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ABSTRACT 
This paper describes one possible way to solve task “Who rated 
what?” of the KDD CUP 2007. The proposed solution is a 
history-based model that predicts whether a user will vote a given 
movie. Key points to our approach are (1) the estimation of the 
model baseline, (2) the definition of the explanatory variables and 
(3) the mathematical model form. Given the binary outcome of 
the problem, the estimation of the true baseline (ratio of 1’s in the 
test data) is critical in order to correctly make predictions. In 
parallel, to improve the model predictive power, we have 
developed a careful construction of the input variables. These 
explanatory variables can be grouped as: user voting behaviour 
variables, the movie characteristics and user-movie interactions. 
Finally, the mathematical model form (linear logistic regression) 
has been chosen among various model form competitors. 

Categories and Subject Descriptors 
I.5.1 [Pattern Recognition]: Models – statistical 

Keywords 
Predictive modeling, data mining. 

1. INTRODUCTION 
Task 1 at the KDD CUP 2007 is based on the competition 
organized by Netflix (http://www.netflixprize.com) which 
provides a historic database of more than 100 million movie 
ratings [1]. Netflix training data lasts up to December 2005 and 
the Netflix Competition goal is to build a model which predicts 
the rating given by a user to a movie. In order to accurately 
estimate the mean prediction error for each proposed model, 
Netflix uses a test dataset with 2 million user ratings.  

Task 1 at KDD Cup’07 is based on the Netflix data; but the goal 
is slightly different: Here we are asked to predict whether a user 
has rated a given movie during 2006. Therefore the model must 

have a binary outcome. 

The first difficulty in this task is to accurately determine the rate 
of positive events (baseline) on the provided data. In fact, having 
a look to the final results of the task 1 KDD Cup’07, one can see 
that just five teams manages to perform better than a benchmark 
model constructed by assigning to each pair in the scoring data 
the baseline probability.  

Our modeling approach consists of the classical two steps: 

1. Model and variable selection. We built a predictive 
model whose target variable is the binary event of rating 
a movie in 2005 and whose input variables are created 
with data up to December 2004. This step includes 
variable and model form selection. 

2. Prediction. Given the model formulation and parameter 
estimates defined above, the input variables are 
recalculated using the whole dataset (including 2005). 
Finally the required predictions for the score dataset are 
obtained. 

The paper is organized as follows: first, we describe how we 
solved the estimation of the baseline for the year 2006 and how it 
was used to build the training table. Then the input variables are 
described and finally the relevance of such variables is discussed. 

2. BASELINE ESTIMATION 
In order to estimate the baseline we must pay attention to the 
KDD Cup’07 FAQ’s. The FAQ document states that the 100.000 
score pairs were selected by randomly picking up pairs (user, 
movie) with probability proportional to the number of times each 
component appears in the 2006 ratings; Furthermore the user and 
the movie are chosen independently. 

We consider that correct estimation of the baseline is important in 
order to attain a good solution to the problem posed.. For baseline 
estimation we shall proceed to replicate the procedure used to 
create the scoring data, in order to produce a training dataset with 
similar characteristics. The sampling algorithm is as follows: 

1. Define the time range for the target variable, in our case 
a whole year, and select those users and movies that 
were rated before the defined time range. 

2. Choose by simple random sampling with replacement 
200.000 ratings  and save the corresponding user ids, 
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from the fixed time range. That is, draw with 
replacement a 200.000 sample of users, with probability 
proportional to the number of ratings per user. 

3. Repeat the previous step but keeping the id_movies. 
That is, draw with replacement a 200.000 sample of 
movies, with probability proportional to numbers of 
times a movie was rated. 

4. Join both lists randomly (id_users and id_movies) and 
throw away any duplicated pair. 

5. Throw away any (id_user, id_movie) pair that already 
existed in the historic data. 

6. Keep the first 100.000 pairs. 
 
The direct application of this algorithm to the time range of 2005 
provides a rating of 1’s of around 20%. But a closer look to the 
data shows that most of those ratings belong to either new users 
(those whose first rating was at the end of 2004) or new movies 
(those who were first rated at the end of 2004). Therefore these 
two issues must be taken into account: proportion of new users 
and movies that is present in the data prior to the given time 
frame. In fact the proportion of new users and movies at the end 
of 2005 is much lower than the one at the end of 2004, Therefore 
a lower baseline is expected for the 2006 period. 

This result shows that the model under construction is time-
dependent (on the specific year), since there are practically no 
ratings from new users and new movies in 2005, by contrast to 
2004 and preceding years, where many ratings from new users 
and new movies could be found. This fact makes it necessary to 
search for a procedure to make model results independent from 
the year of application, so as to correct the previous baseline. This 
solution is simpler than to build a time dependent model. 

For this reason we decided to clean the data used to estimate the 
baseline and therefore we avoid the possible bias produced for 
those users and movies that appeared at the end of 2004. The 
following percentages of movies and users by first appearance 
month were eliminated. These percentages are obtained by 
comparing the average monthly percentage of new users in 2002, 
2003 y 2004 with the percentage of new users in 2005, and 
dividing for each month. . 

Table 1. Percentage of users and movies left out by month. 

Month Users Movies 

Dec 91.3% 100% 

Nov 68% 100% 

Oct 0% 90% 

Sep 0% 43% 
 

Table 1 shows the percents of movies and users eliminated from 
the data used to estimate the baseline. 

Applying the algorithm described in the previous section to the 
cleaned data we obtain a baseline between 4.5% and 5% for 2005. 
Note that these values are more realistic than the initial 20%. 

The algorithm was applied to the years 2003, 2004 and 2005. 
Then a linear model was used in order to forecast those estimated 

baseline using information from the previous years. The final 
model is quite simple and predicts the baseline for the next year 
as a linear combination of the percent of new movies in the 
current year and the percent of new users in the current year. The 
application of this model provides an estimated baseline for 2006 
of 3.8%. Note that the real rating obtained once the scoring data 
was released was 7.8%, but a wrong baseline of 20% could have 
been used if the baseline estimation is not performed. 

3. MODELING APPROACH 
Our modeling approach tries to reproduce the scoring task, that is, 
to predict the rating events during 2006 based on information 
recorded up to 2005. 

To do so, the training data was divided in two pieces. The first 
part (ratings with date prior to January 1, 2005) was used to create 
the input variables. The second part (ratings with date posterior to 
January 1, 2005) was used to build the target. 

In order to reproduce the sampling scheme used to create the 
scoring data, the sampling algorithm introduced in the previous 
section was used. A training dataset of 500,000 samples was 
created by iterating the sampling algorithm five times. Therefore, 
the target variables in the training data consist on 500.000 binary 
events (1 if the user has rated the given movie during 2005 and 0 
otherwise). 

Additionally, in order to correct for the issue described in the 
previous section, the training data was cleaned by eliminating 
those users and movies that first appeared at the end of 2004; 
using the percentages shown in table 1. This step is necessary; if 
omitted, definitions of input variables built for the training dataset 
in 2004 would differ from those for the scoring dataset in 2005, as  
they would be built on two scoring histories that would be quite 
different  in nature – Influx of new users and new movies is quite 
different in either case. 

Once training dates were cleaned, 250.000 out of the 500.000 
observations were left out for test purposes and the remaining 
observations were used to build the predictive model. The model 
used is a logistic model built over ‘intelligent variables’. Each 
intelligent variable was created by first summarizing the raw 
input information and then transforming it into a discrete variable 
using supervised decision trees. The relevance of these discrete 
variables is critical, they add nonlinearities, and saturation effects 
to the model and are constructed in order to maximize its 
predictive power. 

Once cleaned, the training data was used to build three types of 
explicative variables: 

• Movie variables. 

• User variables 

• User-Movie interactions 

These variables are described in detail below. 

The selected mathematical model form is a logistic regression [2]. 
In parallel three other types of model formulations were analyzed 
but they all yielded poorer results on the test data: 

• Boosting algorithms over decision trees each of them 
having no more than 8 leaves [6]. 
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• Neural Network Multilayer Perceptron with a six 
neurons hidden layer [7]. 

• Arcing techniques on the model above [7]. 

En la siguiente tabla se compara el rendimiento según el RMSE 
de  de los modelos anteriores y de la baseline estimada y real 
sobre los datos de score proporcionados para la tarea. 

Table 2. Most important variables under the final model. 

Model RMSE 
Baseline estimada 3.8% 0.271 

Baseline Real 7,8% 0.268 
Boosting algorithms over decision trees each of them 

having no more than 8 leaves 
0.265 

Neural Network Multilayer Perceptron with a six 
neurons hidden layer 

0.268 

Arcing techniques on the model above. 0.268 
Logistic regression (final model selected) 0.263 

 

Figure 1 shows the expected captured response computed using 
the test data. Given this figure, we were expecting a 10% 
improvement over the estimated baseline which was 0.038. The 
scoring data showed a 6% improvement over our baseline. 

 

 

4. MOST SIGNIFICANT VARIABLES 
Here we described the most significant variables considered. 
These variables can be classified into 3 categories: 

• User related variables. Variables built by focusing on 
the historic rating behaviour of each user. 

• Movie related variables. Variables built by focusing on 
the historic rated behaviour of each movie. 

• User-movie pair variables. Variables built by focusing 
on the common historic behaviours of users and movies. 

4.1 User related variables 
• Number of historic user ratings. 

• Number of next year user ratings estimated using a 
decay curve (see the task 2 paper).  

• Number of months since the first rating of the user 

• Percent of 1-star ratings of the user.  

• Percent of 5-star ratings of the user.  

• Average rating of the user.  

• Standard deviation of the user ratings. 

• Number of months since the last rating of the user. 

• Percent of ratings of the user during the last year. 

• Percent of ratings of the user during the last three 
months. 

• Percent of ratings of the user during the three last 
months over ratings during the last year. 

• Ratio between number of ratings during the last year 
and number of ratings during the year before. 

• Percent of ratings of the user to movies that have been 
rated for more than one year.  

4.2 Movie related variables 
• Number of historic ratings received by the movie. 

• Number of future ratings the movie will receive next 
year, estimated using a decay curve (see task 2 paper).  

• Number of months since the movie was first rated 

• Percent of 1-star ratings received by the movie.  

• Percent of 5-star ratings received by the movie.  

• Average rating received by the movie. 

• Standard deviation of the ratings received by the movie. 

• Months since the last time the movie was rated. 

• Percent of ratings received by the movie during the last 
year. 

• Percent of ratings received by the movie during the last 
three months. 

• Percent of ratings received by the movie during the last 
three months over ratings received during the last year. 

• Ratio between the number of ratings received during the 
last year and the number of ratings received the year 
before. 

• Percent of ratings coming from users that have been 
rating for more than year. 

4.3 User-movie pairs 
These variables intend to add cross-section information; that is to 
include information on user and/or movies that behave similarly. 
In order to build these variables we proceed to identify groups of 

Figure 1. Model sensitivity. 
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users which might have similar rating behaviours and also groups 
of movies that were rated in similar ways.  

The algorithm for the identification of these groups is as follows: 

1. Create the (n by m) “Ratings Matrix”, X, which contains 
the ratings of n users for m movies (prior to January 1st 
2005). 

2. Perform a Singular Value Decomposition [3] on X, and 
get the matrices U (n by c) and V* (c by m), where c is 
fixed to 300, a value with which a sufficiently high 
percentage of explained variance was obtained. 

3. Take the first i columns from matrix U and apply a k-
means cluster analysis on the new (n by i) matrix. The 
cluster algorithm is run to generate j groups. This task is 
repeated for i = (20, 40, 80) and j = (100, 300, 1000). 
So nine ways of classifying the Netflix users are 
obtained. 

4. In the same way a cluster analysis is performed on the 
first i columns of V* producing j groups. This task is 
repeated for i = (20, 40, 80, 150) and j = (100, 300, 
1000). So 12 ways of classifying the Netflix movies are 
obtained. 

A user-movie pair variable is created utilizing the defined user 
groups. The variable is defined as the ratio between the 
percentage of users inside the user’s group that rated the movie 
and the overall percentage of users that rated the movie. 

In a similar way the movie groups are used to create another user-
movie pair variable, defined as the ratio between the percentage 
of movies in the movie group rated by the user and the overall 
percentage of movies rated by the user. This last variable has been 
proven to have a great predictive power. 

Table 2 lists the most important variables in descending order, 
according to the Gini index. Note that the used variables are 
discrete transformations of the described variables. 

Table 3. Most important variables under the final model. 

Variable Gini 
Expected number of ratings for next year, estimated 

using the model developed for task 2  
0.4643 

Likelihood of rating similar movies more than the 
mean, 500 groups and 40 variables. 

0.3229 

Percentage of user ratings corresponding to movies 
with more than 1 year 

0.2870 

Percent of 1-star ratings given to the movie 0.2774 
Likelihood of similar users rating the movie more 

than the mean, 1000 groups and 40 variables. 
0.2618 

Average rating received by the movie 0.2589 
Percent of ratings received by the movie in the last 

three months. 
0.2529 

Percent of 5-star ratings received by the movie.  0.2320 
Expected number of user ratings for next year 0.2053 

Percentage of ratings received by the movie during 
the last 3 months over ratings received during the 

last year. 

0.1975 

Percentage of movie ratings in the last year. 0.1772 

Number of months since the movie was first rated 0.1548 
Percentage of user ratings in the last three months 0.1263 

Percentage of user ratings in the last year. 0.1141 
Number of months since the first user rating 0.1074 

 

5. CONCLUSIONS 
We believe that a great amount of our success relies on the work 
developed to correctly estimate the baseline model. Although the 
absolute error of our estimated baseline was over 4%, (3.8% 
against 7.8%) we must remember that the raw data has a 20% for 
the year 2005. 

On the other hand the variables included are also critical. We 
emphasize three ideas about the variables: 

First note that the model and variable selection is done using the 
training data previous to 2005, but the final scoring must include 
the 2005 information. The key point is to correct the raw data so 
the information up to December 2004 is similar to the whole 
training data. This is done via the cleaning and sampling methods 
described in sections 2 and 3. 

The second key point is the fact that the most important variable 
in the model is the output of task 2. The brilliant qualification as 
first runner up obtained on task 2 has allowed us to use a quality 
variable available for task 1. 

Third, the use of user-movie pair variables. These variables are 
very important and can be used to solve both task 1 and the 
original Netflix problem. 

• The chances of a user rating a movie are greater if that 
user tends to rate similar movies more than the mean, 
where similar movies stands for movies that are rated or 
not rated in a similar way by the users. 

• The chances of a user rating a movie are greater if that 
movie tends to be rated by similar users more than the 
mean, where similar users stand for users that rate or not 
rate movies in a similar way. 

Finally we would like to state that we are not currently working 
on the Netflix problem. Although we have performed the 
experiment of applying an adapted version of the procedures 
described in this paper to the Netflix problem. Basically a model 
with the same inputs have been built but with a multinomial target 
(ratings ranging from 1 to 5). The result on the ‘probe’ data gave 
as an error of 0.958; Still above baseline provided by Netflix and 
very far from the leading positions at the leaderboard. 
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