Dynamic Performance Tuning of Word-Based
Software Transactional Memory

Pascal Felber

University of Neuchatel, Switzerland
pascal.felber@unine.ch

Abstract

The current generation of software transactional memories has the
advantage of being simple and efficient. Nevertheless, there are sev-
eral parameters that affect the performance of a transactional mem-
ory, for example the locality of the application and the cache line
size of the processor. In this paper, we investigate dynamic tuning
mechanisms on a new time-based software transactional memory
implementation. We study in extensive measurements the perfor-
mance of our implementation and exhibit the benefits of dynamic
tuning. We compare our results with TL2, which is currently one
of the fastest word-based software transactional memories.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

General Terms  Algorithms, Performance

Keywords Transactional Memory, Dynamic Tuning

1. Introduction

Transactional memory (TM) has been proposed as a lightweight
mechanism to synchronize threads. It alleviates many of the prob-
lems associated with locking, offering the benefits of transactions
without incurring the overhead of a database. It makes mem-
ory, which is shared by threads, act in a transactional way like a
database. The main goal is to simplify the development of concur-
rent applications, which are becoming more widespread because
of the increasing shift to multicore processors and multiprocessor
systems.

The performance of software TM implementations (STMs) de-
pends on several factors. First, design choices such as word-based
vs. object-based, lock-based vs. non-blocking, write-through vs.
write-back, or encounter-time locking vs. commit-time locking can
have significant impact on the transaction throughput in different
settings. Second, configuration parameters related to the TM im-
plementation, such as the number of locks used to handle concur-
rent accesses to shared data or the mapping of locks to memory
addresses, must be finely tuned to optimize performance. They typ-
ically vary from one architecture to another, depending on factors
such as the CPU or the size of cache lines.
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Most importantly, the quality of design choices and configura-
tion parameters directly depends on the considered workload: for
example, the ratio of update to read-only transactions, the number
of addresses read or written by transactions, or the level of con-
tention on shared memory locations will all lead to different opti-
mal configurations. For instance, time-based TMs (see Section 2)
are very efficient with read-only transactions but they must validate
the read sets of update transactions upon commit; in workloads with
large read sets, one can tune the STM implementation so as to re-
duce the validation overhead. There is no “one-size-fits-all” STM
implementation and adaptive mechanisms are necessary to make
the most of an STM infrastructure.

In this paper, we study the influence of the workloads on differ-
ent STM designs and configuration parameters. We focus on word-
based, time-based STMs. Unlike object-based designs, word-based
TMs allow to directly map transactional accesses to the underly-
ing memory subsystem and they can be easily integrated in various
programming languages and supported efficiently within the com-
piler [5, 16]. We present a lightweight and highly efficient lock-
based implementation called TINYSTM and evaluate its perfor-
mance when varying the type of workload. We compare our im-
plementation against TL2 [3], one of the fastest word-based STMs,
and show that our design performs better in many situations. Our
experimental study gives important insights on the performance of
word-based, time-based STM implementations. We also introduce
novel mechanisms to speed up the validation cost for large read sets
without increasing the abort rate.

Based on the experimental results, we identify important tuning
parameters that govern the performance of the STM infrastructure.
We propose mechanisms to dynamically tune the STM to the work-
load by adapting its runtime parameters and searching for the con-
figuration that provides the best transaction throughput. Evaluation
demonstrates that, starting from an initial configuration, dynamic
tuning allows us to quickly reach a good configuration, and that the
performance gain can be very important.

The rest of this paper is organized as follows: Section 2 dis-
cusses related work. Section 3 presents our TINYSTM word-based
STM implementation, studies its performance alongside TL2 un-
der various types of workloads, and motivates the need for runtime
tuning. Section 4 describes our dynamic tuning mechanisms and
evaluates their effectiveness. Finally, Section 5 concludes the pa-
per.

2. Related work

Transactional memory (TM) has recently seen a lot of interest.
Here, we only discuss the work that is closely related to this paper.
Broader discussions of related work can be found in [10, 13].
Word-based TMs (e.g., [16, 3, 7]) access memory at the granu-
larity of machine words or larger chunks of memory and keep TM



metadata external (i.e., at other areas of main memory). Object-
based TMs (e.g., [9, 10, 8]) access memory only at object granu-
larity and require the TM to be aware of the object associated with
every access. In this sense, word-based TMs are more widely ap-
plicable, for example in applications that do not explicitly specify
associated objects and run in unmanaged environments.

We refer to a TM that is based on a notion of time or progress
as a time-based transactional memory (TBTM). A global time
base is used to reason about the consistency of data accessed by
transactions and about the order in which transactions commit.
Typically, TBTMs employ optimistic read operations (i.e., read
operations are not visible to other transactions) because invisible
reads are less expensive than visible reads. TBTMs then guarantee
on the basis of their time base that the snapshot that a transaction
takes of the transactional memory at runtime is always consistent.
TBTMs thus have an advantage over TMs that only ensure the
consistency of the transaction at commit time: transactions that
work with inconsistent data could, for instance, enter infinite loops
or throw unexpected exceptions. Nevertheless, the per-access costs
of TBTMs are small.

The first time-based STM design was SI-STM [11], soon fol-
lowed by LSA [10] and TL2 [3]. McRT-STM [13] was later ex-
tended [16] to use the time-based approach and compiler support
to provide software transactions for unmanaged environments. The
simplest implementation for a global time base is a shared inte-
ger counter. On large systems in which contention on this counter
results in a significant bottleneck, external clocks or multiple syn-
chronized physical clocks can be used as scalable time bases [12].

All TBTMs can employ a fast path for validating read sets (i.e.,
checking whether data read in a transaction did not change after
reading it and is thus still valid at the current time). The underlying
idea is that if time did not advance in the TM, then no update
transaction committed changes.' RSTM [15] is not a TBTM but
uses this fast path to decrease validation overhead. In all TBTMs
and in RSTM, time always covers all object, so the fast path can
only be used if there were no updates in the whole TM. This
decreases the probability that the fast path can be used. We show in
Section 3.2 how to increase the probability that the fast path can be
used.

In databases, locking at different levels of granularity has been
used for a long time [6, 14]. Although TMs also provide concur-
rency control, the relative costs for locks are much higher in TMs
than in databases. Authors of current STMs are surely aware of the
tradeoffs when they select parameters such as locking granularity,
but we are not aware of any STM or hardware TM that adapts its
parameters and strategies according to the workload or to the hard-
ware it is being executed on.

3. A Lightweight STM Design

TINYSTM is a word-based STM implementation that uses locks
to protect shared memory locations. Its name stems from the sim-
plicity and performance of our design. TINYSTM uses a single-
version, word-based variant of our LSA algorithm [10] (which is
very similar to TL2’s algorithm [3]) and uses a time-based design.
The notion of time to guarantee consistency in STMs was first pro-
posed in [11] and then simultaneously exploited by LSA and TL2
for object-based and word-based designs, respectively. TINYSTM
shares many properties with other word-based STMs: in particular
with TL2 (several aspects of our STM library were directly inspired
by TL2’s reference implementation) but also with Ennals’ [4] and
Saha et al.’s [13, 16] designs. However, TINYSTM follows differ-
ent design strategies on some key aspects.

! Update transactions acquire new timestamps on commit and apply this
timestamp to the newly created data versions in the TM.

Unlike TL2’s reference implementation—but like Ennals and
Saha et al.’s algorithms—TINYSTM uses encounter-time locking.
Yet, like LSA and TL2, our STM is time-based and guarantees that
transactions always read consistent memory states.

The reason why we opted for encounter-time locking is twofold:

e First, our empirical observations appear to indicate that detect-
ing conflicts early often increases the transaction throughput be-
cause transactions do not perform useless work. Commit-time
locking may help avoid some read-write conflicts, but in general
conflicts discovered at commit time cannot be solved without
aborting at least one transaction.

Second, encounter-time locking allows us to efficiently han-
dle reads-after-writes without requiring expensive or complex
mechanisms. This feature is especially valuable when write sets
have non-negligible size.

In addition, we have implemented two strategies for accesses
to memory, each with its unique advantages and limitations: with
write-through access, transactions directly write to memory and
revert their updates in case they need to abort; with write-back
access, transactions delay their updates to memory until commit
time. We shall discuss both strategies shortly.

For the sake of simplicity, TINYSTM has been designed in such
a way that a transaction never needs to access another transaction’s
private memory (besides the shared data structures used for concur-
rency control). Atomic operations and memory barriers are imple-
mented using Hans Boehm’s atomic_ops library [1]. These design
choices make it straightforward to compile TINYSTM on any 32-
and 64-bit architecture supported by atomic_ops.

3.1 Basic Algorithm

Locks and Versions As most word-based STM designs, TINYSTM
relies upon a shared array of locks to manage concurrent accesses
to memory (see Figure 1). Each lock covers a portion of the address
space. In our implementation, we use a per-stripe mapping where
addresses are mapped to locks based on a hash function.

Each lock is the size of an address on the target architecture. Its
least significant bit is used to indicate whether the lock is owned.
If it is not owned, we store in the remaining bits a version number
that corresponds to the commit timestamp of the transaction that
last wrote to one of the memory locations covered by the lock.

If the lock is owned, we store in the remaining bits an address to
either the owner transaction (when using write-through), or an entry
in the write set of the owner transaction (when using write-back).
In both cases, addresses point to structures that are word-aligned
and their least significant bit is always zero; hence it can be safely
used as lock bit.

When using the write-back design, the address stored in the
owned lock allows a transaction to quickly locate in its write set
the updated memory locations covered by the lock, in case they
are accessed again by the same transaction. In contrast, TL2 must
check upon access to a memory location whether the current trans-
action did not yet write to this address, which may be costly when
write sets grow large (TL2 uses Bloom filters to avoid unnecessary
write set traversals). Read-after-write is not a problem when using
the write-through design because the memory always contains the
latest value written by the active transaction.

Reads and Writes When writing to a memory location, a trans-
action first identifies the lock entry that covers the memory address
and atomically reads its value. If the lock bit is set, the transac-
tion checks if it is the owner of the lock using the address stored
in the remaining bits of the entry. In that case, it simply writes the
new value and returns. Otherwise, the transaction can try to wait



for some time® or abort immediately. We use the latter option in
our implementation.

If the lock bit is not set, the transaction tries to acquire the lock
by writing a new value in the entry using an atomic “compare-
and-swap” operation. Failure indicates that another transaction has
acquired the lock in the meantime and the whole procedure is
restarted.

When reading a memory location, a transaction must verify that
the lock is not owed nor updated concurrently. To that end, the
transaction reads the lock, then the memory location, and finally
the lock again (obviously, appropriate memory barriers are used to
ensure correct ordering of accesses). If the lock is not owned and
its value (i.e., version number) did not change between both reads,
then the value read is consistent. There is a subtle problem when
using the write-through design. Consider a transaction reading the
lock; then, another transactions grabs the lock and writes a new
value to memory that is read by the first transaction; the second
transaction aborts and restores the initial value of the lock; finally,
the first transaction reads the lock again and does not detect a
concurrent access, although it has read an inconsistent value. To
solve that issue, we additionally store in the lock an incarnation
number that is incremented each time a transaction aborts and
allows us to detect concurrent accesses in such scenarios. We use
three bits for the incarnation number in our implementation; in the
unlikely event that it overflows, we simply obtain a new version
number from the global clock. Note that this problem does not
apply to the write-back design.

Once a value has been read, we check if it can be used to
construct a consistent snapshot. As with LSA, if the version is more
recent than the current validity range of the transaction’s snapshot,
we try to “extend” the snapshot. This consists in verifying that
every address in the read set is still valid and not locked by another
transaction. If extension succeeds, we can update the end of the
snapshot’s validity range up to the value of the clock right before
extension. Otherwise, the transaction aborts.’

Read-only transactions are particularly efficient because we in-
crementally construct a snapshot that is valid at all times. No val-
idation is necessary at commit time and, hence, we do not need to
maintain a read set.

Write-through vs. Write-back The write-through and write-back
designs differ in the way updates are written to memory. With
write-through access, updates are written directly to memory and
previous values are stored in an undo log to be reinstated upon
abort. With write-back access, updates are stored in a write log
and written to memory upon commit. Write-through has lower
commit-time overhead and faster read-after-write/write-after-write
handling; further, it enables various interesting compiler optimiza-
tions, e.g., accesses to a previously locked memory location do not
need to go through the STM at all. On the other hand, write-back
has lower abort overhead and does not require incarnation numbers
to guarantee consistent reads, as discussed above.

Memory Management Using dynamic memory within transac-
tions is not trivial with unmanaged languages. Consider the case
of a transaction that inserts an element in a dynamic data structure
such as a linked list. If memory is allocated but the transaction fails,
it might not be properly reclaimed, which results in memory leaks.
Similarly, one cannot free memory in a transaction unless one can

2 Note that the transaction must not wait indefinitely as this might lead to
deadlocks.

3 When keeping multiple versions of every memory location, we could use
an old value valid at the time of the snapshot. We do not use this approach
in our implementation because, without hardware support, the memory and
processing overheads of multi-version designs overcome their benefits.

guarantee that it will not abort. Dealing explicitly with such situa-
tions leads to intricate code.

TINYSTM provides memory-management functions that allow
transactional code to use dynamic memory. Transactions keep track
of memory allocated or freed: allocated memory is automatically
disposed of upon abort, and freed memory is not disposed of until
commit. Further, a transaction can only free memory after it has
acquired all the locks covering it as a free is semantically equivalent
to an update.

Clock Management TINYSTM uses a shared counter as clock,
like LSA and TL2. This approach is both simple and sufficiently ef-
ficient on SMP architectures. In case the contention on this global
counter becomes a bottleneck in large systems, we can use more
scalable time bases such as an external clock or multiple synchro-
nized physical clocks [12].

The maximal value of the clock is 23 on a 32-bit architecture,
and 2%% on a 64-bit architecture.* In 32-bit systems with frequent
commits, this value can be quickly reached. Therefore, TINYSTM
provides a simple clock roll-over mechanism: when a transaction
detects that the maximal clock value has been reached,’ it aborts
and waits on a barrier until all active transactions have completed
their execution. Then, we reset the clock and all version numbers.
While this procedure unnecessarily aborts some non-conflicting
transactions and prevents progress for a short period of time, its
overhead is negligible as it is executed only rarely.

tx descriptors .
timestamp lock bit
r/w sets lock array $ : memory :

r/w masks Q address
version 0
| |
hierarchical array
0 ‘ counter ‘
| | | |
h-1 | I \

32-64 bits (size of address)

Figure 1. Data structures used in the TINYSTM implementation.

3.2 Hierarchical Locking

Transactions that are identified as read-only do not need to keep
a read set as the LSA algorithm guarantees that we incrementally
construct a consistent snapshot. Update transactions do, however,
need to validate their read sets at commit time. This implies that
they must verify that all the addresses they have read are still valid,
i.e., they are not locked by another transaction and still have the
same version number. A notable exception is when the commit time
of the transaction is equal to its start time plus one: in that case,
validation is not necessary as we know that no other transaction
has concurrently written to memory.

Depending on the size of the read set, validation may be costly.
A transaction reading a large chunk of memory (e.g., a large matrix)
needs to validate every single address read. To speed up validation
of large read sets, one can reduce the number of locks, i.e., each
lock will cover a larger number of memory locations. However, this
can increase the abort rate significantly due to memory operations
mistakenly identified as conflicting. To solve this problem, we
propose using a hierarchical locking strategy.

4 With the write-through design, maximal values are 22® and 260 as three
bits are used for incarnation numbers.

5 Transactions read the current time when they start. Update transactions
additionally obtain the current time when they try to commit.
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Figure 3. Throughput of the linked list.

In addition to the shared array of ¢ locks, we maintain a smaller
hierarchical array of h < ¢ counters (typically 4 to 16) as de-
picted in Figure 1. Memory addresses are mapped to the counters
using a hash function that is consistent with that of the lock array:
two memory locations that are mapped to the same lock are also
mapped to the same counter. In other words, a counter covers mul-
tiple locks and the associated memory addresses. When choosing £
as a multiple of h, typically £ = 2*, h = 27 /4 > j, we can compute
the lock index as (hash(addr) mod £) and the counter index as
(hash(addr) mod h).

Each transaction additionally maintains two private data struc-
tures: a read mask and a write mask of h bits each. Finally, read
sets are partitioned into h independent parts.

When reading or writing a memory location, a transaction will
first determine to which shared counter ¢ in the hierarchical array
it maps. If the corresponding ** bit in the read mask is zero, then
we set it and store locally the current value of the counter. If the
memory access is a write, we check the corresponding ‘" bit in
the write mask: if zero, we set it and atomically increment the
shared counter. If the memory access is a read and the transaction
maintains a read set, we create the new entry in the corresponding
i part of the read set.

Upon validation, we check for every counter ¢ whose corre-
sponding i'" bit is set in the read mask if (1) the current value
of the counter is equal to the previously stored value, or (2) the
current value of the counter is one more than the stored value and
the corresponding *" bit in the write mask is set. In either case,
we know that no concurrent transaction has locked an address that
maps to counter ¢ and we can skip validation of the ' part of the
read set (i.e., we can use the validation fast path). By doing so, we
are essentially partitioning the locks so that validation can apply to
only a portion of the memory locations read by a transaction.

Note that a transaction writing to many locations might need to
increment at most A counters. As atomic operations are costly on
most architectures, the size of the hierarchical array must be chosen
with care: larger h values reduce the validation overhead but may
require more atomic operations.

Strictly speaking, the role of the hierarchical array is not to
lock memory locations; hence the term hierarchical “locking” is
not perfectly accurate. The array does, however, allow transactions
to determine whether locks have been acquired. This scheme can
be generalized “hierarchically” to multiple levels of nesting.

Obviously, hierarchical locking provides performance benefits
only if (1) read set validation is expensive, i.e., update transactions
read many memory locations, and (2) there are few writes from
competing transactions. However, we believe that these conditions
are encountered often enough in real applications for this optimiza-
tion to be useful.

3.3 Experimental Evaluation

To evaluate the performance of our basic TINYSTM implemen-
tation (without hierarchical locking), we have used the same red-
black tree benchmark application as used for the evaluation of TL2
in [3]. The code of the red-black tree and TL2 x86 implementa-
tions were downloaded from the STAMP distribution [2] and run
unmodified.®

While the red-black tree is a good example of transactional
access to sophisticated data structures, operations on red-black tree
typically read and write a small number of memory locations.
Therefore, it is not a good indicator of the ability of the STM

6 The TL2-x86-0.9.0 code is a port to x86 that was not performed by the
original authors. We had to increase the initial size of TL2 read sets for
some benchmarks to work around a bug during expansion. Compilation was
performed using the same optimization level for all STM implementations.
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Figure 5. Influence of the size of the data structures and update rates on throughput for the red-black tree and linked list (8 threads).

infrastructure at handling long transactions with sizeable read and
write sets. Therefore, we have also experimented with a sorted
linked-list implementation used in various other studies (e.g., [9]).
The list must be traversed in order to add, remove, or locate entries
and read sets can grow large.

The harness application differs from the one in [3] in a number
of ways. First, we initially insert a given number of elements in
the data structure and we maintain its size almost constant during
the experiment. Second, update transactions alternatively add a new
element and remove the last inserted element. Therefore, update
transactions always write to the data structure (they never fail
because of duplicate or missing elements). This allows us to more
accurately analyze the performance of the STM as a function of the
workload parameters.

All tests were run on an §-core Intel Xeon machine at 2 GHz
running Linux 2.6.18-4 (64-bit). The TL2 x86 port could only
be compiled in 32-bit compatibility mode. Therefore, for fairness,
we have experienced with version of TINYSTM compiled both in
32-bit and 64-bit mode. 32-bit and 64-bit executables were com-
piled using gcc 4.0.3 and 4.1.3, respectively. We only compared
TINYSTM against TL2, as performance figures of TL2 against
other STM designs and hand crafted lock-based code are available
in [3].

Figure 2 shows the transaction throughput with the red-black
tree and two sizes (256 and 4,096 initial elements) and update
rates (20% and 60%). We observe that all STM designs scale
well up to the number of processor cores. The 64-bit versions are

more efficient than the 32-bit ones, and TL2 is slightly slower than
TINYSTM. The size of the red-black tree does not influence the
throughput much. Surprisingly, the throughput is higher with the
large tree than the small one for the fastest STMs and 8 threads.
The reason is that the small tree produces more contention and,
consequently, higher abort rates. Performance drops moderately
with higher update rates and scalability is still excellent.

Figure 3 shows the transaction throughput with the linked list
and two sizes (256 and 4,096 initial elements) and update rates
(0% and 20%). With read-only transactions, all STMs scale ex-
ceptionally well up to the number of cores and all designs perform
identically. When increasing the update rate, performance and scal-
ability decrease as conflicts become more frequent. Consider that in
the red-black tree, the risk of conflicts is moderate as transactions
typically access different subtrees; in the linked list, all transac-
tions access the same set of nodes. The throughput of TL2 suffers
from commit-time locking as conflicting transactions often waste
time performing lengthy list traversals although they are doomed
to abort. With a larger list, performance decreases but the general
trends remain the same. We observe in Figure 4 (left and middle)
that the number of aborts is indeed much lower with the red-black
tree than the linked list.

Update transactions on the red-black tree and linked list have
small write-sets and do not allow us to study scalability when
writing to many memory locations. To observe such scenarios, we
have modified the linked list benchmark so that update transactions
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Figure 6. Influence of the number of locks and shifts on the performance of the red-black tree and the linked list.

search for a random value and overwrite any entry encountered
while traversing the list up to the random value.

We see in Figure 4 (right) that no STM scales well with this
benchmark, even with only 5% update transactions. TL2 appears to
suffer from commit-time locking (unsolvable write-write conflicts)
and from the overhead imposed by read-after-write and write-after-
write detection.

Finally, we have observed the transaction throughput as a func-
tion of the size of the data structures and update rates for 8 threads
(see Figure 5). Unsurprisingly, one can observe that all STM de-
signs suffer from larger update rates. As could be expected, the
influence of the size on the throughput is approximately linear for
the linked list and logarithmic for the tree. Finally, one can notice
that all STM designs produce the same general shape and that it is
difficult to determine which of write-through or write-back is bet-
ter. In the rest of the paper, we will only use the write-back 64-bit
variant.

4. Dynamic Tuning

In TINYSTM, we have various tuning parameters that affect the
transaction throughput. The three most important ones are:’

1. The hash function to map a memory location to a lock. TINYSTM
right-shifts the address and computes the rest modulo the size
of the lock array. The number of right shifts (denoted by #shifts)
allows controlling how many contiguous addresses will be
mapped to the same lock.® This parameter allows exploiting
the spatial locality of the data structures used by an application.

2. The number of entries in the lock array (denoted by ¢ or #locks).
A smaller value will map more addresses to the same lock and,
in turn, decrease the size of read sets. It can also increase the
abort rate due to false sharing.

3. The size of the array used for the hierarchical locking (denoted
by h). A higher value will increase the number of atomic op-
erations but reduce the validation overhead and potential con-

7 Given its limited impact on performance, as discussed in the previous
section, the memory access scheme (write-through vs. write-back) is not
considered an important tuning parameter.

8 Note that these shifts are in addition to a right shift of 3 (2 on a 32-bit
architecture) to account for word-based memory addressing.

tention on the array’s elements. A value of 1 disables hierarchi-
cal locking.

To give an indication of the difference in performance between
various parameter values, we measured various configurations and
workloads using the same experimental setup as in the previous
section. Figure 6 shows the change in throughput for the red-black
tree and the linked list for an increasing number of shifts and locks.
Additionally, Figure 7 shows results for the Vacation benchmark
from the STAMP [2] distribution.” One can clearly see the influence
of these two parameters on performance and observe that it varies
significantly depending on the workload.

STAMP Vacation, h=4, #threads=8

Throughput (x 10° txs/s)

#shifts 8

Figure 7. Influence of the number of locks and shifts on the per-
formance of STAMP’s Vacation benchmark.

If we also measure the influence of the size A of the hierarchical
array, the dependence of the workload becomes even more pro-
nounced: Figure 8 shows that a red-black tree performs best with a
small hierarchical array (4 and 16 are better than 64) while the link
list performs better with a larger value (i.e., better for 64 than for 4
and 16).

9 This benchmark was compiled as a 32-bit executable using TANGER [5].
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Figure 9. Throughput improvement depending on the number of locks, the number of shifts, and the size of the hierarchical array. The
percentage was calculated with respect to the lowest throughput per individual plot.

4.1 Observations

The first observation is that with an increasing number of locks,
we get an increase in throughput but eventually the throughput
flattens. With a sufficiently high number of locks, it will go down
(when consuming too much memory). However, the throughput
might have steps (see left graph of Figure 9) and might slightly go
down when increasing the number of locks before it goes up again.
Also, our measurements indicate that the tuning of the number of
locks is quite independent of the other two tuning parameters in the
sense that we can tune the number of locks even when using non-
optimal tuning parameters for the number of shifts and the size of
the hierarchical array. The intuition is that an increasing number
of locks reduces false sharing, which is largely independent of the
other two tuning parameters. A smaller number of locks could
in principle reduce the validation time of an update transaction
(because we need to check less locks), but the performance penalty
of false sharing dominates.

To improve the sharing of locks within a transaction, we have
introduced the shift tuning parameter that uses the spatial locality
of an application. The number of shifts of the hash function can
initially increase the throughput but eventually the throughput will
drop again (see middle graph of Figure 9). While there is a possi-
bility that the throughput goes up again after it dropped, we expect
that this will not result in an optimal number of shifts. The num-

ber of shifts specifies how many consecutive words are assigned to
the same lock and, hence, it reflects the spatial locality of the data
structures used by the transactions.

The throughput also depends on the size of the hierarchical
array (see right graph of Figure 9). Our observation is that the
throughput increases initially with the size of the hierarchical ar-
ray and then drops. The intuition is that a small array limits the
overhead of atomic operations on the shared counters and permits
a quick check if an update transaction can commit. However, too
small an array will result in many false positives, i.e., one has to
perform a full validation anyhow, and a large array will suffer from
the cost of atomic operations.

4.2 Dynamic Tuning Strategy

While one could manually tune the three tuning parameters for a
given workload, it would not be possible to come up with values
that will perform well across a large set of workloads. Hence, it is
necessary to develop mechanisms to adapt the tuning parameters
dynamically.

Our tuning strategy is simple and based on the observations
discussed above. We start with a sensible number of locks, 2'%;
a shift of 0; and a hierarchical array of size 1, i.e., disabled. We
then periodically adapt the tuning parameters at runtime. We use
the same mechanisms as for clock roll-over to temporarily suspend
transactions and update the tuning parameters of TINYSTM.
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Figure 11. The left graph shows the path taken by the dynamic tuning strategy to optimize the throughput of a linked list implementation.
The right graph shows the corresponding change in transaction throughput.

We measure the throughput over a period of approximately one
second. Our tuning strategy keeps the most recent throughput for
each tuning configuration, where a tuning configuration is a triple
consisting of the number of locks, the number of shifts, and the size
of the hierarchical array. Our tuning strategy has 8 possible moves:
(1-2) double/halve the number of locks, (3-4) increase/decrease the
number of shifts, (5-6) double/halve the size of the hierarchical
array, (7) a nop (no change of configuration), and (8) reverse to
the configuration with the maximum measured throughput.

Our tuning strategy is a hill climbing algorithm with a memory
and forbidden areas. The strategy makes a move and then verifies
its effectiveness during the next period. If the performance has
decreased by more than 2% or we are more than 10% away from
the configuration with the highest throughput so far, it will reverse
to that best configuration. If the performance drop is too high,
we additionally forbid certain moves: if we increase/decrease the
size of the hierarchical array or number of shifts from = to y

and the performance drops by more than 10%, we do not further
increase/decrease the size or number of shifts beyond x.

We start the tuning process by randomly selecting a move (1-
6) and updating the configuration accordingly. After reversing or
stopping the hill climbing, our strategy randomly selects another
move (1-6) that would lead to a so far uncharted configuration. If
all neighbors of the current configuration are explored or forbidden,
we reverse to the maximum configuration. If we are already at
the maximum configuration, we perform a nop. If the throughput
drops below that of the second best configuration, we automatically
switch to that configuration.

4.3 Evaluation

‘We have implemented the above tuning algorithm and measured its
performance. For testing purposes, we started the measurements
with a small number of locks (2%) instead of a larger number
(219) that we would normally use in TINYSTM. We started with
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Figure 12. Frequency of locks from read set that need to be pro-
cessed during validation or can be skipped thanks to hierarchical
locking.

a hierarchical array size of 1 and a shift value of 0. The throughput
is measured three times in every configuration and the maximum of
the three measurements is used as input to the adaptation strategy.

Figure 10 evaluates our red-black tree implementation with
auto-tuning: it shows the random path and the associated change
in throughput across the configuration space. Interestingly, the tun-
ing algorithm converges to a configuration that has a throughput
that is higher than the one we found in our static exploration of the
configuration space (see Figure 8); we did not indeed explore the
configuration found by the tuning strategy during the static explo-
ration.

Similarly, Figure 11 evaluates our linked list implementation
with auto-tuning. The maximum configuration found is close to the
one we found in our static exploration. Running the experiments
multiple times resulted in different paths but in configurations with
similar throughput.

Figure 12 shows that, for the linked list implementation, an
increase in the size of the hierarchical array results in reduced
validation costs: the number of locks from the read sets that need
to be processed during validation drops when increasing the size of
the hierarchical array.

5. Conclusion

In this paper we presented the design of TINYSTM, a word-based
transactional memory. We showed that TINYSTM provides perfor-
mance equal to or better than TL2. We also showed that the tuning
of TINYSTM for high performance—and we strongly believe that
this applies to all STMs—is highly dependent on the given work-
load. We introduced a simple hill climbing strategy that finds good
values for the runtime tuning parameters of TINYSTM. In particu-
lar, the auto-tuning found configurations that performed better than
the ones we found during a static exploration of the tuning space.

Automatic tuning and adaptivity are especially important given
that there is no agreement on what constitutes a typical workload
or a good benchmark for transactional memory. They allow us to
exploit the full potential of current TM designs, while being ready
for workload classes yet to be identified.

TINYSTM is available from www.tinystm.org under the
GPL v2.
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