
A classical predictive modeling approach for Task “Who
rated what?” of the KDD CUP 2007

Jorge Sueiras
Neo Metrics

C/ Arequipa 1
28043 Madrid, Spain

+34 91 382 45 54

jorge.sueiras@neo-metrics.com

Alfonso Salafranca
Neo Metrics

C/ Arequipa 1
28043 Madrid, Spain

+34 91 382 45 54

alfonso.salafranca@neo-
metrics.com

Jose Luis Florez
Neo Metrics

C/ Arequipa 1
28043 Madrid, Spain

+34 91 382 45 54

jose.luis.florez@neo-
metrics.com

ABSTRACT
This paper describes one possible way to solve task “Who rated
what?” of the KDD CUP 2007. The proposed solution is a
history-based model that predicts whether a user will vote a given
movie. Key points to our approach are (1) the estimation of the
model baseline, (2) the definition of the explanatory variables and
(3) the mathematical model form. Given the binary outcome of
the problem, the estimation of the true baseline (ratio of 1’s in the
test data) is critical in order to correctly make predictions. In
parallel, to improve the model predictive power, we have
developed a careful construction of the input variables. These
explanatory variables can be grouped as: user voting behaviour
variables, the movie characteristics and user-movie interactions.
Finally, the mathematical model form (linear logistic regression)
has been chosen among various model form competitors.

Categories and Subject Descriptors
I.5.1 [Pattern Recognition]: Models – statistical

Keywords
Predictive modeling, data mining.

1. INTRODUCTION
Task 1 at the KDD CUP 2007 is based on the competition
organized by Netflix (http://www.netflixprize.com) which
provides a historic database of more than 100 million movie
ratings [1]. Netflix training data lasts up to December 2005 and
the Netflix Competition goal is to build a model which predicts
the rating given by a user to a movie. In order to accurately
estimate the mean prediction error for each proposed model,
Netflix uses a test dataset with 2 million user ratings.

Task 1 at KDD Cup’07 is based on the Netflix data; but the goal
is slightly different: Here we are asked to predict whether a user
has rated a given movie during 2006. Therefore the model must

have a binary outcome.

The first difficulty in this task is to accurately determine the rate
of positive events (baseline) on the provided data. In fact, having
a look to the final results of the task 1 KDD Cup’07, one can see
that just five teams manages to perform better than a benchmark
model constructed by assigning to each pair in the scoring data
the baseline probability.

Our modeling approach consists of the classical two steps:

1. Model and variable selection. We built a predictive
model whose target variable is the binary event of rating
a movie in 2005 and whose input variables are created
with data up to December 2004. This step includes
variable and model form selection.

2. Prediction. Given the model formulation and parameter
estimates defined above, the input variables are
recalculated using the whole dataset (including 2005).
Finally the required predictions for the score dataset are
obtained.

The paper is organized as follows: first, we describe how we
solved the estimation of the baseline for the year 2006 and how it
was used to build the training table. Then the input variables are
described and finally the relevance of such variables is discussed.

2. BASELINE ESTIMATION
In order to estimate the baseline we must pay attention to the
KDD Cup’07 FAQ’s. The FAQ document states that the 100.000
score pairs were selected by randomly picking up pairs (user,
movie) with probability proportional to the number of times each
component appears in the 2006 ratings; Furthermore the user and
the movie are chosen independently.

We consider that correct estimation of the baseline is important in
order to attain a good solution to the problem posed.. For baseline
estimation we shall proceed to replicate the procedure used to
create the scoring data, in order to produce a training dataset with
similar characteristics. The sampling algorithm is as follows:

1. Define the time range for the target variable, in our case
a whole year, and select those users and movies that
were rated before the defined time range.

2. Choose by simple random sampling with replacement
200.000 ratings and save the corresponding user ids,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDDCup’07, August 12, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-834-3/07/0008…$5.00.

54

from the fixed time range. That is, draw with
replacement a 200.000 sample of users, with probability
proportional to the number of ratings per user.

3. Repeat the previous step but keeping the id_movies.
That is, draw with replacement a 200.000 sample of
movies, with probability proportional to numbers of
times a movie was rated.

4. Join both lists randomly (id_users and id_movies) and
throw away any duplicated pair.

5. Throw away any (id_user, id_movie) pair that already
existed in the historic data.

6. Keep the first 100.000 pairs.

The direct application of this algorithm to the time range of 2005
provides a rating of 1’s of around 20%. But a closer look to the
data shows that most of those ratings belong to either new users
(those whose first rating was at the end of 2004) or new movies
(those who were first rated at the end of 2004). Therefore these
two issues must be taken into account: proportion of new users
and movies that is present in the data prior to the given time
frame. In fact the proportion of new users and movies at the end
of 2005 is much lower than the one at the end of 2004, Therefore
a lower baseline is expected for the 2006 period.

This result shows that the model under construction is time-
dependent (on the specific year), since there are practically no
ratings from new users and new movies in 2005, by contrast to
2004 and preceding years, where many ratings from new users
and new movies could be found. This fact makes it necessary to
search for a procedure to make model results independent from
the year of application, so as to correct the previous baseline. This
solution is simpler than to build a time dependent model.

For this reason we decided to clean the data used to estimate the
baseline and therefore we avoid the possible bias produced for
those users and movies that appeared at the end of 2004. The
following percentages of movies and users by first appearance
month were eliminated. These percentages are obtained by
comparing the average monthly percentage of new users in 2002,
2003 y 2004 with the percentage of new users in 2005, and
dividing for each month. .

Table 1. Percentage of users and movies left out by month.

Month Users Movies

Dec 91.3% 100%

Nov 68% 100%

Oct 0% 90%

Sep 0% 43%

Table 1 shows the percents of movies and users eliminated from
the data used to estimate the baseline.

Applying the algorithm described in the previous section to the
cleaned data we obtain a baseline between 4.5% and 5% for 2005.
Note that these values are more realistic than the initial 20%.

The algorithm was applied to the years 2003, 2004 and 2005.
Then a linear model was used in order to forecast those estimated

baseline using information from the previous years. The final
model is quite simple and predicts the baseline for the next year
as a linear combination of the percent of new movies in the
current year and the percent of new users in the current year. The
application of this model provides an estimated baseline for 2006
of 3.8%. Note that the real rating obtained once the scoring data
was released was 7.8%, but a wrong baseline of 20% could have
been used if the baseline estimation is not performed.

3. MODELING APPROACH
Our modeling approach tries to reproduce the scoring task, that is,
to predict the rating events during 2006 based on information
recorded up to 2005.

To do so, the training data was divided in two pieces. The first
part (ratings with date prior to January 1, 2005) was used to create
the input variables. The second part (ratings with date posterior to
January 1, 2005) was used to build the target.

In order to reproduce the sampling scheme used to create the
scoring data, the sampling algorithm introduced in the previous
section was used. A training dataset of 500,000 samples was
created by iterating the sampling algorithm five times. Therefore,
the target variables in the training data consist on 500.000 binary
events (1 if the user has rated the given movie during 2005 and 0
otherwise).

Additionally, in order to correct for the issue described in the
previous section, the training data was cleaned by eliminating
those users and movies that first appeared at the end of 2004;
using the percentages shown in table 1. This step is necessary; if
omitted, definitions of input variables built for the training dataset
in 2004 would differ from those for the scoring dataset in 2005, as
they would be built on two scoring histories that would be quite
different in nature – Influx of new users and new movies is quite
different in either case.

Once training dates were cleaned, 250.000 out of the 500.000
observations were left out for test purposes and the remaining
observations were used to build the predictive model. The model
used is a logistic model built over ‘intelligent variables’. Each
intelligent variable was created by first summarizing the raw
input information and then transforming it into a discrete variable
using supervised decision trees. The relevance of these discrete
variables is critical, they add nonlinearities, and saturation effects
to the model and are constructed in order to maximize its
predictive power.

Once cleaned, the training data was used to build three types of
explicative variables:

• Movie variables.

• User variables

• User-Movie interactions

These variables are described in detail below.

The selected mathematical model form is a logistic regression [2].
In parallel three other types of model formulations were analyzed
but they all yielded poorer results on the test data:

• Boosting algorithms over decision trees each of them
having no more than 8 leaves [6].

55

• Neural Network Multilayer Perceptron with a six
neurons hidden layer [7].

• Arcing techniques on the model above [7].

En la siguiente tabla se compara el rendimiento según el RMSE
de de los modelos anteriores y de la baseline estimada y real
sobre los datos de score proporcionados para la tarea.

Table 2. Most important variables under the final model.

Model RMSE
Baseline estimada 3.8% 0.271

Baseline Real 7,8% 0.268
Boosting algorithms over decision trees each of them

having no more than 8 leaves
0.265

Neural Network Multilayer Perceptron with a six
neurons hidden layer

0.268

Arcing techniques on the model above. 0.268
Logistic regression (final model selected) 0.263

Figure 1 shows the expected captured response computed using
the test data. Given this figure, we were expecting a 10%
improvement over the estimated baseline which was 0.038. The
scoring data showed a 6% improvement over our baseline.

4. MOST SIGNIFICANT VARIABLES
Here we described the most significant variables considered.
These variables can be classified into 3 categories:

• User related variables. Variables built by focusing on
the historic rating behaviour of each user.

• Movie related variables. Variables built by focusing on
the historic rated behaviour of each movie.

• User-movie pair variables. Variables built by focusing
on the common historic behaviours of users and movies.

4.1 User related variables
• Number of historic user ratings.

• Number of next year user ratings estimated using a
decay curve (see the task 2 paper).

• Number of months since the first rating of the user

• Percent of 1-star ratings of the user.

• Percent of 5-star ratings of the user.

• Average rating of the user.

• Standard deviation of the user ratings.

• Number of months since the last rating of the user.

• Percent of ratings of the user during the last year.

• Percent of ratings of the user during the last three
months.

• Percent of ratings of the user during the three last
months over ratings during the last year.

• Ratio between number of ratings during the last year
and number of ratings during the year before.

• Percent of ratings of the user to movies that have been
rated for more than one year.

4.2 Movie related variables
• Number of historic ratings received by the movie.

• Number of future ratings the movie will receive next
year, estimated using a decay curve (see task 2 paper).

• Number of months since the movie was first rated

• Percent of 1-star ratings received by the movie.

• Percent of 5-star ratings received by the movie.

• Average rating received by the movie.

• Standard deviation of the ratings received by the movie.

• Months since the last time the movie was rated.

• Percent of ratings received by the movie during the last
year.

• Percent of ratings received by the movie during the last
three months.

• Percent of ratings received by the movie during the last
three months over ratings received during the last year.

• Ratio between the number of ratings received during the
last year and the number of ratings received the year
before.

• Percent of ratings coming from users that have been
rating for more than year.

4.3 User-movie pairs
These variables intend to add cross-section information; that is to
include information on user and/or movies that behave similarly.
In order to build these variables we proceed to identify groups of

Figure 1. Model sensitivity.

56

users which might have similar rating behaviours and also groups
of movies that were rated in similar ways.

The algorithm for the identification of these groups is as follows:

1. Create the (n by m) “Ratings Matrix”, X, which contains
the ratings of n users for m movies (prior to January 1st
2005).

2. Perform a Singular Value Decomposition [3] on X, and
get the matrices U (n by c) and V* (c by m), where c is
fixed to 300, a value with which a sufficiently high
percentage of explained variance was obtained.

3. Take the first i columns from matrix U and apply a k-
means cluster analysis on the new (n by i) matrix. The
cluster algorithm is run to generate j groups. This task is
repeated for i = (20, 40, 80) and j = (100, 300, 1000).
So nine ways of classifying the Netflix users are
obtained.

4. In the same way a cluster analysis is performed on the
first i columns of V* producing j groups. This task is
repeated for i = (20, 40, 80, 150) and j = (100, 300,
1000). So 12 ways of classifying the Netflix movies are
obtained.

A user-movie pair variable is created utilizing the defined user
groups. The variable is defined as the ratio between the
percentage of users inside the user’s group that rated the movie
and the overall percentage of users that rated the movie.

In a similar way the movie groups are used to create another user-
movie pair variable, defined as the ratio between the percentage
of movies in the movie group rated by the user and the overall
percentage of movies rated by the user. This last variable has been
proven to have a great predictive power.

Table 2 lists the most important variables in descending order,
according to the Gini index. Note that the used variables are
discrete transformations of the described variables.

Table 3. Most important variables under the final model.

Variable Gini
Expected number of ratings for next year, estimated

using the model developed for task 2
0.4643

Likelihood of rating similar movies more than the
mean, 500 groups and 40 variables.

0.3229

Percentage of user ratings corresponding to movies
with more than 1 year

0.2870

Percent of 1-star ratings given to the movie 0.2774
Likelihood of similar users rating the movie more

than the mean, 1000 groups and 40 variables.
0.2618

Average rating received by the movie 0.2589
Percent of ratings received by the movie in the last

three months.
0.2529

Percent of 5-star ratings received by the movie. 0.2320
Expected number of user ratings for next year 0.2053

Percentage of ratings received by the movie during
the last 3 months over ratings received during the

last year.

0.1975

Percentage of movie ratings in the last year. 0.1772

Number of months since the movie was first rated 0.1548
Percentage of user ratings in the last three months 0.1263

Percentage of user ratings in the last year. 0.1141
Number of months since the first user rating 0.1074

5. CONCLUSIONS
We believe that a great amount of our success relies on the work
developed to correctly estimate the baseline model. Although the
absolute error of our estimated baseline was over 4%, (3.8%
against 7.8%) we must remember that the raw data has a 20% for
the year 2005.

On the other hand the variables included are also critical. We
emphasize three ideas about the variables:

First note that the model and variable selection is done using the
training data previous to 2005, but the final scoring must include
the 2005 information. The key point is to correct the raw data so
the information up to December 2004 is similar to the whole
training data. This is done via the cleaning and sampling methods
described in sections 2 and 3.

The second key point is the fact that the most important variable
in the model is the output of task 2. The brilliant qualification as
first runner up obtained on task 2 has allowed us to use a quality
variable available for task 1.

Third, the use of user-movie pair variables. These variables are
very important and can be used to solve both task 1 and the
original Netflix problem.

• The chances of a user rating a movie are greater if that
user tends to rate similar movies more than the mean,
where similar movies stands for movies that are rated or
not rated in a similar way by the users.

• The chances of a user rating a movie are greater if that
movie tends to be rated by similar users more than the
mean, where similar users stand for users that rate or not
rate movies in a similar way.

Finally we would like to state that we are not currently working
on the Netflix problem. Although we have performed the
experiment of applying an adapted version of the procedures
described in this paper to the Netflix problem. Basically a model
with the same inputs have been built but with a multinomial target
(ratings ranging from 1 to 5). The result on the ‘probe’ data gave
as an error of 0.958; Still above baseline provided by Netflix and
very far from the leading positions at the leaderboard.

6. ACKNOWLEDGMENTS
We are very grateful to Neo Metrics for the support they have
given us since the beginning of this project. In particular we are in
debt with David Arias, Tania Cámara, Jesus Figueres, Penélope
Garzón and Paz Gil-Delgado for the effort put to solve this task
and Juan-Carlos Ibañez and Fausto Morales for his help in writing
this paper. We would also like to express our thanks to the KDD
CUP organizers for the work they have carried out.

57

7. REFERENCES
[1] J. Bennet and S Lanning. The Netflix prize. KDD Cup and

Workshop 2007, San Jose, California, Aug 12, 2007
[2] P. A. Devijver and J. Kittler. Pattern Recognition: A

Statistical Approach. Prentice Hall, London, 1982.
[3] Abdi, H. Singular Value Decomposition (SVD) and

Generalized Singular Value Decomposition (GSVD). In N.J.
Salkind (Ed.): Encyclopedia of Measurement and Statistics.
Thousand Oaks (CA): Sage. 2007

[4] R. O. Duda, P. Hart, and D. G. Stork. Pattern classification.
Wiley, New York, 2001.

[5] R. Salakhutdinov, A. Mnih and G. Hinton Restricted
Boltzmann Machines for Collaborative Filtering. Machine
Learning. In Proceedings of the 24 th International
Conference, Corvallis, Oregon, USA. ACM Press, 2003,
791-798.

[6] Schapire, R. E., and Singer, Y. Improved boosting
algorithms using confidence-rated predictions. In Machine
Learning 37, 1999, 297-336.

[7] T. Hastie, R. Tibshirani, and J. H. Friedman. The elements of
statistical learning: data mining, inference, and prediction.
Springer, 2001.

58

