(a,b)(φ) ∧ honest(a).

Conjecture 3 “[A]nything that is feasibly computable from a zero-knowledge
proof is also feasibly computable from the (valid) assertion itself.” [Gol05,
Page 39]

|= φ→ ((Ka(ϕ) ⊇ ZK(a,b)(φ))→ (Ka(ϕ) ⊇ φ))

This is a logical formulation of an instance of the simulation paradigm [GM84].

Formalisation 8 (n-party interactive proof)

“An n-party interactive proof (or n-party computation or n-party protocol) M
between agents {a0, a1, . . . , an−1} (initiated by a0) for a proposition φ (protocol
goal) is a (possibly minimal) finite chain M = ((a0,M0), . . . , (al,Mm)) s.t. (1)
Mm is a proof of φ for a0, and (2) for all consecutive pairs ((ai,Mi), (aj ,Mj))
in M , Mj derives from Mi due to communication between ai and aj.” [author’s
formulation]

5.3. APPLICATION: FORMALISATION CASE STUDIES 103

A ::= (a,�)
∣∣ (b, A)

M iProofFor(a,A) φ := M iProofFora(a,A) φ

(M,�) iProofForc(a,�) φ := c k M ∧M proofFor φ

(M, (M ′, I)) iProofForc(a,(b,A)) φ := M ′ ⊇(a,b) M ∧ (M ′, I) iProofForc(b,A) φ

y

Definition 23 (Quotient proof)

M |a M ′ := ¬(a k M ⊇ a k M ′) ∧
¬(a k M ′ ⊇ a k M)

(M,M ′) disjointEvidenceFor φ := ∀a(Ka(φ) B (Ka(φ) ⊇ a k (M,M ′) ∧
M |a M ′))

(M,�) mutuallyDisjointEvidenceFor φ := M evidenceFor φ

(M,M) mutuallyDisjointEvidenceFor φ := (M,M) disjointEvidenceFor φ ∧
M mutuallyDisjointEvidenceFor φ

M quotientProofFor φ := M proofFor φ ∧
M mutuallyDisjointEvidenceFor φ

We pronounce M |a M ′ as “M is (epistemically) independent from M ′ w.r.t. to
a’s knowledge”. Quotient proofs could also be called compositional proofs.

Definition 24 (Multi-prover Zero-Knowledge)

ZK(a,A)(φ) := IP(a,A)(Ka(∃m′(m′ quotientProofFor φ ∧A k m′)) ∧
¬∃m′(Ka(m′ evidenceFor φ ∧A k m′)))

where

(a,�) k (M,�) := a k M

(b, A) k (M,M) := b k M ∧A k M

Observe again the importance of the scope of the existential quantifiers.

Formalisation 9 (Oblivious Transfer)

“[. . .] we can view this protocol as one in which Alice sends a [confidential]
letter to Bob, which arrives exactly half the time.” [Kil88] (cf. [Rab81] for the
original reference of the idea)

�∀m(a k m ∧ ∀(c : A)(c k m→ (c = a ∨ c = b)) ∧ RGb(b k m))

y

5.3.2 Applied concepts

This section is in the spirit of [Gol04] and [MvOV96]. Note that for clarity,
names of cryptographic algorithms are omitted in message terms in the sequel.

Definition 25 (Security of encryption schemes)

104 CHAPTER 5. TOWARDS PP-CRYPTOGRAPHY

1. “Standard security: the infeasibility of obtaining information regarding
the plaintext” [Gol04, Page 470]

Semantic security “[. . .] given any a priori information about the plain-
text, it is infeasible to obtain any (new) information about the plain-
text from the ciphertext (beyond what is feasible to obtain from the a
priori information on the plaintext).” [Gol04, Page 378]

|= (a k C ∧ Ka(φ(M)))︸ ︷︷ ︸
a priori information

→ ((Ka(ϕ(M)) ⊇ a k C)︸ ︷︷ ︸
obtaining information

→ (φ(M) ⊇ ϕ(M))︸ ︷︷ ︸
no news

)

where C ::= [M]k
∣∣ [M]p+

This is again a logical formulation of an instance of the simulation
paradigm [GM84]. Observe the similarity with the previous instance.

Indistinguishability of encryptions
• [M]k (or [M]p+) and [M ′]k (or [M ′]p+) are computationally in-

distinguishable (in the sense of our formalisation)
• there is l ∈ N s.t. [M]k (or [M]p+) and �l are computationally

indistinguishable (in the sense of our formalisation)

2. Non-malleability “[. . .] it [is] infeasible for an adversary, given a ci-
phertext, to produce a valid ciphertext (under the same encryption-key)
for a related plaintext.” [Gol04, Page 470]

|= (Eve k [M]k ∧ φ(M) ∧ φ(M ′)︸ ︷︷ ︸
M ′ is related to M

)→ (Eve k [M ′]k → Eve k k)

|= (Eve k [M]p+ ∧ φ(M) ∧ φ(M ′))→ (Eve k [M ′]p+ → Eve k M ′)

Formalisation 10 (Unforgeability of signature schemes)
“ it is infeasible to produce signatures of other users to documents they did not
sign.” [Gol04, Page 498]

|= a authored]M [p → a k p

y

Attacks on encryption schemes We state formalisations of attacks on en-
cryption schemes as vulnerabilities and in increasing strength.

Formalisation 11 (Ciphertext-only attack)
“[. . .] the adversary (or cryptanalyst) tries [⊇] to deduce the decryption key [k
(symmetric) resp. p (private)] or plaintext [M] by only [≡] observing ciphertext
[m1, . . . ,mn].” [MvOV96, Page 41]

Eve k M ≡ ∃(k : K)(Eve k [M]k)
Eve k M ≡ ∃(p : K−)(Eve k [M]p+)

Eve k k ≡ (∃(m1 : SCk[M])(Eve k m1) ∧ · · · ∧ ∃(mn : SCk[M])(Eve k mn))
Eve k p ≡ (∃(m1 : ACp+ [M])(Eve k m1) ∧ · · · ∧ ∃(mn : ACp+ [M])(Eve k mn))

y

5.3. APPLICATION: FORMALISATION CASE STUDIES 105

Formalisation 12 (Known-plaintext attack)
“[. . .] the adversary has a quantity of plaintext [m1, . . . ,mn] and corresponding
ciphertext.” [MvOV96, Page 41]

Eve k k ≡ (∃m1(Eve k m1 ∧ Eve k [m1]k) ∧ · · · ∧
∃mn(Eve k mn ∧ Eve k [mn]k))

Eve k p ≡ (∃m1(Eve k m1 ∧ Eve k [m1]p+) ∧ · · · ∧
∃mn(Eve k mn ∧ Eve k [mn]p+))

Our interpretation of ‘a quantity of plaintext’ can be refined from ‘a number
of plaintexts’ to ‘a number of parts of plaintexts’ by replacing Eve k m1 with
∃m11(m11 4 m1∧Eve k m11)∧· · ·∧∃m1i(m1i 4 m1∧Eve k m1i), and Eve k mn

with ∃mn1(mn1 4 m1 ∧ Eve k mn1) ∧ · · · ∧ ∃mnj(mnj 4 m1 ∧ Eve k mnj). y

Formalisation 13 (Chosen-plaintext attack)
“[. . .] the adversary chooses [B] plaintext [m] and is then given [I] correspond-
ing ciphertext. Subsequently [�], the adversary uses any information deduced
[⊇] in order to recover plaintext [M] corresponding to previously unseen cipher-
text.” [MvOV96, Page 41]

∃(k : K)(¬ Eve k [M]k ∧
∃m(Eve k m B

(Eve k [m]k I �(M ⊇Eve (m, [m]k)))))

∃(p : K−)(¬ Eve k [M]p+ ∧
∃m(Eve k m B

(Eve k [m]p+ I �(M ⊇Eve (m, [m]p+)))))

Our interpretation of ‘plaintext’ can be refined from ‘ the plaintext’ to ‘ some of
the plaintext’ by replacing Eve k M with ∃m1(m1 4 M ∧ Eve k m1) ∧ · · · ∧
∃mn(mn 4 M ∧ Eve k mn). y

Formalisation 14 (Adaptive chosen-plaintext attack)
“[. . .] a chosen-plaintext attack wherein the choice of plaintext may depend on
the ciphertext received from previous requests.” [MvOV96, Page 41]

Let A denote chosen-plaintext chains in the public key p+ of the form

A ::= �
∣∣ ((M, [M]p+), A)

and aCPCp+

a an inductively-defined macro expressing the realisation of such a
chain for agent a

� aCPCp+

a φ := φ

((M, [M]p+), A) aCPCp+

a φ := a k M B (a k [M]p+ I A aCPCp+

a φ)

Then
∃(p : K−)(¬ Eve k [M]p+ ∧

∃m(∃m′(m′ aCPCp+

Eve Eve k m) B
(Eve k [m]p+ I �(M ⊇Eve (m, [m]p+)))))

formalises an adaptive chosen-plaintext attack on a private key. (The formali-
sation of a corresponding attack on a symmetric key is similar.) y

106 CHAPTER 5. TOWARDS PP-CRYPTOGRAPHY

Formalisation 15 (Chosen-ciphertext attack)

“[. . .] the adversary selects the ciphertext and is then given the corresponding
plaintext.” [MvOV96, Page 41]

∃(k : K)(¬ Eve k [M]k ∧
∃m(Eve k [m]k B

(Eve k m I �(M ⊇Eve (m, [m]k)))))
y

Formalisation 16 (Adaptive chosen-ciphertext attack)

“[. . .] a chosen-ciphertext attack where the choice of ciphertext may depend on
the plaintext received from previous requests.” [MvOV96, Page 42]

Let S denote chosen-ciphertext chains in the symmetric key k of the form

S ::= �
∣∣ (([M]k,M), S)

and sCCCk
a an inductively-defined macro expressing the realisation of such a

chain for agent a

� sCCCk
a φ := φ

(([M]k,M), S) sCCCk
a φ := a k [M]k B (a k M I S sCCCk

a φ)

Then
∃(k : K)(¬ Eve k [M]k ∧

∃m(∃m′(m′ sCCCk
Eve Eve k m) B

(Eve k [m]k I �(M ⊇Eve (m, [m]k)))))

formalises an adaptive chosen-plaintext attack on a symmetric key. (The for-
malisation of a corresponding attack on an asymmetric key is similar.) y

Attacks on signature schemes We state formalisations of attacks on sig-
nature schemes in increasing strength.

Formalisation 17 (Key-only attack)

“[. . .] an adversary knows only the signer’s public key.” [MvOV96, Page 432]

∃v∃(a : A)(v+ puk a ∧ Eve k v+ ∧ ∀m(Eve k]m[v → ¬ Eve k m))

y

Formalisation 18 (Known-message attack)

“An adversary has signatures for a set of messages which are known to the
adversary but not chosen by him.” [MvOV96, Page 432]

∃v∃(a : A)(v+ puk a ∧ Eve k v+ ∧
∃m1 · · · ∃mn(Eve k]m1[v ∧ · · · ∧ Eve k]mn[v ∧

Eve k m1 ∧ · · · ∧ Eve k mn))
y

Formalisation 19 (Chosen-message attack)

5.3. APPLICATION: FORMALISATION CASE STUDIES 107

“An adversary obtains valid signatures from a chosen list of messages before
attempting to break the signature scheme.” [MvOV96, Page 433]

∃v∃(a : A)(v+ puk a ∧ Eve k v+ ∧
∃m1 · · · ∃mn((Eve k m1 ∧ · · · ∧ Eve k mn) B

(Eve k]m1[v ∧ · · · ∧ Eve k]mn[v)))
y

Formalisation 20 (Adaptive chosen-message attack)

“An adversary is allowed to use the signer as an oracle; the adversary may re-
quest signatures of messages which depend on the signer’s public key and he may
request signatures of messages which depend on previously obtained signatures
or messages.” [MvOV96, Page 433]

Let C denote chosen-message chains in the private key p of the form

C ::= �
∣∣ ((M,]M [p), C)

and CMCp
a an inductively-defined macro expressing the realisation of such a

chain for agent a

� CMCp
a φ := φ

((M,]M [p), C) CMCp
a φ := a k M B (a k]M [p I C CMCp

a φ)

Then
∃v∃(a : A)(v+ puk a ∧ Eve k v+ ∧ ∃m(m CMCv

a Eve k m))

formalises an adaptive chosen-message attack on a signing key. y

Breaks of signature schemes We state formalisations of breaks of signature
schemes in increasing strength.

Formalisation 21 (Existential forgery)

“An adversary is able to forge a signature for at least one message. The adver-
sary has little or no control over the message whose signature is obtained, and
the legitimate signer may be involved in the deception . . . ” [MvOV96, Page 432]

∃v∃(a : A)(v+ puk a ∧ Eve k v+ ∧ ∃m(]m[v ⊇Eve m))

y

Formalisation 22 (Selective forgery)

“An adversary is able to create a valid signature for a particular [∃] message or
class of messages chosen [B] a priori. Creating the signature does not directly
involve the legitimate signer.” [MvOV96, Page 432]

∃v∃(a : A)(v+ puk a ∧ Eve k v+ ∧ ∃m(Eve k m B (]m[v ⊇Eve m)))

y

Formalisation 23 (Universal forgery)

108 CHAPTER 5. TOWARDS PP-CRYPTOGRAPHY

“An adversary is able to create a valid signature for an arbitrary [∀] message
chosen a priori.”

∃v∃(a : A)(v+ puk a ∧ Eve k v+ ∧ ∀m(Eve k m B (]m[v ⊇Eve m)))

y

Formalisation 24 (Total break)

“An adversary is either able to compute the private key information of the
signer, or finds an efficient signing algorithm functionally equivalent to the valid
signing algorithm.” [MvOV96, Page 432]

∃v∃(a : A)(v+ puk a ∧ Eve k v+ ∧ Eve k v)

y

Part III

Epilogue

109

Chapter 6

Conclusion

6.1 Review of achievements

We believe having achieved with CPL an original construction and powerful tool
for the logical conceptualisation of the security of communication. In particular,
we have:

1. defined a cryptographically meaningful (cf. Section 3.2.3.4) and indeed
omnipresent epistemic modality (for propositional knowledge) that com-
mutes in both senses with quantifiers being relativised (this is a novel idea)
to individual knowledge (cf. Corollary 1)

2. invented a cryptographically interesting (cf. Section 3.2.3.2) epistemic con-
ditional thanks to the auxiliary invention of complex truth values

3. pioneered the application of spatial logic (cf. Section 3.2.3.2) to the for-
malisation of cryptographic states of affairs and auxiliary concepts such
as choice, compositionality, and corruption (cf. Section 3.3.5, 5.3.1, 5.3.2)

4. invented, by macro-definition, spatial freeze quantifiers, and shown that
with them distributed temporal logic is definable within the spatio-tempo-
ral fragment of CPL (cf. Section 3.2.3.5)

5. (a) demonstrated the macro-definability of a Gödel-style provability mo-
dality within the spatio-epistemic fragment of CPL (cf. Theorem 2).
With this modality, CPL can capture the provability meaning of
intuitionistic implication, and provability is shown to be the key to
the formalisation of commitment and related cryptographic states of
affairs (cf. Section 3.3.4).

(b) sketched a promising generalisation of the (non-interactive) provabil-
ity modality to an interactive provability modality (cf. Definition 22)
and applied it to the formalisation of zero-knowledge

6. demonstrated the definability of cryptographically meaningful (cf. Sec-
tion 3.2.3.3) deontic modalities within the spatio-epistemico-temporal fra-
gment of CPL, and by that, shown that cryptographic permission (and
prohibition) is parametrically reducible to the desired notion of (unde-
sired) state of violation of the employed crypto system

111

112 CHAPTER 6. CONCLUSION

7. demonstrated that the addition of dense real-time to an untimed, property-
based formalism for cryptographic protocols (core CPL) can be simple
and backwards-compatible, when properly conceived, but is still powerful
enough for the macro-definition of durations (cf. Section 3.4)

8. conceived and exemplified an original and promising co-design of poly-
dimensional modal logic (CPL) and formal program semantics (C3):

Co-design In particular, we have demonstrated that

(a) temporal accessibility can be identified with protocol execution
(cf. Chapter 4)

(b) the execution constraints of the operational semantics (defining
protocol execution) are CPL-definable and -checkable (cf. Ta-
ble 4.4)

(c) epistemic accessibility can be identified with static observational
equivalence on program execution states (cf. Section 4.1.3)

(d) the meaning of a cryptographic protocol, its denotational seman-
tics (cf. Section 4.3.2), can be defined in terms of the (possibly
context-sensitive) meaning of the cryptographic messages it pro-
duces during its execution, and the (communicable) meaning of a
cryptographic message (cf. Section 4.3.1) can in turn be defined
via hypothetical knowledge (and provability)

(e) the information content (in the sense of Kolmogorov) of a cryp-
tographic protocol can be defined in terms of the information
content of a cryptographic message, which in turn can be de-
fined in terms of the minimal process inducing the (individual)
knowledge of that message (cf. Definition 17 resp. 15)

(f) protocol agents can be conceived as evolving Scott information
systems (cf. Section 4.3.2)

C3 In particular, we have (in joint work):

(a) invented a dynamic key lookup mechanism based on the explicit
declaration of key ownership via tagging (cf. Table 4.3)

(b) defined a comprehensive message reception mechanism integrat-
ing pattern-matching (cf. Table 4.2) and conditional input (cf.
Rules In and sIn in Table 4.4) as linguistic abstractions for cryp-
tographic computation

(c) demonstrated that the addition of dense real-time to an untimed,
model -based formalism for cryptographic protocols can be sim-
ple and backwards-compatible, when properly conceived (cf. Sec-
tion 4.2)

(d) invented a powerful specification technique based on epistemically
non-local processes complementing the traditional techniques of
meta-communication (via formal parameters) and out-of-band
communication (via secure I/O primitives) (cf. Section 4.2.2)

9. conceived a promising, backwards-compatible extension of core CPL with
a notion of probabilistic polynomial-time computation by resource-boun-
ding individual and propositional knowledge in a novel way and by invent-
ing a notion of belief with error control (cf. Chapter 5)

6.1. REVIEW OF ACHIEVEMENTS 113

10. conceived a novel modal encoding of weak second-order logic via individual-
generating individuals (message-generating protocols) (cf. Section 3.2.3.1).

The key to our backwards-compatible extensions is the paradigm of event-based
modelling . That is, the conservative extension of protocol histories with new
protocol events, e.g., clock-set events for the extension with real time and de-
notation events for the extension with probabilistic polynomial-time. In conse-
quence, old languages can be interpreted over new models because new mod-
elling events are irrelevant to that (oblivious) interpretation.

Thanks to the powerful linguistic abstractions that CPL provides, we have
also achieved the logical formalisation of an unprecedented variety of crypto-
graphic states of affairs and cryptographic concepts. Concretely, these for-
malised states of affairs are:

Trust-related affairs maliciousness, honesty, faultiness, prudency, and trust-
worthiness of protocol agents (cf. Section 3.3.1).

Confidentiality-related affairs shared secret, secrecy, anonymity, data deri-
vation, non-interaction, perfect forward secrecy, known-key attack, and
agent corruption (cf. Section 3.3.2).

Authentication-related affairs key confirmation, key authentication (impli-
cit and explicit), message integrity, message authorship, message authenti-
cation (authenticity), key transport (unacknowledged and acknowledged),
key agreement (unacknowledged and acknowledged), entity authentica-
tion (identification) (unilateral, weakly mutual, and strongly mutual) (cf.
Section 3.3.3).

Commitment-related affairs cryptographic proof, cryptographic evidence,
provability, non-repudiation, contract signing, (optimism, completion, ac-
countability, and abuse-freeness) (cf. Section 3.3.4).

Compositionality-related affairs key separation, compositional correctness
(existential composability, conditional composability, and universal com-
posability), and attack scenario (cf. Section 3.3.5).

Concretely, these (tentatively) formalised concepts are:

Fundamental concepts one-way function, hard-core predicate, computatio-
nal indistinguishability, (n-party) interactive proof, interactive provabil-
ity, proof of knowledge, and (n-prover) zero-knowledge (cf. Section 5.3.1).

Applied concepts security of encryption schemes (standard, semantic, via in-
distinguishability, and via non-malleability), unforgeability of signature
schemes, attacks on encryption schemes (ciphertext-only attack, known-
plaintext attack, chosen-plaintext attack, adaptive chosen-plaintext at-
tack, chosen-ciphertext attack, and adaptive chosen-ciphertext attack),
attacks on signature schemes (key-only attack, known-message attack,
chosen-message attack, and adaptive chosen-message attack), and breaks
of signature schemes (existential forgery, selective forgery, universal for-
gery, and total break) (cf. Section 5.3.2).

We hope that our tentative formalisations have convinced the reader that CPL
is an interesting candidate as a lingua franca for requirements-engineering cryp-
tographic protocols.

114 CHAPTER 6. CONCLUSION

6.2 Future work

CPL

Short-term Our immediate concerns are the consolidation of ppCPL, and the
validation of our formalisations of fundamental and applied concepts w.r.t.
their traditional Turing-machine-based definitions.

Mid-term Our next concerns are the construction of proof systems for core
CPL, tCPL, and ppCPL; and the study of decidable fragments of core
CPL and its extensions.

Long-term Our long-term concerns are the construction of a Curry-Howard
isomorphism between cryptographic protocols and propositions; and the
extension of CPL with quantum cryptography.

C3

Short-term Our short-term concerns are a symbolic version of C3, and the
axiomatisation of C3’s observational equivalence.

Mid-term Our mid-term concern is the extension of C3 with a notion of
probabilistic-polynomial-time computation.

Long-term Our long-term concerns are the extension of C3 with quantum
computation and communication; the investigation of different degrees of
communication (of: messages, message types, logical formulae, processes,
process types); and the extension of C3 with further key management
capabilities (e.g., public-key certificate issuing and revocation) and object-
orientation (e.g., method-based sub-protocol calls and dynamic session
creation).

Finally, we are concerned with the conception of an integrated engineer-
ing methodology for our formalisms, and the development of tool support, and
application to more case studies.

Appendix A

Proofs

Proof of Theorem 1

• Barcan: Suppose that s ∈ H × P and s |= ∀m(Ka(φ)). Then, for all
M ∈ M, s |= Ka(φ). Hence, for all M ∈ M, s |= φ (by |= Ka(φ) → φ),
and thus s |= ∀m(φ). Conclude that s |= Ka(∀m(φ)) by the hypothesis
that s |= Ka(φ) and the fact that keys(∀m(φ)) ⊂ keys(φ) (fulfilling the
truth condition for propositional knowledge).

• Relativised co-Barcan: Suppose that s ∈ H × P and s |= Ka(∀m(a k
m → φ)). Further, suppose that M ∈ M and s |= a k M . Hence,
s |= Ka(a k M) and s |= Ka(a k M → φ). Consequently, s |= Ka(φ) (by
|= Ka(ϕ→ ϕ′)→ (Ka(ϕ)→ Ka(ϕ′))). Conclude that s |= a k M → Ka(φ)
by the hypothesis s |= a k M , and finally that s |= ∀m(a k m→ Ka(φ)).

Proof of Proposition 2 by counterexample (logical equivalence is incompat-
ible with Ka):

• Eve : Adv⇔ k : K because |= Eve : Adv and |= k : K, but

• Ka(Eve : Adv) 6⇔ Ka(k : K) because the establishment of the truth of
Ka(Eve : Adv) does not dependent on a’s knowledge of the key values in
Eve : Adv (there aren’t any), whereas the establishment of the truth of
Ka(k : K) does dependent on a’s knowledge of the key values in k : K
(there is one).

Hence, |= Ka(Eve : Adv), i.e., Ka(Eve : Adv) is a logical truth (tautology), but
6|= Ka(k : K), i.e., Ka(k : K) is only a contingent truth. Yet, a logical truth is, by
definition, not logically equivalent to a contingent truth.

Lemma 1 φ⇒ φ′ iff |= φ→ φ′

Proof.

|= φ→ φ′ iff
for all s, s |= φ→ φ′ iff
for all s, s |= ¬φ ∨ φ′ iff
for all s, s |= ¬(¬¬φ ∧ ¬φ′) iff

115

116 APPENDIX A. PROOFS

for all s, not s |= ¬¬φ ∧ ¬φ′ iff
for all s, not (s |= ¬¬φ and s |= ¬φ′) iff
for all s, not (not not s |= φ and not s |= φ′) iff
for all s, not (s |= φ and not s |= φ′) iff
for all s, not s |= φ or not not s |= φ′ iff
for all s, not s |= φ or s |= φ′ iff
for all s, if s |= φ then s |= φ′ iff
φ⇒ φ′

Proposition 5 |= Pa(φ→ φ′)→ (Pa(φ)→ Pa(φ′))

Proof.

1. s |= Pa(φ→ φ′) hyp.
2. s |= Pa(φ) hyp.
3. s |= ∃m(m proofFor (φ→ φ′) ∧ a k m) 1
4. there is M ∈M s.t. s |= M proofFor (φ→ φ′) ∧ a k M 3
5. M ∈M and s |= M proofFor (φ→ φ′) ∧ a k M hyp.
6. s |= ∃m(m proofFor (φ) ∧ a k m) 2
7. there is M ∈M s.t. s |= M proofFor (φ) ∧ a k M 6
8. M ′ ∈M and s |= M ′ proofFor (φ) ∧ a k M ′ hyp.
9. s |= M proofFor (φ→ φ′) and s |= a k M 5

10. s |= ∀(v : AAdv)(v k M B Kv(φ→ φ′)) 9
11. for all v ∈ AEve, s |= v k M B Kv(φ→ φ′) 10
12. s |= M ′ proofFor (φ) and s |= a k M ′ 8
13. s |= ∀(v : AAdv)(v k M ′ B Kv(φ)) 12
14. for all v ∈ AEve, s |= v k M ′ B Kv(φ) 13
15. v ∈ AEve hyp.
16. s′ |= v k (M,M ′) hyp.
17. s′ |= v k M 16, property of k

18. s |= v k M B Kv(φ→ φ′) 11, 15
19. for all s′, if s′ |= v k M then s′ ◦ s |= Kv(φ→ φ′) 18
20. if s′ |= v k M then s′ ◦ s |= Kv(φ→ φ′) 19
21. s′ ◦ s |= Kv(φ→ φ′) 17, 20
22. s′ |= v k M ′ 16, property of k

23. s |= v k M ′ B Kv(φ) 14, 15
24. for all s′, if s′ |= v k M ′ then s′ ◦ s |= Kv(φ) 23
25. if s′ |= v k M ′ then s′ ◦ s |= Kv(φ) 24
26. s′ ◦ s |= Kv(φ) 22, 25
27. s′ ◦ s |= Kv(φ′) 21, 26, property of K

28. if s′ |= v k (M,M ′) then s′ ◦ s |= Kv(φ′) 16, 27

117

29. for all s′, if s′ |= v k (M,M ′) then s′ ◦ s |= Kv(φ′) 28
30. s |= v k (M,M ′) B Kv(φ′) 29
31. if v ∈ AEve then s |= v k (M,M ′) B Kv(φ′) 15, 30
32. for all v ∈ AEve, s |= v k (M,M ′) B Kv(φ′) 31
33. s |= ∀(v : AAdv)(v k (M,M ′) B Kv(φ′)) 32
34. s |= (M,M ′) proofFor φ′ 33
35. s |= a k (M,M ′) 9, 12, property of k

36. s |= (M,M ′) proofFor φ′ and s |= a k (M,M ′) 34, 35
37. s |= (M,M ′) proofFor φ′ ∧ a k (M,M ′) 36
38. there is M ′′ ∈M s.t. s |= M ′′ proofFor φ′ ∧ a k M ′′ 37
39. s |= ∃m(m proofFor φ′ ∧ a k m) 38
40. s |= Pa(φ′) 39
41. s |= Pa(φ′) 7, 40
42. s |= Pa(φ′) 4, 41
43. if s |= Pa(φ) then s |= Pa(φ′) 2, 42
44. s |= Pa(φ)→ Pa(φ′) 43
45. if s |= Pa(φ→ φ′) then s |= Pa(φ)→ Pa(φ′) 1, 44
46. for all s, if s |= Pa(φ→ φ′) then s |= Pa(φ)→ Pa(φ′) 45
47. Pa(φ→ φ′)⇒ Pa(φ)→ Pa(φ′) 46, Definition 8
48. |= Pa(φ→ φ′)→ (Pa(φ)→ Pa(φ′)) 47, Lemma 1

Proposition 6 |= Pa(φ)→ Ka(φ)

Proof.

1. s |= Pa(φ) hyp.
2. s |= ∃m(m proofFor φ ∧ a k m) 1
3. there is M ∈M s.t. s |= M proofFor φ ∧ a k M 2
4. M ∈M and s |= M proofFor φ ∧ a k M hyp.
5. s |= M proofFor φ and s |= a k M 4
6. s |= ∀(v : AAdv)(v k M B Kv(φ)) 5
7. for all v ∈ AEve, s |= v k M B Kv(φ) 6
8. s |= a k M B Ka(φ) 7
9. for all s′, if s′ |= a k M then s′ ◦ s |= Ka(φ) 8

10. if s |= a k M then s ◦ s |= Ka(φ) 9
11. s ◦ s |= Ka(φ) 5, 10
12. s |= Ka(φ) 111

13. s |= Ka(φ) 3, 12
14. if s |= Pa(φ) then s |= Ka(φ) 1, 13

1◦ is supposed to preserve uniqueness of process terms and of protocol events in protocol
histories, i.e., ◦ is supposed to be idempotent

118 APPENDIX A. PROOFS

15. for all s, if s |= Pa(φ) then s |= Ka(φ) 14
16. Pa(φ)⇒ Ka(φ) 15, Definition 8
17. |= Pa(φ)→ Ka(φ) 16, Lemma 1

Proposition 7 |= Pa(φ)→ φ

Proof.

1. |= Pa(φ)→ Ka(φ) Proposition 6
2. |= Ka(φ)→ φ property of K

3. |= Pa(φ)→ φ 1, 2

Proposition 8 |= Pa(φ)→ Pa(Pa(φ))

Proof.

1. s |= Pa(φ) hyp.
2. s |= ∃m(m proofFor φ ∧ a k m) 1
3. there is M ∈M s.t. s |= M proofFor φ ∧ a k M 2
4. M ∈M and s |= M proofFor φ and s |= a k M 3
5. v ∈ AEve hyp.
6. s′ |= v k M hyp.
7. s′ ◦ s |= v k M 6
8. s′ ◦ s |= Kv(a k M) 4, 7, definition of K

9. s′ ◦ s |= Kv(M proofFor φ) 4, 7
10. s′ ◦ s |= Kv(Pa(φ)) 8, 9
11. if s′ |= v k M then s′ ◦ s |= Kv(Pa(φ)) 6, 10
12. for all s′, if s′ |= v k M then s′ ◦ s |= Kv(Pa(φ)) 11
13. s |= v k M B Kv(Pa(φ)) 12
14. if v ∈ AEve then s |= v k M B Kv(Pa(φ)) 5, 13
15. for all v ∈ AEve, s |= v k M B Kv(Pa(φ)) 14
16. s |= ∀(v : AAdv)(v k M B Kv(Pa(φ))) 15
17. s |= M proofFor Pa(φ) and s |= a k M 4, 16
18. there is M ∈M s.t. s |= M proofFor Pa(φ) ∧ a k M 17
19. s |= ∃m(m proofFor Pa(φ) ∧ a k m) 18
20. s |= Pa(Pa(φ)) 19
21. s |= Pa(Pa(φ)) 3, 20
22. if s |= Pa(φ) then s |= Pa(Pa(φ)) 1, 21
23. for all s, if s |= Pa(φ) then s |= Pa(Pa(φ)) 22
24. Pa(φ)⇒ Pa(Pa(φ)) 23, Definition 8
25. |= Pa(φ)→ Pa(Pa(φ)) 24, Lemma 1

119

Proposition 9
|= φ

|= a k M → Pa(φ)
M is a tuple of the key values in φ

Proof.

1. |= φ and M is a tuple of the key values in φ hyp.
2. s |= a k M hyp.
3. v ∈ AEve hyp.
4. s′ |= v k M hyp.
5. s′ ◦ s |= v k M 4
6. s′ ◦ s |= Kv(φ) 1, 5, epistemic necessitation
7. if s′ |= v k M then s′ ◦ s |= Kv(φ) 4, 6
8. for all s′, if s′ |= v k M then s′ ◦ s |= Kv(φ) 7
9. s |= v k M B Kv(φ) 8

10. if v ∈ AEve then s |= v k M B Kv(φ) 3, 9
11. for all v ∈ AEve, s |= v k M B Kv(φ) 10
12. s |= ∀(v : AAdv)(v k M B Kv(φ)) 11
13. s |= M proofFor φ and s |= a k M 2, 12
14. there is M ∈M s.t. s |= M proofFor φ ∧ a k M 13
15. s |= ∃m(m proofFor φ ∧ a k m) 14
16. s |= Pa(φ) 15
17. if s |= a k M then s |= Pa(φ) 2, 16
18. for all s, if s |= a k M then s |= Pa(φ) 17
19. a k M ⇒ Pa(φ) 18, Definition 8
20. |= a k M → Pa(φ) 19, Lemma 1

Proof of Theorem 3

1. ∅ 6= JMKs
a ⊂ F/≡: ∅ 6= JMKs

a because [>] ∈ JMKs
a due to |= Ka(>) (and

also [a k M] ∈ JMKs
a due to |= a k M B Ka(a k M)); and JMKs

a ⊂ F/≡
because [⊥] ∈ F/≡, but [⊥] 6∈ JMKs

a due to 6|= Ka(⊥).

2. (a) if [φ], [φ′] ∈ JMKs
a then [φ] ∧ [φ′] ∈ JMKs

a:
1 [φ] ∈ JMKs

a and [φ′] ∈ JMKs
a hyp.

2 s |= a k M B Ka(φ) and s |= a k M B Ka(φ′) 1
3 for all s′, if s′ |= a k M then s′ ◦ s |= Ka(φ) and

for all s′, if s′ |= a k M then s′ ◦ s |= Ka(φ′) 2
4 for all s′, (if s′ |= a k M then s′ ◦ s |= Ka(φ)) and

(if s′ |= a k M then s′ ◦ s |= Ka(φ′)) 3

5 for all s′, if s′ |= a k M then
(

s′ ◦ s |= Ka(φ) and
s′ ◦ s |= Ka(φ′)

)
4

6 for all s′, if s′ |= a k M then s′ ◦ s |= Ka(φ) ∧ Ka(φ′) 5
7 |= (Ka(φ) ∧ Ka(φ′))→ Ka(φ ∧ φ′) property of Ka

120 APPENDIX A. PROOFS

8 for all s′, if s′ |= a k M then s′ ◦ s |= Ka(φ ∧ φ′) 6, 7
9 s |= a k M B Ka(φ ∧ φ′) 8

10 [φ] ∧ [φ′] ∈ JMKs
a 9

(b) if [φ] ∈ JMKs
a and [φ′] ∈ F/≡ and φ ≤ φ′ then [φ′] ∈ JMKs

a:
1 [φ] ∈ JMKs

a and [φ′] ∈ F/≡ and φ ≤ φ′ hyp.
2 s |= a k M B Ka(φ) and φ⇒ φ′ and keys(φ′) ⊆ keys(φ) 1
3 for all s′, if s′ |= a k M then s′ ◦ s |= Ka(φ) 2
4 φ⇒ φ′ iff |= φ→ φ′ Lemma
5 |= φ→ φ′ 2, 4
6 if |= φ→ φ′ then |= a k K → Ka(φ→ φ′) where

K designates a tuple built from keys(φ→ φ′) prop. of Ka

7 |= a k K → Ka(φ→ φ′) 5, 6
8 |= Ka(φ)→ a k K ′ were

K ′ designates a tuple built from keys(φ) property of Ka

9 s′ |= a k M hyp.
10 s′ ◦ s |= Ka(φ) 3, 9
11 s′ ◦ s |= a k K ′ 8, 10
12 s′ ◦ s |= a k K 2, 11(, property of k)
13 s′ ◦ s |= Ka(φ→ φ′) 7, 12
14 |= Ka(φ→ φ′)→ (Ka(φ)→ Ka(φ′)) property of Ka

15 s′ ◦ s |= Ka(φ)→ Ka(φ′) 13, 14
16 s′ ◦ s |= Ka(φ′) 10, 15
17 for all s′, if s′ |= a k M then s′ ◦ s |= Ka(φ′) 9, 16
18 s |= a k M B Ka(φ′) 17
19 [φ′] ∈ JMKs

a 18

3. if [φ] ∨ [φ′] ∈ JMKs
a and [φ] ∨ [φ′′] ∈ JMKs

a then [φ] ∨ ([φ′] ∧ [φ′′]) ∈ JMKs
a:

1 [φ] ∨ [φ′] ∈ JMKs
a and [φ] ∨ [φ′′] ∈ JMKs

a hyp.
2 s |= a k M B Ka(φ ∨ φ′) and s |= a k M B Ka(φ ∨ φ′′) 1
3 for all s′, if s′ |= a k M then s′ ◦ s |= Ka(φ ∨ φ′) and

for all s′, if s′ |= a k M then s′ ◦ s |= Ka(φ ∨ φ′′) 2
4 s′ |= a k M hyp.
5 s′ ◦ s |= Ka(φ ∨ φ′) and s′ ◦ s |= Ka(φ ∨ φ′′) 3, 4
6 s′ ◦ s |= Ka(φ ∨ φ′) ∧ Ka(φ ∨ φ′′) 5
7 |= (Ka(φ∨ φ′)∧Ka(φ∨ φ′′))→ Ka((φ∨ φ′)∧ (φ∨ φ′′))prop. Ka

8 s′ ◦ s |= Ka((φ ∨ φ′) ∧ (φ ∨ φ′′)) 6, 7
9 s′ ◦ s |= Ka(φ ∨ (φ′ ∧ φ′′)) 8

10 for all s′, if s′ |= a k M then s′ ◦ s |= Ka(φ ∨ (φ′ ∧ φ′′)) 4, 9
11 s |= a k M B Ka(φ ∨ (φ′ ∧ φ′′)) 10
12 [φ] ∨ ([φ′] ∧ [φ′′])] ∈ JMKs

a 11

121

Proof of Theorem 4 Analogous to the proof of Theorem 3 because that proof
only relies on S4 (adapted to the cryptographic setting), not full S5 (adapted
to the cryptographic setting), and provability is about S4.

Proof of Proposition 3

1. JMKs
Pa
⊂ JMKs

a: because |= Pa(φ) → Ka(φ) (cf. Proposition 6), but 6|=
Ka(φ)→ Pa(φ)

2. there is an order-embedding e : JMKs
Pa

↪→ JMKs
a: take e := idJMKs

a
〈JMKs

Pa
〉,

i.e., the restriction to JMKs
Pa

of the identity on JMKs
a.

Proof of Theorem 5

JsKa = Js′Ka iff

T

 ⋃
M ∈ M

s |= a k M

JMKs
a

 = T

 ⋃
M ∈ M

s′ |= a k M

JMKs′

a

 iff

⋃
M ∈ M

s |= a k M

JMKs
a =

⋃
M ∈ M

s′ |= a k M

JMKs′

a iff

⋃
M ∈ M

s |= a k M

{ [φ] | φ ∈ F ; s |= a k M B Ka(φ) } =

⋃
M ∈ M

s′ |= a k M

{ [φ] | φ ∈ F ; s′ |= a k M B Ka(φ) } iff

{ [φ] | M ∈M ; s |= a k M ; φ ∈ F ; s |= a k M B Ka(φ) } =
{ [φ] | M ∈M ; s′ |= a k M ; φ ∈ F ; s′ |= a k M B Ka(φ) } iff(

[for all M ∈M, s |= a k M ; for all φ ∈ F , s |= a k M B Ka(φ)] iff
[for all M ∈M, s′ |= a k M ; for all φ ∈ F , s′ |= a k M B Ka(φ)]

)
iff(

[for all M ∈M, s |= a k M ; for all φ ∈ F , s |= Ka(φ)] iff
[for all M ∈M, s′ |= a k M ; for all φ ∈ F , s′ |= Ka(φ)]

)
iff(

[for all M ∈M, s |= Ka(a k M); for all φ ∈ F , s |= Ka(φ)] iff
[for all M ∈M, s′ |= Ka(a k M); for all φ ∈ F , s′ |= Ka(φ)]

)
iff(

for all φ ∈ F , s |= Ka(φ) iff
for all φ ∈ F , s′ |= Ka(φ)

)
iff

[for all φ ∈ F , s |= Ka(φ) iff s′ |= Ka(φ)]

Proof of Theorem 6

1. the map φ 7→ ©−φ (a) order-embeds JsKn
a in JsKn+1

a , and (b) is order-
continuous:

(a) φ ≤ φ′ iff ©−φ ≤ ©−φ′ because |= Ka(φ)↔©+Ka(©−φ)

122 APPENDIX A. PROOFS

(b) the map φ 7→ ©−φ is order-continuous because it is order-embedding
(thus order-preserving) and JsKn

a , being topped, satisfies the so-called
ascending chain condition [DP02, Page 148]

where ©− designates the previous-time and ©+ the next-time operator of
CPL from linear temporal logic [MP84].

2. JsKa, JsKn
a , and JsK∗a are topped algebraic

⋂
-structures because being (di-

rected) unions of filters they are topped, and closed under intersection and
directed unions.

3. JsK, JsKn, and JsK∗ are pre-CPOs because they are disjoint (and thus lack-
ing a least element) unions of CPOs.

Slogan 22 Proves should be written like programs — structured.

Appendix B

Specification Library
(Glossary)

Classical propositional and first-order operators

> := Eve : Adv true

⊥ := ¬> false

φ ∨ φ′ := ¬(¬φ ∧ ¬φ′) φ or φ′

φ→ φ′ := ¬φ ∨ φ′ if φ then φ′

φ↔ φ′ := (φ→ φ′) ∧ (φ′ → φ) φ if and only if φ′

∃v(φ) := ¬∀v(¬φ) there is v s.t. φ

∀(v : θ)(φ) := ∀v(v : θ → φ)

∃(v : θ)(φ) := ∃v(v : θ ∧ φ)

Modal operators

Fφ := ¬Pφ it is forbidden that φ

φ ≡ φ′ := (φ ⊇ φ′) ∧ (φ′ ⊇ φ) φ is epistemically equivalent to φ′

φ⊕ φ′ := ¬(¬φ⊗ ¬φ′) φ disjunctively separates φ′

�φ := φ⊕⊥ everywhere φ

�φ := ¬�¬φ somewhere φ

φ′ I φ := ¬(φ′ B ¬φ) assert φ′ guarantee φ

∗ := ©−⊥ in the beginning

† := ©+⊥ in the end

�φ := φ S⊥ so far φ

�−φ := ¬� ¬φ once φ

1.φ := φ ∧ ¬©− �−φ for the first time φ

�φ := φ U⊥ henceforth φ

�φ := ¬� ¬φ eventually φ

φ ≤ φ′ := (φ ∧ �φ′) ∨ (φ′ ∧ �−φ) φ before φ′

φ φ′ := (φ↔ �φ
′) ∧ (φ′ ↔ �−φ) φ correlates φ′

123

124 APPENDIX B. SPECIFICATION LIBRARY (GLOSSARY)

Relational symbols

F = F ′ := F 4 F ′ ∧ F ′ 4 F F is equal to F ′

F ≺ F ′ := F = F ′ ∧ ¬F 4 F ′ F is a strict subterm of F ′

a h F := ∃v(F 4 v ∧ a k v) a has/possesses F

a tk F := a h F ∧ ¬ a k F a tacitly knows F

F : ∅ := ⊥
F : H[θ] := ∃(v : θ)(F = dve)
F : SCF ′ [θ] := ∃(v : θ)(F = {|v|}F ′)

F : ACp+ [θ] := ∃(v : θ)(F = {|v|}+
p+)

F : Sp[θ] := ∃(v : θ)(F = {|v|}−p)

F : T[θ, θ′] := ∃(v : θ)∃(v′ : θ′)(F = (v, v′))

F : θ ∪ θ′ := F : θ ∨ F : θ′

F : θ ∩ θ′ := F : θ ∧ F : θ′

F : θ \ θ′ := F : θ ∧ ¬F : θ′

F : M := >
F : SC[θ] := ∃v(F : SCv[θ])

F : AC[θ] := ∃(v : K+)(F : ACv[θ])

F : C[θ] := F : SC[θ] ∪ AC[θ]

F : S[θ] := ∃(v : K−)(F : Sv[θ])

θ v θ′ := ∀(v : θ)(v : θ′) θ is a subtype of θ′

θ = θ′ := θ v θ′ ∧ θ′ v θ

θ @ θ′ := θ v θ′ ∧ θ′ 6= θ

F K F ′ := ∃v({|v|}F 4 F ′)

p+ K+ F := ∃v({|v|}+
p+ 4 F)

p K− F := ∃v({|v|}−p 4 F)

F K∗ F ′ := F K F ′ ∨ F K+ F ′ ∨ F K− F ′ F is operational in F ′

F J F ′ := ∃v∃v′(F 4 v ∧ {|v|}v′ 4 F ′)

F J+ F ′ := ∃v∃(p+ : K+)(F 4 v ∧ {|v|}+
p+ 4 F ′)

F J− F ′ := ∃v∃(p : K−)(F 4 v ∧ {|v|}−p 4 F ′)

F J∗ F ′ := F J F ′ ∨ F J+ F ′ ∨ F J− F ′ F is guarded in F ′

k sk a := ∃b∃o(b � k.o ∧ a 4 o) k is a symmetric key for a

k sk1 a := k sk a ∧ k : K1 k is a session/short-term key for a

k sk∞ a := k sk a ∧ k : K∞ k is a long-term key for a

p prk a := ∃b∃o(b � p.o ∧ a 4 o) p is a private key for a

n puk a := ∃v(v+ = n ∧ v prk a) n is a public key for a

n ck a := n sk a ∨ n prk a n is a confidential key for a

Appendix C

Bibliography

[AB05] M. Abadi and B. Blanchet. Analyzing security protocols with se-
crecy types and logic programs. Journal of the ACM, 52(1), 2005.
3.1.2.2

[Aba00] M. Abadi. Security protocols and their properties. In Foundations
of Secure Computation. IOS Press, 2000. 3.1.2.2

[ABV01] R. Accorsi, D. Basin, and L. Viganò. Towards an awareness-based
semantics for security protocol analysis. In Proceedings of the Post-
CAV Workshop on Logical Aspects of Cryptographic Protocol Veri-
fication, 2001. 3.1.2.2

[ADM03] K. Adi, M. Debbabi, and M. Mejri. A new logic for electronic com-
merce protocols. Theoretical Computer Science, 291(3), 2003. 3.1.2.2

[AF01] M. Abadi and C. Fournet. Mobile values, new names, and secure
communication. In Proceedings of the ACM Symposium on Princi-
ples of Programming Languages, 2001. 3.1.2.2

[AG99] M. Abadi and A. D. Gordon. A calculus for cryptographic proto-
cols: The Spi-calculus. Information and Computation, 148(1), 1999.
3.1.2.2

[AM01] L. C. Aiello and F. Massacci. Verifying security protocols as plan-
ning in logic programming. ACM Transactions on Computational
Logic, 2(4), 2001. 3.1.2.2

[AN96a] M. Abadi and R. Needham. Prudent engineering practice for cryp-
tographic protocols. IEEE Transactions on Software Engineering,
22(1), 1996. 4.3, 3, 1

[AN96b] R. Anderson and R. Needham. Programming Satan’s computer. In
Computer Science Today: Recent Trends and Developments, volume
1000 of LNCS. Springer-Verlag, 1996. 3.1.1, 3.1.2.2

[AN05] S. Artemov and E. Nogina. Introducing justification into epistemic
logic. Journal of Logic and Computation, 15(6), 2005. 3.3.4

125

126 APPENDIX C. BIBLIOGRAPHY

[AR02] M. Abadi and Ph. Rogaway. Reconciling two views of cryptography
(the computational soundness of formal encryption). Journal of
Cryptology, 15(2), 2002. 4

[Art95] S. Artemov. Operational modal logic. Technical Report MSI 95-29,
Cornell University, 1995. 3.3.4

[Art01] S. Artemov. Explicit provability and constructive semantics. Bul-
letin of Symbolic Logic, 7(1), 2001. 3.3.4

[ASW00] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of
digital signatures. IEEE Journal on Selected Areas in Communica-
tions, 18(4), 2000. 3.3.4

[AT91] M. Abadi and M. R. Tuttle. A semantics for a logic of authen-
tication. In Proceedings of the ACM Symposium of Principles of
Distributed Computing, 1991. 3.2.3.4

[Bal01] A. Baltag. Logics for insecure communication. In Proceedings of the
Conference on Theoretical Aspects of Rationality and Knowledge,
2001. 3.1.2.2

[BAN90] M. Burrows, M. Abadi, and R. Needham. A logic of authentication.
ACM Transactions on Computer Systems, 8(1), 1990. 3.1.1, 3.1.2.2,
3.3

[Bar99] J. Barwise, editor. Handbook of Mathematical Logic. Elsevier, 1977
(1999). 2.4.1

[BC93] P. Bieber and F. Cuppens. Deontic Logic in Computer Science: Nor-
mative System Specification, chapter Expression of Confidentiality
Policies with Deontic Logic. John Wiley & Sons, 1993. 3.1.2.2,
3.1.2.3

[BD04] M. Bozzano and G. Delzanno. Automatic verification of secrecy
properties for linear logic specifications of cryptographic protocols.
Journal of Symbolic Computation, 38(5), 2004. 3.1.2.2

[BdRV01] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge
University Press, 2001. 6

[BEL05] L. Bozga, C. Ene, and Y. Lakhnech. A symbolic decision procedure
for cryptographic protocols with time stamps. The Journal of Logic
and Algebraic Programming, 65, 2005. 3.4.1, 4.2

[BGK06] J. Borgström, O. Grinchtein, and S. Kramer. Timed Calculus of
Cryptographic Communication. In Proceedings of the Workshop on
Formal Aspects in Security and Trust, 2006. 2.5.4

[BGPS00] M. Benerecetti, F. Giunchiglia, M. Panti, and L. Spalazzi. A logic
of belief and a model checking algorithm for security protocols. In
Proceedings of the Conference on Formal Description Techniques for
Distributed Systems and Communication Protocols, 2000. 3.1.2.2

127

[Bie90] P. Bieber. A logic of communication in hostile environment. In
Proceedings of the IEEE Computer Security Foundations Workshop,
1990. 3.1.2.2

[BKN06] J. Borgström, S. Kramer, and U. Nestmann. Calculus of Cryp-
tographic Communication. In Proceedings of the LICS-Affiliated
Workshop on Foundations of Computer Security and Automated
Reasoning for Security Protocol Analysis, 2006. 2.5.4, 4.1.1

[BM03] C. Boyd and A. Mathuria. Protocols for Authentication and Key
Establishment. Springer, 2003. 2.4.2, 3.1.2.2, 3.3.3, 4.3.1

[BMN00] P. Bellini, R. Mattolini, and P. Nesi. Temporal logics for real-time
system specification. ACM Computing Surveys, 32(1), 2000. 3.4.1

[BPS01] J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of
Process Algebra. Elsevier, 2001. 3.1.2.3

[BPW03] M. Backes, B. Pfitzmann, and M. Waidner. A universally compos-
able cryptographic library. In Proceedings of the ACM Conference
on Computer and Communication Security, 2003. 3.1.2.3

[BvBW07] P. Blackburn, J. van Benthem, and F. Wolter, editors. Handbook of
Modal Logic, volume 3 of Studies in Logic and Practical Reasoning.
Elsevier, 2007. 2.3.2.1, 2.4.1, 3.2.3.1, 3.3.4, 26

[Can01] R. Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In Proceedings of the IEEE Symposium on
Foundations of Computer Science, 2001. 3.1.2.3, 28

[CD05a] M. Cohen and M. Dam. A completeness result for BAN logic. In Pro-
ceedings of the Workshop on Methods for Modalities, 2005. 3.2.3.4

[CD05b] M. Cohen and M. Dam. Logical omniscience in the semantics of
BAN logic. In Proceedings of the LICS-affiliated Workshop on the
Foundations of Computer Security, 2005. 3.2.3.4

[CGP99] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model Checking.
MIT Press, 1999. 3.1.2.3

[CJM98] E. Clarke, S. Jha, and W. Marrero. A machine checkable logic of
knowledge for specifying security properties of electronic commerce
protocols. In Proceedings of the LICS-Affiliated Workshop on For-
mal Methods & Security Protocols, 1998. 3.1.2.2

[CKW07] V. Cortier, R. Küsters, and B. Warinschi. A cryptographic model
for branching time security properties — the case of contract signing
protocols. Technical report, ETH Zurich, 2007. 3.3.4

[CLC04] H. Comon-Lundh and V. Cortier. Security properties: two agents
are sufficient. Science of Computer Programming, 50(1–3), 2004.
2.4.2.3

[Coh03] E. Cohen. First-order verification of cryptographic protocols. Jour-
nal of Computer Security, 11(2), 2003. 3.1.2.2

128 APPENDIX C. BIBLIOGRAPHY

[CS97] T. Coffey and P. Saidha. Logic for verifying public-key crypto-
graphic protocols. In IEE Proceedings — Computers and Digital
Techniques, 1997. 3.1.2.2

[CVB05] C. Caleiro, L. Viganò, and D. Basin. Relating strand spaces and dis-
tributed temporal logic for security protocol analysis. Logic Journal
of the Interest Group in Pure and Applied Logic, 13, 2005. 3.1.2.2,
3.2.3.5

[Dam89] M. F. Dam. Relevance Logic and Concurrent Composition. PhD
thesis, University of Edinburgh, 1989. 3.1.2.3

[DDM+05] A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and M. Turu-
ani. Probabilistic polynomial-time semantics for a protocol security
logic. In Proceedings of the EATCS International Colloquium on
Automata, Languages and Programming, 2005. 5.1, 5.1

[DDMP05] A. Datta, A. Derek, J.C. Mitchell, and D. Pavlovic. A derivation
system and compositional logic for security protocols. Journal of
Computer Security, 13, 2005. 5.1

[dG95] Ph. de Groote, editor. The Curry-Howard Isomorphism. Num-
ber 8 in Cahiers du centre de logique. Academia-Erasme, Louvain-
la-Neuve (Belgique), 1995. 3.3.4

[DGMF04] C. Dixon, M.-C. F. Gago, and W. van der Hoek M. Fisher. Using
temporal logics of knowledge in the formal verification of security
protocols. In Proceedings of the International Symposium on Tem-
poral Representation and Reasoning, 2004. 3.1.2.2

[Dij72] E. W. Dijkstra. The humble programmer. Communications of the
ACM, 15(10), 1972. 3.1.1

[DMP03] N. Durgin, J. C. Mitchell, and D. Pavlovic. A compositional logic
for proving security properties of protocols. Journal of Computer
Security, 11(4), 2003. 3.1.2.2, 5.1

[DP02] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 1990 (2002). 2, 4.3.2, 1b

[DY83] D. Dolev and A. C. Yao. On the security of public key protocols.
IEEE Transactions on Information Theory, 29(12), 1983. 1

[ES00] N. Evans and S. Schneider. Analysing time-dependent security prop-
erties in CSP using PVS. In Proceedings of the European Symposium
on Research in Computer Security, 2000. 3.4.1, 4.2, 4.2

[FHG99] F. J. Th. Fábrega, J. C. Herzog, and J. D. Guttman. Strand spaces:
proving security protocols correct. Journal of Computer Security,
7(2-3), 1999. 3.2.3.5

[FHJ02] U. Frendrup, H. Hüttel, and J. N. Jensen. Modal logics for cryp-
tographic processes. In Electronic Notes in Theoretical Computer
Science, volume 68, 2002. 3.1.2.2

129

[FHMV95] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning
about Knowledge. MIT Press, 1995. 3.1.2.3, 3

[Fit96] M. Fitting. First-Order Logic and Automated Theorem Proving.
Springer-Verlag, 1996. 3.1.2.3

[Gib04] R. F. Gibson, Jr., editor. Quintessence: Basic Readings from the
Philosophy of W. V. Quine. The Belknap Press of Harvard Univer-
sity Press, 2004. 1, 1, 2.1.3, 4

[GJM99] J. A. Garay, M. Jakobsson, and P. MacKenzie. Abuse-free optimistic
contract signing. In Proceedings of CRYPTO, 1999. 3.3.4

[GKWZ03] D.M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-
Dimensional Modal Logics: Theory and Applications. Elsevier, 2003.
6

[GL91] O. Grumberg and D. E. Long. Model checking and modular verifi-
cation. In Proceedings of CONCUR, 1991. 28

[GLL01] S. Gnesi, D. Latella, and G. Lenzini. A BRUTUS logic for the Spi-
Calculus. In Proceedings of the IFIP Workshop on Issues in the
Theory of Security, 2001. 3.1.2.2

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of
Computer and System Science, 28(2), 1984. 5.3.1, 1

[GM95] J. W. Gray and J. D. McLean. Using Temporal Logic to Specify and
Verify Cryptographic Protocols (progress report). In Proceedings of
the IEEE Computer Security Foundations Workshop, 1995. 3.1.2.2

[GM04] R. Gorrieri and F. Martinelli. A simple framework for real-time cryp-
tographic protocol analysis with compositional proof rules. Science
of Computer Programming, 50(1–3), 2004. 3.4.1, 4.2

[GMP92] J. Glasgow, G. Macewen, and P. Panangaden. A logic for reasoning
about security. ACM Transactions on Computer Systems, 10(3),
1992. 3.1.2.2

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity
of interactive proof systems. SIAM Journal on Computing, 18(1),
1989. 7

[Gol01] O. Goldreich. Foundations of Cryptography: Basic Tools. Cam-
bridge University Press, 2001. 1, 2.4.2, 3.1.2.1, 5.3.1, 2, 3, 4, 6

[Gol04] O. Goldreich. Foundations of Cryptography: Basic Applications.
Cambridge University Press, 2004. 2.4.2, 3.1.2.1, 5.3.2, 1, 2, 10

[Gol05] O. Goldreich. Foundations of Cryptography — A Primer. now Pub-
lishers Inc., 2005. 5.3.1, 3

[Gon92] L. Gong. A security risk of depending on synchronized clocks. ACM
SIGOPS Operating Systems Review, 26(1), 1992. 3.4.1

130 APPENDIX C. BIBLIOGRAPHY

[Gro92] A. J. Grove. Semantics for knowledge and communication. In Pro-
ceedings of the Conference on Principles of Knowledge Representa-
tion and Reasoning. Morgan Kaufmann, 1992. 4.3

[GSW06] D. Goldin, S. A. Smolka, and P. Wegner, editors. Interactive Com-
putation: The New Paradigm. Springer-Verlag, 2006. 3.2.2, 8

[Hal03] J. Halpern. Reasoning about Uncertainty. MIT Press, 2003. 5.1.1

[HJ04] Ch. Haack and A. Jeffrey. Pattern-matching Spi-calculus. In Pro-
ceedings of the Workshop on Formal Aspects in Security and Trust,
2004. 4.1.2

[HJ05] Ch. Haack and A. Jeffrey. Timed Spi-calculus with types for secrecy
and authenticity. In Proceedings of CONCUR, 2005. 3.4.1, 4.2

[HO02] J. Halpern and K. O’Neill. Secrecy in multi-agent systems. In
Proceedings of the IEEE Computer Security Foundations Workshop,
2002. 3.1.2.2, 3.3

[HS04a] M. R. Hansen and R. Sharp. Using interval logics for temporal
analysis of security protocols. In Proceedings of the ACM Workshop
on Formal Methods in Security Engineering, 2004. 3.4.1

[HS04b] D. Hughes and V. Shmatikov. Information hiding, anonymity and
privacy: a modular approach. Journal of Computer Security, 12,
2004. 11, 4.1.3

[IK06] R. Impagliazzo and B. M. Kapron. Logics for reasoning about cryp-
tographic constructions. Journal of Computer and Systems Sci-
ences, 72(2), 2006. 3.1.2.2, 5.1, 5.1

[Kil88] J. Kilian. Founding cryptography on oblivious transfer. In Proceed-
ings of the ACM Symposium on the Theory of Computation, 1988.
9

[KM99] M. Kudo and A. Mathuria. An extended logic for analyzing timed-
release public-key protocols. In Proceedings of the Conference on
Information, Communications and Signal Processing, 1999. 3.4.1

[KR04] V. Kuncak and M. Rinard. On spatial conjunction as second-order
logic. Technical Report 970, MIT CSAIL, 2004. 19

[Kra03] S. Kramer. A language and a notion of truth for cryptographic
properties, 2003. Short presentation at LICS. 2.5.4

[Kra04] S. Kramer. Cryptographic Protocol Logic. In Proceedings of the
LICS/ICALP-Affiliated Workshop on Foundations of Computer Se-
curity, 2004. 2.5.4

[Kra06a] S. Kramer. Logical abstractions for protocol engineering, 2006. pre-
sented at the Workshop on Models for Cryptographic Protocols.
2.5.4

131

[Kra06b] S. Kramer. Timed Cryptographic Protocol Logic, 2006. presented
at the Nordic Workshop on Programming Theory. 2.5.4

[Kra07a] S. Kramer. The meaning of a cryptographic message via hypothet-
ical knowledge and provability. In Proceedings of the Workshop on
Logic, Rationality and Interaction, 2007. 2.5.4

[Kra07b] S. Kramer. The meaning of a cryptographic message via hypothet-
ical knowledge and provability. In Proceedings of the Workshop on
Foundations of Computer Security and Automated Reasoning for
Security Protocol Analysis, 2007. 2.5.4

[Kraar] S. Kramer. Cryptographic Protocol Logic: Satisfaction for (timed)
Dolev-Yao cryptography. Journal of Logic and Algebraic Program-
ming, to appear. 2.5.4

[KS06] M. Kurkowski and M. Srebrny. A quantifier-free first-order knowl-
edge logic of authentication. Fundamenta Informaticæ, 72, 2006.
3.1.2.2

[KSW98] J. Kelsey, B. Schneier, and D. Wagner. Protocol interactions and the
chosen protocol attack. In Proceedings of the Workshop on Security
Protocols, 1998. 4

[LA05] G. Lowe and M. Auty. On a calculus for security protocol develop-
ment. Technical report, Oxford University, 2005. 3.1.2.2

[Lam05] L. Lamport. Real time is really simple. Technical Report MSR-TR-
2005-30, Microsoft Research, 2005. 3.4, 4.2, 5.1

[Low97] G. Lowe. A hierarchy of authentication specifications. In Proceedings
of the Computer Security Foundations Workshop, 1997. 3.3.5.1

[LV97] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity
and Its Applications. Springer-Verlag, second edition, 1997. 15, 17

[LW06] A. Lomuscio and B. Woźna. A complete and decidable security-
specialised logic and its application to the TESLA protocol. In Pro-
ceedings of the Conference on Autonomous Agents and Multiagent
Systems, 2006. 3.1.2.2

[McL99] J. McLean. Twenty years of formal methods. In Proceedings of the
IEEE Symposium on Security and Privacy, 1999. 3.1.1

[MDW94] J.-J. Ch. Meyer, F. P. M. Dignum, and R. J. Wieringa. The Para-
doxes of Deontic Logic Revisited: A Computer Science Perspec-
tive. Or: Should computer scientists be bothered by the concerns of
philosophers ? Technical Report UU-CS-1994-38, Utrecht Univer-
sity, 1994. 3.2.3.3

[Mea03] C. Meadows. Ordering from Satan’s menu: a survey of requirements
specification for formal analysis of cryptographic protocols. Science
of Computer Programming, 50(3–22), 2003. 3.1.1

132 APPENDIX C. BIBLIOGRAPHY

[Mil06] D. Miller. Representing and reasoning with operational semantics.
In Proceedings of the Joint International Conference on Automated
Reasoning, 2006. invited paper. 3.1.2.2

[Mos05] L. S. Moss. Mathematical Problems from Applied Logic I: Logics for
the XXIst Century, chapter Applied Logic: A Manifesto. Springer-
Verlag, 2005. 1

[MP84] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Con-
current Systems: Specification. Springer, 1984. 3.1.2.3, 3.1.2.3, 1

[MRST06] J. C. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A
probabilistic polynomial-time process calculus for the analysis of
cryptographic protocols. Theoretical Computer Science, 353(1–3),
2006. 3.1.2.2, 5.1

[MvOV96] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook
of Applied Cryptography. CRC Press, 1996. 2.4.2, 3.1.1, 3.1.2.1,
3.1.2.3, 3.3.2, 3.3.3, 5.3.2, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 24

[Nut97] D. Nute, editor. Defeasible Denotic Logic, volume 263 of Synthese
Library. Kluwer, 1997. 3.2.3.3

[Pau98] L. C. Paulson. The inductive approach to verifying cryptographic
protocols. Journal of Computer Security, 6(1), 1998. 3.1.2.2

[PR03] R. Parikh and R. Ramanujam. A knowledge based semantics of
messages. Journal of Logic, Language and Information, 12, 2003.
4.3, 4.3.1

[Rab81] M. O. Rabin. How to exchange secrets with oblivious transfer. Tech-
nical Report TR-81, Aiken Computation Lab, Harvard University,
1981. 9

[Riv90] R. L. Rivest. Cryptography. In Handbook of Theoretical Computer
Science, Volume A: Algorithms and Complexity. Elsevier, 1990. 2

[Rog04] Ph. Rogaway. On the role of definitions in and beyond cryptography.
In Proceedings of the Asian Computing Science Conference, 2004.
2, 3.1.1, 5.3

[RSG+00] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. The
Modelling and Analysis of Security Protocols: the CSP Approach.
Addison-Wesley, 2000. 3.1.2.2

[Sch99] S. Schneider. Concurrent and Real-Time Systems. Wiley, 1999. 3.4.1

[Sel01] P. Selinger. Models for an adversary-centric protocol logic. In Pro-
ceedings of the Post-CAV Workshop on Logical Aspects of Crypto-
graphic Protocol Verification, 2001. 3.1.2.2

[Sho04] V. Shoup. Sequences of games: a tool for taming complexity in
security proofs. Cryptology ePrint Archive, Report 2004/332, 2004.
http://eprint.iacr.org/. 2.1.1

http://eprint.iacr.org/

133

[Sla06] B. H. Slater. Epsilon calculi. Logic Journal of the Interest Group in
Pure and Applied Logic, 14(4), 2006. 2

[SP03] E. Sumii and B. C. Pierce. Logical relations for encryption. Journal
of Computer Security, 11(4), 2003. 3.1.2.2

[SS99] P. F. Syverson and S. G. Stubblebine. Group principals and the
formalization of anonymity. In Proceedings of the World Congress
On Formal Methods In The Development Of Computing Systems,
1999. 3.1.2.2, 3.3

[SvO96] P. F. Syverson and P. C. van Oorschot. A unified cryptographic pro-
tocol logic. CHACS 5540-227, Naval Research Laboratory, Wash-
ington D.C., USA, 1996. 3.1.2.2

[Var01] M. Y. Vardi. Branching vs. linear time: Final showdown. In Proceed-
ings of the International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer-Verlag, 2001. 3.3.4

[Vau05] S. Vaudenay. A Classical Introduction to Cryptography: Applcia-
tions to Communications Security. Springer, 2005. 6

[vL90] J. van Leeuwen, editor. Handbook of Theoretical Computer Science,
volume B: Formal Models and Semantics. Elsevier, 1990. 2.4.1

[vT05] H. C. A. van Tilborg, editor. Encyclopedia of Cryptography and
Security. Springer, 2005. 2.4.2

[Wan04] F. Wang. Formal verification of timed systems: A survey and per-
spective. Proceedings of the IEEE, 92(8), 2004. 3.4.1, 3.4.1, 3.4.1

[Wit75] L. Wittgenstein. Tractatus Logico-Philosophicus. Routledge, En-
glish edition, 1961, 1975. 4.3.2

[Zah03] J. Zahnd. Logique élémentaire. Cours de base pour informaticiens.
PPUR, 1998 (2003). 1

[ZH04] C. Zhou and M. R. Hansen. Duration Calculus: A Formal Approach
to Real-Time Systems. Springer-Verlag, 2004. 3.4.3

[ZHR91] C. Zhou, C. A. R. Hoare, and A. P. Ravn. A calculus of durations.
Information Processing Letters, 40(5), 1991. 3.4.3

[ZV01] Y. Zhang and V. Varadharajan. A logic for modeling the dynamics of
beliefs in cryptographic protocols. In Proceedings of the Australasian
Conference on Computer Science, 2001. 3.1.2.2

Appendix D

Index

algorithm
cryptographic, 96, 97
distributed, 39
feasible, 94, 100

authentication-related affairs, 34, 60,
62, 113

entity authentication, 34, 61, 62,
65, 113

strongly mutual, 34, 62, 113
unilateral, 34, 61, 113
weakly mutual, 34, 61, 65, 66,

113
key agreement, 34, 61, 62, 113

acknowledged, 34, 61, 65, 66, 113
unacknowledged, 34, 61, 113

key authentication, 34, 60, 113
explicit, 34, 60, 113
implicit, 34, 60, 113

key confirmation, 34, 60, 113
key transport, 34, 61, 62, 113

acknowledged, 34, 61, 113
unacknowledged, 34, 61, 73, 113

message authentication, 34, 42, 61,
62, 82, 86, 113

message authorship, 34, 61, 113
message integrity, 34, 60, 113

Carnap, Rudolf, 94
coding theory, 33
commitment-related affairs, 34, 35, 62,

111, 113
contract signing, 34, 62, 63, 113

abuse-freeness, 34, 63, 113
accountability, 34, 63, 113
completion, 34, 62, 113

fairness, 62
optimism, 34, 62, 113

non-repudiation, 34, 42, 62, 113
communication

channel
private, 47
public, 47, 48

delay, 84
model

agent-based, 78
channel-based, 78
message passing, 39
shared memory, 39

out-of-band, 66, 67, 75, 78, 112
dedicated links, 78
personal contact, 78, 90
trusted couriers, 78, 90

security, 5, 9, 24, 29, 30, 42
transmission medium

insecure, 45
unreliable, 45

complexity theory
computational, 27, 28, 33
decision problem, 28

(in)tractable, 33
descriptive, 27

compositionality-related affairs, 34, 64,
111, 113

attack scenario, 34, 65, 113
algebraic, 82, 86
logical, 65, 67, 68, 73, 75, 76

key separation, 34, 59, 64, 113
protocol correctness, see protocol

correctness
computation, 79

134

http://en.wikipedia.org/wiki/Rudolf_Carnap

135

cryptographic, 90, 112
delay, 84
interactive, 39, 45, 48, 90

history-dependency, 48
model

Turing machine, 27–29, 42, 95
oracle, 95
polynomial-time, 95, 98

deterministic, 100
probabilistic, 9, 93, 94, 100, 112,

113
unreliable, 45

computer
Murphy’s, 39
program

correctness, see program
correctness

flaw (bug), 39, 40, 43, 90
interactive, 64, 65
non-interactive, 64, 65
semantics, see program seman-

tics
size, 39, 40
structure, 40
testing, 43

programming, 39, 40
Satan’s, 39

confidentiality-related affairs, 34, 59, 62,
113

agent corruption, 34, 60, 111, 113
anonymity, 34, 60, 113
data derivation, 34, 60, 113
known-key attack, 34, 60, 113
non-interaction, 34, 60, 113
secrecy, 33, 34, 42, 54, 55, 60, 113

perfect forward, 34, 60, 113
shared secret, 34, 59, 61, 62, 113

cryptographic concepts, 24, 27–30, 34,
113

applied, 9, 35, 99, 103, 113
computational

indistinguishability, 9, 34, 52,
99, 100, 113

crypto system, 111
public-key, 45
shared-key, 45

cryptographic evidence, 34, 45, 48,
49, 61–63, 100–102, 113

cryptographic germ, 45
key, see cryptographic key

nonce, 45, 46, 90
cryptographic message, see cryp-

tographic message
cryptographic proof, see crypto-

graphic proof
electronic signature, 33, 45, 96

fair exchange, 62
fundamental, 9, 34, 99, 113
hard-core predicate, 9, 34, 99, 100,

113
multi-party computation, 101, 102
oblivious transfer, 103
one-way function, 9, 33, 34, 99,

100, 113
ease of computation, 100
hardness of inversion, 33, 100

proof of knowledge, 34, 102, 113
seed value (seed), 45
simulation paradigm, 102, 104
zero-knowledge, 9, 34, 99, 102, 111,

113
multi-prover, 103
standard, 102
with an honest verifier, 102

cryptographic key, 45, 53, 85, 89
asymmetric, 33

private, 46, 79
public, 46, 52, 79

confidential, 46, 50
length, 71, 95
life-cycle, see key life-cycle
ownership, 47, 49, 80, 85

tag, 78, 80, 85, 112
store, 66, 80
symmetric, 33, 46, 60

compound, 46
timed, 9, 68, 85

cryptographic message, 32, 34, 39, 45–
47, 50, 52, 55, 78–80, 84, 86,
87, 89, 90, 92, 94, 99, 112

analysis, 34, 48, 49
cryptographic parsing, 50, 52,

57, 58, 63
atomic

abstract, 46, 52, 57, 85, 96
clock value, 70
name, 45, 46, 48, 52, 78–80, 83,

85
time value (stamp), 9, 68, 70,

84–87

136 APPENDIX D. INDEX

compound
encrypted (cipher), 45–47, 52
hashed (hash), 45–47, 96
signed, 46, 47, 79
tuple, 46, 47

content, 45, 88, 90
context-free, 89, 90
context-sensitive, 89, 90
informational, 9, 90, 112

epistemically independent, 103
evaluation, 71, 95
meaning, see message meaning
recipient, 46
representation, 46

bit-string, 31, 46, 71, 94, 96
sender, 46
structure, 44, 46, 48

obfuscation, 52
synthesis, 34, 48, 49
type, 46, 47

atomic, 48
compound, 48
purpose, 48
structure, 47

cryptographic operator, 5, 9, 29–31, 33,
40, 46, 93, 99, 100

construction, 40
encryption scheme, see encryption

scheme
hash scheme, see hash scheme
property, 57

algebraic, 50
signature scheme, see signature

scheme
cryptographic proof, 34, 62–64, 89, 98,

100, 101, 113
interactive, 9, 34, 99, 101, 102, 113

quotient (compositional), 103
role

prover, 102
verifier, 102

cryptographic protocol, 5, 9, 24, 29–
34, 39–41, 44–46, 55, 63, 69,
77, 78, 82, 90, 92, 93, 99, 112,
113

action, see protocol action
agent, see protocol agent
construction, 40

composition, 43, 45

correctness, see protocol correct-
ness

engineering, see protocol
engineering

event, see protocol event
execution, 31, 32, 45, 55, 57, 77–

80, 84, 90, 92, 95, 112
constraint, 112
context, 45, 65
notion of, 49, 70
path, 31, 49, 77, 82
space, 45
state, see protocol state

history, see protocol history
information content, 9, 77, 92, 112
key establishment, 45

key agreement, 45
key transport, 45, 73

meaning, 9, 31, 77, 87, 90–92, 112
model, see protocol model
narration, 41, 65, 66, 73
property

attack, see protocol attack
behaviour, 41
encoding, 41, 82
invariant, 9, 77, 92
liveness, 62
requirement, 40–45, 65, 82, 99
safety, 9, 62, 77, 92

purpose, 39, 45, 90
refinement, 9, 77
session, 58, 78–80

identifier, 46, 79
interleaved, 67, 75

sub-protocol, 78
template, 66, 73–75

cryptographic state of affairs, 34, 39,
44, 59, 60, 62, 72, 90, 92, 95,
111, 113

authentication, see
authentication-related affairs

commitment, see
commitment-related affairs

compositionality, see
compositionality-related
affairs

confidentiality, see
confidentiality-related affairs

trust, see trust-related affairs

137

cryptography, 5, 9, 23, 24, 29, 32, 41,
45, 64, 90

aspects, 5, 9
communication, 5, 9, 111
storage, 5, 9

conception, 43
complexity-theoretic (modern),

27–30, 32, 33, 93–95
Dolev-Yao, 30, 31, 52, 57, 58,

93, 94
information-theoretic (classical),

30, 33
concepts, see cryptographic con-

cepts
concerns, 28, 33, 42

confidentiality, 46
discreetness, 46
discretion, 46
privacy, 46
secrecy, 46
trust, 45

constructions, 28, 93
operators, see cryptographic

operator
protocols, see cryptographic

protocol
Curry, Haskell Brooks, 63
Curry-Howard isomorphism, 63

Dijkstra, Edsger Wybe, 43

encryption scheme
asymmetric, 33, 96
attack, 9, 35, 99, 104, 113

adaptive chosen-ciphertext, 35,
106, 113

adaptive chosen-plaintext, 35, 105,
113

chosen-ciphertext, 35, 106, 113
chosen-plaintext, 35, 105, 113
ciphertext-only, 35, 70, 71, 104,

113
duration of, 71
known-plaintext attack, 35, 105,

113
mode of operation, 96
perfect, 46
probabilistic (randomised), 52, 95
security, 9, 35, 99, 103, 113

indistinguishability of
encryptions, 35, 104, 113

non-malleability, 35, 104, 113
semantic, 35, 104, 113
standard, 35, 104, 113

symmetric, 33, 96
event-based modelling, 113

Fitch, Frederic Brenton, 63
formal language, 40, 66

logical (truth), 30, 31, 41, 42, 44,
69, 77, 93

functional (algebraic), 45
relational, 45

programming (effect), 31, 41, 42,
44, 69, 77, 78, 93

high-level, 44
machine-code, 44

formal methods, 40, 43, 69
killer application, 40
movement, 30, 40

formalism, 30, 31, 44
co-design, 44, 45, 77, 112

model-based, 5, 9, 41, 42, 44,
45, 69, 112

property-based, 5, 9, 42, 44, 45,
69, 93, 112

extension, 70, 78, 83, 84, 93, 96
backwards-compatibility, 84, 112,

113
conservative, 9, 68
costs, 43

purpose
general-, 44, 83
special-, 44, 69, 83, 84

subsumption, 41
use

back-end, 44
front-end, 43, 44

Frege, Friedrich Ludwig Gottlob, 88

Gödel, Kurt, 63, 64
Gödel-numbering, 62
Galois, Évariste, 92
Galois-connection, 92

hash scheme
perfect, 46

collision resistance, 46
pre-image resistance, 46

http://en.wikipedia.org/wiki/Haskell_Curry
http://en.wikipedia.org/wiki/Edsger_Dijkstra
http://en.wikipedia.org/wiki/Frederic_Brenton_Fitch
http://en.wikipedia.org/wiki/Gottlob_Frege
http://en.wikipedia.org/wiki/Kurt_Goedel
http://en.wikipedia.org/wiki/Evariste_Galois

138 APPENDIX D. INDEX

Herbrand, Jacques, 48
Herbrand-semantics, 48
Hilbert’s choice operator, 97
Hilbert, David, 97
Howard, William Alvin, 63

individual knowledge, 9, 31, 42–45, 48,
54, 57, 62, 77, 80, 85, 90, 94,
97, 98, 100, 102, 111, 112

derivation, 49, 50, 56, 60, 71, 98
actual, 55
potential, 55

modulo an equational theory, 49
primary, 55
secondary, 55

information
system, 91, 92, 112

evolving, 9, 78, 92
theory, 33

entropy, 33, 95
minimal redundancy, 48

key life-cycle
break, 70, 71, 84
establishment, 48, 64

agreement, 46
transport, 46

expiration, 70–72, 84, 87
generation, 80, 85, 95

algorithm, 96
probabilistic (randomised), 95
security parameter, 95, 96

use, 48, 64
long-term, 46, 60
lookup, 66, 75, 80, 85, 112
short-term (session), 46, 60, 73,

80, 84, 86
validity

beginning, 70, 71
duration, 71, 73, 86
end, 70, 71
tag, 71, 85

knowledge, 5, 9, 31, 42, 43, 45–47, 53,
58, 59, 70, 93

cryptographic, 57
establishment

positive, 94
probabilistic, 94

manifestation, 42

individual (de re), see individ-
ual knowledge

propositional (de dicto), see
propositional knowledge

realisation
actuality, 57
potentiality, 55

Kolmogorov, Andrey, 90, 92, 112
Kolmogorov-complexity, 90, 92

language
diction (idioms), 27
formal, see formal language
informal (natural), 30, 41, 42, 90
semi-formal, 41
social acceptability, 41
technical adequacy, 41

lattice theory
algebraic lattice, 91
Boolean lattice, 89
complete lattice, 91
complete partial order (CPO), 91

pre-, 91
directed set, 89
filter, 89

distributive, 89
maximal (ultra-), 89
proper, 89

fixpoint, 91
intersection structure

algebraic, 91
topped, 89, 91

join, 89
least element, 91
meet, 89, 91

completion, 90, 91
minimal element, 91
order(ing)

continuity, 91
embedding, 89
partial, 89
refinement, 92

sub-lattice
proper, 89

union
directed, 90

Leibniz, Gottfried Wilhelm, 30
Lindenbaum, Adolf, 89
Lindenbaum-Tarski algebra, 89

http://en.wikipedia.org/wiki/Jacques_Herbrand
http://en.wikipedia.org/wiki/David_Hilbert
http://en.wikipedia.org/wiki/William_Alvin_Howard
http://en.wikipedia.org/wiki/Andrey_Kolmogorov
http://en.wikipedia.org/wiki/Gottfried_Leibniz
http://en.wikipedia.org/wiki/Adolf_Lindenbaum

139

linguistic abstraction, 5, 9, 27, 30, 42,
44, 48, 112, 113

declarative, 27
operational

high-level, 78, 79
low-level, 28

linguistic concepts
pragmatics (use), 44

empowerment, 24, 44, 59
explicitness, 41, 42, 65, 66, 88
expressiveness, 9, 41, 72, 99
formalisation, 9, 35, 44, 59, 60,

62, 78, 99, 111, 113
indexical, 90
intelligibility, 44, 46, 52, 53, 57
intuitiveness, 41, 43, 44, 59
of cognition, 24
of control, 31
speed-up, 44
versatility, 41

semantics (meaning), 23, 30, 41–
45, 49, 69, 70, 79, 80, 85, 93,
97

context-sensitivity, 9, 78, 87–90
expressiveness, 9, 41, 44, 55, 72
interpretation, 44, 48, 69, 87,

88, 90, 93
reference, 88
sense, 88

syntax (form), 31, 43–45, 49, 70,
78, 80, 96

α-convertibility, 79
binding, 44, 47, 78
combinator, 44
context-sensitivity, 90
linguistic abstraction, see

linguistic abstraction
macro-definability, 35, 41, 47–

49, 58, 59, 63, 64, 70, 72, 80,
111

pattern-matching, 66, 75, 78–80,
112

rewriting, 49
sentence constructor, 47
substitution, 47, 79, 80, 99
succinctness, 41, 44, 48, 59
tag, 85
term constructor, 45, 94
value, 90, 94
variable, 46, 47, 78–80, 94

logic, 5, 9, 23, 24, 27–30, 32, 41–43, 45,
50, 54, 69

classes
first-order, 32, 42, 44, 55, 70, 93
higher-order, 42–44, 55, 69, 93,

100, 113
modal, see modal logic
propositional, 42, 43, 69

concepts, see logical concepts
meta-logic, 44

framework, 44, 69
model theory, 29, 43–45
proof theory, 29, 43

symbolic, 94
techniques

automated theorem-proving, 43,
44

model-checking, 43, 44, 55
timed, 69, 72

logical concepts, 5, 9, 23, 24, 30, 42
(in)completeness

algorithmic, 41, 54, 55, 69
axiomatic, 41, 69, 93
deductive, 89

abstraction, 47
consistency, 89
contradiction, 87
deduction, 43
equivalence, 50, 53, 89

class, 88, 89
congruence, 58, 89
equality, 48
index of, 53
logical, 54, 58, 89
refinement, 53, 89
right-congruence, 53

generalisation, 47
hard predicate, 100
hard proposition, 99
implication

antecedent, 48, 52, 55, 58, 60,
63

consequent, 48, 55, 58, 60, 63
relevant, 9, 55, 57, 58, 63
truth-functional, 9, 55, 58

individual, 45, 47, 55, 99, 113
individuation, 47
induction, 32, 91
logical consequence, 54, 89
logical formula, see logical formula

140 APPENDIX D. INDEX

logical order, 69
logical symbol, see logical symbol
modal, see modal concepts
negation, 92
paradox, see logical paradox
particularisation, 87
proof, 24, 28, 29, 43, 62, 87, 88,

122
system, 77

quantification, 44
elimination, 44, 58
existential, 47, 48, 54
meta-level, 44
over functional symbols, 100
over individuals, 94
over sets of individuals, 55
Pitts-style, 79
relativised, 54, 111
scope, 102, 103
universal, 47, 54, 55, 87

random propositional guessing, 99
relativisation, 54
satisfaction, 29, 30, 43, 44, 48, 49
sort, 48, 85

reduction, 48
synthesis of, 5, 9, 41, 43
theory, 24, 54
truth, see truth
type, 9, 64, 78, 80, 85, 86

dependent, 47
parametric, 47

logical formula, 29–31, 41, 47, 49, 50,
92

basic (atomic), 47, 70
action, 47, 96
data, 47

model for, 31, 49, 99
predicate, 47, 49, 59, 80, 85, 99
proposition, 32, 47, 48, 57, 62–64,

78, 88–92, 99, 102
logical paradox, 87, 88

strong, 24, 42
weak, 42–44, 57

conflicting obligations, 44, 57
logical omniscience, 44, 57, 58,

63
logical symbol, 47

chop connective, 72
conditional

epistemic, 48, 55, 57, 111

intuitionistic, 63
material, 55, 60
spatial, 48, 52, 55, 57

functional, 45, 48, 94, 96
logical constant, 46, 48, 79, 94, 96
relational, 48, 68, 70, 71, 96

message meaning, 9, 31, 77, 87–91, 112
communicable, 88, 89
via denotation

to bit-strings (reference), 95–97
to propositions (sense), 78

modal concepts, 5, 9
accessibility relation, 43

epistemic, 32, 45, 50, 52, 53, 57,
58, 78, 82, 112

temporal, 32, 44, 49, 70, 77, 78,
97, 112

Barcan property, 54
belief, 5, 9, 43, 65, 94

with error control, 9, 96, 97, 112
without error control, 43

converse Barcan property, 54
relativised, 54

knowledge, see knowledge
modality, see modality
necessitation

epistemic, 57, 64
norms, see norms
provability, 5, 9, 29, 31, 34, 35, 43,

62, 64, 89, 98, 111–113
interactive, 34, 101, 113

relevance, 102
space, 5, 9, 31, 44, 47, 70, 93

adjunction, 48, 52
separation, 48, 64

time, see time
modal logic, 5, 9, 30–32, 43, 44, 49, 64

classes, see modal logics
concepts, see modal concepts
dimensionality

mono-, 43
poly-, 31, 43, 44, 70, 93, 112

parametricity
mono-, 43, 93
poly-, 43

modal logics, 31, 42, 44, 69
deontic, 32, 44

defeasible, 57
reductionistic, 57

141

standard, 42, 44, 57
doxastic, 32, 42
epistemic, 32, 44

S4, 63, 64
S5, 64
standard, 42, 44, 57

linear, 43
program, 29, 41–43

dynamic, 41, 57
Hoare, 41, 93

provability, 32
relevant, 55
spatial, 32, 43, 44, 111
temporal, 32, 41, 44, 93

with past, 45
modality, 31, 44, 68

deontic, 45, 111
permission, 50, 55, 72
prohibition, 55, 57

doxastic, 94, 95
epistemic, 45, 48, 50, 52, 57, 58,

99, 111
semantics, 57

hybrid, 64
provability, 35, 63, 101, 111

interactive, 111
non-interactive, 111

spatial, 45, 58, 99
freeze quantifier, 58, 111

temporal, 44, 45, 72
freeze quantifier, 58, 72

non-standard analysis, 98
infinitesimals, 98

norms, 5, 9, 31, 47, 70, 93
confidentiality, 9, 44
obligation, 57
permission, 43, 50, 57, 111

reductionistic, 57
prohibition, 43, 57, 111

number theory, 31

Ockham’s razor, 9, 93
Ockham, William of, 9, 93

philosophical concepts
(un)certainty, 23, 45, 95
actuality, 45, 46, 60, 80
certitude, 95
chance, 28

choice, 27, 28, 43, 65, 70, 73, 80,
82, 85, 111

clarity, 23, 24
conceptual degree of freedom, 41,

59
epistemic error, 95
indeterminacy, 95
individuality, 79
intention, 46
legitimacy, 45, 46, 60
likelihood, 94
necessity, 31, 43, 44
non-determinism, 80, 85
possibility, 31, 43, 44, 55
potentiality, 80

Post, Emil Leon, 49
probabilistic experiment, 95

outcome
actual, 95
expected, 95

probability theory, 95
atomic event, 95, 96

independence, 95
mutual exclusivity, 95

experiment, see probabilistic ex-
periment

principle of indifference, 95
probabilistic variable, 95, 96
probability, 95

degree of support, 94
distribution, 94–96
measure of belief, 95
measure of possibility, 95
negligible, 40, 94, 98
overwhelming, 94
value, 95, 96

random coin tossing, 98, 100
sample space, 95, 96

program correctness, 39, 40
condition

endo-, 64
exo-, 64, 65
post-, 64
pre-, 64

Hoare triple, 64
specification, 41, 69

informal, 41
theory of, 40
verification, 41, 46, 69

algebraic, 77

http://en.wikipedia.org/wiki/William_of_Ockham
http://en.wikipedia.org/wiki/Emil_Post

142 APPENDIX D. INDEX

automated, 44, 69
program semantics, 30–32, 112

denotational, 31, 77, 90–92, 112
syntax-independent, 91

operational, 32, 77, 78, 84, 85, 91,
112

propositional knowledge, 9, 31, 32, 39,
42–45, 48, 54, 57, 62, 77, 78,
88, 90, 94, 97, 98, 102, 111,
112

common, 100
hypothetical, 112
justified, 64

protocol action, 57, 59, 80, 84
forbidden, 59
interactive

message receiving, 45, 59, 78
message sending, 45, 59, 78

non-interactive, 66
name generation, 59, 78, 85

protocol agent, 9, 31, 34, 45, 48, 52,
53, 57, 62, 77, 78, 80, 82, 88,
90–92, 100, 112, 113

adversary, 33, 39, 49, 53, 60, 62,
70, 71, 78, 80, 84, 85, 87, 95

active, 34, 67, 75
Dolev-Yao, 46, 50, 70
insider, 67
outsider, 75
passive, 33
scheduling power, 70
timed, 70

legitimate, 53, 80, 84
role

initiator, 65–67, 73, 75, 86
responder, 65–67, 73, 75, 82, 83,

86
server, 73, 75
trusted third party (TTP), 62,

63, 73
protocol attack, 40, 43, 65

chosen-protocol, 65
denial of service, 67
impersonation, 67, 75
interception, 75
man-in-the-middle, 65, 73
narration, 67, 75, 83
replay, 75

reflection, 75
protocol correctness, 39, 40, 45, 82

compositional, 34, 45, 48, 64, 113
conditional, 34, 64, 65, 113
existential, 34, 64, 113
universal, 34, 64, 113

sole, 45, 64
protocol engineering, 9, 78

design, 40, 87
implementation, 40, 78, 82
logic for, 44
refinement, 92
specification, 9, 40, 41, 43, 59, 69,

78
lingua franca for, 41, 113
formal, 41
technique, 112

tools, 44, 69
verification, 40, 41, 69, 92

protocol event, 44, 49, 55, 78, 80, 83,
87, 113

clock-setting, 70, 75, 86, 87, 113
communication, 49
concurrency

interleaving, 80, 95
denotation, 97, 113
input

insecure, 49, 80
secure, 49

name generation, 49, 70, 80
observable (insecure), 80
output

insecure, 49
secure, 49

trace, 44, 48, 49, 84, 86
structural equivalence, 50

uniqueness, 50
unobservable (secure), 49, 70, 78,

80, 86
protocol history, 48, 49, 52, 53, 79, 80,

86, 87, 113
concatenation, 50
empty, 49
prehistory, 64, 65, 67, 68, 75, 83
structural indistinguishability, 52,

53
data pattern, 52
event pattern, 52

protocol model, 82, 83
faithful, 84
process, 48, 49, 53, 54, 64, 78, 82,

85, 86, 112

143

algebra, 5, 9, 44, 45, 93
calculus, 41–44, 69, 79, 80, 83
epistemically local, 78, 85, 112
epistemically non-local, 86
implementation, 78, 82, 86, 87,

92
locatedness, 49, 66, 75
parallel-composability, 49, 78
proof procedure, 64
reduction, 80, 83, 86, 95
reduction constraint, 44, 78, 80,

86
specification, 78, 82, 86, 87, 92
structural equivalence, 50

strand-based, 58
thread, 80

action prefix, 78, 82, 85, 86
located, 78–80, 85
lookup prefix, 78, 85

trace-based, 58
protocol modelling, see protocol engi-

neering, design
protocol state, 32, 48–50, 54, 77, 78,

80, 82, 88, 90–92
adjoint, 55
current, 80
epistemic indistinguishability, 91
initial, 67, 75, 92
observational equivalence, 45, 52–

54, 77, 82, 84, 86
dynamic, 31, 77, 82
static, 31, 32, 77, 78, 82, 112
timed, 77

of violation, 50, 57, 72, 98, 111
safe

subjectively, 92
universally, 92

Quine, Willard Van Orman, 23, 28

randomness
pseudo, 33
true, 33

requirements engineering, see protocol
engineering, specification

security objective (requirement), 39
set theory, 32, 43, 44

calculus, 77, 78
closure, 89

function, 33, 46, 48–50, 52, 71, 95,
100

partial, 79
relation, 43, 49, 50, 53, 71, 80

deduction, 62, 77
reduction, 77

Shannon, Claude Elwood, 33, 90
signature scheme

attack, 9, 35, 99, 106, 113
adaptive chosen-message, 35, 107,

113
chosen-message, 35, 106, 113
key-only, 35, 106, 113
known-message, 35, 106, 113

break, 9, 35, 99, 107, 113
existential, 35, 107, 113
selective, 35, 107, 113
total, 35, 108, 113
universal, 35, 107, 113

unforgeability, 9, 35, 99, 104, 113
software crisis, 39, 40
steganography, 32
systems modelling, 69

Tarski, Alfred, 48, 89
time, 5, 9, 31, 44, 47, 80, 84, 85

advancement, 84, 85
(drift) rate, 84, 85

asynchronicity, 80
domain, 69, 70

branching, 63, 70
dense, 9, 69, 70, 84, 112
discrete, 69, 70, 84
event-based, 70
hybrid, 70
linear, 45, 63, 70
state-based, 70

duration, 72, 73, 112
lookup, 75, 85

declarative, 75
imperative, 75

measurement
global clock, 84
local clock, 9, 68–71, 84, 85

qualitative (relative), 43
quantitative (real), 43
reference

explicit, 70
implicit, 70

http://en.wikipedia.org/wiki/Willard_Van_Orman_Quine
http://en.wikipedia.org/wiki/Claude_Shannon
http://en.wikipedia.org/wiki/Alfred_Tarski

144 APPENDIX D. INDEX

qualitative (relative), 9, 68, 70,
84, 93

quantitative (real), 9, 68, 70, 77,
83, 93, 113

scheduling, 80
synchronicity, 80
unit

interval, 69, 72
point, 69, 72, 84

trust-related affairs, 34, 59, 113
faultiness, 34, 59, 113
honesty, 34, 59, 113
maliciousness, 34, 59, 113
prudency, 34, 59, 113
trust

blind, 59
justified, 59
trustworthiness, 34, 59, 113

truth, 23, 39, 48, 62, 94, 102
body of, 54
condition, 55, 58, 68, 72
contingent, 47

elementary fact, 47
purported fact, 99

denotation, 49, 51, 71
establishment

corroboration, 48, 49, 102
effectiveness, 44
efficiency, 44
positive, 94
probabilistic, 94
resource-boundedness, 94

hypothetical, 88
logical (tautology), 47, 54, 57, 58,

99
notion of, 42, 43
satisfiability, 55, 99, 100

assertion, 55, 57, 99
system of inference, 54
validity, 99
value, 31

complex, 9, 49, 111
multiple, 9, 49
simple, 49

Turing, Alan Mathison, 42, 95

Wittgenstein, Ludwig Josef Johann, 91

http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/Ludwig_Wittgenstein

Curriculum Vitæ

Education
2002–2007 Ph.D. from Ecole Polytechnique Fédérale de Lausanne (EPFL)

1995–2001 M.Sc. in Computer Science from EPFL
• Undergraduate studies (2 years)
• Sabbatical year (SAirGroup, Zurich)
• Exchange student (1 year) at the University of Granada (E)
• Termination of graduate studies at EPFL (1 year)
• Diploma project (4 months) at Politecnico di Milano (I)

Topic: A Formal Specification for a Real-Time Train Controller
(embedded systems)
Project (academia-to-industry consulting)
supervisor: Prof. Dino Mandrioli
client: Ferrovie dello Stato, the Italian railway company.

1993–1995 Swiss Federal Certificate of Maturity as a free candidate.
Working student.

1992–1993 Language studies in France and England (with diplomas)

1988–1992 Apprenticeship in electronics (Federal Certificate of Capacity,
letter of distinction)
Professional Maturity in parallel (Certificate of Examination).

Work experience
2005–2007 EPFL: Research Assistant of Prof. Thomas A. Henzinger

2004 EPFL: Lecturer (ad interim) for the course Elementary Logic
(own initiative)

2001–2005 EPFL: Research Assistant of Prof. Uwe Nestmann

1999 IBM Research, Zurich: Summer Student (3 months)
Task: prototype implementation of a method for inter-enterprise
role-based authorisation (e-commerce).

1997–1998 SAirGroup, Zurich: Computer Programmer for a fixed time
(10 months)
Earning of a premium for exceptional services:
• Migration of logistic software for GateGourmet (SAirGroup)
• Design of a brochure for graduate staff recruiting.

1992–1996 Hewlett Packard, Zurich: Promoter in French-speaking Switzer-
land. Part-time activity.

145

	Title
	Contents
	List of Tables
	List of Slogans
	I Prologue
	Preface
	Introduction
	Motivation: problem
	Symptom
	Cause
	Remedy

	Goal: solution
	Logic
	Extent
	Scope
	Grain

	Methodology
	Approach
	Formalism
	Unifying modal logics for cryptography
	Integrating modal logic and program semantics

	Prerequisites
	Logic and program semantics
	Cryptography
	Prehistory
	Classical cryptography
	Modern cryptography

	Preview
	Cryptographic states of affairs
	Cryptographic concepts
	Research highlight
	Peer-review

	II Cryptographic Protocol Logic
	Dolev-Yao cryptography
	Introduction
	Historical context
	Topical context
	Requirements engineering---ideally
	Requirements engineering---really
	Requirements engineering---CPL

	Logic
	Syntax
	Semantics
	Discussion
	Expressiveness
	Relevant implication
	Conflicting obligations
	Logical omniscience
	Other connections

	Application: formalisation case studies
	Trust-related affairs
	Confidentiality-related affairs
	Authentication-related affairs
	Commitment-related affairs
	Compositionality-related affairs
	A popular attack scenario

	tCPL: an extension of CPL with real time
	Historical and topical context
	Extension
	Expressiveness
	Application: a timed attack scenario

	Calculus of Cryptographic Communication
	Core calculus
	Syntax
	Semantics
	Observational equivalence
	Application: an algebraic attack scenario

	tC3: an extension of C3 with real time
	Extension
	Application: a timed, algebraic attack scenario

	Denotational semantics
	Message meaning
	Protocol meaning

	Towards PP-cryptography
	Introduction
	Symbolic logic
	Probability theory
	Probabilistic polynomial-time cryptography

	ppCPL: an extension of CPL with PP
	Syntax
	Semantics

	Application: formalisation case studies
	Fundamental concepts
	Applied concepts

	III Epilogue
	Conclusion
	Review of achievements
	Future work

	Proofs
	Specification Library (Glossary)
	Bibliography
	Index
	Curriculum Vitæ

