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Abstract

Today we are experiencing the emergence of a new computing paradigm that changes the

way future applications and systems will be designed, architected, delivered and consumed.

Service-oriented computing (SOC) is this new emerging computing paradigm that enables

technologies for developing and connecting future applications in different areas, such as

e-commerce, e-science, telecommunications, and bioinformatics.

Evolving from object-oriented and component computing, SOC utilizes published ser-

vices as the fundamental elements for developing and dynamically connecting different col-

laborating applications and systems, which are distributed within and across organizational

boundaries. One of the major challenges in SOC is to locate these published services without

a-priori knowledge of their existence. This is known as the service discovery problem. Part

of the service discovery problem is the service matching problem, in which the descriptions of

the published services are examined against users’ requests in order to find the right services

that fulfill these requests.

Existing service matching approaches trade precision for recall, creating the need for

humans to manually choose the correct services from the matching results (that fulfill users’

goals). This need for human intervention is a major obstacle for automating both the service

discovery and the service composition processes. To overcome this problem, we argue that the

matchmaker must be able to automatically determine the correctness of the matching results

without the need for human intervention. Such correctness is a user-based correctness that

needs to be determined with respect to the defined users’ goals. To achieve correct matching,

we have identified the following obstacles:
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• The high-level functional specifications (namely goals, roles, contexts and expected

external behavior) for both users and services need to be semantically captured in

a machine-understandable format, in order to enable the matchmaker to understand

them and later use them to find the correct answers.

• The high-level functional semantics of application domains need to be explicitly cap-

tured in a machine-understandable format such that the matchmaker can use them to

mediate between users’ requests and services’ descriptions.

• Services need be primarily aggregated according to their high-level functional specifi-

cations, taking into consideration that the descriptions of the component services could

be described using different concepts.

• Formal matching schemes need to be adopted during the matching process to indicate

how the captured semantics will be used to determine the correct matching results.

In this thesis we propose solutions to these obstacles. First, we introduce a Semantic

Web Services Matching Framework (SWSMF), that indicates which types of semantics need

to be captured and how these semantics will be represented for both services and users in

a machine-understandable format. Within this framework, we have developed an extended

goal model (G+ model) to capture the goal-based high-level functional specifications (namely,

goals, contexts and external behaviors). To overcome the semantic interoperability problem,

we propose a meta-ontology approach for modelling application domains that captures ap-

plication domains’ concepts and operations. It also captures the functional substitution se-

mantics of application domains’ concepts using the proposed concepts substitutability graph,

that enables the matchmaker to determine the concepts’ functional equivalence based on the

involved users’ goals and contexts; avoiding the use of any rigid concept taxonomies. This

enables the mediation process during the matching of services’ high-level functional specifi-

cations to be based on users’ goals and contexts, which minimizes the appearance of false

negatives and eliminates the false positives. Second, we propose a new matching scheme

for matching the high-level functional specifications of services and users that is called the
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Functional Substitutability Matching Scheme (FSMS). FSMS indicates how goals, roles, con-

texts and behaviors of web services will be semantically matched. Finally, adopting FSMS,

we propose two new correctness-aware service matching techniques: a direct matching tech-

nique and an aggregate service matching technique; taking into consideration that services’

descriptions and users’ requests could be described using different concepts. The results

of the conducted simulation experiments indicate that the proposed matching techniques

succeed to eliminate the appearance of false positives, and minimize the appearance of false

negatives compared to the existing major service matching approaches. By adopting the pro-

posed matching framework, matching scheme, and service matching techniques (direct and

aggregate), we believe that we have established the first step to achieve a fully automated

service matching process.



Chapter 1

Correctness-Awareness

Requirements

The World Wide Web (WWW) has become a key infrastructure for information exchange

due to its easy and fast accessibility, its scalability, and its inexpensive global connectivity.

This has attracted a huge number of commercial activities toward using the WWW as their

infrastructure for communication and interaction. Thus, a new computing paradigm known

as Service Oriented Computing (SOC) [Papazoglou and Georgakopoulos, 2003] has appeared

to fulfill these interests. SOC enables computerized objects, systems, processes and appli-

cations to be seen as services that can interact with each other in order to accomplish any

required goals.

Unfortunately, the WWW is designed “only for humans” when it comes to publishing and

accessing information. Computers cannot understand the provided information and in return

provide limited support for processing this information. Therefore, hard-coded processes are

the only way to enable the interactions between existing systems; which is a very expensive

and time consuming process. Due to the cost and time barriers of these technologies, there is a

lack of flexible, dynamic and scalable usage of existing systems, which hinders new solutions

and systems to be easily developed using existing systems. To overcome such a problem,

two complementary approaches appeared to transform the WWW from being for humans

only into a WWW for humans and computer systems: Semantic Web [Berners-Lee et al.,
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2001] and Web Services [Alonso et al., 2004]. The semantic web is about adding machine-

understandable semantics to data such that computers can understand the information and

therefore process it on behalf of human users. Web services provide facilities for integrating

various solutions and systems. However, in order to achieve a dynamic and intelligent WWW,

both semantic web and web services need to be integrated, producing what is known as

Intelligent Web Services [Fensel and Bussler, 2002]. Intelligent web services can automatically

interact and discover each other without any human intervention. Figure 1.1 depicts such

vision graphically.

Web Services
SOAP, WSDL, UDDI

Semantic Web
RDF, DAML

WWW
URI, HTML, HTTP

Intelligent Web
Services

Static

Dynamic

IntelligentDummy

Figure 1.1: Intelligent Web Services Vision (Adapted from [Fensel and Bussler, 2002])

One of the key challenges for achieving the intelligent web services vision is to locate

published services without a-priori knowledge of their existence. This is known as the service

discovery problem. Part of the service discovery problem is the service matching problem, in

which the descriptions of the published services are examined against users’ requests1 to find

the right services that properly fulfill these requests. An answer to a user’s request could

be a service or a group of services that can fulfill this request. A correct answer is either a

service or a group of services that, when invoked, can properly achieve the required user’s

goal. A matchmaker is a program designed to accept users’ requests and return answers to

these requests by applying a given service matching technique over a given service registry.

When a matchmaker examines one service description against a user’s request, this is known

as Service Direct Matching. While, when it examines a group of services’ descriptions against

1In this thesis, we use the term user to represent both humans and systems.
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a user’s request, this is known as Service Aggregate Matching.

Web services are widely adopted by many application domains such as e-business, e-

science, telecommunications, and bioinformatics. Logistics is one of the application domains

that can be easily formalized and universally unified. RosettaNet [Sundaram and Shim, 2001;

Dogac et al., 2002] is an example of such efforts proposed to standardize the supply chain

process. We believe that the logistics application domain can be fully automated via web

services, and therefore we will be using a logistic case study to illustrate the concepts and

techniques proposed in this thesis. Example 1 indicates a typical real-life scenario in the

logistics application domain that shows the limitations of the existing technologies to find

services on the WWW, which motivates our work.

Example 1 (Motivating Example) A company would like to automate its business pro-

cess. This company wants to find a freight forwarder service that can handle its cargo trans-

portation. The company needs a specialist in transporting cars, that can deal with freight on

board transactions, allows credit payments, finalizes custom clearance, and can handle ship-

ments from Melbourne-Australia to Alexandria-Egypt. The company wants to pay not more

than 10% commission and wants the freight forwarder to have more than 6 million dollars

turn over per year and less than 48 hours response time. Also the company wants to negotiate

any proposals before executing the shipment order. Currently, the developer of the company

has to exhaustively search through the results returned by a given search engine (that adopts

keyword-based matching techniques) to find a service that satisfies these requirements, which

can be a very time consuming process. Then the developer has to carry out the necessary

procedures to integrate the chosen service(s) with the existing systems, taking into consider-

ation that services’ descriptions do not necessarily use the same vocabulary adopted in the

query, may not contain the required information or may represent the required information

differently.

Based on the specifications of Example 1, the developer will need to decide about the

correctness of the matching results by manually checking services’ descriptions one by one.

This obviously represents a major obstacle for automating the matching process.
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A solution for this problem is to enable the matchmaker to determine the correctness of

the results without the need for any further human intervention, and without executing

any of the matching services. Thus, the aim of this thesis is to propose new concepts,

models and techniques enabling the matchmaker to automatically determine the correctness

of the matching results without the need for human intervention as well as without the

need to execute any matching services. This will provide a new level of open and flexible

automation between web services, as they can be discovered and composed on-the-fly with low

programming costs, minimizing the cost and the time for service integration and interaction.

1.1 Web Services Matching

To enable the matchmaker to automatically determine the correctness of the matching re-

sults, we argue that the semantics of web services, users, and application domains must

be captured in a machine-understandable format such that they can be understood by the

matchmaker. Additionally, the matchmaker needs to know how to use such semantics to

find the correct services. In other words, the service matching process needs to be designed

such that the matchmaker understands both the components of the matching process and

how they interact with each other to find the correct services. Hence, we argue that the

service matching process should be based on four basic components: service semantics, user

semantics, application domain semantics and matching schemes, as indicated in Figure 1.2.

Service MatchingUser Semantics Service Semantics

Application Domain Semantics

Matching Schemes

Figure 1.2: Components of The Service Matching Process
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Service Semantics: This models the semantics obtained from the descriptions of web ser-

vices. Such descriptions contain the captured services’ specifications. Having such

specifications represented in a machine-understandable format enables the matchmaker

to reason about these services. Services with machine-understandable specifications are

known as Semantic Web Services2 [Bussler, 2003; Rajasekaran et al., 2004]. A compar-

ison between conventional web services and semantic web services is given in Table 1.1

(adapted from Abecker et al. [2004]).

Comparison Aspect Conventional Web Services Semantic Web Services

Service Requester Human System/Human

Service Description Text-based Ontology-based

Service Matching Syntactically-Based Semantically-based

Service Discovery Manually Automatically

Service Composition Manually Automatically

Complexity Simple Complex

Table 1.1: Semantic Web Services versus Conventional Web Services

As a service could have different types of specifications that could be involved in the

matching process (for example, functional and nonfunctional specifications), identifying

the types of specifications that need to be captured and how they will be represented

are crucial issues for the service matching process.

User Semantics: As the focus is on the user-based correctness, fulfillment of a user’s desire

is the only reference that a matchmaker needs to take into consideration to determine

the correctness of the matching results. Consequently, services that cannot fulfill a

user’s desire must be rejected. A user’s desire must be captured in the user’s request

via listing all the required types of specifications. The types of specifications required

by the user must be compatible with the types of specifications captured in services’

descriptions. Also they need to be captured in a machine-understandable format such

that the matchmaker can understand them.

2Intelligent web services are semantic web services that can automatically discover and collaborate with

each other.
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It is important to differentiate between two different types of services when captur-

ing a user’s desire: Transaction Services and Information Services. A transaction

service affects and changes the real world status by performing actual tasks. Cargo

transportation and flight booking services are examples of such services. Whereas

an information service is used to report the real world status (such as a service that

lists currency exchange rates) and/or to list and browse transaction services (such as

a service that lists flight reservation services). Transaction services and information

services are completely different as they represent different desires, semantics and spec-

ifications. Hence, users must clearly state in their requests the types of specifications

that are relevant to the required services.

Application Domain Semantics: Users’ requests are not expected to be exactly the same

as services’ descriptions, therefore a mediation process between users’ requests and ser-

vices’ descriptions is required. One of the factors that affects the mediation process

is the captured semantics of the application domain involved [Bussler, 2003]. Hence,

the elements of the application domains and their corresponding relations need to

be identified, captured, and represented. Capturing such information (in a machine-

understandable format) is crucial for the matching process as this enables the match-

maker to automatically mediate between users’ requests and services’ descriptions.

Matching Scheme: A matching scheme indicates how services will be matched with respect

to a given type of specifications. It also indicates how the mediation between services’

descriptions and a user’s request will be performed adopting the semantics of the in-

volved application domain. A matching scheme describes how the captured semantics

of services, users, and application domains will be used to determine the correctness

of the matching results with respect to a given type of specifications. Therefore, the

matchmaker needs to know which matching schemes will be adopted in the matching

process.
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1.1.1 Limitations of Existing Service Matching Approaches

Unfortunately, existing service matching techniques (such as those described by Chakraborty

et al. [2001], Bernstein and Klein [2002], Paolucci et al. [2002b], Sajjanhar et al. [2004], Dong

et al. [2004], and Sycara et al. [2004]) treat services as documents when it comes to service

matching and retrieval, as they trade precision for recall. In other words, they try to maximize

the number of returned services; hoping they contain the correct services, and leave the

responsibility of choosing the correct services to the user. We argue such approaches cannot

be adopted in the automated service matching process, as they require human intervention

to determine the correctness of the matching results.

Existing service matching techniques examine the descriptions of web services by eliciting

various concepts appearing in them such as inputs, outputs and involved entities. Such

elicited concepts are later matched using either a syntactic approach [Sycara et al., 2002;

Sajjanhar et al., 2004; Dong et al., 2004], or in a more precise semantic approach [Castillo

et al., 2001; Paolucci et al., 2002b; Ganesan et al., 2003; Roddick et al., 2003; Patil et al.,

2004; Roman et al., 2005].

Matching the elicited concepts using a syntactic approach (such as TF-IDF keyword

matching technique [Salton, 1991]) is an imprecise and rigid approach known to have poor

precision and recall [Bernstein and Klein, 2002; Paolucci et al., 2002b], as it assumes users’

requests and services’ descriptions will be based on the same vocabulary, neglecting the need

for any mediation techniques as well as ignoring the semantics of services, users, and the

involved application domains. Matching the elicited concepts using a semantic matching

approach takes into consideration the need for mediation between the elicited concepts. A

common characteristic of the semantic matching approaches is that elicited concepts are

matched using concept subsumption rules that could be provided by either generic domain

taxonomies [Resnick, 1995; Weinstein and Birmingham, 1999; Ganesan et al., 2003; Roddick

et al., 2003; Patil et al., 2004], or use of a form of logic [Kashayp and Sheth, 1996; Castillo

et al., 2001; Paolucci et al., 2002b; Keller et al., 2004; Roman et al., 2005].

We argue that use of generic domain taxonomies to match the elicited concepts is not

a precise approach as it completely ignores the achievement of users’ goals as well as users’
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contexts (there is no perfect taxonomy that can suit all contexts and goals). Furthermore,

only using the schematic characteristics of the adopted taxonomy (for example, the number

of edges between two concepts) is not sufficient to determine the equivalence between the in-

volved concepts [Kashayp and Sheth, 1996]. We also argue that the use of logic to determine

concepts’ subsumption is not a practical approach as the current reasoners are not compu-

tationally powerful enough to handle complex domain subsumption relations. For example,

current Description Logic reasoners such as FaCT [Horrocks, 1998] and RACER [Haarslev

and Möller, 2001] do not adequately leverage the powerful expressiveness of the Description

Logic as they are not scalable, not dynamic, and do not support multiple entity interconnec-

tion [Castillo et al., 2001].

Existing aggregate service matching approaches (such as those described by McIlraith

et al. [2001], Bultan et al. [2003], Pistore et al. [2004], and Berardi [2005]) assume that all

services’ descriptions and users’ requests adopt the same vocabulary, and they require the

behavior models’ traces to have the same number of states in order to be matched. Such

aggregate approaches are very rigid as they do not adopt any mediation techniques between

the services’ descriptions and users’ requests, which indeed is not a practical assumption

that leads to the appearance of false negatives and false positives. Furthermore, they adopt

internal behavior of web services during the matching process. We argue the external behavior

should be adopted instead, as use of internal behavior violates services’ encapsulation.

1.2 Research Questions

The main goal of this thesis is to provide the necessary concepts, models and techniques

required to deal with service matching automation. Our approach for service matching

automation is to enable the matchmaker to automatically determine the correctness of the

matching results with respect to the defined users’ goals such that the need for human

intervention to determine the correct results can be discarded. To achieve this objective, the

matchmaker must be able to do the following tasks:

• Decide which services can achieve the required users’ goals without the need for human

intervention or the need for executing the matching services.
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• Mediate between services’ descriptions and users’ requests using the semantics of the

involved application domains to determine the correct services, as services’ descriptions

and users’ requests could be described using different concepts.

• Aggregate different services, as a user’s request could not be fulfilled by one service.

We strongly argue that services must be primarily matched according to their high-

level functional specifications (namely, goals, roles, contexts, and external behaviors), as this

allows the mediation process to be performed in a high-level manner where the semantics of

application domains can be used. Later, matching using other types of specifications (such as

prices, quality of service parameters and access interfaces) could be performed to refine the

matching results returned from the primary stage. As this thesis focuses on the matching of

the high-level functional specifications, the following core research questions are addressed:

1. How to represent the high-level functional specifications of semantic web services in a

format that is both human-understandable and machine-understandable such that they

can be easily described by both humans and machines in a systematic manner, taking

into consideration that users’ requests and services’ descriptions could be described

using different concepts?

2. Which types of application domains semantics need to be captured in order to mediate

between the high-level functional specifications of both semantic web services and users’

requests, and how these semantics will be represented in a machine-understandable

format such that they can be understood and used by the matchmaker to find the

correct services, taking into consideration that users’ requests and services’ descriptions

could be described using different concepts?

3. How to mediate between the high-level functional specifications of services and users’

requests using the captured application domains’ semantics in order to automatically

determine the correct services that guarantee the achievement of users’ goals; without

the need for human intervention as well as the need for executing the matching services?
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4. How will web services be aggregated according to their high-level functional specifi-

cations taking into consideration that component services could be described using

different concepts, that also could differ from the concepts adopted by users?

1.3 Thesis Contributions

This thesis proposes a new approach for increasing the accuracy of the service matching pro-

cess. The approach uses the high-level functional semantics of services, users, and application

domains to determine the correctness of the matching results. It automatically verifies the

services according to the achievement of users’ goals. That services that only achieve the

users’ goals are considered correct and returned to the users. We summarize our research

contributions to the service matching process as follows:

1. A new goal model for capturing the goal-based high-level functional specifications of

semantic web services (namely goals, contexts, and external behaviors), known as the

G+ model [Elgedawy, 2003]. This model extends the existing goal-scenario-coupling

approaches [Rolland et al., 1998; Rolland and Achour, 1998], used for goal modelling,

to link between contexts, goals, and scenarios, in order to capture the goal-based high-

level functional specifications of semantic web services. In the G+ model, a goal’s

context describes the requirements and effects of the goal achievement via three sets

of constraints: pre-constrains, post-constrains, and describing constraints, respectively.

The G+ model also links between the different scenarios for achieving the goal using

the proposed scenarios-network that is used to describe the major external behavior

patterns of the service. The G+ model is an ontology-based model that is both machine-

understandable and human-understandable. Unlike existing goal-scenario coupling ap-

proaches, by adopting the G+ model, the matchmaker will be able to automatically

determine whether a given service can achieve a user’s goal or not. That is done by

checking if such service can transform the required pre-constraints into the required

post-constraints using one of the required scenarios; satisfying the required describing-

constraints.



CHAPTER 1. CORRECTNESS-AWARENESS REQUIREMENTS 14

2. A meta-ontology for application domains [Elgedawy, 2003; Elgedawy et al., 2004b]. The

proposed meta-ontology approach compromises between the multi-ontology approach

and the consensus approach used for handling the semantic interoperability problem.

It maintains the modelling flexibility of the multi-ontology approach while simplifying

the ontology mapping process by having a common structure for application domains’

ontologies. The schematic layer of the meta-ontology captures the concepts and oper-

ations of application domains. The semantic layer captures the concepts’ functional

substitutability semantics using the proposed concepts substitutability graph to deter-

mine the semantic equivalence between domain concepts. Unlike existing approaches

for determining concepts’ semantic equivalence [Castillo et al., 2001; Paolucci et al.,

2002b; Ganesan et al., 2003; Roddick et al., 2003; Patil et al., 2004; Roman et al.,

2005], the proposed approach determines the concepts’ equivalence according to the

semantics of users’ goals. That two concepts are considered equivalent with respect to

a given goal, and the same two concepts are considered nonequivalent with respect to

another goal. This will eliminate the false negatives and the false positives resulting

from adopting the existing approaches for determining concepts’ semantic equivalence

that use either a fixed taxonomy or fixed subsumption rules for determining concepts’

semantic equivalence; ignoring the semantics of users’ goals.

3. A new constraint matching approach, known as the constraint substitutability app-

roach [Elgedawy et al., 2004b; 2005]. The powerfulness of this approach comes from

its ability to semantically match constraints with different scopes3. This will eliminate

the false negatives resulting from adopting the existing constraint matching approaches

(such as the ones discussed by Jeavons and Cooper [1995]; Pearson and Jeavons [1997])

that require the constraints to have the same scope in order to be matched. The

constraint substitutability approach uses the concepts substitutability graph to find a

transformation that maps the source constraint into an intermediate constraint such

that the intermediate constraint has the same scope as the target constraint. Then

matches the intermediate constraint to the target constraint using the existing con-

3A scope is an attribute and its corresponding concept appeared in the constraint.
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straint matching approaches. The constraint substitutability approach is one of the

mediation techniques used in both context matching and behavior matching of ser-

vices.

4. A new behavior matching approach for semantic web services [Elgedawy et al., 2004a;

2005]. The uniqueness of this approach comes from its ability to semantically match

linear state sequences that consist of different number of states. This will eliminate the

false negatives resulting from adopting existing behavior matching approaches [Magee

et al., 1997; Pierce and Sangiorgi, 2000; Findler et al., 2001; Berardi, 2005] that require

the state sequences of the behavior models to have the same number of states in order

to be matched. The proposed approach defines a behavior state based on the persisting

constraints at the corresponding transition points, then uses a sequence mediator pro-

cedure to re-cluster the state sequences with different number of states into new state

sequences with the same number of states. The sequence mediator procedure uses dif-

ferent state expansion operations to find the matching clusters. Finally, it matches the

expanded behavior states based on their persisting constraints adopting the constraint

substitutability approach.

5. A new high-level functional aggregate matching approach for semantic web services.

This approach is a dynamic sequential aggregate approach that is based on services’

G+ models. The flexibility of this approach comes from its adoption for the proposed

constraint substitutability and behavior matching approaches. The strength of this

approach comes from its ability to aggregate services described using different concepts.

This eliminates the false negatives resulting from adopting the existing aggregate ap-

proaches as they require all component services and users’ requests to be described by

the same concepts.

Figure 1.3 depicts the architecture needed to support the proposed matching approaches.

The figure indicates that:

• The first layer of the automated service matching process is the meta-ontology that

indicates how application domains will be modelled.
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The Meta-Ontology

Application domains Ontologies

Functional Substitutability Matching Scheme

Service Selection

Service SWSMF User SWSMF

Figure 1.3: Web Service Matching Architecture

• The second layer is the ontologies of application domains that provide the vocabulary

used in building services’ descriptions and users’ requests. These ontologies must adopt

the proposed meta-ontology.

• The third layer is SWSMF that indicates how web services’ descriptions and users’

requests will be modelled using the ontologies of application domains (the G+ model

is part of this framework).

• The fourth layer is the Functional Substitutability Matching Scheme (FSMS) that

indicates how services will be matched (directly and aggregately) according to their

high-level functional specifications, also it indicates how the proposed constraint sub-

stitutability and behavior matching mediation approaches will be realized to mediate

between services’ descriptions and users’ requests.

• The fifth layer is the service selection layer, in which services (that is returned after

applying the proposed service matching approaches) will be filtered according to other

types of specifications such as services’ price and quality using other matching schemes.

As the main focus of this thesis is the high-level functional semantics, other types of

specifications are captured and matched using existing approaches, leaving the investigation

about these issues for future work.

1.4 Thesis Organization

The rest of this thesis is structured as follows.



CHAPTER 1. CORRECTNESS-AWARENESS REQUIREMENTS 17

Chapter 2 (Towards Semantic Web Services Matching): This chapter provides the

technical background of the concepts used in this thesis and discusses the major research

efforts in the area of service matching.

Chapter 3 (A Semantic Web Services Matching Framework): This chapter discusses

the required characteristics to be adopted by a service matching framework. It shows

how the proposed framework (SWSMF) models both the semantic web services’ de-

scriptions and the users’ requests, then introduces the proposed G+ model and the

proposed meta-ontology. Finally, it provides a criteria for the correctness of the G+

models.

Chapter 4 (The Functional Substitutability Matching Scheme): This chapter pro-

poses a matching scheme for matching the high-level functional specifications of seman-

tic web services, known as the Functional Substitutability Matching Scheme (FSMS).

It presents the constraint substitutability approach, providing the corresponding data

structures, theoretical proofs, and the realization algorithms. Finally, it proposes the

behavior matching approach that adopts an m-to-n state matching.

Chapter 5 (Dynamic Service Matching Approaches Adopting FSMS): Adopting the

mediation techniques proposed by FSMS, this chapter proposes two new service match-

ing techniques: a direct matching technique and an aggregate matching technique, then

evaluates the devised service matching techniques using simulation experiments.

Chapter 6 (Conclusion): This chapter concludes the thesis with a discussion of the achieved

developments, then highlights some areas for future work.

Appendix A (SWSMF Realization): This appendix discusses the required steps to real-

ize SWSMF from the user’s perspective, the service provider’s perspective, the ontology

engineer’s perspective, and the matchmaker’s perspective.



Chapter 2

Towards Semantic Web Services

Matching

This chapter surveys the basic principles and concepts for matching semantic web services

according to our perspective. As our service matching process adopts a matchmaking app-

roach in order to respond to users’ requests, Section 2.1 investigates the difference between

the matchmaking and brokering approaches for fulfilling users’ requests. Section 2.2 intro-

duces ontologies, as they are adopted by our approach during the modelling and the matching

processes. Section 2.3 provides a quick overview of the characteristics of goal-oriented re-

quirements engineering, as we require explicit models for capturing the goals of web services

and users. Section 2.4 summarizes the major approaches for service representation and high-

lights their limitations. Section 2.5 summarizes the major approaches used for service direct

matching. Section 2.6 investigates the difference between service composition and service

aggregation. Finally, Section 2.7 gives an overview of the major approaches for service com-

posite matching.

2.1 Matchmaking versus Brokering

Service oriented architecture is the commonly accepted minimal framework for service ori-

ented computing [Papazoglou, 2003], in which a service requester asks for services, a service

18
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provider develops and advertises services, and discovery agencies match users’ requests with

the advertised services in order to fulfill these requests. Generally, users’ requests could be

fulfilled via either matchmaking or brokering processes [Decker et al., 1996], as indicated

Figure 2.1.

Service Provider
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Service Requester
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Request

(5)

Return

Results
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Advertise

(3) Selects a

Provider

and Submits

Request
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(2)

Submit

Request
(3)  Return

List of possible

Providers

(4)

 Select a Provider and Submit  request

(5)

Return Results

Matchmaking Approach Brokering Approach

Figure 2.1: Matchmaking versus Brokering (Adapted from [Decker et al., 1996])

In the matchmaking process, a service requester submits a query to the matchmaker,

then the matchmaker searches its service registry for services that could fulfill the requester’s

query by applying a given matching technique, then returns the results to the requester to

choose the suitable service provider. It is the responsibility of the service requester to contact

the service provider in order to execute the required service and obtain results.

In the brokering process, a service requester submits a query to the broker, and then the

broker searches a service registry for services that could fulfill the requester’s query by apply-

ing a given matching technique. The broker then chooses one of the service providers using

a given selection criteria that generally depends on execution environment characteristics

(such as load balancing, bandwidth and latency), and then communicates with the service

provider to obtain the results, and then returns the results to the service requester.

The main difference between matchmaking and brokering is that the service provider is

hidden from the service requester during the brokering process. Also, a global optimization
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for the execution environment could be obtained via brokering as the broker keeps track

of the execution environment status, and it could apply execution monitoring and recovery

techniques to guarantee the best utilization of the resources as well as enhancing the overall

performance of the system.

2.2 Ontologies

Berners-Lee et al. [2001] proposed the semantic web in order to enable machine-understandable

access for information, in which information is defined using machine-understandable seman-

tics (known as the meta-data). Ontologies1 represent the part of the semantic web archi-

tecture that is concerned with domain conceptualization such that a shared common under-

standing of a domain can be communicated across people, applications, and systems [Guarino,

1997; Lassila and Swick, 1999; Patel-Schneider and Fensel, 2002]. A domain conceptualization

is an abstract view of the domain to be represented. An ontology should include descriptions

of domain entities and their existing relations, as well as specify any attributes of domain

entities and their corresponding values. An ontology can range from a simple taxonomy,

to a thesaurus (words and synonyms), to a conceptual model (more complex relations are

defined), to a logical theory (formal axioms, rules, theorems, and theories are defined). On-

tologies should overcome any incompatibility problems that might appear during domain

conceptualization process such as [Kashayp and Sheth, 1996]:

• Entity Definition Incompatibility: This problem arises when the entity descriptors

used for the same entity are not compatible.

• Attribute Domain Definition Incompatibility: This problem arises when at-

tributes have different domain definitions.

• Data Value Incompatibility: This problem arises when there exists inconsistent

values between semantically related data.

1The term ontology is borrowed from philosophy, where an ontology is a systematic account of exis-

tence [Kalfoglou and Schorlemmer, 2003].
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• Abstraction Level Incompatibility: This problem arises when the same entity is

represented at different levels of abstraction.

• Model Discrepancy: This problem arises when the same object is represented dif-

ferently in different models, for example in one model it is represented as an entity and

in another model it is represented as an attribute.

An ontology might include axioms that constrain the interpretation of an entity, but this

is dependent on the intended use of the ontology. When creating an ontology, the following

characteristics should be taken into consideration [Gruber, 1995]:

• Clarity: The definitions given by an ontology should communicate effectively without

depending on a social or computational context.

• Coherence: An ontology should be coherent that inferences obtained from the defini-

tions must be consistent with the definitions.

• Extendibility: When an ontology is evolving, the new definitions should not violate

any existing definitions. In other words, an ontology needs to be monotonically built.

• Minimality: An ontology should not have redundant definitions; the defined terms

should be sufficient to support the intended knowledge needing to be shared. Also an

ontology should make a minimal number of claims as possible.

• Commitment: The terms defined by an ontology should cover all the aspects required

to be shared by an ontology.

There are two approaches that can be followed when ontologies are adopted in the match-

ing process: the consensus approach [Benjamins et al., 2004], and the multi-ontology app-

roach [Kalfoglou and Schorlemmer, 2003]. The consensus approach implies that every appli-

cation domain is described only by one ontology, while the multi-ontology approach implies

that multiple different ontologies could be used to describe the same application domain.

Indeed, reaching consensus for every application domain conceptualization will overcome the

semantic interoperability problem, but this is far from feasible. Although the multi-ontology
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approach provides flexibility for application domains conceptualization, it requires ontology-

mapping process to be adopted.

Ontology mapping provides a common layer from which several ontologies could be ac-

cessed and used to exchange information in a semantically sound manner. However, ontology

mapping is a complex process as different types of entities and different semantics are used

by different ontologies. The main idea of ontology mapping is to identify entities in different

ontologies that are semantically related in order to resolve any appearing differences. Res-

olution of such differences are mainly handled by conversion functions, which until now are

manually developed [Kalfoglou and Schorlemmer, 2003]. Current approaches for automatic

ontology mapping such as the approaches addressed by Kalfoglou and Schorlemmer [2003]

mainly determine the similarity of elements based on predefined classification or taxonomies.

However, purely schematic considerations do not suffice to determine the similarity between

entities as they are generic and ignore the involved contexts [Kashayp and Sheth, 1996].

We differentiate between a domain ontology and a web service ontology. A domain

ontology is concerned with conceptualizations of application domains, while a web service

ontology is concerned with a description of web services that defines what should be captured

in a service model and how it should be represented.

2.3 Goal-Oriented Requirements Engineering

As a web service has similar characteristics to a computer-based system, we argue that goal-

oriented requirements engineering approaches could be adopted to model services’ goals.

Requirements engineering is the part of software engineering that is concerned with the

development of requirements for computer-based systems [Kotonya and Sommerville, 1998].

However, developing requirements for computer-based systems is associated with several

problems such as neglecting systems contexts, and poor understanding of application do-

mains’ semantics [Green, 2004]. Therefore, goal-oriented approaches such as [Dardenne et al.,

1993; Loucopoulos and Kavakli, 1995] are proposed to overcome such problems. These ap-

proaches try to describe the system’s behavior and structure; driving the requirements based

on the analysis of the derived behavior and structure. However, there are some problems that



CHAPTER 2. TOWARDS SEMANTIC WEB SERVICES MATCHING 23

are related to the goal-oriented approach since the concept of a goal is intentional by nature.

That it sometimes becomes hard to identify, characterize and decompose a goal, which leads

to a limited requirement representation [Green, 2004].

An alternative approach to requirements engineering is capturing requirements via scenar-

ios [Potts et al., 1994]. Scenarios provide powerful means to understand complex systems by

capturing examples, illustrations and use cases. Since scenarios describe real situations, they

capture real requirements. However, scenarios only provide partial and restricted require-

ments descriptions that are based on the captured examples, illustrations and use cases. In

spite of partialness and incompleteness of scenarios, they are sufficient to express a majority

of services’ external behavior [Weidenhaupt et al., 1998; Uchitel, 2003].

As goals are intentional by nature and lack an operational point of view, and scenar-

ios can provide an operational description for the requirements, various research efforts in

the requirement-engineering field (such as [Rolland et al., 1998; Rolland and Achour, 1998;

Dardenne et al., 1993; Green, 2004]) propose coupling goals with scenarios to capture the

requirements. However, we will extend such approach in Chapter 3 to link between goals,

scenarios and contexts.

2.4 Service Representation

Services are not just middleware components that can be easily described via RPC interfaces

such as work in [Bernstein, 1996; Lee and Helal, 2003]. However, services could represent

more complex systems such as business processes [Casati et al., 2000; Schuster et al., 2000].

This creates a need for more advanced models to describe web services such that they can

be easily discovered and composed automatically [Staab et al., 2003]. Currently, there are

different frameworks for representing services, from different perspectives, such as UDDI,

OWL-S, and WSMO. Every framework has its own understanding of what is a service, what

a service does, how a service should be consumed, and how a service should be managed.

Consequently, there is no common understanding about what a service means and what

constitutes a service [Dumas et al., 2001; Berardi, 2005]. In the following subsections, we

indicate the most well known frameworks used for describing services.
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2.4.1 UDDI

UDDI (Universal Description, Discovery, and Integration) [UDDI-Technical-Committee, 2004]

ultimate goal is to have a universal centralized registry for web services. In UDDI, service de-

scription is conceptually divided into three categories known as white pages, yellow pages, and

green pages. The while pages contain general contact information about service providers.

The yellow pages contain classification of web services based on predefined standard tax-

onomies. The green pages contain technical information about services. That is captured

via specification pointers that point to any additional information about services such as

their WSDL files and how they can be invoked. UDDI provides different collections of APIs

(Application Program Interfaces) for publishing and enquiring, but it does not specify any

services’ semantics to be captured, however there are some efforts to add semantics to UDDI

descriptions (such as Paolucci et al. [2002a] and Pokraev et al. [2003]), while other approaches

adopt application domain semantics during the service matching process (such as Lu [2005]

and Luo et al. [2005]).

2.4.2 E-speak

E-speak [HP, 1999] uses the notion of resource to represent a ubiquitous service over the

network such as files, printers, java objects, or legacy applications. A resource is described

using an attribute-value approach, where attributes’ names are controlled via a pre-defined

vocabulary. This pre-defined vocabulary is created through a vocabulary builder service

provided by the E-speak framework. Every service provider could define a new vocabulary

or use existing ones. Service providers register their resources with the Core (a common

registry), where resource contacts (that is, interfaces) and access control information are

stored as well. Users’ requests are submitted to the Core in form of search recipe. A

search recipe indicates which resources a user needs and what should be done in case of

multiple resources are found. However, E-speak did not survive due to many implementation

limitations.
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2.4.3 LARKS

LARKS (Language for Advertisement and Request for Knowledge Sharing) [Sycara et al.,

2002] is a language for describing agents’ capabilities. As an agent could be seen as a

service [Huhns, 2002], languages used for describing agent’s capabilities could be adopted to

describe services.

LARKS uses a structured description for an agent’s capability that includes its inputs,

outputs, types, contexts, constraints, and functionality. An agent’s context is described via a

set of keywords, and an agent’s functionality is described via a text description. Vocabulary

used in agent description is defined via an private ontology (called the Concept) that specifies

the vocabulary for this particular agent. LARKS does not provide means for describing

agent behaviors. However, it does emphasize on the importance of explicitly capturing the

context of an agent, and for sure using only keywords for describing an agent’s context is not

enough for capturing contexts’ semantics. Furthermore, currently use of public ontologies is

proliferating, it is more likely that vocabulary used for an agent description will be provided

by public ontologies rather than incorporated as an ontological description within the agent

description itself.

2.4.4 EbXML

EbXML [Hofreiter et al., 2002] provides a framework for business electronic data interchange.

EbXML infrastructure components include: collaborative protocol profile, registry and repos-

itory. The collaborative protocol profile defines XML data structures that describe what each

trading partner supports such as communication processes, security requirements, and con-

tact information. Each service in the ebXML registry has two views: a Business Operational

View (BOV) and a Functional Service View (FSV). The BOV addresses the business related

information such as business agreements, arrangements, obligations, and requirements. The

FSV addresses the technical related information such as service interfaces and data transfer

infrastructure interfaces. There is no formal specification for describing services in ebXML,

as a service is mainly described via different sets of business documents such as UML dia-

grams included in the BOV and another set of technical documents included in the FOV such
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as WSDL files. Consequently, only keyword-based approaches could be used for the service

matching process.

2.4.5 DAML-S/OWL-S

DAML-S (DARPA Agent Markup Language Services Ontology) is an ontology for describing

web services’ specifications. DAML-S is based on the DAML + OIL language [Fensel et al.,

2001] but recently its new specification is based on OWL (Web Ontology Language). This new

version of DAML-S is known as OWL-S [OWL-Services-Coalition, 2003]. OWL-S describes a

web service via three components: a service profile, a service model, and a service grounding.

• The service profile includes service provider information, service functionality informa-

tion, and a set of features. Service functionality is described by a text description for

its purpose, service inputs, service outputs, and service pre-conditions. Service features

are described in an attribute-value format.

• The service model captures the internal behavior of a web service via a process model.

An ontology for building such a process model is provided. The process is described

via its inputs, outputs, preconditions, effects, and sub-processes.

• The service grounding provides service access details such as message formats, serial-

ization, transport, and addressing issues. WSDL over SOAP is the approach adopted

for realizing the grounding model.

There are many pitfalls appeared during OWL-S implementation [Balzer et al., 2004; Mika

et al., 2004], as OWL-S is loosely designed and no guidelines are given for its realization. Fur-

thermore, describing a service purpose via a text description is not a suitable approach when

automation for service matching is required, as it leads to use of keyword-based approaches.

2.4.6 WSMO

WSMO (Web Services Modelling Ontology) [Roman et al., 2005] is an alternative technology

to OWL-S. WSMO is based on WSMF (Web Service Modelling Framework) [Fensel and
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Bussler, 2002] and consists of: ontologies, goals, mediators, and services. An ontology consists

of concept definitions, relation definitions, axioms, non-functional properties, and mediators.

A goal description consists of non-functional properties (chosen from the adopted ontology

non-functional properties), used mediators, post-conditions, and effects. A mediator is used

to link heterogeneous components involved in the modelling of a web service. It should define

the mappings and the transformations between the linked elements. A service is described

by its pre-conditions, assumptions, post-conditions, effects, and the used mediators. Services

are linked to goals via mediators. WSMO supports use of multiple grounding models with

the same web service (unlike OWL-S, which allows only one grounding model). F-logic is

used in WSMO to express the logical expressions defined by goals, mediators, ontologies

and services. However, WSMO lacks explicit representation for web services behaviors (both

internal and external). Also there is no information about how the mediators should be build.

However, WSMO emphasizes the importance of explicitly capturing the services’ goals in a

machine-understandable format.

2.5 Service Direct Matching

We classify existing direct service matching approaches to identify the main similarities and

differences between existing direct service matching techniques in which a user request is

examined against one service description at a time. A service matching technique uses

different filters in order to obtain the final matching results. We classify the matching

approaches according to the adopted primary filter as indicated in Table 2.1.

Existing service direct matching approaches are either structure-based or non structure-

based. The structure-based approaches differentiate between the different types of service

specifications during the matching process, while the non structure-based approaches do not.

Only keyword-based matching techniques are used when a non structure-based approach is

adopted. However, these keywords could be matched syntactically such as the techniques

adopted by Wang et al. [2003]; Sajjanhar et al. [2004]; Colgrave et al. [2004], or semantically

such as the technique adopted by Paolucci et al. [2002a]; Ganesan et al. [2003]; Pokraev et al.

[2003].



CHAPTER 2. TOWARDS SEMANTIC WEB SERVICES MATCHING 28

Wang et al. [2003]

Non Syntactic Sajjanhar et al. [2004]

Structure-Based Colgrave et al. [2004]

Benatallah et al. [2005]

Semantic Paolucci et al. [2002a]

Ganesan et al. [2003]

Pokraev et al. [2003]

Service Non Zeng et al. [2004]

Direct Functional-based Ran [2003]

Matching Maximilien and Singh [2004]

Structure-Based High-Level Semantic Keller et al. [2004]

Sycara et al. [1999; 2002]

Syntactic Mecella et al. [2001]

Functional-based Sivashanmugam et al. [2003]

Low-Level Semantic Aggarwal et al. [2004]

Patil et al. [2004]

Syntactic Paolucci et al. [2002b]

Table 2.1: Direct Service Matching Classification

For example, Sajjanhar et al. [2004] determine the similarity between two services by

constructing two vectors of words from their descriptions, then weights these words based on

the Inverse Document Frequency (IDF). After that, it computes the similarity between the

two weighted vectors using Singular Value Decomposition (SVD) techniques adopted from

linear algebra. While, the approach of Ganesan et al. [2003] determines similarity between

the two vectors based on the distance between their words, that is, computed according

to the words’ depth in an adopted domain taxonomy. [Benatallah et al., 2005] provide a

formalization for the service discovery problem using description logic. They mapped the

service matching problem into a concept covering problem, providing the rules for concept

subsumption. They match services to request according to the common covered concepts.
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However, such work cannot be adopted to automate the service matching process, as it

does not take into consideration the achievement of users’ goals. However, adopting a non

structure-based approach during the matching process leads to poor precision and recall

values [Bernstein and Klein, 2002; Paolucci et al., 2002b], as the semantics of services, users

and application domains are ignored. Thus, human intervention becomes mandatory in order

to select the correct results from the returned matching results.

The structure-based matching approach could be functional-based or nonfunctional-based.

The functional-based approach is mainly concerned with functional specifications matching,

while the nonfunctional-based approach is mainly concerned with nonfunctional specification

matching. Currently, service matching techniques that are based on nonfunctional specifica-

tion matching are mainly focused on matching services according to their quality of service

(QoS) properties, such as Huang and Venkatasubramanian [2002]; Ran [2003]; Maximilien

and Singh [2004]; Zeng et al. [2004]. For example, Maximilien and Singh [2004] provide an

ontology for describing QoS parameters for both services and users. Users provide their

constraints in terms of this ontology (user QoS policy). A service matches a user request

when each of its QoS parameters satisfies the corresponding user’s constraints. However,

nonfunctional-based matching approaches are usually applied as secondary filters to refine

the matching results returned from applying a given functional-based matching approach.

Zeng et al. [2004] provide two selection approaches, a local (task-level) selection of services,

and the other based on global allocation of tasks to services. The local optimization approach

performs optimal service selection for each individual task in a composite service without con-

sidering QoS constraints spanning multiple tasks and without necessarily leading to optimal

overall QoS. The global planning approach on the other hand considers QoS constraints and

preferences assigned to a composite service as a whole rather than to individual tasks, and

uses integer programming to compute optimal plans for composite service executions.

The functional-based matching approach could be based on high-level functional specifica-

tions such as goals, roles, contexts and behaviors, or it could be based on low-level functional

specifications such as inputs and outputs. Both high-level functional matching and low-level

functional matching can be performed by adopting either a syntactic or a semantic basis.
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The semantic basis approach adopts mediation techniques to overcome semantic differences

between a user’s request and descriptions of services, while the syntactic does not adopt any

mediation techniques. Matching in LARKS [Sycara et al., 1999; 2002] and matching proposed

by Mecella et al. [2001] are examples of syntactic high-level functional-based matching ap-

proaches, while matching in WSMO [Keller et al., 2004] is an example of semantic high-level

functional-based matching approaches.

In LARKS, agents are primarily matched based on their contexts. As the context of

an agent is defined as a set of keywords, agents with different contexts are ignored. Later,

four types of matching phases are applied: a profile matching, a similarity matching, a

signature matching and a semantic matching. In profile matching, the text descriptions of

the profiles are filtered using term Frequency-Inverse Document Frequency (TF-IDF). In

similarity matching, the similarity of inputs and outputs of agents are computed as the

average distance between elements (number of edges) within a predefined domain taxonomy,

such that elements with distances greater than a given threshold are considered different.

In signature matching, agents are filtered according to their inputs and outputs. Finally,

in the semantic matching, the constraints over the inputs and outputs of the agents are

matched via constraint implication. An agent that passes all these filters is considered the

exact match of the user query. Matching in LARKS emphasizes the importance of taking an

agent’s context into consideration during the matching process. However, use of keywords to

model the context is a very primitive approach, as the semantics of agents’ contexts cannot

be modelled. Also, capturing an agents’ functionality as a text description in its profile

leads to the use of a keyword-based matching technique (that is TF-IDF) for matching agent

functionality. Hence, such approach cannot be adopted to automate the matching process.

Mecella et al. [2001] match web services based on their external behavior compatibility. A

services’ behavior is represented by a state chart that specifies the order in which events can

be invoked. A state machine is extracted from the corresponding state chart. A service Srvi

is considered compatible with another service Srvj when the external behavior of Srvi can be

restricted to the external behavior of Srvj . This is done by ensuring that the state machine

of Srvj includes the same transition sequences of the state machine of Srvi beginning from
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its starting state to its final state, adopting a one-to-one state matching is adopted, where

events and states are syntactically matched. For sure, this is a strict approach that leads to

the appearance of false negatives as no mediation techniques are adopted.

In WSMO [Keller et al., 2004] web services are matched based on their goals and ca-

pabilities. Web services’ capabilities and user goals are represented as sets of objects (such

as pre-conditions, assumptions, post-conditions, and effects). WSMO uses different types of

mediators to match these objects. A service is considered an exact match for a user request

when every object in the service description matches an object in a user’s request and vice-

versa. Thus, the similarity between a service description and a user request is determined

according to the number of common objects they have. Matching in WSMO emphasizes

the importance of using goals and capabilities as the matching basis for web services. How-

ever, WSMO does not indicate how the proposed mediators will be designed to overcome

the heterogeneities between different objects. Also it does not take services’ behaviours into

consideration during the matching process, which could lead to the appearance of dead and

live locks during web services compositions.

Paolucci et al. [2002b] is an example of a syntactic low-level functional-based matching

approach, while matching in METEOR-S [Aggarwal et al., 2004; Sivashanmugam et al., 2003;

Patil et al., 2004] is an example of a semantic low-level functional-based matching approach.

Paolucci et al. [2002b] match web services according to their inputs and outputs defined in

their DAML-S profiles. Inputs and outputs are matched via sub-typing using the subclassOf

property defined in the DAML-S profile, such that an element is considered a match to

elements with subsuming types. A service is considered an exact match for a user request

when all the inputs and outputs of a service matches corresponding inputs and outputs

specified by the user. However, this is a strict approach that leads to the appearance of false

negatives and positives, as it is very likely to find two similar services (that accomplish the

same goal) with different signatures.

In METEOR-S, web services are primarily matched based on their annotated WSDL

descriptions. These WSDL annotations are defined according to a given domain ontology.

METEOR-S applies three phases for service matching. In the first phase, it matches web
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services based on the operations defined in different WSDL files. In the second phase, the

result set from the first phase is ranked on the basis of semantic similarity between the con-

cepts appeared in the annotations of the selected operations and the concepts of the query

respectively. The optional third phase involves ranking based on the implication between the

preconditions and effects of the selected operations and the preconditions and effects of the

query. The approach taken in METEOR-S is a bottom-up matching approach, that starts

by matching according to the low-level functional aspects then filters the obtained results

according to the high-level functional aspects. Such an approach cannot mediate between

services’ descriptions and user’s request on a high-level manner, using the semantics of the

involved application domain. Therefore, it cannot be adopted to automate the service match-

ing process, as it does not take into consideration services’ behaviors as well as achievement

of users’ goals.

Papazoglou et al. [2002] and Aiello et al. [2002] proposed a service request language

called XSRL to formally express service requests against UDDI-resident web services. XSRL

integrates between AI planning and constraint satisfaction techniques with web service tech-

nology. It has a parser, a model based planner, and a plan executor. A request written in

XSRL is input to an automated planner/scheduler. After receiving the requests from a user,

the planner generates a schedule for interacting with the service providers without further

interaction from the user. Unfortunately, XSRL does not differentiate between the different

types of services’ specifications (functional, nonfunctional, and nontechnical), work in [La-

zovik et al., 2004] and [Lazovik et al., 2006] extended XSRL to include business rules with

relevant processes involved in a user request. However, XSRL still lacks support for service

choreography, also adopting syntactic AI planners to parse and execute raises many questions

about its practicality, especially it cannot handle the semantic interoperability problem.

When a centralized service discovery approach is adopted (services are located in one

service registry), the direct service matching approaches discussed in this section could be

used as centralized service discovery approaches. However, when multiple service registries

are used, interaction protocols are needed for exchanging information among these registries.

Therefore, the approaches to handle such problems mainly adopt current solutions from the
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P2P technology for service execution, publishing and querying such as Wang et al. [2003]

and Schmidt and Parashar [2004]. Wang et al. [2003] propose a framework that is com-

posed of providers, brokers, and requestors to support web services in a P2P environment.

Schmidt and Parashar [2004] adopt similar P2P architecture components that supports key-

word queries adopting the Chord data lookup protocol [Stoica et al., 2001].

2.6 Service Composition versus Service Aggregation

A composite service is a virtual service (does not physically exist) that consists of other web

services collaborating with each other in order to accomplish a given task. In this thesis, we

divide the service composition process into two phases:

1. High-level Aggregation Phase: In this phase, a composite service is examined against

the high-level functional aspects required by users such as goals, roles, contexts, and

expected external behaviors. At this stage, a composite service is known as an aggregate

service.

2. Low-level Execution Phase: In this phase, the execution details of the collaborating

components of an aggregate service are examined in order to make sure that correct

execution will take place such as ensuring transaction ACID properties, coordination,

and execution monitoring [Lazovik et al., 2003; Alonso et al., 2004] .

Thus, the term aggregate service implies that a service exactly fulfils the user goals but

execution details are not addressed, while the term composite service implies that a service

exactly fulfils the user goals and the execution issues are resolved. In other words, a composite

service is an executable aggregate service.

Service composition could be static or dynamic. Static service composition takes place

during design time. The components to be used are chosen, linked, and finally complied and

deployed manually. This type of composition is mostly found in industry and supported by

many tools such as BPML, WSFL, WSCL, WSCI, BPEL4WS [Staab et al., 2003]. A major

disadvantage of these approaches is lack of semantics representation as it mainly depends

on the WSDL model for describing the messages and the data types, and also they lack the
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notion of mediation. In dynamic service composition, components are identified, linked, and

executed in run-time, which is main goal need to be achieved by current research efforts.

Service composition could be conformant or conditional [Berardi, 2005]. A conformant

composite service matches a user request against all the possible ways component services

actually behave during the coordination. A conditional composite service does not realize

the user request for all behaviors of component services, however it perform some sensing

activities at run-time to find suitable components. For instance, if a structure of the form “if-

then-else” is adopted in a conditional composition, at run-time, the value of the “if-condition”

is sensed in order to determine the path that should be followed.

2.7 Service Composite Matching

Service composition is considered one of the most active research topics of web services. In

this section, we attempt to classify some of the major research efforts that deal with service

composition from different perspectives. Similar to the proposed direct service matching,

we classify existing composite service matching approaches based on their initial filters, as

indicated in Table 2.2.

Composite service matching approaches are structure-based as well as functional-based

matching approaches (nonfunctional specifications always used as secondary filters). Either

low-level functional specifications or high-level functional specifications can be used as the

primarily matching aspect. Also, either a semantic or a syntactic approach could be adopted

during composite matching. The approaches presented by Thakkar et al. [2002]; Medjahed

et al. [2003]; Thakkar et al. [2004] are examples of the semantic low-level functional composite

service matching, while the approach presented by Orriëns et al. [2003; 2004] is an example

of the syntactic low-level functional composite matching. However, the approaches presented

by McIlraith et al. [2001]; Bultan et al. [2003]; Pistore et al. [2004]; Berardi [2005] are examples

of syntactic high-level functional matching.

Medjahed et al. [2003] present a framework for composing services that are described in

terms of purpose, category, quality, operations, and binding protocols. The purpose describes

the offered business functionality via a text description. The category describes the applica-
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Semantic

High-Level

McIlraith et al. [2001]

Bultan et al. [2003]

Syntactic Pistore et al. [2004]

Service Berardi [2005]

Composite Structure-Based Functional-based Thakkar et al. [2002]

Matching Semantic Medjahed et al. [2003]

Thakkar et al. [2004]

Low-Level

Syntactic Orriëns et al. [2003; 2004]

Table 2.2: Composite Service Matching Classification

tion domain of the web service. Synonyms and specializations of the terms used to describe

the purpose and category are supported using the adopted ontology. The proposed compos-

ability model compares first the syntactic low-level features (that is the supported interaction

and binding protocols), then the semantic high-level features of services (that is purpose and

category). Composition soundness is checked to determine if the combined services actually

provides an added value service taken into consideration the services’ qualitative properties.

Orriëns et al. [2003; 2004] represent services as interfaces of web components. A specifi-

cation for web components reuse and specialization is given. A composite web component is

manually constituted from other web components using what is called “composition logics”

that specifies the composition type and message dependency. Composition type specifies

the nature of composition that could be sequential, conditional, and/or parallel (alternative

service executions). Message dependency specifies if there is message dependency between

component services and the resulting composite service.

McIlraith et al. [2001] proposes a tool for service composition, where services are de-

scribed using OWL-S ontology, and composition is performed based on situation calculus.

However the resulting composite service is not an OWL-S service. A user’s request is for-

mulated as a generic ConGolog procedure (ConGolog is an agent programming language),
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where every procedure is associated with a situation tree that denotes a partial specification

of the required behavior. Services are represented as actions (tree nodes) in the situation tree.

The situation tree is pruned according to user’s constraints and preferences, after executing

nodes’ services until a linear sequence of services is reached.

Thakkar et al. [2002; 2004] represent services as data sources that are described in terms

of inputs, outputs and constraints. A mediator based approach is adopted to relate between

different sources using a given domain ontology. The mediator transforms the user’s request

(that is given in terms of inputs, outputs, and constraints) into a set of source models. Then

uses a forward chaining algorithm to build an integration plan consisting of existing sources.

Later, the mediator optimizes the integration plan using a data flow analysis algorithm, and

filters the obtained data according to the required constraints.

Bultan et al. [2003] propose a framework for modelling the global behavior of service

composition based on services’ conversations. A service’s conversation is the sequence of

exchanged messages from the user’s perspective, and is represented by a mealy machine. the

user’s request is represented by all the possible desired conversation patterns (that is the de-

sired message sequences), and the answer to the request is the specification of services’ mealy

machines that matches the required conversations. Services are composed using projection-

join between the mealy machines of component services, where messages, inputs and outputs

are matched syntactically.

Pistore et al. [2004] address service composition using planning under uncertainty and

model checking approaches, where services are represented by their behaviors using non

deterministic finite state machines, and users’ requests are expressed using the goal language

EaGLe. The returned answer by the planner is a plan that indicates how to coordinate

services in order to fulfil a user’s goal. The planner also generates monitors in order to make

sure the component services are behaving the way they are defined. A planning domain is

defined in terms of states, actions, and observations. Syntactical model checking approaches

are used to limit space search explosion due to the presence of non determinism.

Berardi [2005] presents a framework for service composition, where services are modelled

as deterministic finite state machines, and a user’s request is represented by a tree of actions.



CHAPTER 2. TOWARDS SEMANTIC WEB SERVICES MATCHING 37

Execution trees are generated from services’ finite state machines to determine all the possible

execution behaviors of services. A tree labelling approach is adopted to associate the the

actions of the user’s tree to the available services such that concurrent execution of services

could be determined.

Most of the work in service composition is based on the internal behavior of services;

whether it is presented in a form of execution trees, situation trees, finite state machines or

even nondeterministic machines. We argue adopting internal behavior during the matching

process is not a practical approach, as this violates services encapsulation (more details are

given in Chapter 3). Furthermore, existing service composition approaches assume that all

services’ descriptions and users’ requests adopts the same vocabulary, and they require the

behavior models to have the same number of states in order to be matched. Such aggregate

approaches are very rigid as they do not adopt any mediation techniques between the services’

descriptions and users’ requests, which indeed is not a practical assumption that easily leads

to the appearance of false negatives and false positives. To overcome these limitations,

in Chapter 5 we propose a correctness-aware aggregate service matching technique that is

based on services’ G+ models as well as the functional substitution semantics of application

domains. We classify our approach as a semantic high-level functional aggregate approach.



Chapter 3

SWSMF:A Semantic Web Services

Matching Framework

A major obstacle for achieving a fully automated service matching process is the need for

human intervention to determine the correctness of matching results. In order to overcome

this problem, the matchmaker must be able to determine the correctness of the matching

results with respect to the defined users’ goals. Hence, the semantics of web services, users,

and application domains need to be captured in a machine-understandable format, so that

they can be understood and used by the matchmaker. Therefore, this chapter proposes a

Semantic Web Services Matching Framework (SWSMF), that indicates the types of semantics

to be captured from web services, users and application domains in order to determine the

correctness of the matching results, also it indicates how these types of semantics will be

represented in a machine-understandable format.

3.1 Preliminaries

A matching framework provides the concepts and the basis that constitutes the matching

process. Therefore, the automation of the matching process is basically dependant on what is

supported by the adopted matching framework. In order to automate the service matching

process, we have identified the following characteristics that need to be supported by the

38
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adopted matching framework:

1- Separates web services’ semantics from their presentations: Semantics of web ser-

vices are obtained from their descriptions. Having these descriptions presented in a way

that suits only human users will not enable the matchmaker to understand services’

semantics from such presentation. Therefore, the matching framework must separate

between services’ presentation (created for human advertisement purposes) and ser-

vices’ descriptions (created for automated matching purposes). The description of web

services must be in a machine-understandable format.

2- Handles semantic interoperability: Semantic interoperability emerges due to the use

of different concepts and semantics for modelling services’ descriptions and users’ re-

quests, which leads to the appearance of false negatives and false positives during the

matching process. Therefore, the matching framework must support solutions for this

problem. For example, if ontologies will be used to overcome the semantic interoper-

ability problem, the matching framework must indicate how ontologies will be used to

describe both web services’ descriptions and users’ requests.

3- Adopts goal-based matching: One of the main characteristics of web services is that

they are goal-based, as services are mainly invoked to achieve particular goals (such as

flight reservation and freight movement). Achievement of users’ goals is the indication

that the invoked services are correct. To enable the matchmaker to automatically

determine the correctness of the matching results, it needs to determine whether the

services returned as matching results can achieve the required users’ goals or not.

This requires the matching framework to explicitly capture the goals of web services

and users and their corresponding achievement process in a machine-understandable

format, such that an automated goals-based matching process could be performed.

4- Adopts role-based matching: One of the key characteristics of web services is that

they are role-based, because a web service is designed to serve specific category of

users (a specific market sector) who are searching for services to help them fulfilling

their roles. For example, services that provide medical analysis will not be invoked



CHAPTER 3. SWSMF:A SEMANTIC WEB SERVICES MATCHING FRAMEWORK 40

by hotel managers. Furthermore, roles are important in providing services’ access

control, users with different roles from the ones supported by services should not access

such services. Therefore, the matching framework must explicitly capture the roles

supported by services and the roles played by the users in a machine-understandable

format.

5- Adopts web services’ external behavior: A web service can be seen as an object or

as a software component, hence it has two types of behaviors: external and internal.

The external behavior represents the sequence of interactions and data flows between

a web service and a user in order to achieve the user’s required goal, while the internal

behavior represents the state transitions a service goes through in order to achieve a

given goal. We argue that the matching framework should adopt the external behavior

as a part of its goal-model (to describe goal achievement) instead of the internal be-

havior for the following reasons:(1) To maintain services’ encapsulation, as the internal

behavior may depend on internal algorithms that a service provider does not want to

reveal. (2) A given user is mostly interested in only one achievement pattern (a scenario

for the expected external behavior) for achieving the required goal, it does not matter

to the user how a service will achieve the goal internally but what matters to the user

is the set of interactions required by a service in order to accomplish the required goal.

(3) The internal behavior is always complex to describe, and it costs a lot to build an

accurate internal behavior model of a service in terms of expertise and time. On the

other hand, external behavior can be partially captured via informal scenarios, which

are more easily anticipated and understood.

6- Adopts web services different contexts: Adopting the concept of context is an im-

portant factor in the matching process as it provides the matchmaker with more infor-

mation to enhance the quality of the returned answers [Fidge, 2002; Hattori et al., 2003;

Lee and Helal, 2003]. A context in web services is generally identified as information

about the execution environment that can be used to enhance service performance [Dey

et al., 1999; Pratistha and Zaslavsky, 2004]. However, we argue that this is a limited
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perspective for defining web services’ contexts, because each web services’ aspect should

have its own identifying context. For example, a web service could have a context for

pricing, a context for security, a context for execution details, and a context for its goal

achievement (requirements and effects). Hence, the matching framework should cap-

ture such contexts in a machine understandable format such that they can be adopted

in the automated matching process.

7- Facilitates web service aggregation: As a user’s request could be complex such that

it cannot be fulfilled by one service, a group of services could be aggregated together to

fulfil such request. Therefore, the matching framework must provide a basis for service

aggregation in order to make sure the aggregated service has a real value.

8- Supports non-functional and non-technical requirements: Customer satisfaction

has motivated business to put more emphasis on service quality issues, as these issues

have been previously neglected as part of the matching process. Therefore, the match-

ing framework must capture such requirements in a machine-understandable format,

as they form the basis of the service selection process. Like functional requirements,

non-functional and non-technical requirements require collection, specification, analy-

sis, allocation, and testing.

9- Adopts users’ semantics: As we indicated before, achievement of users’ goals when

the returned matching services are invoked is the indication for the results’ correctness.

Therefore, the matching framework must take into consideration user’s semantics in

order to provide a basis for determining results’ correctness. Users’ requests should

include the same types of specifications used for services’ descriptions. Users’ requests

should be captured in a flexible manner. For example, a user can specify different

categories of constraints that reflect their importance. A user can define a category of

mandatory and essential constraints that must be satisfied, and define another category

of optional constraints that is preferred to be satisfied, so that the matchmaker can use

such semantics during the matching process1.

1This approach of request modelling is known as imprecise computation modelling [Elhaweet et al., 2001].
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According to these characteristics, we identify the following types of specifications to

be captured in services’ descriptions and users’ requests (a classification for these types is

depicted in Figure 3.1):

High-level functional specifications: They are concerned with describing services’ func-

tionality from a high-level perspective. For example, they should include information

about services’ goals, roles, external behaviors and goals’ achievement contexts.

Low-level functional specifications: They are concerned with describing services’ func-

tionality from a low-level perspective. For example, they should include information

about services’ access interfaces, required bandwidth and messaging protocols.

Non-functional specifications: They are concerned with describing services’ non func-

tional aspects. For example, they should include information about quality of service

and security.

Non-technical specifications: They are concerned with describing services’ marketing as-

pects. For example, they should include information about such as pricing, discounts,

and service providers.

Web Services’ Specifications

Non-TechnicalTechnical

FunctionalNon-Functional

e.g. Price, Discount

e.g. Goals, Contexts,

Interaction Scenarios

e.g. Reliability, Delivery,

Performance

High-Level Low-Level

e.g. Interfaces,

message protocols

Figure 3.1: Web Services Specifications Classification

According to this classification, the matching process should be performed in a multi-stage

manner such that every stage will be considered with matching only one type of specifications.
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As we indicated before (see Section 1.2), the matching process should start by matching the

high-level functional specifications, as this provides the matchmaker with the information

required to determine the correctness of the matching results. Later, matching using the

other types of specifications should be performed to refine the obtained matching results.

The remaining of this chapter is organized as follow. Section 3.2 indicates the limitations

of existing frameworks in supporting all of these characteristics, motivating the need for

the SWSMF framework. Section 3.3 provides an overview of the adopted approach for

building the SWSMF framework, adopting the required characteristics. Also it provides the

conceptual model for the SWSMF framework. Section 3.4 introduces the proposed meta-

ontology approach for modelling application domains’ ontologies, which acts as the basis for

handling the semantic interoperability problem. Section 3.5 describes the proposed G+ goal

model, which acts as the basis for representing the goal-based high-level functional aspects

(goals, goals’ achievement contexts, and expected external behavior) of both web services

and users. Section 3.6 indicates how different goal achievement patterns will be extracted

from the proposed G+ model. Finally, Section 3.7 concludes the chapter.

3.2 Limitations of Existing Matching Frameworks

This section illustrates the limitations of some of the important existing matching frame-

works2 in supporting the required characteristics; motivating the need for a new matching

framework. We define a scale of four values to evaluate the support for a given characteristic.

These values are:

• F: fully supported, which means the characteristic is explicitly addressed and solutions

are proposed.

• P: partially supported, which means the characteristic is explicitly discussed, but no

solutions are proposed.

• S: similarly supported, which means the characteristic is not explicitly discussed, but

similar concepts are discussed.

2These matching frameworks were introduced in Chapter 2.
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• N: not supported.

A matching framework that enables the matchmaker to automatically determine the cor-

rectness of the matching results need to have the value F against all the required characteris-

tics. As indicated in Table 3.1, none of the existing frameworks fully supports all the required

characteristics. The following discussion analyzes the values given for each framework listed

in this table.

Characteristic UDDI EbXML E-speak LARKS OWL-S WSMO

1- Separates Semantics From Presentation N N F F F F

2- Handles Semantic Interoperability N N F F P F

3- Adopts Goal-Based Matching N N N N N F

4- Adopts Role-Based Matching N N N N N F

5- Adopts External Behaviors N N N N N N

6- Adopts Different Contexts N S N S N S

7- Facilitates Service Aggregation N N N N N F

8- Supports non-functional/non-technical requirements S S N N P F

9- Adopts User Semantics N N N N N F

Table 3.1: Comparison between Existing Matching Frameworks

As UDDI is used to describe web services using only text descriptions, it has no support

for any of the mentioned characteristics. However, some parts of these text description could

include information about non-functional specification, hence UDDI is considered similarly

supporting it.

EbXML uses two views to describe business interactions: a Business Operational View

(BOV), and a Functional Service View (FSV). BOV deals with business process semantics

such as agreements, obligations, and data transactions (mostly captured via UML diagrams).

FSV deals with low-level functional specifications such as interfaces and protocols. Both views

are designed for human use only, hence no machine-understandable information is supported.

Use of BOV and FSV is to separate the high-level from the low-level functional specifications.

Also BOV could contain information about non-functional and non-technical specifications.

Therefore, it is considered similarly supporting multiple contexts, non-functional and non-

technical specifications.

E-speak handles the semantic interoperability problem using a controlled vocabulary

approach. It does not take user semantics into consideration. However, it describes the

semantics of services as a set of attributes using the controlled vocabulary. Therefore, it is
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considered supporting semantics-presentation separation. However, E-speak does not support

explicit goal models, explicit context models, or external behavior models.

LARKS does not take users’ semantics into consideration, and handles the semantic in-

teroperability problem by using a predefined vocabulary. LARKS defines a slot structure to

describe an agent capability. Therefore, it is considered supporting semantics-presentation

separation as parts of the slot structure are described in a machine-understandable format,

such as inputs and outputs. Other parts are described as free text, such as agent’s func-

tionality. LARKS defines only one context for an agent as a set of predefined keywords.

Hence, if more than one context is needed to be defined for the same agent, the keywords

representing these contexts will be added to the original keyword set. Therefore, LARKS

is considered similarly supporting multiple contexts. However, LARKS neither supports ex-

plicit goal models nor non-functional requirements. Also, capability aggregation of agents is

not addressed in LARKS.

OWL-S does not take user semantics into consideration. It supports the use of domain

ontologies by referring to the adopted ontology in the service category parameter located in

the service profile. However, there is no explicit indication of how such an ontology will be

used to define the adopted vocabulary. Therefore, OWL-S is considered partially supporting

semantic interoperability handling. There are three different parts of OWL-S (profile, pro-

cess model, and grounding model), OWL-S is considered supporting semantics-presentation

separation. OWL-S has no means for explicitly capturing web services goals and their corre-

sponding external behavior. Also, it does not provide any basis for service aggregation. The

non-functional properties in the service profile (such as the service name, human-readable

description and contact information) are not explicitly based on standard meta-data specifi-

cations, hence it is considered partially supporting non-functional requirements.

WSMO uses mediators to overcome the semantic interoperability problem. WSMO sup-

ports the use of explicit goal models, but it does not support any facility for behavior mod-

elling (neither internal nor external). By the means of constraints; multiple contexts could

be captured, but the concept of context is not explicitly mentioned in WSMO.
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3.3 SWSMF Approach

This section demonstrates the basic ideas used to establish the SWSMF framework in order

to fully support the required characteristics.

1- Separating Web Services’ Semantics from their Presentation

The SWSMF approach to separate the semantics of web services from their presentation is to

have two types of views for web services: a Service Active View (SAV) and a Service Passive

View (SPV). The active view contains only machine-understandable information that will be

used in the automated matching process (SAV structure will be given later in this section).

The passive view contains information that is not in a machine-understandable format such

as UML diagrams, business documents, and deployment models, hence it will be used by

human users to select services from the answers returned by the automated matching process.

An SPV is considered passive because it is not adopted in the automated matching process,

while an SAV is considered active because it is the basis for the automated matching process.

SWSMF allows a web service to have multiple different SAVs, for the following reasons:

1. An SAV represents a contract that a service provider could provide, hence different

SAVs allows a service provider to advertise different contracts for the same service.

2. Service providers might need to publish the same service using different ontologies to

cover more market sectors, so they need to have a separate SAV for each ontology.

3. A service could have different goals in different application domains. For example, a

vehicle renting service could advertise its service in both tourism and logistics applica-

tion domains, where every domain has its corresponding goals. In the tourism domain,

a goal could be car-renting while in the logistics domain, a goal could be truck-renting.

Thus, each domain will have a corresponding SAV.

However, a web service needs to have at least one SAV to enable the matchmaker to

automatically determine the correctness of the matching results, otherwise this cannot be

achieved, as keyword-based techniques will be the only option to match SPVs.
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2- Handling the Semantic Interoperability Problem

SWSMF adopts the use of ontologies to overcome the semantic interoperability problem.

However, as both the consensus approach, and the multi-ontology approach have their own

pros and cons (previously discussed in Section 2.2), SWSMF compromises between the two

approaches by proposing a meta-ontology approach, as illustrated in Figure 3.2.

Meta-Ontology

Domain

Ontology

Domain

Ontology 1 Ontology nOntology 2

Domain

Ontology 1 Ontology nOntology 2

The Consensus Approach The Multi-Ontology Approach

The Proposed Meta-Ontology Approach

Has

Follows

Figure 3.2: Approaches for Application Domain Representation

In the proposed meta-ontology approach, a given application domain is allowed to be

represented by several ontologies (as in the multi-ontology approach) provided that these

ontologies adopt the proposed meta-ontology (as in the consensus approach). The proposed

meta-ontology (see Section 3.4) captures the concepts and operations of application domains.

Also it captures the concepts functional substitution semantics using the proposed concepts

substitutability graph. By adopting a meta-ontology, the flexibility of the multi-ontology

approach is maintained as many ontologies can describe the same application domain, and

the ontology mapping process becomes a straightforward process, as all ontologies will have

the same structure and will be capturing the same types of semantics.
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3- Adopting Goal-Based Matching

SWSMF explicitly captures web services’ goals in their SAVs using the proposed G+ goal

model. We have overcome the limitations of coupling between goals and scenarios by linking

between goals, scenarios and their corresponding goal achievement contexts. Hence, a G+

model consists of a goal, its realization scenarios and the corresponding high-level functional

contexts (goal achievement contexts), as indicated in Figure 3.3 (more details about G+ are

given in Section 3.5).

High-Level Functional Context

Goal Scenario

Has Has

Realized By

1

1

1

m

m

m

Figure 3.3: G+ Conceptual Model

SWSMF allows a web service to have different goals. Of course, every defined goal has

its own realization scenarios and achievement contexts.

4- Adopting Role-Based Matching

SWSMF explicitly captures services’ supported roles in their SAVs, and captures users’ roles

in their UAVs. The proposed meta-ontology captures roles as concepts representing applica-

tion domain actors (see Definition 6, Page 55). SWSMF does not require the roles of services

and users to be defined using the same concepts, however they can use different concepts for

describing the required roles, as SWSMF uses the semantics captured in the meta-ontology

to determine functionally substitutable roles, more details are given in Section 3.4. During

the high-level functional specification matching, SWSMF filters services according to their

roles. Later, it filters the results according to their goals, contexts, and behaviors, as this

minimizes the search space.
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5- Adopting Web Services External Behaviors

SWSMF uses the concept of scenarios to capture the external behaviors of web services, in

which a scenario indicates the expected interactions between users and a given web service

in order to achieve a given service goal. However, there could exist different scenarios that

can be used to achieve the same goal, and also these scenarios could be described in different

abstraction levels. Therefore, SWSMF proposes the concept of a scenarios-network to define

the different scenarios needed to achieve the required goals. A scenarios-network is part of

the service G+ model and is described in Section 3.5. Formal external behaviors models

are automatically extracted from the defined scenarios-network during the matching process

(more details are given in the next chapter).

6- Adopting Web Services Different contexts

Based on the classification given in Figure 3.1, SWSMF defines four different types of contexts

for a web service to be captured in its SAV(s): a High-Level Functional Context (HLFC),

a Low-Level Functional Context (LLFC), a Non-Functional Context (NFC), and a Non-

Technical Context (NTC). An HLFC captures the requirements and effects of services’ goals,

as described in Section 3.5. An LLFC is restricted to capture the required bandwidth and

the supported device types. An NFC is restricted to capture the following QoS parameters:

• Reliability: the probability that a web service has successfully responded to a request

within the maximum expected time frame.

• Availability: the percentage of a web service’s up-time.

• Reputation: the average ranking provided by service consumers to the web service.

An NTC is restricted to capture the service price. Indeed, LLFC, NFC, and NTC could

capture more information than specified by SWSMF. However, we leave this issue for future

work as this thesis is only concerned with the high-level functional specifications.
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7- Facilitating Web Services Aggregation

SWSMF uses the G+ models of web services as a basis for service aggregation. This is

because one of the main characteristics of goals is that they could be aggregated forming

more complex goals, which gives the opportunity to match the required users’ goals.

8- Supporting non-functional and non-technical specifications

SWSMF differentiates between the non-functional and non-technical specifications. It cap-

tures the non-functional specifications via the NFC and the non-technical specifications via

the NTC. Both the NFC and the NTC are parts of services’ SAVs.

9- Adopting User Semantics

SWSMF captures users’ semantics via the User Active View (UAV). A UAV has the same

structure as SAV. SWSMF allows a user to have different active views with different roles

and goals. The user creates the required UAVs using an adopted ontology that is compliant

with the proposed meta-ontology.

SWSMF model acts as an ontology for modelling semantic web services and users’ re-

quests, specifying what should be captured and how. Figure 3.4 depicts SWSMF conceptual

service model, while Figure 3.5 depicts SWSMF conceptual user model. SWSMF uses the

same structure of an SAV to describe a UAV. The automated matching process will be be-

tween services’ SAVs and users’ UAVs. An SAV of a web service captures the following

specifications in a machine-understandable format:

• Ontology: The URI of the adopted application domain ontology,

• G+: The defined goal-based high-level functional specifications,

• Role: A supported actor of the involved application domain,

• Non-functional Context: The defined non-functional specifications,

• Non-technical Context: The defined non-technical specifications, and

• Low-level functional context: The defined low-level functional specifications.
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Figure 3.4: SWSMF Conceptual Service Model
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SWSMF does not require any specific description language to provide the flexibility for

adopting our matching techniques. That any description language that can support the

definition of the meta-ontology elements in the specified attribute-value format will be suit-

able to describe the SWSMF framework. There are four perspectives that should be taken

into consideration for SWSMF realization, as each perspective plays a different role during

the matching process. These perspectives are: an ontology engineer perspective, a service

provider perspective, a user perspective, and a matchmaker perspective. The ontology engi-

neer is the person responsible for building application domain ontologies. Service providers

are the ones responsible for creating and publishing a given service. Users (humans and sys-

tems) need to format their request according to SWSMF specifications, while the matchmaker

examines the submitted UAVs against the published SAVs, more details about SWSMF re-

alization are given in Appendix A.

3.4 A Meta-Ontology for Modelling Application Domains

As this thesis is concerned only with the high-level functional specifications, the proposed

meta-ontology specifies the elements and semantics to be captured in application domains’

ontologies for modelling and matching the high-level functional specifications. The proposed

meta-ontology consists of two layers: the schematic layer, and the semantic layer, as indicated

in Figure 3.6. The schematic layer is responsible for defining the types of application domains’

elements that need to be captured. The semantic layer captures the relations and their

corresponding semantics between the captured elements’ types.

Schematic Layer

Semantic Layer

Concepts Operations

Functional Substitution Semantics

Figure 3.6: Meta-Ontology Layers
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3.4.1 The Schematic Layer

Concepts and operations are the application domain elements that need to be captured in the

schematic layer, as they are the basic elements needed to describe the high-level functional

specifications of web services. Basically, concepts and operations are defined via a set of

attributes. For each attribute of an application domain element: a name, a text description

for the attribute, a type (such as string, numeric) and a range must be defined in the adopted

ontology. For example, in the Logistics application domain, we can find a Cargo concept

that has a Weight attribute that has a description such as “a numeric value that represents

the number of tons of the cargo”, a type such as numeric, and a range such as 〈0, 10000〉,

where 0 is the lower limit and 10000 is the upper limit.

We capture the information about application domain elements using constraints. With-

out loss of generality, we adopt basic constraint models that are rich enough to explain the

proposed constraint substitutability concept (more details are in the next chapter). However,

more complex (semantically richer) constraint models could be adopted. In this thesis, a con-

straint could be a Comparative Constraint or a Bounding Constraint. A bounding constraint

could be either a Disjunctive Bounding Constraint or a Conjunctive Bounding Constraint.

Definition 1 (Comparative Constraint) A comparative constraint over an attribute attrk

of an element Ei is defined as ( Ei.attrk λ τ ), where λ ∈ {=, 6=, <, >, ≤, ≥}, τ is a single

value that has the same type as attrk.

For example, (Cargo.Weight = 100), (Cargo.Weight ≥ 100), (Cargo.Weight 6= 100)

are examples for comparative constraints over the Weight attribute of the Cargo concept.

A disjunctive bounding constraint is used to limit the value of a given attribute to specific

single value from a group of finite values.

Definition 2 (Disjunctive Bounding Constraint) A disjunctive bounding constraint over

an attribute attrk of an element Ei is defined as ( Ei.attrk ∈ η ), where ∈ is the disjunctive

bounding constraint operator, and η is a finite set of single values that have the same type as

attrk.
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For example, (Cargo.Type ∈ {Motor-Vehicle,Dangerous-Cargo,Food-Product}) is an

example of a bounding constraint over the Type attribute of the Cargo concept. It indicates

that Cargo.Type could be either a Motor-Vehicle, a Dangerous-Cargo, or a Food-Product.

A conjunctive bounding constraints is used to assign multiple values to a given attribute

simultaneously.

Definition 3 (Conjunctive Bounding Constraint) A conjunctive bounding constraint

over an attribute attrk of an element Ei is defined as ( Ei.attrk ⊆ η ), where ⊆ is con-

junctive bounding constraint operator, and η is a finite set of single values that have the

same type as attrk.

For example, if a freight forwarder service could support multiple activities during its op-

eration such as Custom-Clearance and Packaging. This should be modelled as (Activity.Type

⊆ {Custom-Clearance, Packaging}).

Every constraint3 has a corresponding scope that indicates which attribute and which

element are restricted by the constraint.

Definition 4 (Constraint Scope) Given a constraint Cnst over an attribute attrk of an

element Ei. The scope of Cnst (denoted as Ξ(Cnst)) is Ei.attrk.

For example, the scope of the constraint (Cargo.Weight ∈ {100,200,300}) and the

scope of the constraint (Cargo.Weight = 100) have the same value Cargo.Weight. Sim-

ilarly, the scope of a set of constraints is formed from the scopes of the corresponding set

elements.

Definition 5 (Constraints-Set Scope) Given a set of constraints fi = { Cnst1, Cnst2,...,

Cnstn}, the scope of fi (denoted as Ξ(fi)) is { Ξ(Cnst1), Ξ(Cnst2),..., Ξ(Cnstn) }.

For example, the scope of the set {Cargo.Weight = 100, Cargo.Type = Cars} is the

set {Cargo.Weight, Cargo.Type}.

3In what follows, we will use the term constraint to refer to both comparative and bounding constraints

unless explicitly specified.
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Definition 6 (Concept) A concept is an application domain element representing an entity

or an actor that can be described via a set of features, which are defined in attribute-value

format.

For example, in the Logistics application domain, we can find entities such as Freight,

Cargo, Port, Origin, Destination, ShippingOrder, and Payment. The Cargo concept could

have a set of features such as {Weight = 100, Volume = 3000, ExpiryDate = Jan-2004, Type

= Cars }, where Weight, Volume, ExpiryDate, and Type are attributes.

An application domain role is a concept representing an application domain ac-

tor. For example, we can find actors such as Client, Freight Forwarder, and Transport

Operator. A Client actor could have a set of features such as {Name = Islam Elgedawy,

ReferenceNo = s3060314, Address = Melbourne-Australia}, where Name, ReferenceNo,

and Address are attributes.

Definition 7 (Operation) An operation is an application domain element representing a

transaction that can be described via a set of input concepts, a set of output concepts, a set

of pre-constraints over the input concepts, a set of post-constraints over the output concepts,

and also has a set of features that are defined in attribute-value format.

For example, in the Logistics application domain, we can find operations such as

SendShippingOrder, AnalyzeShippingOrder, and SettlePayment. A SendShippingOrder

operation could have {Freight, Origin, Destination} as its set of inputs. Also it could have

{ShippingOrder} as its set of outputs. Its pre-constraints could be described as the following

set of constraints {Freight.Details 6= Null, Origin.Details 6= Null, Destination.Details

6= Null}. Its post-constraints could be described as the following set of constraints {

ShippingOrder.Status = Created}. The SendShippingOrder operation could have at-

tributes in its features such as Name and ID. We use the notation OpPre
x to refer to the

pre-constraints of the operation Opx, and we use the notation OpPost
x to refer to the post-

constraints of the operation Opx.
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3.4.2 The Semantic Layer

The semantic layer captures the semantics of application domain to be used for mediation

processes needed in the matching process. Such semantics are captured via different types

of relations specified according to the adopted matching schemes. The proposed semantic

layer (according to the proposed matching scheme described in the next chapter) captures

the functional substitution semantics between application domain concepts.

When capturing the functional substitution semantics between concepts, the functional

substitution semantic between concepts’ attributes must be taken into consideration as

well, as attributes with the same name could have different semantics. For example, in

the Logistics application domain, the concept Cargo can be substituted by the concept

Freight in a SendShippingOrder operation. However, their attributes do not necessarily

have the same semantics, for example Cargo.Type and Freight.Type have the same seman-

tic interpretation that indicates the nature of the items to be shipped, while Cargo.Cost

and Freight.Cost may have different interpretation (that is for example, the cost of Cargo

does not include taxes, while the cost of the Freight does). Therefore, we argue that the

functional substitution semantics should be captured on the level of scopes (that is Con-

cept.Attribute) indicating the mappings between the values of substitutable scopes. As the

substitution semantics could vary according to the logic of the involved application domain

operation, the substitution semantics should be defined with respect to every operation de-

fined in the involved application domain. However, such substitution semantics must be

captured in a context-based manner; avoiding use of rigid mapping rules (that is applied in

all contexts); indicating the mapping between scopes’ values. To fulfill these requirements,

we propose the concepts substitutability graph to capture scopes’ substitution semantics in a

context-based manner.

Concepts Substitutability Graph

The concepts substitutability graph is constituted of segments, where each segment corre-

spond to an application domain operation. A substitutability graph segment is a directed

graph, in which a node is a scope, and a graph edge shows the substitutability direction, it
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starts from the source node (the replacing/substituting scope) and the arrow head points to

the target node (the scope to be replaced/substituted). Existence of an edge from a source

scope into a target scopes means that the source scope is functionally equivalent to the target

scope according to the semantics of the segment’s operation. However, there are conditions

for this substitution that must be satisfied first by the user’s goal achievement context in

order to apply such substitution. Hence, every edge in the graph has a set of substitution

constraints, a corresponding conversion function, and an operator mapping matrix.

Definition 8 (Substitution Constraint) A substitution constraint is a constraint that

must be satisfied at the substitution time in order to be able to replace/substitute a target

scope by another source scope.

Definition 9 (Conversion Function) A conversion function is a mapping function that

maps between the values of one scope (source scope) into the values of another scope (target

scope). It takes one input value and returns a set of finite output values. The type of the

input value is the same as the type of the attribute appeared in the source scope, while the

type of an output value is the same as the type of the attribute appeared in the target scope.

Table 3.2 indicates different forms of conversion functions. As facts are captured via

constraints, identifying the mappings between scopes’ values is not enough, as we need to

know the effect of such mappings on constraints’ operators when we determine constraints

substitutability (details in the next chapter). Therefore, we introduce, the use of Operator

Mapping Matrix (OMM) to show the mappings between constraints’ operators according

to the logic of the corresponding conversion function (that is each conversion function has

its own OMM). By doing so, we guarantee scopes’ substitutability does not change the

represented facts. A row of an operator mapping matrix represents the mappings from a

given source operator (supported by the conversion function) into the other corresponding

operators. As we have eight types of supported operators (=, 6=, <, >, ≤, ≥, ∈, ⊆), an

operator mapping matrix should have eight rows and eight columns. Elements of OMM

are either 1 (when there is a mapping from the source operator to the operator in the

corresponding column) or 0 (when there is no mapping). For example, the operator mapping
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matrix depicted in Figure 3.7 is the one corresponding to the conversion function of the edge

from Credit.Period into Payment.Type indicated in Table 3.2. The matrix indicates the

supported operators to be mapped according to the defined conversion function are (=, >)

and they should be mapped into the (=) operator when the scope Credit.Period substitutes

the scope Payment.Type. For instance, the constraint (Credit.Period = 15) will be mapped

into the constraint (Payment.Type = Credit) according to the defined conversion function

and OMM, more details about use of conversion functions and their corresponding operator

mapping matrices will be given in the next chapter.

= 6= < > ≤ ≥ ∈ ⊆

= 1 0 0 0 0 0 0 0

6= 0 0 0 0 0 0 0 0

< 0 0 0 0 0 0 0 0

> 1 0 0 0 0 0 0 0

≤ 0 0 0 0 0 0 0 0

≥ 0 0 0 0 0 0 0 0

∈ 0 0 0 0 0 0 0 0

⊆ 0 0 0 0 0 0 0 0

Figure 3.7: OMM for the edge from Credit.Period into Payment.Type

By adopting the concepts substitutability graph, the matchmaker can find the right sub-

stitution semantics according to the required goal, as every goal is represented by an oper-

ation (more details about the goal model are given in Section 3.5). We define a concepts

substitutability graph as follows.

Definition 10 (Concepts Substitutability Graph) A concepts substitutability graph CSG

is a multi-segment graph such that CSG =
⋃n

i=1{〈Opi, VC , EC〉}, where
⋃

is the set union

operator, 〈Opi, VC , EC〉 is the substitutability graph segment of operation Opi (denoted as

Segi), n is the number of operations in the domain, VC is a set of graph nodes such that

VC ⊆ ∆C

⊗
∆A, where ∆C is the set of all concepts, and ∆A is the set of all attributes,

and
⊗

is the cross product operator. EC represents a set of graph edges such that ∀ E(a,b)

∈ EC , E(a,b) = 〈Va, Vb, Π(a,b), Ψ(a,b), Ω(a,b)〉, where Π(a,b) is the set of substitution constraints

that must be satisfied such that the scope represented by the node Va (source node) can re-

place (functionally substitute) the scope represented by the node Vb (target node), Ψ(a,b) is the

corresponding conversion function, and Ω(a,b) is the corresponding operator mapping matrix.
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Figure 3.8 depicts a representation for the concepts substitutability graph. The figure

shows that for every pair of concepts; the substitutable attributes are defined as well as their

substitution constraints, conversion functions, and operator mapping matrices with respect

to every application domain operation. Table 3.2 indicates an example of a segment of a

concepts substitutability graph in the logistics application domain that corresponds to the

CargoTransportation operation (more details about meanings of the listed attributes will

be given in the next section), to simplify the representation of the segment, we did not

include the operator mapping matrices in the table. A row in Table 3.2 represents an edge

in a segment in the substitutability graph. For example, the first row indicates there is an

edge from the scope Cargo.Details into the scope Freight.Details, and also indicates the

corresponding conversion function. A set of substitution constraints could be empty.
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Figure 3.8: A CSG Representation

The quality of the data captured in this graph is the responsibility of the ontology engineer

(more details about the responsibilities of an ontology engineer are given in Appendix A).

The ontology mapping process is performed by creating a common concepts substitutability

graph from the concepts and operations of both ontologies, hence the matchmaker does not
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Source (Va) Target (Vb) Conversion Function (Ψ(a,b)) Substitution Constraints (Π(a,b))

Cargo.Details Freight.Details Freight.Details = Cargo.Details

Freight.Details Cargo.Details Cargo.Details = Freight.Details

Cargo.POL Origin.Details Origin.Details = Cargo.POL

Origin.Details Cargo.POL Cargo.POL = Origin.Details

Cargo.POD Destination.Details Destination.Details = Cargo.POD

Destination.Details Cargo.POD Cargo.POD = Destination.Details

Cargo.Course Freight.Course Freight.Course = Cargo.Course

Freight.Course Cargo.Course Cargo.Course = Freight.Course

Credit.Period Payment.Type IF (Credit.Period > 0) THEN

Payment.Type = Credit

ELSE Credit.Period ≥ 0

Payment.Type = Cash-Against-Doc

END IF

Payment.Type Credit.Period IF (Payment.Type = Credit) THEN

Credit.Period ∈ {15.30, 45, 60} Payment.Type ∈ {Credit,

ELSE Cash-Against-Doc}

Credit.Period = 0

END IF

ShippingOrder.Status Cargo.Status Switch (ShippingOrder.Status) ShippingOrder.Status ∈ {Fulfilled,

Case Fulfilled: Cargo.Status = Accomplished Created}

Case Created: Cargo.Status = Received

End Case

Cargo.Status ShippingOrder.Status Switch (Cargo.Status) Cargo.Status ∈ {Accomplished,

Case Accomplished: ShippingOrder.Status = Fulfilled Received}

Case Received: ShippingOrder.Status = Created

End Case

Proposal.Status Offer.Status Offer.Status = Proposal.Status Proposal.Status ∈ {Sent,Approved}

Offer.Status Proposal.Status Proposal.Status = Offer.Status Offer.Status ∈ {Sent,Approved}

ShippingOrder.Status Offer.Status IF (ShippingOrder.Status = Approved) THEN ShippingOrder.Status ∈ {Approved,

Offer.Status = Accepted Executed}

ElSE

Offer.Status = Executed

END IF

Offer.Status ShippingOrder.Status IF (Offer.Status = Accepted) THEN Offer.Status ∈ {Accepted, Executed}

ShippingOrder.Status = Approved

ElSE

ShippingOrder.Status = Executed

END IF

Payment.Status Cargo.Status IF (Payment.Status = Received) THEN Payment.Status = Received

Cargo.Status = Accomplished

END IF

Cargo.Status Payment.Status IF (Cargo.Status = Accomplished) THEN Cargo.Status = Accomplished

Payment.Status = Received

END IF

Table 3.2: Substitutability Graph Segment for CargoTransportation Operation
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need to adopt any changes in the adopted service matching techniques when new ontology

mappings are added.

3.5 The G+ Goal Model

This section introduces the G+ model to provide the means to describe a goal, its achieve-

ment, and the corresponding required services’ capabilities (functional features supported/offered

by a service to achieve its goals) adopting the proposed meta-ontology.

A real-world status in a given application domain could be described via a set of facts

over the concepts involved at a given point of time. As we describe facts via constraints,

the real-world status could be represented by a set of constraints over the concepts involved

at a given point of time. The achievement of a given goal implies a change in the real-

world status. Such change could be captured by monitoring the constraints over the involved

concepts at different time transition points; starting from the constraints over a set of initial

concepts (before achieving the goal) reaching to the constraints over a set of final concepts

(after achieving the goal); going through different sets of constraints over the appeared

intermediate concepts. Hence, a goal achievement could be described via different sets of

constraints appeared over the involved concepts at different transition points of time.

The constraints over the set of initial concepts are known as the goal Pre-Constraints.

The constraints over the set of final concepts are known as the goal Post-Constraints. The

appeared intermediate concepts are mainly based on the steps taken to achieve the goal. As

goals are achieved by invoking services, achievement of a given goal could require certain ca-

pabilities to be supported/offered by the invoked services, such requirements will be described

via a set of constraints over services’ capabilities, known as the goal Describing-Constraints.

Hence, describing a goal and its achievement requires capturing the pre-constraints, the post-

constraints, the describing-constraints, the steps taken to achieve the goal and the constraints

over the intermediate concepts. We introduce the G+ model to fulfill these requirements.

Definition 11 (G+ Model) A goal G is defined in the G+ format as 〈Op, Ctxt, SN〉, where

Op is an operation representing G, Ctxt is the achievement context of G defined as the tuple

〈Pre, Desc, Post〉, Pre is the set of pre-constraints (denoted as CtxtPre), Desc is the set
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of describing constraints (denoted as CtxtDesc) and Post is the set of the post-constraints

(denoted as CtxtPost), and SN is the scenarios-network used for achieving G.

A G+ model a goal by an application domain operation. It captures the goal pre-

constrains, post-constraints, and describing-constraints in the goal’s achievement context,

known as the goal’s High-Level Functional Context (HLFC). It adopts the notion of “sce-

nario” to describe the steps taken to achieve the goal. A scenario shows only one story about

how to achieve the goal, and it is modelled as a sequence of application domain operations.

However, a goal could be described by multiple scenarios that can differ in their abstraction

levels and could have different triggering constraints, forming a network of scenarios that

plot the possible ways that a given goal can be achieved (see Figure 3.11). In G+ model a

scenario is tightly coupled with a goal model, that every operation in a given scenario is seen

as a goal to be achieved and could be realized by another different scenarios. The constraints

over the appeared intermediate concepts will be automatically extracted according to the

defined scenarios-network and the defined HLFC (details in the next chapter).
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Figure 3.9: Relationships between the G+ Model and the Meta-Ontology

Figure 3.9 indicates the relations between the components of a G+ model and the com-

ponents of the proposed meta-ontology. It shows that both goals and scenarios are described
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via the application domain operations, while HLFCs are described via constraints that are

based on the application domain concepts.

Users need to describe the required goals, the required scenarios for goals’ achievement,

and the required services’ capabilities from their own perspective. Also, service providers need

to describe the supported goals of their services, the supported scenarios for achievements of

these goals, and the supported capabilities from their own perspective. Hence, there are two

different perspectives for describing a goal and its achievement: a User’s Perspective and a

Service’s Perspective. A comparison between the user perspective and the service perspective

is given in Table 3.3.

Constraint Set User Perspective Service Perspective

Pre-Constraints Guaranteed to be satisfied Required to be satisfied

Post-Constraints Required to be satisfied Guaranteed to be satisfied

Describing-Constraints Required to be satisfied Guaranteed to be satisfied

Table 3.3: User Perspective versus Service Perspective

In the user’s perspective, a user guarantees the satisfaction of the pre-constraints and

requires the returned service to satisfy the required describing-constraints and the required

post-constraints. However, in the service’s perspective, a service guarantees the satisfaction

of the describing-constraints and the post-constraints (after its successful execution), but it

requires the pre-constraints to be satisfied in order to be invoked.

For example, a user who wants to transport a car cargo from Melbourne-Australia to

Alexandria-Egypt. The user provides all the cargo details and the required international

commercial terms (that is a world standard for transportation fees and charges). Constraints

used to describe such information are guaranteed to be satisfied by the user, hence they

should appear in his/her pre-constraints. However, he/she would like to have a service

that can handle motor vehicles transportation and offer credit payment. Constraints used

to describe such information are required to be satisfied by the service, hence they should

appear in his/her describing-constraints. The user requires the transportation operation to

be accomplished once he send the payments. Constraints used to describe such information

are required to be satisfied after the service finishes its execution, hence they should appear in



CHAPTER 3. SWSMF:A SEMANTIC WEB SERVICES MATCHING FRAMEWORK 64

his/her post-constraints. Also the user would like to carry out the cargo transportation in the

following manner. He/She would like to send the cargo and charging scheme details first, then

get an offer, negotiate it, then accept it. Finally, he/she would like the offer to be executed

and send his/her payments. So such information should appear as the required scenario to

achieve the goal. Figure 3.10 depicts a G+ model for the user’s goal. It indicates that the

goal need to be achieved is a Cargo Transportation operation. The user wants to achieve

this goal by the scenario depicted in the figure, also the user provides the required HLFC,

where Cargo.POL is the cargo port of loading, Cargo.POD is the cargo port of discharge,

Cargo.Course indicate the nature of the required transportation operation, IncoTerm.Type

is the standard international commercial term, and FOB (Freight On Board) is its required

value.
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Figure 3.10: Example of a User G+ Model

Another example from a service’s perspective, a service provider that can do freight

movement operations, and would like to advertise his/her service. The service provider

requires some constraints to be satisfied in order to invoke the service, such constraints should
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appear in the service pre-constraints. The supported/offered service’s capabilities for freight

movement operations should appear as the service describing-constraints. The information

about the concepts appeared after the service finishes its execution should appear in the

service post-constraints. Also different scenarios for achieving the goal should be defined.

Figure 3.11 depicts a G+ model for the service’s goal. It indicates the service goal is Freight

Movement, and also depicts the various scenarios (with different abstraction levels) required

for realizing this goal.
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Figure 3.11: Example of a Service G+ Model
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For simplicity, we removed the Port-To-Door, and the Door-to-Port cases from the

branching over the Freight.Course values, as the idea of branching and its different real-

ization scenarios is clearly illustrated by the Port-to-Port and the Door-to-Door cases. In

the Door-to-Door case additional In Land Transportation (ILT) operation is required. The

service requires the IncoTerm.Type to be either a FOB (Freight On Board), EXW (EX-Works),

or CIF (Cost insurance and Freight) in order to be invoked. The service offers a 15 days

credit period, and can handle motor vehicles and dangerous cargo transportation.

Both users and service providers should choose the operations forming their scenarios

from the adopted ontology. Their corresponding HLFCs should not violate the semantics

of the chosen operations (their pre and post constraints defined in the adopted ontology).

Table 3.4 indicates the pre-constraints and post-constraints of the operations selected by the

user from the ontology to form the required scenario. Table 3.5 indicates the pre-constraints

and post-constraints of the operations selected by the service provider from the adopted

ontology to form the required scenarios-network. Hence, a correctness check must be done,

to make sure correct scenarios are created, more details are given in the end of this chapter.

For human users, a set of templates could be provided for the possible scenarios of achieving

different application domain operations, a user can modify these templates as required to

form his/her request (more details about the responsibilities of users and service providers

are given in Appendix A).

As indicated earlier, users could specify two different categories of constraints to rep-

resent their desires: mandatory/essential and optional/preferred. Hence, each HLFC set

of constraints could be divided into two subsets a mandatory/essential subset and an op-

tional/preferred subset. However, in this thesis, we restrict user’s constraints to be only

mandatory/essential constraints. That any constraints given by the user (pre, post or de-

scribing) must be satisfied by the returned matching results. Also, a scenarios-network could

contain negative scenarios, which are the scenarios a service should follow when an error or

exception is occurred during its execution. In our approach, negative scenarios are handled

exactly as the positive scenarios in terms of modelling and matching. Hence, without loss of

generality, this thesis will focus only on positive scenarios.
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Operation Pre-constraints Post-Constraints

SendCargoDetails {Cargo.Details 6= Null, Cargo.POL 6= Null, {Cargo.Status = Received}

Cargo.POD 6= Null, IncoTerm.Type 6= Null }

GetOffer {Cargo.Status = Received , Cargo.Course 6= Null } {Offer.Status = Sent}

NegotiateOffer {Offer.Status = Sent} {Offer.Status = Approved}

AcceptOffer {Offer.Status = Approved} {Offer.Status = Accepted}

ExecuteOffer {Offer.Status = Accepted} {Offer.Status = Executed}

Sendpayment {Offer.Status = Executed} {Cargo.Status = Accomplished}

Table 3.4: Part of the Ontology Operations’ Definitions Selected by the User

Operation Pre-constraints Post-Constraints

SendShippingOrder {Freight.Details 6= Null, Origin.Details 6= Null, {ShippingOrder.Status = Created}

Destination.Details 6= Null, Freight.Course 6= Null,

IncoTerm.Type 6= Null }

GetShippingOrderAnalyzed {ShippingOrder.Status = Created} {ShippingOrder.Status = Analyzed }

Get-POL-Allocated {ShippingOrder.Status = Created} {POL.Status = Allocated}

Get-POD-Allocated {POL.Status = Allocated} {POL.Status = Allocated,

POD.Status = Allocated}

Get-ILT-To-POL-Allocated {POL.Status = Allocated} ILT.ToStatus=Allocated

Get-ILT-From-POD-Allocated {POD.Status = Allocated} ILT.FromStatus=Allocated

GetCostsComputed {POL.Status = Allocated, POD.Status = Allocated} {ShippingOrder.Status = Analyzed}

GetShippingProposalFinalized {ShippingOrder.Status = Analyzed} {ShippingOrder.Status = Approved}

GetProposal {ShippingOrder.Status = Analyzed} {Proposal.Status = Sent}

NegotiateProposal {Proposal.Status = Sent} {Proposal.Status = Approved}

SendProposal {Proposal.Status = Approved} {ShippingOrder.Status = Approved}

GetShippingOrderFulfilled {ShippingOrder.Status = Approved} {ShippingOrder.Status = Executed}

HandlePackaging {ShippingOrder.Status = Approved} {Packaging.Status = Accomplished}

FinalizeDocuments {Packaging.Status = Accomplished} {Documentation.Status = Accomplished}

FinalizeBookings {Documentation.Status = Accomplished} {ShippingOrder.Status = Executed}

GetConfirmation {ShippingOrder.Status = Executed} {ShippingOrder.Status = Confirmed}

GetPaymentSettled {ShippingOrder.Status = Confirmed} {ShippingOrder.Status = Fulfilled,

Payment.Status = Received}

ReceiveInvoice {ShippingOrder.Status = Confirmed} {ShippingOrder.Status = Pending}

SendPayment {ShippingOrder.Status = Pending} {ShippingOrder.Status = Fulfilled,

Payment.Status = Received}

Table 3.5: Part of the Ontology Operations’ Definitions Selected by the Service Provider

When matching the services’ constraints against the users’ constraints, the matching

direction should be from the party that guarantees the satisfaction of its constraints (the

source) to the party that required its constraints to be satisfied (the target). As we have two

different perspectives in defining a G+ model, the direction in G+ matching is based on the

type of the defined constraints (pre, post and describing), as indicated in Table 3.6 (more

details about service matching are given in Chapter 5).
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Constraint Set Source Target

Pre-Constraints User Service

Post-Constraints Service User

Describing-Constraints Service User

Table 3.6: HLFC Matching

3.6 From a G+ Model to a GAP-Forest

It is the responsibility of the matchmaker to analyze all the possible scenarios provided by

users and service providers in order to find a mach. This section indicates how this could

be achieved. One path from a goal node to a leaf operation node (no successors) represents

one way to achieve the goal, such a path is known as a Goal Achievement Pattern (GAP)

(see Figure 3.12). A GAP provides a global (end-to-end) snapshot of how the service’s goal

is expected to be accomplished. This global snapshot provides information that helps the

matchmaker to anticipate the external behavior of the service in a given context in order to

achieve the service goal. Extracting GAPs from a scenarios-network implies tracing all the

possible paths in the defined network, as each different path represents a different GAP.

Goal

One  GAP

High-Level

Functional Context

Figure 3.12: Example of a GAP

For each trace of the scenarios-network, a different set of branches are visited. At the

point where a branch starts, a group of constraints must be true in order to visit that branch.

This group of constraints acts as a sub-context for this GAP. This sub-context will be added

to the pre-constraints of the high-level functional context of the G+ model (we refer to this

a conjunction to the HLFC). This forms the high-level functional context of the GAP.
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For example, in Figure 3.11, we can identify two sub-contexts are formed when the values of

Freight.Course is examined: one sub-context when (Freight.Course = Door-to-Door),

and the other when (Freight.Course = Port-to-Port). Figure 3.13 depicts these formed

GAPs and their corresponding high-level functional contexts. The figure indicates that the

HLFCs of abstraction level-2 (corresponding to the GAPs resulting from the branching) are

formed from the conjunction of HDLC of the G+ model and the corresponding sub-contexts.

A GAP is defined as indicated in Definition 12.

Definition 12 (Goal Achievement Pattern) Given a goal G =〈Op, Ctxt, SN〉, a goal

achievement pattern of G is defined as Gp = 〈 Op, GCtxt, OpSeq〉, where GCtxt = 〈CtxtPre

∧ SubCtxt, CtxtDesc, CtxtPost 〉, and SubCtxt is the conjunction of the constraints that must

be satisfied along the path that forms the operations sequence OpSeq resulting from tracing

SN ; starting from the goal node until a leaf operation node is reached.

As a scenarios-network has scenarios defined in different abstraction levels, the extraction

process of different GAPs from a given scenarios-network starts by tracing all of the possible

paths in the scenarios-network, then replacing the operations by their realizing scenarios

(if they exist). Every replacement process creates more detailed GAPs from the previously

generated GAPs. Hence, every abstraction level has a group of GAPs that describes the

realization of the goal at this abstraction level, as indicated in Figure 3.13. The figure

indicates that the realization of the goal Freight Movement of the service G+ model depicted

in Figure 3.11 is described using three abstraction level.

The GAP of abstraction level-0 is simply representing the goal and its HLFC. Abstraction

level-1 contains the GAPs that are directly realizing the goal, in this case there is only one

GAP. The GAPs of abstraction level-2 are resulting from the GAPs of abstraction level-1

by replacing the GAPs operations by their direct realizing scenarios. When branching is

visited during the extraction of the GAPs of abstraction level-2, the GAP of abstraction

level-1 is duplicated, and for every copy the corresponding sub-context is added to the HLFC

of abstraction level-1 GAP. The collection of these sets of GAPs forms the GAP-Forest

corresponding to the G+ model, as indicated in Definition 13.
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Freight Movement
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Handle Packaging

Finalize Documents

Finalize Bookings
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Figure 3.13: Example of a GAP Forest
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Definition 13 (GAP Forest) A GAP forest is defined as Gpf = {〈Li, GAPLi
〉 | 0 ≤ i ≤

n}, where Li is the ith abstraction level, L0 represents the most abstracted realization level, Ln

is the most detailed realization level, and GAPLi
is the set of GAPs belongs to the abstraction

level Li.

The process of GAP-forest extraction can be performed during the design time or during

the matching time. However, in our approach, we apply this extraction process during the

design time in order to simplify the matching process, and to improve the matching response

time. Hence, the matching process between two G+ models is actually a matching process

between their corresponding GAP-forests (all the extracted GAPs). When a GAP forest of

a given G+ model has only one GAP, this G+ model is known as a simple G+ model.

3.6.1 GAP Correctness

As users and service providers create their scenarios from selecting operations from the

adopted application domain ontology, this section defines a GAP correctness criterion that

must hold in order to use a given GAP in the automated matching process.

The operations sequence of a given GAP can be seen as a transformation function

that transforms the pre-constraints of the GAP (GCtxtPre) into the corresponding post-

constraints (GCtxtPost) via a number of transition points such that every transition point

has a corresponding set of constraints, as indicated in Figure 3.14.

The  GAP Sequence of Operations

f
0

GCtxt
Pre

GCtxt
Post

fn
f

1 f

Op
1

Op Op Op
n

x

x x+1

A set of constraints appeared at transition point x

Figure 3.14: GAP Transformation Function
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Such transformation function is formally defined as (σ : ∆ → ∆) such that σ(f0) = fn,

where f0, fn ⊆ ∆, and ∆ is the set of all possible constraints, f0 is the GCtxtPre, and fn is

the GCtxtPost. As σ consists of a sequence of operations, every transition point x between

operations Opx and Opx+1 has a set of constraints fx resulting from invoking all the preceding

operations4.

To invoke an operation, its pre-constraints must be satisfied, hence a GAP is considered

correctly defined when GCtxtPre is transformed into GCtxtPost via σ, and every set of

constraints at a given transition point satisfying the pre-constraints of its following operation

until GCtxtPost is reached. Otherwise the GAP is considered incorrectly defined as the

invocation of its operations cannot be guaranteed. We formally define a GAP correctness as

follows.

Definition 14 (GAP Correctness) Given a goal achievement pattern Gp = 〈 Op, GCtxt,

OpSeq 〉, Gp is considered correctly defined if (∀x=n−1
x=0 fx ² OpPre

x+1) ∧ (fn ² GCtxtPost),

where n is the number of operations in OpSeq, f0 = GCtxtPre, and fx is the set of constraints

at the transition point x between Opx and Opx+1, such that Opx, Opx+1 ∈ OpSeq, and ² is

the constraint satisfiability operator.

Definition 14 requires determining constraints satisfiability. A constraint Cnsti satisfies

a Cnstj when Cnsti subsumes Cnstj , which could be determined via constraint implica-

tion [Jeavons and Cooper, 1995; Pearson and Jeavons, 1997]. However, existing approaches

for determining constraint implication (such as the ones discussed in [Jeavons and Cooper,

1995; Pearson and Jeavons, 1997]) require the constraints to have the same scope to be able

to determine their implication. We summarize such approach in the following proposition.

However, we will extend such approach later in the next chapter to determine constraint

satisfiability between constraints with different scopes.

Proposition 1 (Constraint Satisfiability) Given two constraints Cnsti and Cnstj, Cnsti

satisfies Cnstj (denoted as Cnsti ² Cnstj) if (Ξ(Cnsti) = Ξ(Cnstj)) ∧ (Cnsti ⇒ Cnstj).

4The formula for computing fx is given in Chapter 4.
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Proof: Cnsti satisfies Cnstj when Cnsti subsumes Cnstj. As implication is one of the com-

mon methods for determining constraint subsumption, Cnsti satisfies Cnstj when (Cnsti ⇒

Cnstj). Also, as implication considers any constraints with different scopes as independent

constraints [Jeavons and Cooper, 1995; Pearson and Jeavons, 1997], we require the con-

straints to have the same scopes in order to be examined for satisfiability.

Proposition 1 indicates that a constraint Cnsti (a source constraint) satisfies a con-

straint Cnstj (a target constraint) when the constraints have the same scope, and when

the source constraint implies/subsumes the target constraint. For example, the constraint

(Cargo.Weight > 100) satisfies the constraint (Cargo.Weight > 10), as (Cargo.Weight >

100) implies (Cargo.Weight > 10). Similarly, by applying the standard implication rules,

the constraint (Cargo.Weight ⊆ {100, 200}) satisfies the constraint (Cargo.Weight = 100).

While, the constraint (Cargo.Weight = 100) does not satisfy the constraint (Cargo.Weight

⊆ {100, 200}), but it satisfies the constraint (Cargo.Weight ∈ {100, 200}). Determining con-

straints satisfiability is the basic building block of the service matching process, as services’

descriptions and users’ requests contain different types of constraints sets, we will need to

determine the satisfiability status between two sets of constraints. Constraints-sets satisfia-

bility is a complex process, as the there could exists different types of correlations between

sets’ elements. For example, the conjunction of two source constraints could satisfy a tar-

get constraint, while the target constraint cannot be satisfied by either source constraints

individually. Another example that shows how complex is the process is that when a con-

junction of multiple source constraints satisfies a conjunction of multiple target constraints,

where source constraints cannot satisfy target constraints individually. So to simplify things

we assume a set of constraints is satisfied when each of its elements is satisfied individually,

as indicated in Assumption 1.

Assumption 1 (Constraint-Set Satisfiability) Given a set of constraints fi, fi is satis-

fied if ∀ Cnstu, Cnstu ∈ fi, Cnstu is satisfied by only one constraint at a time.

By Adopting Assumption 1, satisfiability between two sets of constraints is simply deter-

mined by individually determining the satisfiability status between their elements, as follows.
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Proposition 2 (Constraint-Set Satisfiability) Given two sets of constraints fi and fj,

fi satisfies fj (denoted as fi ² fj) if (Ξ(fi) ⊇ Ξ(fj)) and ∀ Cnstu ∈ fj, ∃ Cnstv ∈ fi such

that (Cnstv ² Cnstu).

Proof: As the constraints of any given set will be examined individually (according to

Assumption 1), fj can be satisfied when each constraint of its elements has a corresponding

constraint in fi with the same scope and satisfied by such constraint.

For example, the set {Cargo.Weight = 100, Cargo.Type = Cars, Cargo.Course = Port-

to-Port} satisfies the set {Cargo.Weight > 10, Cargo.Type ∈ {Cars, Buses, Trucks}}. Ac-

cording to Proposition 2, fi could have more constraints than fj , and the scopes of these

constraints do not belong to the scope of fj , we define these constraints as the semantic

difference between fi and fj . We use the concept of semantic difference to compute behavior

models’ states (more details are in the next chapter).

Definition 15 (Semantic Difference) Given two sets of constraints fi and fj such that

fi and fj belong to the same GAP. The semantic difference between fi and fj (denoted as

fi ¦ fj) is fk, where fk is the maximal subset of fi such that (fi − fk) ² fj.

For example, the semantic difference between {Cargo.Weight = 100, Cargo.Type = Cars,

Cargo.Course = Port-to-Port}, and {Cargo.Weight > 10, Cargo.Type ∈ {Cars, Buses,

Trucks}} is {Cargo.Course = Port-to-Port}. The semantic difference between two sets of

constraints is always unique, as indicated in Theorem 1.

Theorem 1 (Semantic Difference Uniqueness) The semantic difference between two sets

of constraints fi and fj is always unique.

Proof: In order to determine the satisfiability of fj, fi will be divided into two indepen-

dent subsets with no common elements, a subset that have the same scope as fj, and a subset

that has completely different scope from fj. As the subset that has completely different scope

from fj is a maximal subset, this subset will always be unique.

Determining the satisfiability between two sets of constraints using Proposition 2 is mainly

based on syntactical matching for their scopes. Such approach could be acceptable when the
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constraints belong to the same GAP, as common vocabulary provided by the adopted ontol-

ogy is used. But adopting the same approach when examining the satisfiability of constraints

belonging to different GAPs (for example, a service GAP and a request GAP) is considered

a very strict approach that leads to the appearance of false negatives. As this assumes that

both services’ descriptions and users’ requests are defined via the same vocabulary, which is

not a practical assumption. To overcome such problem we propose the concept of constraint

substitutability in the next chapter. It determines the satisfiability between constraints with

different scopes using the captured semantics of the involved application domain. Also, Defi-

nition 14 will be extended in Chapter 5 to determine the correctness of a service’s GAP with

respect to users’ goals.

3.7 Conclusion

This chapter identified the characteristics required to be supported in the matching frame-

work, enabling the matchmaker to automatically determine the correctness of the matching

results. We illustrated the limitations of existing matching framework. We proposed the

SWSMF framework to be the matching framework for the semantic web services. We pro-

posed a meta-ontology for application domains in order to overcome the semantic interoper-

ability problem. We proposed the concepts substitutability graph to capture the functional

substitution semantics of application domains’ concepts. We proposed the G+ model to

capture the goal-based high-level functional specifications for both services and users, adopt-

ing the concept of scenarios-network. Finally, we indicated how different goal achievement

patterns will be generated from the G+ model providing the criteria for GAP correctness.

SWSMF succeed to fully support all the characteristics required in a matching framework

that enables the matchmaker to automatically determine the correctness of the matching

results. A comparison between the SWSMF framework and existing matching frameworks is

given in Table 3.7, adopting the evaluation approach discussed in Section 3.2.
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Characteristic UDDI EbXML E-speak LARKS OWL-S WSMO SWSMF

1- Separates Semantics From Presentation N N F F F F F

2- Handles Semantic Interoperability N N F F P F F

3- Adopts Goal-Based Matching N N N N N F F

4- Adopts Role-Based Matching N N N N N F F

5- Adopts External Behaviors N N N N N N F

6- Adopts Different Contexts N S N S N S F

7- Facilitates Service Aggregation N N N N N F F

8- Supports non-functional/non-technical req. S S N N P F F

9- Adopts User Semantics N N N N N F F

Table 3.7: Comparison between SWSMF and Existing Matching Frameworks



Chapter 4

The Functional Substitutability

Matching Scheme

Capturing the semantics of web services, users, and application domains in a machine-

understandable format is not enough to enable the matchmaker to automatically determine

the correctness of the matching results, as the matchmaker needs to know how to use these

semantics to determine the correct results. The matchmaker needs to adopt various match-

ing schemes that specify how these semantics will be used within the matching process. As

the focus is on the high-level functional specifications, this chapter proposes a matching

scheme for matching the high-level functional specifications of semantic web services, known

as the Functional Substitutability Matching Scheme (FSMS). FSMS uses substitutability as

the matching rule and goal achievement as the correctness criterion. Finally, this chapter

provides the algorithms required for realizing FSMS. These algorithms are the basic building

blocks required for implementing the direct and the aggregate service matching techniques.

4.1 Preliminaries

A given specifications’ type can be matched using different matching rules. For example, the

high-level functional specifications can be matched either by using strict syntactic matching

rules or by using flexible semantic matching rules. When a matchmaker uses a matching

77
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rule that is different from the one required or anticipated by users, this will lead to matching

results that may not achieve users’ goals. Hence, the matchmaker needs to know which

matching rules are required to be applied in order to make sure that the returned matching

results achieve the required users’ goals. Therefore, we propose the concept of a matching

scheme to regulate the matching process, it specifies the comparison aspect, the matching

rule, and the correctness criterion that must be adopted by the matchmaker for matching a

given type of specifications (see Figure 4.1).

User Request Service Description

Comparison Aspect

Matching Rule

 Matching Correctness Criterion

Matching Result

T
h
e
 M

a
tc

h
in

g
 S

c
h
e
m

e

Figure 4.1: The Matching Scheme Architecture

We define a matching scheme as a tuple 〈comparison aspect, matching rule, correctness

criterion〉. The comparison aspect component indicates the type of specifications to be ex-

amined. The matching rule component shows how a given comparison aspect is going to be

examined. The correctness criterion component validates the results returned after applying

the matching rule. According to this architecture, the matching process works for each type

of specifications in the following manner (see Figure 4.1): the information related to the

comparison aspect is extracted from users’ requests and from services’ descriptions. Later

the matching rule is applied over the extracted information. Finally, the obtained answers

are checked using the correctness criterion in order to return only the correct answers that

fulfill users’ goals.

As there exist different types of specifications, users need to specify which matching

scheme should be used for each type of specifications, such that the matchmaker knows which
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matching scheme will be applied when examining a given type of specifications. By doing

so, both the matchmaker and users will have the same understanding of how the matching

process will be carried out, hence the matchmaker will be able to eliminate any matching

results that cannot achieve users’ goals. As this thesis is primarily concerned with the high-

level functional matching, the proposed matching scheme is about the high-level functional

specifications, which we call as the Functional Substitutability Matching Scheme (FSMS).

Section 4.2 discusses the components of FSMS, providing the algorithms required for realizing

the FSMS. These algorithms must be adopted by any service matching technique that adopts

FSMS. Section 4.3 indicates how FSMS is used to match external behavior models. Finally,

Section 4.4 concludes the chapter.

4.2 FSMS Components

FSMS uses Functionality as the comparison aspect, where services are examined according to

their capability of accomplishing a given function required for achieving users’ goals. Infor-

mation about a service functionality is extracted from its G+ model. Similarly, information

about the required users’ functionality is extracted from the G+ model provided by the users.

As users are interested in services that can achieve their goals the way they specified, any

service with a functionality that can substitute the functionality specified by users will be

considered a correct match. Hence, FSMS uses Substitutability as the matching rule. As a

service is considered a correct match only when the users’ goals are achieved after it finishes

its execution, FSMS uses User Goal Achievement as the correctness criterion. we therefore

define FSMS as 〈Functionality, Substitutability, UserGoalAchievement〉. When FSMS is

adopted, the matchmaker will check whether the functionality specified by a user can be

substituted by the functionality of a given web service. Furthermore, the matchmaker must

determine whether users’ goals are achieved or not by the returned matching results without

executing any of the returned services.

In what follows we discuss the components of FSMS in more detail, indicating how the

comparison aspect, the matching rule and the correctness criterion will be applied in the

matching process.
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4.2.1 Functionality as a Comparison Aspect

Functionality of a web service is mostly determined according to its behavior for achieving

its goal. Hence, capturing such behavior in a machine-understandable format is mandatory

for representing the service functionality. The behavior model will be extracted from the

extracted GAP-forest. A behavior model corresponding to a given GAP is determined ac-

cording to the GAP’s dynamic component, which is the corresponding sequence of operations.

Behavior Model Extraction: When an operation is invoked, it changes the facts about

the involved concepts, either by changing their attributes’ values, by creating new concepts,

or by vanishing some concepts (that appeared in its input and did not appear in its output).

By monitoring the constraints representing the facts about the involved concepts appearing

before and after the invocation of a given operation, we can determine the effect of invoking

such an operation over the involved concepts, which reflects the behavior of the operation.

In general, when a given operation Opx successfully finishes its execution, the constraints

at this point of time can be classified as:

• New : the constraints created over new concepts generated by Opx and that appeared

in its post-constraints,

• Evolved : the constraints created by the operation Opx over the input concepts and that

appeared in its post-constraints,

• Unchanged : the constraints that appeared in Opx pre-constraints and still appear in

Opx post-constraints, and

• Independent : the constraints that appeared before invoking Opx, but do not appear in

OpPre
x nor appear in OpPost

x .

The union between the new, evolved, unchanged, and independent constraints represents

the set of the persisting constraints after Opx finishes its execution. The set of persisting

constraints at a transition point x is denoted as fx.
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Definition 16 (Persisting Constraint) A persisting constraint at a given transition point

x is a constraint that must be satisfied at x.

In order to have a correctly defined GAP (Gp = 〈Op, GCtxt, OpSeq〉), as indicated in

Definition 14 (see Section 3.6.1), fx must satisfy the pre-constraints of operation Opx+1.

However, when fx satisfies OpPre
x+1, this does not mean all the constraints in fx are needed to

satisfy OpPre
x+1, as it might contain constraints that are independent from OpPre

x+1. Therefore

we classify the constraints of fx into effective constraints (denoted as fe
x) and idle constraints

(denoted as f i
x). An effective constraint at transition point x is a constraint that can affect

the invocation of Opx+1 by having a semantically related scope to the scopes of the pre-

constraints of Opx+1, as indicated in Definition 17. While an idle constraint at transition

point x is a constraint that cannot affect the invocation of Opx+1 by having an independent

scope from the scopes of the pre-constraints of Opx+1, as indicated in Definition 18.

Definition 17 (Effective Constraint) Given a constraint Cnsti such that Cnsti ∈ fx,

Cnsti is considered an effective constraint at a transition point x when Ξ(Cnsti) ∈ Ξ(OpPre
x+1).

Definition 18 (Idle Constraint) Given a constraint Cnsti such that Cnsti ∈ fx, Cnsti

is considered an idle constraint at a transition point x when Ξ(Cnsti) /∈ Ξ(OpPre
x+1).

According to Table 3.4 (page 67), in the user G+ model depicted in Figure 3.10 (page 64),

we can see that the constraint {Cargo.Course = Port-to-Port} (that is belonging to the

context pre-constraints) is an idle constraint at transition point 0 (that is before opera-

tion SendCargoDetails), while the constraints {Cargo.Details = 1000 Cars, Cargo.POL =

Melbourne-Australia, Cargo.POD = Alexandria-Egypt, IncoTerm.Type = FOB} are effective.

Figure 4.2 shows the various types of constraints appearing before invoking Opx+1 and

after executing Opx. It indicates that fe
x should satisfy OpPre

x+1 in a correctly defined GAP,

while f i
x will be part of the persisting constraints at the next transition point.
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Figure 4.2: Relation between the Different Types of Constraints

Theorem 2 shows how the persisting constraints at a given transition point are computed.

Theorem 2 indicates that the persisting constraints at a given transition point are computed

as the union between the idle constraints at the transition point and the post-constraints of

the operation following this transition point. Table 4.1 shows an example of the distribution

of the persisting constraints of the user G+ model shown in Figure 3.10.

Theorem 2 (Persisting Constraints Correctness) Given a correct GAP defined as Gp =

〈Op, GCtxt, OpSeq〉, the set of persisting constraints fx+1 at transition point (x + 1) is cor-

rectly computed if fx+1 = f i
x + OpPost

x+1 , where 0 ≤ x ≤ n − 1, n is the number of operations

in OpSeq, (f0 = GCtxtPre), (f i
x = fx ¦ OpPre

x+1), and (fe
x = fx − f i

x).

Proof: When a service is invoked, the constraints of GCtxtPre are guaranteed to be

satisfied. Hence, the persisting constraints before starting the invocation of the corresponding

sequence of operations will equal to GCtxtPre, hence f0 = GCtxtPre...(1). As Gp is correctly

defined, (∀x=n−1
x=0 fx ² OpPre

x+1) according to Definition 14, and fe
x is the subset that satisfies

OpPre
x+1, f i

x, fe
x are determined according to Definitions 15, 17, 18...(2). At a given transition
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point x, fx will be divided into two independent subsets fe
x and f i

x, hence (fe
x = fx − f i

x)...(3).

Also, at a given transition point x, fe
x will be consumed by Opx+1, resulting OpPost

x+1 , while f i
x

remains unchanged. Therefore, at the transition point (x+1), the persisting set of constraints

will be formed from f i
x and OpPost

x+1 , as indicated in Figure 4.2, hence fx+1 = f i
x+OpPost

x+1 ...(4).

Transition Persisting Constraints Effective Constraints Idle Constraints

Point

0 {Cargo.Details = 1000 Cars, {Cargo.Details = 1000 Cars, Cargo.Course

Cargo.POL = Melbourne-Australia, Cargo.POL = Melbourne-Australia, = Port-to-Port

Cargo.POD = Alexandria-Egypt, Cargo.POD = Alexandria-Egypt,

Cargo.Course = Port-to-Port, IncoTerm.Type = FOB}

IncoTerm.Type = FOB}

1 {Cargo.Course = Port-to-Port, {Cargo.Course = Port-to-Port,

Cargo.Status = Received} Cargo.Status = Received}

2 {Offer.Status = Sent} {Offer.Status = Sent}

3 {Offer.Status = Approved} {Offer.Status = Approved}

4 {Offer.Status = Accepted} {Offer.Status = Accepted}

5 {Offer.Status = Executed} {Offer.Status = Executed}

6 {Cargo.Status = Accomplished} {Cargo.Status = Accomplished}

Table 4.1: Persisting Constraints Distribution

In service direct matching, we consider all the persisting constraints at the last transition

point as effective in order to be considered during behavior matching (more details are given

in Section 4.3). However, Theorem 2 as well as Definitions 17 and 18 will be extended in

Chapter 5 to compute the set of persisting constraints with respect to users’ goals. However,

in general the persisting constraints at every transition point represent a behavior state of

the service. As the effective constraints and the idle constraints represent different semantics,

we need to differentiate between them in the behavior state model. For this reason, we define

a state as follows.

Definition 19 (Behavior State) A behavior state Sx at a transition point x between op-

erations Opx and Opx+1 is defined as the tuple 〈fe
x, f i

x〉.
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For example, the state S0 in Table 4.1 is 〈 {Cargo.Details = 1000 Cars, Cargo.POL =

Melbourne-Australia, Cargo.POD = Alexandria-Egypt, IncoTerm.Type = FOB}, {Cargo.Course

= Port-to-Port }〉.

The behavior of a web service according to one of its GAPs is constituted by tracing the

persisting constraints at the transition points of the corresponding sequence of operations.

This creates a sequence of states defining the behavior of a web service according to a given

GAP.

Definition 20 (Behavior Model) A behavior model of a web service according to a given

GAP (denoted as β) is defined as the sequence of states 〈S0, S1, ..., Sn〉, where n is the number

of operations defined in the GAP.

The adopted behavior model is a linear model, as any nonlinearity is eliminated when

GAPs are extracted to simplify the matching process. A linear behavior model must be

extracted for every goal achievement pattern in the extracted GAP-forest of a service. A

behavior model defined according to Definition 20 has a corresponding function σ that trans-

forms the context’s pre-constraints into its corresponding post-constraints (σ is discussed

before in subsection 3.6.1, page 71). As a high-level functional context contains three differ-

ent sets of constraints: pre-constraints, post-constraints, and describing-constraints, and the

extraction of a behavior model is based only on the pre-constraints and the post-constraints

of the context, we represent the functionality of a given service according to Definition 21 to

take the describing-constraints into consideration.

Definition 21 (Service Functionality) Given a goal achievement pattern Gp = 〈Op,

GCtxt, OpSeq〉, the functionality of a web service according to Gp is defined as 〈GCtxtDesc, β〉,

where GCtxtDesc, β are the describing-constraints and the behavior model of Gp, respectively.

For example, the required functionality of the user G+ model depicted in Figure 3.10 is

indicated in Table 4.2. First, the matchmaker requires determining the functionality needed

by users as well as the functionality of each GAP of a given service (Definition 21). Then

the matching rule is applied over these extracted functionalities to find the correct matching

result.
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Describing-Constraints {Specialty.Type = Motor-vehicles, Payment.Type = Credit}

S0 〈 {Cargo.Details = 1000 Cars,

Cargo.POL = Melbourne-Australia,

Cargo.POD = Alexandria-Egypt,

IncoTerm.Type = FOB},

{Cargo.Course = Port-to-Port}〉

S1 〈 {Cargo.Course = Port-to-Port, Cargo.Status = Received} , {} 〉

S2 〈 {Offer.Status = Sent}, {} 〉

S3 〈 {Offer.Status = Approved}, {} 〉

S4 〈 {Offer.Status = Accepted} , {} 〉

S5 〈 {Offer.Status = Executed} , {} 〉

S6 〈 {Cargo.Status = Accomplished} , {} 〉

Table 4.2: User Required Functionality

4.2.2 Substitutability as a Matching Rule

As the functionality required by a user is represented via different sets of constraints (describing-

constraints, pre-constraints, post-constraints and persisting constraints), the matchmaker

tries to find a service that can satisfy these constraints. Hence, the service matching prob-

lem is mapped into a constraint satisfiability problem. When examining the satisfiability

between user’s constraints and service’s constraints, we have to take into consideration that

the direction of the satisfiability, as it varies according to the type of involved constraints

(that is describing-constraints, pre-constraints, post-constraints and persisting constraints).

As indicated in Chapter 3, G+ models are defined according to two different perspectives: a

user’s perspective and a service’s perspective (see Table 3.3 for more details). That, the user’s

pre-constraints will be checked if they can satisfy the service’s pre-constraints, the service’s

describing-constraints will be checked if they can satisfy the user’s describing-constraints, and

the service’s post-constraints will be checked if they can satisfy the user’s post-constraints.

So in general, we need to determine if a given set of constraints (that is known as the source

constraint-set) can satisfy another set of constraints (that is known as the target constraint-

set). In what follows, we show how this will be determined.
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As we indicated before, determining constraint satisfiability using Proposition 1 is a very

strict approach when adopted to match service’s constraints and user’s constraints, as it

requires the constraints to have the same scope. For example, a service’s functional scope

could be described via the constraint (City.name = Cairo), and the user’s required func-

tional scope described via the constraint (Country.name = Egypt). In spite of the constraint

(City.name = Cairo) satisfies the constraint (Country.name = Egypt), Proposition 1 can-

not identify this case, as it depends on the existing techniques for determining constraint

implication such as the ones described in [Jeavons and Cooper, 1995; Pearson and Jeavons,

1997], which consider these constraints as independent constraints as they have different

scopes. We identify the constraint satisfiability approaches that require the source con-

straint and the target constraint to have the same scope as Constraint Direct Satisfiability

approaches.

To overcome the limitation of these direct satisfiability approaches, we propose the con-

cept of Constraint Indirect Satisfiability. The idea behind constraint indirect satisfiability is

to find a transformation k using the semantics of the involved application domain in order

to mediate between the constraints when they have different scopes. The transformation

transforms the source constraint (Cnsti) into an intermediate constraint (Cnstk) when a

given set of pre-constraints are satisfied (which are defined according to the semantics of the

involved application domain) such that the intermediate constraint will have the same scope

as the target constraint(Cnstj). By doing so, existing techniques for determining constraint

direct satisfiability could be used to determine the satisfiability status between the generated

intermediate constraint and the target constraint. When the intermediate constraint satisfies

the target constraint, this indicates that the source constraint indirectly satisfies the target

constraint, as indicated Definition 22.

Definition 22 (Constraint Indirect Satisfiability) Given two constraints Cnsti and Cnstj

such that Ξ(Cnsti) 6= Ξ(Cnstj), Cnsti indirectly satisfies Cnstj if there exists a transforma-

tion k that transforms Cnsti into Cnstk such that Cnstk ² Cnstj.
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Figure 4.3 depicts the difference between direct and indirect constraint satisfiability. It in-

dicates that when the source constraint Cnsti has a different scope from the target constraint

Cnstj , the source constraint will be transformed into an intermediate constraint Cnstk using

a transformation k such that existing direct constraint satisfiability techniques can be used

to check the satisfiability of the target constraint by the intermediate constraint.

Cnstj

Direct Satisfiability

Indirect Satisfiability

Cnst
i Cnst

k

Cnst
i

Cnst
j

Figure 4.3: Direct versus Indirect Constraint Satisfiability

Finding such a transformation (k) is not an easy task, as there could be an infinite

number of transformations that can transform one constraint into another. Therefore, finding

such a transformation must be based on the semantics of the involved application domain,

then it must be validated according to the achievement semantics of the required goals in

order to make sure that the invocation of such a transformation does not violate any of

the involved semantics (that is semantics-preserving transformation). First, we provide a

general definition for a transformation, as indicated in Definition 23. Then we will provide the

criteria that must hold in order to consider a transformation as a valid semantics-preserving

transformation. As only valid semantics-preserving transformations must be used during the

service matching process.

Definition 23 (Transformation) A transformation k is a function (∆ × 2∆ → ∆) such

that k(S, P ) = T , where ∆ is the set of all possible constraints, S is the source constraint

(S ∈ ∆), T is the target constraint (T ∈ ∆), P is the set of pre-constraints that must be

satisfied before invoking the transformation (P ⊆ ∆), (S /∈ P ), and (S 6= T ).
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As substitutability is the adopted matching rule, the substitution semantics between the

concepts of application domains need to be captured in a machine-understandable format

such that they can used by the matchmaker to generate the possible transformations that

can be used to determine constraints indirect satisfiability, then determines the validity of

such transformations before invoking them. We will show how the concepts substitutability

graph (CSG), introduced in Chapter 3, is used to generate these transformations.

As a CSG contains information that indicates which scopes can be substitutable with

respect to application domain operations, also it indicates the mapping between scopes’

values via the defined conversion functions, and the mappings between different operators

via the defined operator mapping matrices. By using the scopes of the source and target

constraints and the concepts substitutability graph, one will be able to determine if there

exists a possible transformation that can transform the source constraint into the target

constraint via an intermediate constraint that has the same scope as the target constraint.

This is performed by checking if there exists a path from the scope of the source constraint

into the scope of the target constraint in the segment of the involved user’s goal. Having no

path indicates that the scope of the target constraint cannot be substituted by the scope of the

source constraint with respect to the captured semantics, meaning there is no transformation

that can be found to transform the source constraint into the target constraint according

to the captured semantics. In this case, the source and target constraints are considered

independent. However, when there exists a path from the source scope into the target scope,

determination of the transformation depends on the reachability status between the scopes.

When the path contains only one edge, this is known as Direct Reachability. When the path

contains more than one edge, this is known as Indirect Reachability.

Definition 24 (Scopes Direct Reachability) Given a scope Ξi, a scope Ξj, a goal G =

〈Op, Ctxt, SN〉 , and a concepts substitutability graph CSG =
⋃n

u=1{〈Opu, VC , EC〉}. Ξi is

directly reachable to Ξj with respect to G (denoted as Ξi ⇀G Ξj) when ∃Seg, Seg ∈ CSG

such that Opu = Op, and ∃E(i,j), E(i,j) ∈ EC in the corresponding Seg, where E(i,j) =

〈Vi, Vj , Π(i,j), Ψ(i,j), Ω(i,j)〉 such that (Vi = Ξi) and (Vj = Ξj).
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Definition 25 (Scopes Indirect Reachability) Given a scope Ξi, a scope Ξj, a goal G

= 〈Op, Ctxt, SN〉, and a concepts substitutability graph CSG =
⋃n

u=1{〈Opu, VC , EC〉}. Ξi is

indirectly reachable to Ξj with respect to G (denoted as Ξi yG Ξj) when ∃Seg, Seg ∈ CSG

such that Opu = Op, and ∃ a path P = (E(i,k1), E(k1,k2), ..., E(km−1,km), E(km,j)) from Ξi to Ξj

in Seg, where E(x,y) ∈ EC is an edge in the corresponding Seg, and m ≥ 1 is the number of

intermediate nodes between Vi and Vj, where (Vi = Ξi) and (Vj = Ξj).

When the scopes are reachable (directly or indirectly), then there is a possibility that there

exists a transformation that can transform the source constraint to the target constraint. We

check this possibility by generating a group of intermediate constraints according to the de-

fined conversion functions and operator mapping matrices along the edges of the path. Then

checking the existence of a direct satisfiability between any of the generated intermediate

constraints and the target constraint using the Proposition 1. When there exists at least one

intermediate constraint that directly satisfies the target constraint, this means there exists a

transformation that transforms the source constraint into the target constraint according to

the captured semantics. Generation of these intermediate constraints depends on the reach-

ability status between the scopes. Figure 4.4 depicts the realization process of constraints

indirect satisfiability via scopes direct reachability.
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Figure 4.4: Constraint Indirect Satisfiability via Scopes Direct Reachability

Figure 4.4 indicates how an intermediate constraint is created for this case. An interme-

diate constraints is created in the following manner:
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1. Its scope is as the scope of the target constraint,

2. Its value is a value resulting from invoking the corresponding conversion function with

the value of the source constraint (note that the values returned by the conversion

function are finite, according to Definition 9 (page 57)),

3. Its operator is an operator corresponding to the operator of the source constraint in

the corresponding operator mapping matrix.

Theorem 3 shows how a transformation k is formed when the scope of the source con-

straint is directly reachable to the scope of the target constraint. The theorem indicates

that the input for the transformation is the source constraint, and the output is the target

constraint, while the pre-constraints of the transformation are the substitution constraints

attached to the edge from the source scope into the target scope. We used the notation ϑi

to refer to a constraint’s operator in general, as it could be ∈, ⊆, or λ. Similarly, we used

the notation χi to refer to a constraint’s value, as it could be a single value of a compara-

tive constraint τ or it could be a single value belonging to the set of values of a bounding

constraint η.

Theorem 3 (Transformation Formation via Scopes Direct Reachability) Given two

constraints Cnsti, Cnstj, a goal G. There exists a transformation k such that k(Cnsti, Π(i,j))

= Cnstj if (Ξ(Cnsti) ⇀G Ξ(Cnstj)) and ∃ Cnstk such that (Cnstk ² Cnstj), where Cnstk

= ( Ξ(Cnstj) ϑk χk ), ϑk ∈ Ω(i,j)(ϑi), ϑi is the operator of Cnsti, χk ∈ Ψ(i,j)(χi), and χi is

the value of Cnsti.

Proof: According to Definition 10, concepts substitutability graph indicates the substi-

tutability status of application domain scopes. Every edge defined in the graph represents

a mapping between two given scopes, hence the existence of an edge indicates the existence

of a transformation from one of its scopes into the other scope (according to the edge di-

rection). As the substitution constraints of a given edge must be satisfied in order to do the

substitution process, hence such substitution constraints act as the pre-constraint of the trans-

formation...(1). When the corresponding conversion function and operator mapping matrix



CHAPTER 4. THE FUNCTIONAL SUBSTITUTABILITY MATCHING SCHEME 91

lead to the generation of an intermediate constraint that can satisfy Cnstj, the transformation

k can be formed according to Definition 22 such that k(Cnsti, Π(i,j)) = Cnstj.

For example, the constraint (Credit.Period = 15) can be transformed into the con-

straint (Payment.Type ∈ {Credit,Cash-Against-Doc}) according to the concepts substi-

tutability graph segment defined in Table 3.2, and the operator mapping matrix depicted in

Figure 3.7. As one can notice, there exists an edge from Credit.Period into Payment.Type

with a substitution constraint (Credit.Period ≥ 0). The conversion function restricts the

values of Payment.Type to Credit, as (Credit.Period = 15). This forms an intermedi-

ate constraint (Payment.Type = Credit), which satisfies the constraint (Payment.Type ∈

{Credit,Cash-Against-Doc}). The substitution constraint (Credit.Period ≥ 0) will be the

pre-constraint of the transformation, and the transformation will be defined as k(Credit.Period

= 15, {Credit.Period ≥ 0})= Payment.Type ∈ {Credit,Cash-Against-Doc}. Algorithm 1

shows how Theorem 3 is applied to find a transformation that transforms the source con-

straint into a target constraint using CSG. The algorithm simply generate the possible inter-

mediate constraints as indicated before, then check the direct satisfiability between the each

intermediate constraint and the target constraint.

In case the source constraint is a bounding constraint, and the corresponding defined

conversion function does not support the (∈,⊆) operators but it supports the (=) operator.

We still can check the indirect satisfiability status, by invoking the conversion function with

every value defined in the constraint. When the source constraint is a disjunction bound-

ing constraint, having only one value that leads to formation of an intermediate constraint

that satisfies the target constraint is enough to consider the existence of indirect satisfia-

bility between the source constraint and the target constraint. However, when the source

constraint is a conjunction bounding constraint, all of its values must lead to formation of

intermediate constraints that satisfy the target constraint in order to consider the existence

of indirect satisfiability between the source constraint and the target constraint. For exam-

ple, the constraint (Credit.Period ∈ {0, 15}) is not supported by the OMM depicted in

Figure 3.7, hence this case will be handled as if we have two equality comparative constraints

(Credit.Period = 0, Credit.Period = 15). Each constraint will be examined individu-
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ally, leading to the formation of these two intermediate constraints (Payment.Type = Cash-

Against-Doc), (Payment.Type = Credit), respectively. Both of these intermediate constraints

can satisfy the target constraint (Payment.Type ∈ {Credit,Cash-Against-Doc}), however

having only one intermediate constraint satisfying the target constraint will be enough to

accept the existence of indirect satisfiability between the source constraint and the target

constraint.

Algorithm 1 Transformation Formation via Scopes Direct Reachability

Input: Cnsti (Source constraint), Cnstj (Target constraint), G (A goal).

Output: True if there exists a transformation that allows Cnsti to indirectly satisfy Cnstj

via direct reachability with respect to G, False otherwise.

1: Begin

2: Z[ ]= Ψ(i,j)(χi)

3: O[ ]= Ω(i,j)(ϑi)

4: for each χ, χ ∈ Z do

5: for each ϑ, ϑ ∈ O do

6: Create Cnstk as (Ξ(Cnstj) ϑ χ).

7: if (Cnstk ² Cnstj) then

8: Return True

9: end if

10: end for

11: end for

12: Return False

13: End

When there exists indirect reachability between the scopes, a sequence of transformations

needs to be determined to decide the indirect satisfiability property. Each node in the path

from the source’s scope to the target’s scope represents a scope of an intermediate constraint

that needs to be indirectly satisfied by the predecessor constraint until the required target

constraint is reached (see Figure 4.5). In other words, the transformation corresponding
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to the indirect reachability case consists of a sequence of transformations formed via direct

reachability between the intermediate scopes. As a conversion function could have multiple

finite output values, a source constraint could be transformed into a finite number of inter-

mediate constraints at a given stage. This forms a finite tree of the possible intermediate

constraints that can be obtained from the source constraint using the defined finite conver-

sion function. When one of the intermediate constraints of the final stage directly satisfies

the target constraint this implies that the source constraint can indirectly satisfy the target

constraints, as indicated in Figure 4.5.

i
Cnst

jCnst

Intermediate

Constraints

Stage1

Stage2

Stage3

Path from source to target

consists of  3 edges

Figure 4.5: Indirect Satisfiability Decision Tree

The pre-constraints of the transformation k corresponding to the scopes indirect reach-

ability case are formed from the conjunction of the pre-constraints of the transformations

forming k, as indicated in Theorem 4. Theorem 4 shows how a transformation k is formed

when the scope of the source constraint is indirectly reachable to the scope of the target con-

straint. The theorem indicates that the input for the transformation is the source constraint,

and the output is the target constraint, while the pre-constraints of the transformation are

the conjunction of the substitution constraints attached to the edges of the path from the

source scope into the target scope. The theorem also indicates every intermediate constraints

generated along the path must be satisfied by the preceding intermediate constraint in order

to have such transformation.
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Theorem 4 (Transformation Formation via Scopes Indirect Reachability) Given

two constraints Cnsti, Cnstj, a goal G. There exists a transformation k such that k(Cnsti,

Π(i,k1) ∧ Π(k1,k2) ∧ ... ∧ Π(km−1,km) ∧ Π(km,j)) = Cnstj if (Ξ(Cnsti) yG Ξ(Cnstj)) and ∃

Cnstk1, Cnstk2,...,Cnstkm
such that (Cnstk1 ² Cnstk2) ∧(Cnstk2 ² Cnstk3) ∧....∧ (Cnstkm

² Cnstj), where Cnstk1, Cnstk2,...,Cnstkm
are the intermediate constraints formed along the

path from Ξ(Cnsti) to Ξ(Cnstj) using transformations formed via direct reachability between

the intermediate scopes.

Proof: As the transformation from Cnsti to Cnstj consists of a sequence of transforma-

tions formed via direct reachability between the intermediate scopes using Theorem 3 and such

transformations can be invoked only when their pre-constraints are satisfied, the conjunction

of these pre-constraints must be satisfied in order to invoke k. Also, (Cnstk1 ² Cnstk2)

∧(Cnstk2 ² Cnstk3)∧....∧(Cnstkm
² Cnstj) must hold in order to reach Cnstj, according

to the transitive property of constraint satisfiability.

For example, the constraint (Credit.Period = 15) can be transformed into the con-

straint (Payment.Interest = 0.17) via the constraint (Payment.Type = Credit). As we in-

dicated before the constraint (Credit.Period = 15) can be transformed into (Payment.Type

= Credit) when the pre-constraint (Credit.Period ≥ 0) is satisfied. Assuming, the con-

straint (Payment.Type = Credit) can be transformed into the constraint (Payment.Interest

= 0.17) when the pre-constraint (Payment.Type = Credit) is satisfied. Hence, the pre-

constraints of the transformation that transforms the constraint (Credit.Period = 15) into

the constraint (Payment.Interest = 0.17) are the conjunction of (Credit.Period ≥ 0)

and (Payment.Type = Credit). Algorithm 2 shows how Theorem 4 is applied to find a

transformation that transforms the source constraint into a target constraint using CSG.

Algorithm 2 starts by checking the reachability of the scopes such that if there no path from

the source’s scope to the target’s scope, this implies the source constraint cannot satisfy the

target constraint.

In case there exists a path from the source’s scope to the target’s scope, it processes

the first following node to the source’s scope by generating all the intermediate constraints

corresponding to the output value of the conversion function and the operator mapping
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Algorithm 2 Transformation Formation via Scopes Indirect Reachability

Input: Cnsti (Source constraint), Cnstj (Target constraint), G (A goal).

Output: True if there exists a transformation that allows Cnsti to indirectly satisfy Cnstj

via indirect reachability with respect to G, False otherwise.

1: Begin

2: if (There is no path from Ξ(Cnsti) to Ξ(Cnstj) in the segment of G) then

3: Return False

4: else

5: Ξk = GetFollowingNode(Ξ(Cnsti))

6: if (Ξk = Ξ(Cnstj)) then

7: Apply Algorithm 1 for (Cnsti,Cnstj , G)

8: else

9: Z[ ]= Ψ(i,k)(χi)

10: O[ ]= Ω(i,k)(ϑi)

11: for each χ, χ ∈ Z do

12: for each ϑ, ϑ ∈ O do

13: Create Cnstk as (Ξk ϑ χ).

14: Apply Algorithm 2 for (Cnstk,Cnstj , G)

15: end for

16: end for

17: end if

18: Return False

19: end if

20: End
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matrix, then makes a recursive call for every intermediate constraint as an intermediate

source. This process is continued until the target scope is reached (that is only one edge

is between an intermediate source and the target). When one of the final intermediate

constraints directly satisfies the target constraint, this implies that the source constraint

indirectly satisfies the target constraint.

Having a transformation that can transform a source constraint into a target constraint

is not enough to determine the existence of indirect satisfiability between the constraints, as

the pre-constraints of the transformation need to be satisfied at the time of transformation

invocation (that is context-based satisfiability). Therefore, when the persisting constraints at

the time of invocation satisfies the pre-constraints of the transformation, the transformation

known as valid and can be invoked. When the pre-constraints of the transformation cannot

be satisfied, this means the source constraint cannot indirectly satisfy the target constraint

with respect to the captured semantics of the involved goal. Therefore, a transformation

could be valid with respect to a given goal and the same transformation could be invalid

with respect to the semantics of another goal. Constraint indirect satisfiability is determined

according to Theorem 5. The theorem shows when a transformation is considered valid. That

when the conjunction of the persisting constraints at the invocation time and the generated

intermediate constraints satisfies the pre-constraints of the transformation.

Theorem 5 (Constraint Indirect Satisfiability) Given two constraints Cnsti, Cnstj,

and a goal G such that (Cnsti ∈ fi), (Cnstj ∈ fj), and (Ξ(Cnsti)yG Ξ(Cnstj)). Cnsti

indirectly satisfies Cnstj with respect to G via a transformation k (denoted as Cnsti ÀG

Cnstj) if (fi∧fj∧Cnstk1∧...∧Cnstkm
) ² (Π(i,k1) ∧Π(k1,k2) ∧ ...∧Π(km−1,km) ∧Π(km,j)), where

k(Cnsti,Π(i,k1) ∧Π(k1,k2) ∧ ...∧Π(km−1,km) ∧Π(km,j)) = Cnstj, and Cnstk1,...,Cnstkm
are the

corresponding intermediate constraints.

Proof: As (Ξ(Cnsti)yG Ξ(Cnstj)), k will be created according to Theorem 4. According

to Definition 23, the transformation pre-constraints must be satisfied in order to be able to

apply the transformation. The only way to satisfy these pre-constraints at invocation time is

when they are satisfied by the existing constraints at invocation time, which are fi, fj, and

the involved intermediate constraints.
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Theorem 5 requires the scopes of the constraints to be indirectly reachable. However,

determining the validity of a transformation when the scopes are directly reachable is a

special case of Theorem 5, that when only one intermediate constraint is used.

In what follows we will show how the proposed constraint indirect satisfiability approach

is adopted during constraint matching. As substitutability is the adopted matching rule,

we propose the concept of constraint substitutability for matching constraints. In which, a

source constraint matches a target constraint when the target constraint can be substituted

by the source constraint, as indicated in Theorem 6. The theorem simply matches a source

constraint to a target constraint when the source constraint directly satisfies the target

constraint (if they have the same scope) or when it indirectly satisfies the target constraint

(if they have different scopes).

Theorem 6 (Constraint Substitutability) Given two constraints Cnsti, Cnstj and a

goal G. Cnstj can be substituted by Cnsti with respect to G (denoted as Cnsti DG Cnstj) if

(Cnsti ² Cnstj) ∨ (Cnsti ÀG Cnstj).

Proof: A target constraint can be substituted by a source constraint, when the source con-

straint satisfies the target constraint. When the source and target constraints have the same

scope, Proposition 1 is used to determine the satisfiability status. When the source and the

target have different but reachable scopes, Theorem 5 is used to determine the satisfiability

status.

For example, the constraint (Credit.Period = 15) substitutes the constraint (Credit.

Period > 0) as it directly satisfies it. Also the constraint (Credit.Period = 15) substitutes

the constraint (Payment.Type = Credit) as it indirectly satisfies it, as we indicated before.

Now, we will extend Proposition 2 for matching sets of constraints as it is based on constraints

direct satisfiability, which leads to the appearance of false negatives as indicated before. To

avoid this problem, we match constraints-sets using constraint substitutability instead of

constraint direct satisfiability, as indicated in Proposition 3.

Proposition 3 (Constraint-Set Substitutability) Given two sets of constraints fi, fj,

and a goal G. fj can be substituted by fi with respect to G (denoted as fi DG fj) if ∀ Cnstu
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∈ fj, ∃ Cnstv ∈ fi such that (Cnstv DG Cnstu).

Proof: As a given set of constraints is satisfied when each of its constraints is individually

satisfied (according to Assumption 1), fj can be satisfied when each constraint of its elements

has a corresponding substituting constraint in fi.

For example, the set of the describing-constraints of the user G+ model depicted in Fig-

ure 3.10 can be substituted by the set of the describing-constraints of the service G+ model

depicted in Figure 3.11, as the constraint (Specialty.Type ⊆ {Motor-vehicles, Dangerous-

Cargo}) directly satisfies the constraint (Specialty.Type = Motor-vehicles), and the con-

straint (Credit.Period = 15) indirectly satisfies the constraint (Payment.Type = Credit).

Proposition 3 does not prevent a given source constraint from substituting multiple target

constraints individually. Hence, to know which source constraints substitute which target

constraints, a Constraints Mapping Matrix(CMM) is built. CMM’s rows are the constraints

of the source set, CMM’s columns are the constraints of the target set, and the elements of

CMM are either 1 (indicating that the target constraint can be substituted by the source

constraint) or 0 (indicating the target constraint cannot be substituted by the corresponding

source constraint).

Algorithm 3 indicates how the substitutability status between two sets of constraints is

determined according to the constructed CMM. For example, the CMM corresponding to the

set of the describing-constraints of the user G+ model depicted in Figure 3.10 and the set of

the describing-constraints of the service G+ model depicted in Figure 3.11 is as follows.

Specialty.Type = Motor-vehicles Payment.Type = Credit

Specialty.Type ⊆ {Motor-vehicles, 1 0

Dangerous-cargo}

Credit.Period = 15 0 1

A column of zeros indicates that the corresponding target constraints cannot be substi-

tuted by any constraint in the source set. A column with multiple ones indicates the cor-

responding target constraint is substituted by the conjunction of the corresponding source

constraints, while a row with multiple ones implies the corresponding source constraint can

substitute the conjunction of the corresponding target constraints. For example, the CMM
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corresponding to the set of the post-constraints of the user G+ model depicted in Figure 3.10

and the set of the post-constraints of the service G+ model depicted in Figure 3.11 is as

follows.

(Cargo.Status = Accomplished)

(ShipmentOrder.Status = Fulfilled) 1

(Payment.Status = Received) 1

Algorithm 3 Constraint-Set Substitutability

Input: fi (A source set of constraints), fj (a target set of constraints), and G (A goal).

Output: True when fj can be substituted by fi with respect to G, and False other-

wise.

1: Begin

2: for each Cnst(j,y), Cnst(j,y) ∈ fj do

3: for each Cnst(i,x), Cnst(i,x) ∈ fi do

4: if (Cnst(i,x) DG Cnst(j,y)) then

5: CMM [x, y] = 1

6: else

7: CMM [x, y] = 0

8: end if

9: end for

10: end for

11: if (CMM has a column of zeros) then

12: Return (False)

13: else

14: Return (True)

15: end if

16: End

During the matching process a different CMM is constructed for comparing the pre-

constraints, the post-constraints, the describing-constraints, and for every set of persisting
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constraints in order to determine the matching status between a service functionality and a

user’s required functionality, more details about the matching process are given in Chapter 5.

4.2.3 Goal Achievement as a Correctness Criterion

The achievement of users’ goals via the returned matching results indicates the correctness

of these matching results. Hence, the matchmaker needs to be able to determine when a user

goal is achieved such that it can decide whether a given service can achieve the required goal or

not. According to the G+ model, a user goal is considered achieved when the pre-constraints

of HLFC is transformed into the post-constraints of HLFC via the required behavior model,

and the describing-constraints of HLFC are satisfied. We define the achievement of a given

goal as follows.

Definition 26 (Goal Achievement) Given a goal G described via a goal achievement pat-

tern Gpi = 〈 Op, GCtxt, OpSeq 〉, G is achieved when Ti and Di are satisfied provided that

σi(Si) = Ti, where Si = GCtxtPre, Ti = GCtxtPost, Di = GCtxtDesc, σi is the transforma-

tion function corresponding to βi. This is denoted as (G ` 〈Si, Ti, βi, Di〉), where ` is the

goal achievement operator.

According to Definition 26, the matchmaker needs to find services with behavior models

that can transform the required pre-constraints into the required post-constraints substitut-

ing the required behavior model, also these services must satisfy the required describing-

constraints. As the goal achievement is the correctness criterion adopted in the matching

process, the matching process is based on the properties of the goal achievement operator

that define its semantics. The goal achievement operator has the following properties.

1- Pre-constraints Substitutability Invariance: This is denoted as

(Sj DGi
Si) ∧ (Gi ` 〈Si, Ti, βi, Di〉) ⇒ (Gi ` 〈Sj , Ti, βi, Di〉)

This property indicates Gi is still considered to be achieved when its pre-constraints

are substituted by another subsuming set of pre-constraints.

Proof: As (Sj DG Si), this implies correctness of the GAP is still guaranteed to be

satisfied according to Definition 14 when Si is replaced by Sj . Hence, σi is guaranteed
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to be invoked by Sj such that σi(Sj) = Ti. Therefore, the goal can be achieved via

(Gi ` 〈Sj , Ti, βi, Di〉).

2- Serial Composition: This is denoted as

(Gi ` 〈Si, Ti, βi, Di〉) ∧ (Gj ` 〈Ti, Tj , βj , Dj〉) ⇒ (Gk ` 〈Si, Tj , βk, Di ∪ Dj〉), where Di

and Dj are independent.

This property indicates a composite goal is guaranteed to be achieved when its subgoals

are achieved, provided that the goals have independent describing-constraints. Two sets

of constraints are considered independent when they have unreachable scopes.

Proof: As (σi(Si) = Ti), and (σj(Ti) = Tj), this implies that σj(σi(Si)) = Tj . Hence,

a behavior model βk (that is formed form a sequential composition of βi and βj) that

can transform Si into Tj is guaranteed to exist. Hence, a new composite goal Gk (that

is formed form a sequential composition of Gi and Gj) is guaranteed to be achieved

via a correct GAP, as the correctness constraints indicated in Definition 14 hold (the

output of σi satisfies the input of σj). As Di and Dj are independent and guaranteed

to be satisfied, the composite describing-constraints is formed as Di ∪ Dj .

3- Transitivity: This is denoted as

(Gi ` 〈Si, Ti, βi, Di〉) ∧ (Gi ` 〈Ti, Tj , βj , Di〉) ⇒ (Gi ` 〈Si, Tj , βk, Di〉)

This property indicates when a goal is achieved via two different achievement processes,

the same goal is considered to be achieved via a third achievement process that is a

sequential composition of these two processes when the post-constraints of one achieve-

ment process is the pre-constraints of the other process, providing that the two process

have the same describing-constraints.

Proof: Transitivity is a special case of the goal serial composition property. Hence, by

applying Property (2), we reach that (Gi ` 〈Si, Tj , βk, Di〉).

4- Irreflexive: This is denoted as

@ (Gi ` 〈Si, Si, βi, Di〉)

This property indicates that in a goal achievement process, the pre-constraints must
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not equal to the post-constraint.

Proof: A service invocation whether it is an information service or a transaction

service should lead to a change in the facts appeared before and after the invocation.

Otherwise, this means such service is doing nothing, which is not practical.

5- Asymmetric: This is denoted as

(Gi ` 〈Si, Ti, βi, Di〉) ; (Gi ` 〈Ti, Si, βj , Di〉)

This property indicates that a given goal cannot be achieved by transforming its post-

constraints into its pre-constraints.

Proof: Assuming both (Gi ` 〈Si, Ti, βi, Di〉) and (Gi ` 〈Ti, Si, βj , Di〉) hold...(1).

This implies that σi(Si) = Ti, and σj(Ti) = Si hold, hence σi(σj(Ti)) = Ti could be

reached by applying the transitivity property. This implies that (Gi ` 〈Ti, Ti, βj , Di〉),

which indicates that G1 is a reflexive goal, which contradicts Property (4)...(2). Hence,

assumption in (1) is not valid.

These properties guide how the matching process will be performed. For example, the

composition property shows that a user request could be answered via invoking a sequence

of services. The pre-constraints substitutability invariance property shows that the pre-

constraints of a user and the pre-constraints of a service can be different, and the service still

considered as a prospective matching result when its pre-constraints are substituted by the

user’s pre-constraints. The asymmetric property confirms that the pre-constraints and the

post-constraints must be examined separately. Table 4.3 summarizes the properties of the

goal achievement operator.

Property Notation

1- Pre-constraints Substitutability Invariance (Sj DGi
Si) ∧ (Gi ` 〈Si, Ti, βi, Di〉) ⇒ (Gi ` 〈Sj , Ti, βi, Di〉)

2-Serial Composition (Gi ` 〈Si, Ti, βi, Di〉) ∧ (Gj ` 〈Ti, Tj , βj , Dj〉) ⇒ (Gk ` 〈Si, Tj , βk, Di ∪ Dj〉)

3- Transitivity (Gi ` 〈Si, Ti, βi, Di〉) ∧ (Gi ` 〈Ti, Tj , βj , Di〉) ⇒ (Gi ` 〈Si, Tj , βk, Di〉)

4- Irreflexive @ (Gi ` 〈Si, Si, βi, Di〉)

5- Asymmetric (Gi ` 〈Si, Ti, βi, Di〉) ; (Gi ` 〈Ti, Si, βj , Di〉)

Table 4.3: Goal Achievement Operator Properties

However, there are other properties that do not hold for the goal achievement operator.

For example, the goal achievement operator is not distributive over conjunctive sources.
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In other words, (Gi ` 〈(Si ∧ Sj), Ti, βi, Di〉) ; (Gi ` 〈Si, Ti, βi, Di〉) ∧ (Gi ` 〈Sj , Ti, βi, Di〉),

this is because (Si ∧ Sj) is required to be satisfied in order to have a correct GAP, which

cannot be obtained by only Si or Sj . Also the goal achievement operator is not post-

constraints substitutability invariant nor describing-constraints substitutability invariant, as

having different post-constraints or describing-constraints changes the semantics of the goal

achievement. For example, when a goal Gi is considered to be achieved by transforming

(X.a > 10) into (Y.b > 20), this is not the same as a goal Gj that is considered to be

achieved by transforming (X.a > 10) into (Y.b > 10). Because having value like Y.b = 15

does not lead to the achievement of Gi, but leads to the achievement of Gj .

4.3 Behavior Models Matching using FSMS

This section indicates how behavior models are matched according to FSMS. As only linear

behavior models are adopted, the proposed behavior model matching is based on their state

sequence matching, which in turn is based on matching their corresponding states. Matching

state sequences could be determined either by using one-to-one state matching approach

or by using m-to-n state matching approach. In the one-to-one state matching approach, a

source state is examined against only one target state at a time. In the m-to-n state matching

approach, a group of consecutive source states is examined against a group of consecutive

target states, and each group could have a different length (that is the number of states in

the group).

Existing approaches such as Magee et al. [1997], Pierce and Sangiorgi [2000], Findler et al.

[2001], and Berardi [2005] adopt the one-to-one state matching approach. They require the

state sequences to have the same length in order to be matched. Furthermore, they match

the states syntactically, as they assume a given goal can only be achieved by invoking the

same sequence of operations. Indeed, such an approach is a very strict approach that leads

to the appearance of the false negatives, as a goal could be achieved via different sequences of

operations that vary in their length. Therefore, we argue that states should be matched on

a semantic basis and state sequences should be matched adopting an m-to-n state matching

approach in order to minimize the appearance of false negatives. As none of the currently
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existing behavior model matching techniques adopts an m-to-n state matching approach, in

this section we indicate how states will be matched on a semantic basis, then indicate how

behavior models will be matched using an m-to-n state matching approach, adopting FSMS.

4.3.1 State Matching

As substitutability is the adopted matching rule, a source state Sx matches a target state St

when Sx substitutes St with respect to the involved goal. However, as indicated in Defini-

tion 19, a behavior state consists of two subsets of constraints: effective and idle. We argue

that state matching should be based only on the effective constraints, as the idle constraints

do not have any effect on the sequence dynamics at the corresponding transition point. How-

ever, this does not mean that the idle constraints are completely ignored, as they will be

taken into consideration when they become effective at other successive transition points.

During state matching, we will take into consideration the effect of state substitution only at

the corresponding transition point. The overall effect of state substitution will be taken into

consideration when the whole behavior model is examined. More details will be given later

in this section. We match behavior states according to the substitutability of their effective

constraints, as indicated in Proposition 4.

Proposition 4 (State Matching) Given a source state Sx = 〈fe
x, f i

x〉, a target state St =

〈fe
t , f i

t 〉, and a given goal G such that Sx ∈ βi, and St ∈ βj. A source state Sx matches a

target state St with respect to G (denoted as Sx DG St) if (fe
x DG fe

t ).

Proof: As we are dealing with correct GAPs, fe
t ² OpPre

t+1 must hold in order to be able

to invoke Opt+1, according to Definition 14 and Definition 17 ...(1). When St is substituted

by Sx, OpPre
t+1 must be guaranteed to be satisfied after the substitution in order to be able to

invoke Opt+1, hence fe
x DG OpPre

t+1 must hold...(2). This can be achieved when (fe
x DG fe

t ),

as ((fe
x DG fe

t ) ∧ (fe
t ² OpPre

t+1) ⇒ fe
x DG OpPre

t+1 (according to the transitive property of

constraint satisfiability).
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For example, according to the substitutability graph segment defined in Table 3.2, the

state 〈{Frieght.Details 6= NULL, Origin.Details 6= NULL, Destination.Details 6=

NULL, IncoTerm.Type ∈ {FOB,EXW,CIF}}, {}〉 (a target state) can be substituted by the

state 〈 { Cargo.Details = 1000 Cars, Cargo.POL = Melbourne-Australia, Cargo.POD =

Alexandria-Egypt, IncoTerm.Type = FOB}, {Cargo.Course = Port-to-Port}〉 (a source

state), as the constraints (Cargo.Details = 1000 Cars), (Cargo.POL = Melbourne-Australia),

(Cargo.POD = Alexandria-Egypt), and (IncoTerm.Type = FOB) substitute the constraints

(Frieght.Details 6= NULL), (Origin. Details 6= NULL), (Destination.Details 6=

NULL), and (IncoTerm.Type ∈ {FOB,EXW,CIF}) respectively.

During the matching process, the matchmaker needs to identify a given state to be able to

determine whether this state is reached or not. Hence, we need a state identification technique

to recognize states. We define the concept of state scope in order to identify a given state

during the matching process. As Proposition 4 indicates that the effective constraints of a

state are the only constraints to be used in the matching process, we use the scopes of these

effective constraints to identify the state, a state scope is defined as follows.

Definition 27 (State Scope) Given a state Sx = 〈fe
x, f i

x〉. The scope of Sx (denoted as

Ξ(Sx)) is Ξ(fe
x).

The scope of the state 〈{Cargo.Details = 1000 Cars, Cargo.POL = Melbourne-Australia,

Cargo.POD = Alexandria-Egypt, IncoTerm.Type = FOB}, {Cargo.Course = Port-to-Port}〉

is the set { Cargo.Details, Cargo.POL, Cargo.POD, IncoTerm.Type}. The matching status

between two states could be determined according to their scopes. That when two states

have unreachable scopes with respect to the involved goal this implies that the states cannot

be matched. However, if they are reachable, this implies the substitutability status between

their effective constraints should be determined to get the final matching status.

We will adopt Proposition 4 for state matching during behavior models matching. First

we will propose a behavior matching approach using one-to-one state matching. Later in

this chapter, we will propose a behavior matching approach using m-to-n state matching.

Theorem 7 shows how behavior models will be matched using one-to-one state matching. It
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simply matches two behavior models when they have the same number of states and when

every state in the source behavior model substitutes the corresponding target state in the

target behavior model. We identify this approach for behavior matching as a one-to-one

semantic behavior matching approach, as states will be semantically matched according to

the substitutability of their effective constraints. A comparison between the proposed one-

to-one semantic behavior matching against one-to-one syntactic behavior matching approach

will be given at the end of Chapter 5.

Theorem 7 (One-to-One Semantic Behavior Matching) Given two behavior models

βx = 〈S(x,0), S(x,1), ..., S(x,n)〉, βt = 〈S(t,0), S(t,1), ..., S(t,m)〉, and a given goal G, βx matches

βt with respect to G using one-to-one state matching approach (denoted as βx ∼G βt) if

(m = n) ∧ (∀i=n
i=0 S(x,i) DG S(t,i)).

Proof: As we are dealing with correct GAPs, at every transition point the effective

constraints must satisfy the pre-constraints of its following operation. Hence, βt implies a

sequence of effective constraints 〈fe
(t,0), f

e
(t,1), ..., fe

(t,m)〉 that must hold in order to transform

f(t,0) into f(t,m). A source behavior model can substitute a target behavior model when the

source behavior model implies a sequence of effective constraints that can substitute the re-

quired sequence of effective constraints, as indicated in Figure 4.6. This can be achieved

when the two behavior models have the same number of transitions and every target state is

matched to the corresponding source state according to Proposition 4.

In the remainder of this chapter, for simplicity we will refer to constraints by alphabet

letters such that two constraints will be considered substitutable when they are represented

by the same alphabet letter. For example, the state Sx=〈{a,b}, {c,d}〉 has a, b as its effective

constraints and c, d as its idle constraints. Also Sx matches a state St, where St =〈{a,b},

{g,h}〉. In what follows we will discuss the m-to-n behavior matching approach.
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Figure 4.6: One-to-One State Sequence Matching

4.3.2 State Expansion

In the m-to-n approach, when a source state Sx cannot match a target state St with respect

a given goal G (denoted as Sx 4G St), this case is examined further for any possibility for a

match case that could result from merging Sx and St with other states in their corresponding

state sequences. When states are merged, different effective constraints would appear in the

resulting states, which gives the opportunity for a match case to happen. When a state is

merged with other states in its sequence, we define this case as a state expansion. First

we will define what is meant by state expansion and introduce the different types of state

expansions, as they represent the actions to be done during m-to-n state matching. Second,

we will discuss what is meant by state merge and provide the theorems and propositions that

show how states are expanded. Finally, we will show how state sequences of behavior models

will be re-clustered using these different types of state expansions in order to be matched.

First, a state expansion is defined as follows.

Definition 28 (State Expansion) Given a state Si such that Si ∈ βx, Si is expanded to

the state S′
i when it is merged with other adjacent states in βx forming a cluster of states.
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As both the source and the target state sequences are involved in the matching process,

both source state expansion and target state expansion could be required during the matching

process. In the source state expansion, a source state will be expanded in order to match

a target state. In the target state expansion, a target state will be expanded in order to

be matched to a source state. When a state is expanded, it could be merged with either

its successor states (which is known as Down Expansion) or its predecessor states (which is

known as Reverse Expansion), as indicated in Figure 4.7.

Reverse Expansion

Down Expansion

Merge Direction

Merge Direction

S0

S1

S2

S3

S4

S5

S6

Figure 4.7: Expansion Direction versus Merge Direction

However, the merge direction is always from the lower index state to the higher index

state regardless of the expansion direction. Figure 4.7 indicates that S4 is down expanded

by being merged with S5, and S3 is reverse expanded by merging the states S1, S2, and S3,

this is done by merging S1 with S2 and the results will be merged with S3. There are four

types of state expansion could be adopted during the state matching process, as indicated

in Definition 29. More details about which type of state expansion will be applied and when

during the matching process will be given in Section 4.3.3.

Definition 29 (State Expansion Types) Given a source state Sx, a target state St, and

a goal G. There are four types of state expansions could be adopted during the matching

process between Sx and St with respect to G. These types are:
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Source Down Expansion When Sx 4G St, Sx is merged with some of its successors states

in order to match St.

Source Reverse Expansion When Sx 4G St, Sx is merged with some of its predecessor

states in order to match St.

Target Down Expansion When Sx DG St, St is merged with some of its successors states

until cannot be matched with Sx.

Target Reverse Expansion When Sx 4G St, St is merged with some of its predecessor

states in order to be matched.

Now, we discuss what is meant by state merge, and prove the correctness of the proposed

merge approach. In our merge approach, merging two consecutive states Sx and Sx+1,

forming a new state Sm, means that their successor operations Opx+1 and Opx+2 are merged

forming a new operation Opm, as indicated in Figure 4.8.

 Merged Operations
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The New Operation

The Expanded State
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Figure 4.8: Consecutive States Merge

Sm is computed as if there is a new operation Opm in the sequence replacing the operations

Opx+1 and Opx+2. Opm is formed by cascading Opx+1 and Opx+2, as depicted in Figure 4.9.

Figure 4.8 indicates that the input of Opm is the union between the sets of concepts A and

B, its output is the union between the sets of concepts C and E, while the set of concepts D
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Figure 4.9: Consecutive Operations Merge

will not appear neither in Opm input nor in Opm output. As a result of that, any constraint

over D is discarded when the expanded state is computed. This discarded constraints are

known as the vanishing constraints. By discarding these vanishing constraints, the resulting

expanded state will have different effective constraints, which creates an opportunity for a

match case to happen. The pre-constraints of Opm will be the constraints based on the

concepts of A and B, and the post-constraints will be the constraints based on the concepts

of C and E, as indicated in Proposition 5.

Proposition 5 (Operations Merge Correctness) Given two consecutive operations Opx+1,

Opx+2 in an operations sequence of a given GAP. Opm is a correct merge between Opx+1 and

Opx+2 if (OpPre
m = OpPre

x+1 + (OpPre
x+2 ¦ OpPost

x+1 )) ∧ (OpPost
m = OpPost

x+2 + (OpPost
x+1 ¦ OpPre

x+2)).

Proof: To have a correct merge between Opx+1 and Opx+2, fx+2 (the persisting con-

straints are the transition point x+2) should not be changed after Opm execution. Therefore,

we will compute the persisting constraints at the transition point x+2 before and after the

merge using Theorem 2, and we will show that fx+2 has not changed due to the merge when

OpPre
m and OpPost

m are computed as indicated.

Before Merge:

fx+2 = f i
x+1 + OpPost

x+2 ...(1). f i
x+1 = (fx+1 ¦ OpPre

x+2)...(2). fx+1 = f i
x + OpPost

x+1 ....(3).

f i
x = (fx ¦ OpPre

x+1)...(4). From (1),(2),(3),(4), we can write fx+2 as a function of fx,

OpPre
x+1, OpPost

x+1 , OpPre
x+2, and OpPost

x+2 . Hence, fx+2 = (((fx ¦ OpPre
x+1) + OpPost

x+1 ) ¦ OpPre
x+2)
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+ OpPost
x+2 ....(5), which is represented by the shaded area in the Venn diagram depicted in

Figure 4.10, taking into consideration that the semantic difference is used instead of the

set-difference.

Op
x+2

Post

Op
x+1

Post

f
x

Op
x+2

Pre

Op
x+1

Pre

Figure 4.10: fx+2 Elements

After Merge:

fx+2 = f i
x + OpPost

m ...(6). f i
x = fx ¦ OpPre

m ......(7). From (6) and (7), we reach fx+2 =

(fx ¦ OpPre
m ) + OpPost

m ......(8). By substituting the values of OpPre
m = OpPre

x+1 + (OpPre
x+2 ¦

OpPost
x+1 ), and OpPost

m = OpPost
x+2 + (OpPost

x+1 ¦ OpPre
x+2) in (8). We reach to fx+2 = (fx ¦ (OpPre

x+1

+ (OpPre
x+2 ¦ OpPost

x+1 ))) + (OpPost
x+2 + (OpPost

x+1 ¦ OpPre
x+2)).....(9). By rearranging the terms, we

reach fx+2 = (fx ¦ (OpPre
x+1 + (OpPre

x+2 ¦ OpPost
x+1 )))+ (OpPost

x+1 ¦ OpPre
x+2)) + OpPost

x+2 . Which

also represent the same shaded area in the Venn diagram depicted in Figure 4.10. Therefore,

Equation (9) equals to Equation (5), which indicates that the assigned values for OpPre
m and

OpPost
m does not change fx+2.

Having Opm formed this way guarantees the states appeared before and after the merge

are not changed. Figure 4.11 shows the effect of merging Op2 and Op3 by depicting an oper-

ation sequence before and after the merge. The following table indicates the state sequence

before the merge.

State Persisting Constraints Effective Constraints Idle Constraints

S0 {a, d, z} {a} {d, z}

S1 {b, c, d, z} {c, d} {b, z}

S2 {b, e, z} {e, z} {b}

S3 {b, g} {b, g} {}

S4 {h} {h} {}
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The following table indicates the state sequence after the merge.

State Persisting Constraints Effective Constraints Idle Constraints

S
′

0 {a, d, z} {a} {d, z}

S
′

1 {b, c, d, z} {c, d, z} {b}

S
′

2 {b, g} {b, g} {}

S
′

3 {h} {h} {}

As we can see S0, S3, S4 are not affected by the merge, as the pre-constraints of Opm are

{c, d, z} and post-constraint of Opm is {g}. The effective constraints of Sm do not contain

the constraint e (that is a vanishing constraint). Additionally, the expanded state version of

S1 (that is S
′

1) includes more number of effective constraints than S1.

Post= {h}

Pre= {a}

Post= {b,c}

Pre= {c,d,z}

Post= {g}

m
Op

Pre= {g,b}

After Merge
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Figure 4.11: State Merge Example

Based on the proposed operations merge approach, two consecutive states are merged as

indicated in Theorem 8. Theorem 8 indicates that f i
x+1 is not involved in the state merge

operation as it does not affect the invocation of Opm, however f i
x+1 still appears in the state

Sx+2. If there exists no successor operation for Sx+1, this implies that Sx and Sx+1 cannot

be merged. This case happens when the operation sequence consists of only one operation.
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Theorem 8 (State Merge Correctness) Given two consecutive states Sx = 〈fe
x, f i

x〉, and

Sx+1 = 〈fe
x+1, f

i
x+1〉. The state Sm is a correct merge of Sx and Sx+1 if it is computed as

〈fe
m, f i

m〉, where f i
m = (f i

x ¦ fe
x+1) and fe

m = (fx - f i
m).

Proof: Due to the operations merge, fx will be redivided into different effective and

idle subsets with respect to OpPre
m to compute Sm according to the behavior state definition

(Definition 19). Hence, f i
m = fx ¦ OpPre

m ....(1). By substituting the value of OpPre
m indicated

in Proposition 5 in (1), we reach that f i
m = fx ¦ (OpPre

x+1 + (OpPre
x+2 ¦ OpPost

x+1 ))...(2), which

is represented by the shaded area in the Venn diagram depicted in Figure 4.12, taking into

consideration that the semantic difference is used instead of the set-difference.

Op
x+1

Post

f
x

Op
x+2

Pre

Op
x+1

Pre

Figure 4.12: f i
m Elements

By rearranging the terms of Equation (2) using the semantic difference definition (Defi-

nition 15), we reach f i
m = (fx ¦ OpPre

x+1) ¦ (OpPre
x+2 ¦ OpPost

x+1 )....(3). As fe
x+1 ² OpPre

x+2, this

implies that fe
x+1 ² (OpPre

x+2 ¦ OpPost
x+1 ). Hence fe

x+1 can substitute (OpPre
x+2 ¦ OpPost

x+1 ). There-

fore, we can rewrite Equation (3) as f i
m = (fx ¦ OpPre

x+1) ¦ fe
x+1...(4). As f i

x = fx ¦ OpPre
x+1

(Theorem 2), we can rewrite Equation (4) as, f i
m = (f i

x ¦ fe
x+1). Also, as fm = fx, and fe

m

= fm - f i
m according to Theorem 2, this implies that fe

m = fx - f i
m.

During state sequence matching using m-to-n state matching approach, a target state is

examined against a source state at a time. When a target state cannot be matched with

a source state, the possibility of a source state down expansion is examined to see if the

target state can be matched. To down expand a source state Sx, first a target state St is

required to be specified, as it will be the reference for the expansion. Second, the states that
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will be merged with Sx to match the target state should be identified. Third, these states

should be merged into a new state; starting from the state that has the least sequence index

reaching to the state that has the highest sequence index. Finally, the resulting merge state

is examined against the target state, that if it matches the target state this means Sx is down

expandable with respect to St. Proposition 6 indicates how a down expandable source state

is determined.

Proposition 6 (Source Down Expansion) Given a source state Sx, a target state St,

and a goal G such that Sx ∈ βi and St ∈ βj. Sx is down expandable with respect to St and

G (denoted as Sx ↓G St) if (Sx 4G St) and ∃Se, Se ∈ βi such that (e > x) and (S′
x DG St),

where S′
x is the resulting state from merging the states from Sx to Se.

Proof: The proposition is a direct realization for Definition 29.

The expansion step of a state Sx with respect to St and G is the number of states merged

to Sx in order to match St. Figure 4.13 depicts a source down expansion case. It indicates

that St cannot be matched with Sx, as Ξ(St) = {a, d, z} and Ξ(Sx) = {a}.

St

Sx

Sm

TargetSource

Expansion

Direction

<{e,z},{b}>

<{a,d},{z}>

<{c,d},{b,z}>

<{a},{d,z}>

<{a,d,z},{}>

<{a,d,z},{}>

S
x+1

S
x+2

Figure 4.13: Source Down Expansion

Sx is expanded one state at a time until the expanded state can match St. This occurs

when Sx, Sx+1, and Sx+2 are merged. As merging Sx with Sx+1 = 〈{a, d}, {z}〉, and merging

Sx, Sx+1, Sx+2 = 〈{a, d, z}, {}〉.

When Sx 4G St and Sx is not down expandable with respect to St, a matching cluster

could be obtained if Sx is merged with predecessor states. We identify this case as a source
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reverse expansion, as indicated in Proposition 7. However, this requires a Clustering Restruc-

turing Operation (CRO) to take place, as depicted in Figure 4.14. It shows that Sx cannot

match St, but when Sx is reversely expanded with respect to St, a new cluster that can

match St is found. CRO is performed as follows. A new cluster will be created by merging

the new required matching cluster (seen in the figure as dotted) with the old clusters located

within the expansion step of the source state. Same merge operation will be performed for

the corresponding target matching states. Then all these old clusters and their matching

pairs will be deleted.

Source Target Source Target

Before CRO After CRO

Sx Sx

St St

Figure 4.14: Clusters Restructuring Operation

Proposition 7 (Source Reverse Expansion) Given a source state Sx, a target state St,

and a given goal G such that Sx ∈ βi and St ∈ βj. Sx is reverse expandable with respect to

St and G (denoted as Sx ↑G St) if (Sx 4G St) and ∃Se, Se ∈ βi such that (e < x) and (S′
x

DG St), where S′
x is the resulting expanded source state from merging the states from Se to

Sx. Proof: The proposition is a direct realization for Definition 29.

For example, the state Sx+2 in Figure 4.13 is a reverse expandable state with respect to

St. When a target state cannot be matched with a source state, and the source state cannot

be expanded in either directions. We check the possibility of merging the target state with

previously matched target states, hoping to get rid of any vanishing constraints belonging to
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the effective constraints of the target state. However, this requires CRO to be applied. This

case is known as target reverse expansion, as indicated in Proposition 8.

Proposition 8 (Target Reverse Expansion) Given a source state Sx, a target state St,

and a given goal G such that Sx ∈ βi and St ∈ βj. St is reversely expandable with respect to

Sx and G (denoted as St ⇑G Sx) if (Sx 4G St) and ∃Se, Se ∈ βj such that (e < t) and (S′
x

DG S′
t), where S′

t is the resulting state from merging the states from Se to St, and S′
x is the

state resulting from CRO.

Proof: The proposition is a direct realization for Definition 29.

Figure 4.15 depicts a reverse target expansion case. It indicates that St cannot be matched

with Sx, also it indicates that the expansion of Sx fails to match St. However, St is matched

when it is reverse expanded, which requires Sx to be reverse expanded as well.

<{a,b},{d}>

<{z},{d}>

<{d},{}>

<{e},{}>

<{a},{b,d}>

<{x,b},{d}>

<{d},{}>

<{z},{d}>

<{d},{}>

<{a},{b,d}>

<{x,b},{d}>

<{d},{}>

<{a,b},{d}> <{a,b},{d}>

Before Target Reverse

Expanding

After Target Reverse

Expanding

StSx

Expansion Direction

<{e},{}> <{e},{}> <{e},{}>

St

Sx

<{a,b},{d}>

Figure 4.15: Example of Target Reverse Expansion

When a source state matches a target state, there is a possibility that this source state

can match more target states. We check this possibility by merging the target state with its

successors. We identify this case as target down expansion, as indicated in Proposition 9.
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Proposition 9 (Target Down Expansion) Given a source state Sx, a target state St,

and a given goal G such that Sx ∈ βi and St ∈ βj. St is down expandable with respect to Sx

and G (denoted as St ⇓G Sx) if (Sx DG St) and ∃Se ∈ βj such that (e > t) and (Sx DG S′
t),

where S′
t is the resulting expanded target state from merging the states from St to Se.

Proof: The proposition is a direct realization for Definition 29.

Figure 4.16 depicts a target down expansion case. It indicates Sx matches St, also indi-

cates Sx matches the cluster from St, St+1, and St+2 forming a state Sm.

St

TargetSource

<{a,d,z},{}>

Sx

Sm

S
t+1

<{e,z},{b}>

<{a,d},{z}>

<{c,d},{b,z}>

<{a},{d,z}>

<{a,d,z},{}>

Expansion

Direction

St

S
t+2

Figure 4.16: Target Down Expansion

4.3.3 State Sequence Clustering

This section first proposes a Sequence Mediator Procedure (SMP) that uses the different types

of state expansions to re-cluster unmatched state sequences in order to reach a matching case

(if possible). Then proposes the behavior substitutability matching approach that adopts

SMP. SMP is the core of m-to-n state matching, it accepts two state sequences that could

have different length, then returns two re-clustered state sequences with the same length

(if possible), as indicated in Figure 4.17. The figure indicates the status of state sequence

before, during, and after applying SMP. Later, the matching status between the source and

target sequences is determined according to their corresponding re-clustered sequences.
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Source Target

Before SMP Applying SMP After SMP

An Expanded State

Figure 4.17: SMP Invocation Effect

SMP aims to find a matching source cluster for every target state. However, when

a source state fails to match a target state, SMP checks if the source state could be down

expandable with respect to the target state. When the source state cannot be down expanded

with respect to the target state, SMP checks whether this source state could be reverse

expanded with respect to the target state, which requires CRO to take place. When the

source reverse expansion fails, SMP checks other successor source states against the target

state before checking the target state reverse expansion, which requires CRO to take place

as well. However, if this fails as well, SMP marks the target state as unmatched. SMP starts

by examining the first state of the source target against the first state of the target sequence.

When the source state matches the target state according to Proposition 4, SMP applies

Algorithm 4 to handle the matching case. Algorithm 4 indicates that SMP checks the possi-

bility of target down expansion before registering the matching peer, then it proceeds to check

the successor target and source states. However if there is no more successor source states,

the remaining target states will be examined against the last state of the source sequence

depending on reverse expansion for the last source state to match these target states.

When a source state cannot be expanded in either directions, SMP tries the successor

source states to match the target state using the down and reverse source expansion scenarios,

and it stores this unmatched source state for backtracking. If any of the successor source

states succeeds to match the target state using any of the mentioned scenarios, a match case
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is found and SMP handles the case as indicated earlier in Algorithm 4. When a target state

cannot be matched to any source state, SMP tries reverse expanding the target state to find

a match for it, when that fails this target state is considered unmatched, and the next target

state will be examined. SMP starts to examine the next target state starting from the stored

backtracked source state. Source backtracking is required to ensure that every target state

got the chance to be examined against all unmatched source states.

Algorithm 4 SMP Matching Case Handling

Input: S[i] (the ith source state), T[j] (the jth target state), G (the required goal)

Output: True when sequences re-clustering is finished.

1: Begin

2: if (T[j] ⇓G S[i]) then

3: Expand T[j]

4: end if

5: Mark T[j], S[i] as matching peers

6: if (j < ‖T[ ]‖) then

7: if (i < ‖S[ ]‖) then

8: Apply Algorithm 5 over (S[i+1], T[j+1], G)

9: else

10: Apply Algorithm 5 over (S[i], T[j+1], G)

11: end if

12: else

13: Return True

14: end if

15: End

When every target state in the target sequence is examined and its matching peer is

found, some of the source states could remain unmatched as indicated in Figure 4.18 (check

state 〈{f}, {}〉 in trace 6). SMP merges these unmatched source states to the predecessor

matched source cluster. This will not change the matching status of the clusters, as their
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effective constraints either remain the same (in case the effective constraints of the unmatched

source states are vanishing constraints) or increase by new constraints that are independent

from the effective constraints of the target cluster 1. Algorithm 5 summarizes all the steps

of SMP, the algorithm is initially applied over the first source state against the first target

state. Example 2 illustrates a trace for SMP step by step.

The complexity of SMP is determined as indicated in Theorem 9.

Theorem 9 (SMP Complexity) Complexity of SMP is O(n3).

Proof: The worst case for SMP to decide the matching status of a target state is to check

source down expansibility, then check source reverse expansibility, then check target reverse

expansibility...(1). A state down expansibility is simply O(n) as it take states one by one and

the merge it with the last obtained merged state. While the worst case of reversely expanding

a state (source or target) is to check all the predecessors, but merging in this case has to be

redone from the beginning of every prospective cluster, thus the worst case is to check the

whole sequence which will be 1 + 2 + 3 + ... + n, which equals to n(n+1)
2 . Hence, reverse

expansion costs O(n2). Therefore, according to (1), the worst case complexity to check the

matching status of a target state will be O(n2). By repeating that for every state in the target

sequence, the worst case complexity of SMP is O(n3).

The complexity of SMP is relatively high, however we argue that in real-life scenarios the

number of states of a given GAP will be relatively small (for example, 15 states).

Example 2 (A SMP Trace) Figure 4.18 provides an example of matching a source oper-

ation sequence and a target operation sequence.

SMP starts by checking the first source state with the first target state. It happens to be a

match case, and SMP checks if the target state is down expandable with respect to the source

state. It finds it is not down expandable. Thus, it proceeds to check the second target state with

the second source state. It finds this is not a match case, so it checks the down expansibility

of the source state, which fails. Thus, it checks its reverse expansibility, which fails as well.

SMP checks other source states to be match that target state, which fails as well. So, SMP

1This is because, having X D Y, (X ∧ Z) D Y holds as well when Z is independent from X and Y.



CHAPTER 4. THE FUNCTIONAL SUBSTITUTABILITY MATCHING SCHEME 121

Algorithm 5 Sequence Mediator Procedure (SMP)

Input: S[i] (the ith source state), T[j] (the jth target state), G (the required goal)

Output: True when sequences re-clustering is finished.

1: Begin

2: if (S[i] DG T[j]) then

3: Apply Algorithm 4 over (S[i], T[j],G)

4: else

5: if (S[i] ↓G T[j]) then

6: Expand S[i]

7: Apply Algorithm 4 over (S[i], T[j],G)

8: else

9: if (S[i] ↑G T[j]) then

10: Apply CRO over S[i]

11: Apply Algorithm 4 over (S[i], T[j],G)

12: else

13: BackTrack =S[i]

14: if (j < ‖T[ ]‖) then

15: if (i < ‖S[ ]‖) then

16: Apply Algorithm 5 over (S[i+1], T[j], G)

17: else

18: if (T[j] ⇑G S[i]) then

19: Apply CRO over T[j]

20: Apply Algorithm 4 over (S[i], T[j],G)

21: else

22: Mark T[j] as Unmatched

23: Apply Algorithm 5 over (BackTrack, T[j+1], G)

24: end if

25: end if

26: else

27: Merge unmatched source states with their predecessors.

28: Return True

29: end if

30: end if

31: end if

32: end if

33: End
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Figure 4.18: SMP Trace
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starts to check the reverse expansibility of the target state. It finds it can be reverse expanded,

so it restructures the target sequence to form a cluster from the first and second target states.

Then, SMP checks the next target state 〈{c}, {}〉 against the next source state 〈{c}, {}〉, it

finds it is a matching case, so check the down expansibility of the target against the source

state, which fails as the resulting scope is the same as the original state, so it moves to the

next target state 〈{d}, {}〉 and next source state 〈{f}, {}〉. The source state cannot match

the target state, also it is not expansible in either directions. Therefore, SMP starts to check

the next source state 〈{d}, {}〉, which happens to match the target state. Then it proceeds to

the next target state after checking the expansibility of the target state〈{h}, {}〉, that will be

examined against 〈{g}, {}〉. As it is not a match case, and source state is not expandable in

either directions and no more source states to be checked, SMP checks the reverse expansibility

of the target state. It finds its reversely expandable, so it groups 〈{d}, {}〉, 〈{h}, {}〉 into one

cluster and proceeds to the last target state, which happens to match the last source state.

No backtracking is required as all the target sources are matched, as backtracking is only

required when a target state cannot be matched. Finally, SMP find the source state 〈{f}, {}〉

is unmatched, so it merges it to the predecessor matched source state, which is state 〈{c}, {}〉,

forming a new cluster with the same effective constraints {c} as f is a vanishing constraint.

When we switch the source with the target sequences, different matching clusters pairs will

be obtained as indicated in Figure 4.19.

Source Target
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Figure 4.19: SMP Result when Source and Target are Switched
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Adopting SMP, we propose an m-to-n semantic behavior matching approach. When two

state sequences cannot be matched using Theorem 7, SMP is applied. Later, the matching

status between the two re-clustered state sequences is examined again using Theorem 7. This

is indicated in Theorem 10.

Theorem 10 (M-to-n Semantic Behavior Matching) Given two behavior models βx =

〈S(x,0), S(x,1), ..., S(x,n)〉, βt = 〈S(t,0), S(t,1), ..., S(t,m)〉, and a given goal G, βx matches βt with

respect to G using m-to-n state matching approach (denoted as βx ≈G βt) if (β′
x ∼G β′

t), where

β′
i, β′

j are the behavior models resulting after applying SMP.

Proof: When SMP successfully re-clusters the source and target state sequences, the

resulting state sequences will have the same length. Hence, β′
i, β′

j will be matched according

to Theorem 7.

Finally, a source behavior model substitutes a target behavior model when the behavior

models are matched either by Theorem 7 or Theorem 10. Hence, behavior models substi-

tutability is determined according to Theorem 11. Real-life examples for behavior model

matching will be given in the next chapter.

Theorem 11 (Behavior Model Substitutability) Given two behavior models βx = 〈S(x,0),

S(x,1), ..., S(x,n)〉, βt = 〈S(t,0), S(t,1), ..., S(t,m)〉, and a given goal G, βx substitutes βt with re-

spect to G (denoted as βx DG βt) if (βx ∼G βt) ∨ (βx ≈G βt).

Proof: When (n=m), Theorem 7 is used to match the behavior models. When Theorem 7

fails or (n 6= m), Theorem 10 will be used to determine the matching status between the

behavior models. Hence, a source behavior model matches a target behavior model when

either Theorem 7 or Theorem 10 holds.

4.4 Conclusion

In this chapter, we introduced the concept of a matching scheme. We proposed a new match-

ing scheme for matching the high-level specifications of semantic web services, known as the

Functional Substitutability Matching Scheme (FSMS). We defined FSMS as 〈 Functionality,
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Substitutability, Goal Achievement 〉, where functionality is the comparison aspect, substi-

tutability is the matching rule and goal achievement is the matching correctness criterion.

Functionality of a web service is represented by the supported describing-constraints and

the supported behavior models. Similarly, the functionality of users is represented by the

required describing-constraints and the required behavior models. Also in this chapter, we

indicated how the behavior models are automatically extracted from the defined G+ models.

We proposed the constraints substitutability concept to determine users’ constraints satisfia-

bility. We discussed the different properties for the goal achievement operator which provide

the matching process guidelines. We proposed the algorithms required for FSMS realization.

We indicated how behavior models are matched using FSMS. Finally, we proposed an m-to-n

state matching approach for matching state sequences, proposing a sequence mediator pro-

cedure that mediates between a source state sequence and a target state sequence such that

the sequences could be semantically matched.



Chapter 5

Correctness-Aware Service

Matching Approaches

This chapter proposes two new correctness-aware service matching techniques adopting FSMS:

a direct matching technique and an aggregate matching technique. The direct matching tech-

nique primarily matches web services according to the substitutability of the GAPs extracted

from their G+ models. The aggregate matching technique adopts a dynamic sequential ag-

gregate approach such that the returned solution is a sequence of web services that can

substitute the required GAPs. The matching techniques require no user interaction during

the matching process, and adopt the semantics of the involved application domain to mediate

between services’ descriptions and users’ requests. Finally, this chapter evaluates the devised

matching techniques against the service matching approaches discussed in Chapter 2 using

simulation experiments.

5.1 Service Direct Matching Approach

In service direct matching, only one service’s description is examined against the user’s re-

quest. According to the goal achievement definition (Definition 26, page 100), a user’s goal

is considered achieved when the required post-constraints are satisfied by transforming the

pre-constraints into the required post-constraints via the required behavior; satisfying the

126
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required describing-constraints. As indicated in Chapter 3 (Table 3.3, page 63), the goal

achievement semantics differs according to the involved perspective (that is a user’s per-

spective or a service’s perspective). In the service perspective, the service’s pre-constraints

need to be satisfied such that the service can be invoked, while the service guarantees the

satisfaction of its post and describing-constraints. In contrast, in the user’s perspective,

the user guarantees the satisfaction of the required pre-constraints and needs the post and

describing-constraints to be satisfied. Hence, a service that can be invoked by the user’s

pre-constraints and can satisfy the required post and describing-constraints via the required

behavior is considered a correct match for the request. Therefore, the user’s pre-constraints

will be checked against the service’s pre-constraints, to see if they can substitute the ser-

vice’s pre-constraints. Similarly, the service’s post and describing-constraints will be checked

against the user’s post and describing-constraints, respectively, to see if they can substitute

them, as indicated in Figure 5.1. However, in order to consider the service as a correct match

for the request, another check needs to be done according to the goal achievement definition

(Definition 26) that is the service’s behavior model needs to substitute the user’s behavior

model.

User’s Perspective

Service’s Perspective

Desc
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s
t

Desc

P
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Figure 5.1: The Service Direct Matching Approach

When a service’s behavior substitutes a user’s behavior this means the service’s sequence

of operations will substitute the sequence of operations required by the user, as indicated in
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Figure 5.2. It indicates that the substitution of operation sequences implies that a user has

to follow a new behavior to achieve the required goal. This new behavior is known as the

anticipated User behavior, which is mainly based on the service’s behavior.
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Figure 5.2: Anticipated User Behavior

Definition 30 (Anticipated User Behavior) Given a service behavior model βs, the an-

ticipated user behavior corresponding to βs (denoted as βa
s ) is the user behavior resulting from

following the transitions indicated in βs.

When the anticipated user behavior substitutes the required user behavior according to

Theorem 11, the service behavior model is considered a match for the required behavior.

The difference between the service’s behavior and the user’s anticipated behavior is that the

service’s behavior is computed based on the pre-constraints and the operation sequence of the

service, while the user’s anticipated behavior is computed according to the pre-constraints

of the user and the operation sequence of the service.

The computation of the anticipated behavior model requires to extend the definitions of
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the effective and idle constraints given in Chapter 4 as well as the semantic difference and the

GAP correctness definitions given in Chapter 3. This is because a user might use different

concepts than the ones used in services’ models, hence a mediation process with respect to

the user’s goal must be taken into consideration. Hence the computation of the persisting

constraints as well as the classification of constraints into effective and idle will be based

on the user’s required goal. According to Definition 17, an effective constraint at transition

point x is the constraint that its scope belongs to the scope of OpPre
x+1. This will be extended

by considering a given constraint as effective at transition point x when its scope is reachable

(directly or indirectly) to any element of the scope of OpPre
x+1.

Definition 31 (Goal-based Effective Constraint) Given a constraint Cnsti such that

Cnsti ∈ fx and a goal G, Cnsti is considered an effective constraint at a given transition

point x with respect to G when (Ξ(Cnsti) ⇀G Ξ(Cnstj)) ∨ (Ξ(Cnsti) yG Ξ(Cnstj)), where

Cnstj ∈ OpPre
x+1.

Similarly, an idle constraint at transition point x according to Definition 18 is the con-

straint that its scope does not belong to the scope of OpPre
x+1. This will be extended by

considering a given constraint as idle at transition point x when its scope is not reachable

(directly or indirectly) to any element of the scope of OpPre
x+1.

Definition 32 (Goal-based Idle Constraint) Given a constraint Cnsti such that Cnsti ∈

fx and a goal G, Cnsti is considered an idle constraint at a given transition point x with

respect to G if ∀ Cnstj ∈ OpPre
x+1, @ Cnstj such that (Ξ(Cnsti) ⇀G Ξ(Cnstj)) ∨ (Ξ(Cnsti)

yG Ξ(Cnstj)).

The semantic difference between two sets of constraints according to Definition 15 is

determined using constraint direct satisfiability. This will be extended by using constraints

substitutability instead.

Definition 33 (Goal-based Semantic Difference) Given two sets of constraints fi and

fj and a goal G. The semantic difference between fi and fj with respect to G (denoted as

fi ¦G fj) is fk, where fk is the maximal subset of fi such that (fi − fk) DG fj.
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Similarly, GAP correctness indicated in Definition 14 is determined using constraint direct

satisfiability. This will be extended by using constraints substitutability instead.

Definition 34 (Goal-based GAP Correctness) Given a goal achievement pattern of a

goal G defined as Gp = 〈 Op, GCtxt, OpSeq 〉, Gp is considered correctly defined with respect

to G if (∀x=n−1
x=0 fx DG OpPre

x+1) ∧ (fn DG GCtxtPost), where n is the number of operations

in OpSeq, f0 = GCtxtPre, and fx is the set of constraints at the transition point x between

Opx, Opx+1 such that Opx, Opx+1 ∈ OpSeq.

To compute the anticipated user behavior, the persisting constraints at a given transition

point will be determined similarly as indicated in Theorem 2 by adopting the goal-based

semantic difference operator instead, as indicated in Theorem 12.

Theorem 12 (Goal-based Persisting Constraints) Given a goal achievement pattern

of a goal G defined as Gp = 〈 Op, GCtxt, OpSeq 〉. The set of persisting constraints

fx+1 at transition point (x + 1) is computed as fx+1 = f i
x + OpPost

x+1 , where 0 ≤ x ≤ n − 1,

(f0 = GCtxtPre), (f i
x = fx ¦G OpPre

x+1), (fe
x = fx − f i

x), and n is the number of operations

in OpSeq.

Proof: Same as Theorem 2 adopting Definition 34 instead of Definition 14.

After computing the anticipated user behavior model, we can easily determine whether a

given service is achieving the required user’s goal or not, by checking if the service context is

substituting the user’s context and the user’s anticipated behavior is substituting the required

behavior model, as indicated in Theorem 13.

Theorem 13 (Service Direct Matching) Given the goal achievement processes of a ser-

vice’s GAP (denoted as GPs) and a user’s GAP (denoted as GPu) are described as Gs `

〈GCtxtPre
s , GCtxtPost

s , βs, GCtxtDesc
s 〉, and Gu ` 〈GCtxtPre

u , GCtxtPost
u , βu, GCtxtDesc

u 〉, re-

spectively. GPs matches GPu (denoted as GPs DGu GPu) if (GCtxtPre
u DGu GCtxtPre

s ) ∧

(GCtxtPost
s DGu GCtxtPost

u ) ∧ (GCtxtDesc
s DGu GCtxtDesc

u ) ∧ (βa
s DGu βu).

Proof: As the user goal Gu is the one needs to be achieved, all the substitution checks

will be performed according to Gu. In other words, the search for transformations that can

satisfy the above conditions will be done in the corresponding segment of Gu.
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Gs ` 〈GCtxtPre
s , GCtxtPost

s , βs, GCtxtDesc
s 〉 implies that σs(GCtxtPre

s ) = GCtxtPost
s ....(1).

Similarly, Gu ` 〈GCtxtPre
u , GCtxtPost

u , βu, GCtxtDesc
u 〉 implies that σu(GCtxtPre

u ) = GCtxtPost
u

....(2). In order to achieve Gu via the GPs σs(GCtxtPre
u ) = GCtxtPost

u must hold...(3).

Hence, (GCtxtPre
u DGu GCtxtPre

s ) must hold in order to be able to invoke σs....(4). Assum-

ing (4) holds and the service can be invoked, hence GCtxtPost
s and GCtxtDesc

s are guaranteed

to be satisfied....(5). So in order to satisfy (3), (GCtxtPost
s DGu GCtxtPost

u ) must hold...(6).

However, Definition 26 implies that GCtxtDesc
u must be satisfied in order to achieve Gu, ac-

cording to (5) GCtxtDesc
s is guaranteed to be satisfied, hence (GCtxtDesc

s DGu GCtxtDesc
u )

must hold in order to achieve Gu...(7). When equations (4),(6),(7) hold, equation (3) will

hold as σs(GCtxtPre
u ) = GCtxtPost

u is guaranteed to be satisfied. However, in order to guar-

antee that βs transforms GCtxtPre
u into GCtxtPost

u substituting the required behavior (βa
s DGu

βu) needs to hold as well...(8). So in order to achieve Gu via GPs (4),(6),(7), and (8) must

hold.

According to the user’s semantics, a service that can achieve the required goal via the

same number of state transitions defined in the required GAP is better than a service that

can achieve the required goal via a different number of state transitions. However, when the

m-to-n state matching is adopted, the same number of state transitions required by the user

is not guaranteed to be reached due to the application of CRO. Therefore, we propose to

rank the returned matching results according to the Sequence Similarity Ratio.

Definition 35 (Sequence Similarity Ratio) Given a service behavior model βs, and a

user behavior model βu. The similarity between βs and βu (denoted as ρs) is computed as

the ratio ‖βa′
s ‖

‖βu‖
, where βa′

s is the anticipated user behavior after applying SMP.

Example 3 (Service Direct Matching) The user G+ model depicted in Figure 3.10 has

a matching GAP in the GAP-forest depicted in Figure 3.13 that corresponds to the service

G+ model depicted in Figure 3.11. For easy referencing, we depict the matching GAPs in

Figure 5.3. Adopting the substitutability graph segment defined in Table 3.2 (page 60), we

can see that the pre-constraints of the user substitute the pre-constraints of the service. Also,
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Figure 5.3: Service Direct Matching Example
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the describing-constraints and the post-constraints of the service substitute the describing-

constraints and the post-constraints of the user, respectively. The user’s behavior model,

the service’s behavior model, and the anticipated behavior model are indicated in Table 5.1,

Table 5.2, and Table 5.3, respectively. By applying SMP to mediate between the anticipated

behavior and the user behavior, the resulting re-clustered sequences are depicted in Figure 5.4.

This service matches the user request with ρs equal to 6
7 , meaning that it can achieve the user’s

goal following 85.7% of the required steps.

S0 〈 {Cargo.Details = 1000 Cars, Cargo.POL = Melbourne-Australia, Cargo.POD = Alexandria-Egypt, IncoTerm.Type = FOB},

{Cargo.Course = Port-to-Port}〉

S1 〈 {Cargo.Course = Port-to-Port, Cargo.Status = Received} , {} 〉

S2 〈 {Offer.Status = Sent}, {} 〉

S3 〈 {Offer.Status = Approved}, {} 〉

S4 〈 {Offer.Status = Accepted} , {} 〉

S5 〈 {Offer.Status = Executed} , {} 〉

S6 〈 {Cargo.Status = Accomplished} , {} 〉

Table 5.1: User’s Behavior Model

S0 〈 { Freight.Details 6= Null, Origin.Details 6= Null, Destination.Details 6= Null,

Freight.Course = Port-to-Port, IncoTerm.Type ∈ {FOB,EXW,CIF}} , {} 〉

S1 〈 {ShippingOrder.Status = Created} , {} 〉

S2 〈 {POL.Status = Allocated} , {} 〉

S3 〈 {POL.Status = Allocated, POD.Status = Allocated} , {} 〉

S4 〈 {ShippingOrder.Status = Analyzed} , {} 〉

S5 〈 {Proposal.Status = Sent} , {} 〉

S6 〈 {Proposal.Status = Approved} , {} 〉

S7 〈 {ShippingOrder.Status = Approved} , {} 〉

S8 〈 {Packaging.Status = Accomplished}, {} 〉

S9 〈 {Documentation.Status = Accomplished}, {} 〉

S10 〈 {ShippingOrder.Status = Executed} , {} 〉

S11 〈 {ShippingOrder.Status = Confirmed} , {} 〉

S12 〈 {ShippingOrder.Status = Pending} , {} 〉

S13 {ShippingOrder.Status = Fulfilled, Payment.Status = Received}, {} 〉

Table 5.2: Service’s Behavior Model

Later, the returned list of services returned are filtered using the LLFC, NFC and NTC

contexts. In NTC filtering, services with prices greater than the required price are ignored.

In LLFC filtering, services that do not support the required device types are ignored, also

services that require more bandwidth than the specified by the user are ignored as well.

In NFC filtering, services with reliability values less than the required reliability probability

are ignored, services with availability percentage less than the required availability percentage
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S0 〈 {Cargo.Details = 1000 Cars, Cargo.POL = Melbourne-Australia, Cargo.POD = Alexandria-Egypt,

Cargo.Course = Port-to-Port, IncoTerm.Type = FOB} , {}〉

S1 〈 {ShippingOrder.Status = Created} , {} 〉

S2 〈 {POL.Status = Allocated} , {} 〉

S3 〈 {POL.Status = Allocated, POD.Status = Allocated} , {} 〉

S4 〈 {ShippingOrder.Status = Analyzed} , {} 〉

S5 〈 {Proposal.Status = Sent} , {} 〉

S6 〈 {Proposal.Status = Approved} , {} 〉

S7 〈 {ShippingOrder.Status = Approved} , {} 〉

S8 〈 {Packaging.Status = Accomplished}, {} 〉

S9 〈 {Documentation.Status = Accomplished}, {} 〉

S10 〈 {ShippingOrder.Status = Executed} , {} 〉

S11 〈 {ShippingOrder.Status = Confirmed} , {} 〉

S12 〈 {ShippingOrder.Status = Pending} , {} 〉

S13 {ShippingOrder.Status = Fulfilled, Payment.Status = Received}, {} 〉

Table 5.3: Anticipated Behavior Model
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Figure 5.4: The Anticipated and the Required Behaviors after Applying SMP
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are ignored, also services with less reputation rank than the required rank are ignored as well.

When filtering services based on their roles (before matching the G+ models), the user’s role

must satisfy one of the supported service’s roles. As roles are concepts representing domain

actors, concepts substitutability graph will be used to match the roles’ constraints, such that

roles’ constraints substitutability will be determined according to the user’s goal and the

user’s pre-constraints.

Theorem 13 indicates how a single service’s GAP matches a single user’s GAP, but when

the user’s request includes a complex G+ model, the whole user’s GAP-forest need to be

examined against the service’s GAP-forest, that when a GAP from the service GAP-forest

matches a GAP from the user’s GAP-forest using Theorem 13, regardless of their abstraction

levels, the service is considered a match, as indicated in Proposition 10. We identify this

approach for GAP-forest matching as a loose approach, as no restrictions required on the

abstraction levels of the matched GAPs.

Proposition 10 (Loose Direct GAP-forest Matching) Given a user’s GAP-forest (Gpfu

= {〈Li, GpLi
〉 | 0 ≤ i ≤ nu}) of the goal Gu, and a service GAP-forest (Gpfs = {〈Lj , GpLj

〉 |

0 ≤ j ≤ ns}) of the goal Gs. Gpfs matches Gpfu (denoted as Gpfs DG Gpfu) if ∃ Gps, Gpu

such that (Gps DGu Gpu), where Gps ∈ GpLj
, Gpu ∈ GpLi

, GpLj
∈ Gpfs, and GpLi

∈ Gpfu.

Proof: A user goal can be achieved via any of the GAPs extracted from the defined

G+ model, hence having at least one GAP matched to a service’s GAP using Theorem 13

guarantees the user’s goal is achieved, which indicates a correct match result is found.

Example 3 indicates a case of loose GAP-forest matching. However, in the service-to-

service matching problem1, the whole GAP-forest need to be matched, as this is important for

other problems. For example, to improve the reliability of a composite service, the composite

service could maintain a list of services that can accomplish a given task. In case a component

service failed, it can choose from other services in the list, that can accomplish the same goal.

Hence, we need the component service to be able to cover all the required GAPs, not only

just one case. In the case of service-to-service matching, GAP-forests will be matched strictly

1In the service-to-service matching problem, a service’s functionality is examined against another service’s

functionality in order to determine if they can achieve the same goals.
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that every GAP in the target GAP-forest has a corresponding matching GAP in the source

GAP-forest, as indicated in Proposition 11.

Proposition 11 (Strict Direct GAP-forest Matching) Given two GAP-forests Gpfi =

{〈Li, GpLi
〉 | 0 ≤ i ≤ ni}, Gpfj = {〈Lj , GpLj

〉 | 0 ≤ j ≤ nj}, and a goal G, Gpfj can be

substituted by Gpfi with respect to G (denoted as Gpfi DG Gpfj) if ∀Lj belongs to Gpfj, ∃

Li belongs to Gpfi such that ∀ Gpx, ∃ Gpy such that (Gpy DG Gpx), where Gpx ∈ GpLj
, Gpy

∈ GpLi
.

Proof: The achievement of the goal G needs to be guaranteed for all the defined GAPs,

hence all the GAPs in the target GAP-forest must be matched.

Figure 5.5 indicates the difference between loose and strict matching definitions. Fig-

ure 5.5 indicates that in case of adopting loose matching, the source GAP-forest matches

the target GAP-forest as a source GAP from abstraction level-2 matches a target GAP in

abstraction level-1, but in case of strict matching, the the two forest are matched as every

GAP in the target forest is matched to a GAP from the source forest. In this thesis, we only

adopt loose GAP-forest matching, as we are only concerned with achieving users’ goals.
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Figure 5.5: Strict versus Loose GAP Forest Matching
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5.2 Service Aggregate Matching Approach

In this section, we propose a new service aggregate matching technique that is based on ser-

vices’ GAPs that are extracted from their G+ model; adopting the semantics of the involved

application domain to mediate between services’ descriptions and users’ requests. We adopt

a sequential aggregation approach such that the solution for the aggregation problem will be

a sequence of web services that functionally substitute the required GAP without interacting

with users, as indicated in Figure 5.6.
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Figure 5.6: An Aggregate Service

The idea behind service sequential aggregation is to find a list of component services

that can achieve different parts of the required goal achievement pattern. Later, from this

list of component services, we determine the possible service sequences that can achieve the

required goal achievement pattern. In order to determine these component services, we need

to define the concepts of a plug-in GAP, and a computation chunk.

Definition 36 (Plug-in GAP) A plug-in GAP is a service’s GAP that can accomplish a

continuous part of the required goal achievement pattern.

Definition 37 (Computation Chunk) A computation chunk is the continuous part of the

required goal achievement pattern that can be achieved via a plug-in GAP of a given service

Srv. A computation chunk is defined as 〈ServiceID, Start, End〉, where ServiceID is a
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unique identifier for Srv, Start and End are the indices of the first and last states of the

required behavior that are matched by the plug-in GAP of Srv.

Figure 5.7 depicts a plug-in GAP and its corresponding computation chunk. Figure 5.7

indicates that the behavior model of the service Srv with identifier equal to Srv10002 matches

a computation chunk of the required behavior that starts from S1 and ends at S5. This

computation chunk is defined as < Srv1000, 1, 5 >.

Chunk=<Srv1000,1,5>

Plug-In GAP

0

1

2

3

4

5

6

0

1

2

3

4

Behavior of the service
Srv1000

User Required Behavior

Computation Chunk

Figure 5.7: A Plug-in GAP and the corresponding Computation Chunk

Plug-in GAPs are simply determined by checking if the pre-constraints of a service GAP

are substituted by a set of user’s persisting constraints at a given transition point, and the

corresponding service post-constraints substitute another set of user’s persisting constraints

at another following transition point, as indicated in Proposition 12.

Proposition 12 (Plug-in GAP) Given the goal achievement processes of a service’s GAP

(denoted as GPs) and a user’s GAP (denoted as GPu) are described as Gs ` 〈 GCtxtPre
s ,

GCtxtPost
s , βs, GCtxtDesc

s 〉, and Gu ` 〈 GCtxtPre
u , GCtxtPost

u , βu , GCtxtDesc
u 〉, respec-

tively. Gps is a plug-in GAP of Gpu (denoted as Gps ¹Gu Gpu) if ∃ fx and fx+y such that

2In practice, ServiceID will be the service’s URI.
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(fx DGu GCtxtPre
s ) ∧ (GCtxtPost

s DGu fx+y), where fx and fx+y are the persisting constraints

at transition points x and x + y of βu, and y ≥ 1.

Proof: Gs ` 〈 GCtxtPre
s , GCtxtPost

s , βs, GCtxtDesc
s 〉 implies that σs(GCtxtPre

s ) =

GCtxtPost
s ...(1). Having (fx DGu GCtxtPre

s ) ∧ (GCtxtPost
s DGu fx+y) implies that fx can

be transformed into fx+y via Gps, as σs(fx) = fx+y is guaranteed to hold. Hence, Gps is

considered a plug-in of Gpu according to Definition 37. As the minimum number of operations

allowed to be defined in a given GAP is one, the corresponding behavior model will consist

of two states, hence the minimum value allowed for y is one. Therefore, y ≥ 1 must hold in

order to have a meaningful behavior model that could be a plug-in of Gpu.

In order to obtain a list of the plug-in GAPs of a given required GAP, the matchmaker has

to scan the service registry for services that satisfy the conditions indicated in Proposition 12,

as indicated in Figure 5.8. It shows that there are two plug-in services for the required GAP:

Srv1000 and Srv2000. Srv1000 covers the subsequence from S0 to S2, and Srv2000 covers

the subsequence from S1 to S3.
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2
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EndChunk List
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Srv2000
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1
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4

Figure 5.8: Chunk List

Having this chunk-list, the matchmaker needs to find if there exists a sequence of these

chunks that can match the request. In order to be able to do so, we propose a special data

structure that facilitates the aggregation process. This data structure organizes the chunk-

list into array of stacks, where every stack contains the chunks that have the same Start
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value, as indicated in Figure 5.9. The figure indicates that the array index is the same as

the state sequence index of the request, and for every state, there is a stack of chunks that

start with its index.
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Figure 5.9: Array of Stacks

By doing so, the matchmaker can easily locate a sequence of chunks that fulfil the request,

by tracing the values of the Start and End of the chunks such that the resulting sequence cover

the whole state sequence of the request without any missing state transitions or overlaps, as

indicated in Figure 5.10.
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Figure 5.10: Accepted versus Rejected Aggregate Patterns

These accepted aggregate patterns will be filtered by the matchmaker such that an ac-

cepted pattern is considered a solution when its aggregate high-level functional context

matches the required high-level functional context. First, we indicate how a sequence of

high-level functional contexts will be aggregated with respect to a a given goal. Then, we
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will provide the algorithms for GAP aggregate matching.

5.2.1 High-Level Functional Context Aggregation

Not any accepted aggregate pattern could form an aggregate service, as the invocation of the

component services must be guaranteed, and the describing-constraints of these component

services must be consistent to form an aggregate set of describing-constraints, as indicated

in Figure 5.11. It indicates that the user’s pre-constraints must satisfy the pre-constraints of

the first service in the sequence, and the pre-constraints of every component service must be

satisfied by the persisting constraints at their preceding transition points (a transition point

is the point of time between two consecutive services). Also, the describing-constraints of

component services need to be aggregated and compared to the describing-constraints of the

user.
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Figure 5.11: High-level Functional Context Aggregation

In general, when the describing-constraints of the component services are independent

(that is they have unreachable scopes), the aggregated set of describing-constraints will

be a simple union of the describing-constraints of the component services (that is
⋃n

i=1

GCtxtDesc
i ). However, the describing-constraints of the component services could have con-
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tradicting constraints and/or subsuming constraints, hence the aggregated set of describing-

constraints cannot be determined via a simple union between the describing-constraints of

the component services. To aggregate the describing-constraints, first we need to define the

concept of the weakest describing-constraint.

Definition 38 (Weakest Describing-Constraint) Given a set of describing-constraints

with reachable scopes fx, a constraint Cnsti and a goal G such that Cnsti ∈ fx. Cnsti is the

weakest describing-constraint of fx with respect to G if ∀ Cnstj ∈ fx, Cnstj DG Cnsti.

For example, the weakest constraint of the set { Credit.Period ≥ 30, Credit.Period

≥ 40, Credit.Period ≥ 60} is the constraint (Credit.Period ≥ 30).

In order to determine the aggregated set of describing-constraints, first we divide the

union of the describing-constraints of the component services into a group of independent

subsets, where every subset contains a group of describing-constraints that have reachable

scopes. Then every subset will be reduced to its weakest constraint (if exists) such that the

aggregated set of describing-constraints will be the union of these weakest constraints, as

indicated in Figure 5.12.
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Figure 5.12: Describing-Constraints Aggregation



CHAPTER 5. CORRECTNESS-AWARE SERVICE MATCHING APPROACHES 143

For example, the union of the following group of describing-constraints sets {Credit.Period

≥ 30, Specialty.Type = Motor-vehicles}, {Credit.Period ≥ 15, Specialty.Type ⊆

{Motor-vehicles, Food-Products}} will be divided into the following independent two sub-

sets {Credit.Period≥ 15, Credit.Period≥ 30} and {Specialty.Type = Motor-vehicles,

Specialty.Type ⊆ {Motor-vehicles, Food-Products}}.

Algorithm 6 Describing-Constraints Divider

Input: A group of describing-constraints GCtxtDesc
1 , GCtxtDesc

2 ,...,GCtxtDesc
n , and a goal G

Output: A group of independent subsets of describing-constraints with respect to G.

1: Begin

2: Create an array X[] corresponding to the elements of
⋃n

i=1 GCtxtDesc
i .

3: Initialize X[] elements as Unmarked.

4: for i = 1 to n do

5: if X[i] is Unmarked then

6: Mark X[i].

7: Create a subset containing X[i].

8: for j = i+1 to n do

9: if X[j] is Unmarked then

10: if (X[i] ⇀G X[j]) ∨ (X[j] ⇀G X[i]) ∨ (X[i] yG X[j]) ∨ (X[j] yG X[i]) then

11: Mark X[j].

12: Add X[j] to X[i] subset.

13: end if

14: end if

15: end for

16: end if

17: end for

18: Return the created subsets.

19: End
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Algorithm 6 indicates how the union of the describing-constraints of component services

will be divided into a group of independent subsets. It assigns any constraints with reach-

able scopes into the same subset. When a subset does not have a weakest constraint, this

means its elements are contradicting, which implies that the describing-constraints of the

component services cannot be aggregated. Hence, such aggregate pattern is considered as in-

valid and rejected. By having the aggregated describing-constraints formed from the weakest

constraints, this guarantees that the aggregated describing-constraints are satisfied by the

describing-constraints of component services. Algorithm 7 detects the existence of the weak-

est constraint of a given subset, by constructing a CMM from the elements of this subsets,

in order to determine the substitutability status between its elements.

Algorithm 7 Describing-Constraints Aggregator

Input: A group of describing-constraints GCtxtDesc
1 ,...,GCtxtDesc

n , and a goal G

Output: An aggregated set of describing-constraints with respect to G if possible, False

otherwise.

1: Begin

2: Apply Algorithm 6 over GCtxtDesc
1 ,...,GCtxtDesc

n , and G.

3: for each subset of the describing-constraints created subsets do

4: Construct a CMM, where the rows and the columns are the elements of the subset.

5: if the constructed CMM does not have a column of ones then

6: Return (False)

7: else

8: Mark the constraint corresponding to the column of ones as the weakest.

9: end if

10: end for

11: Construct a set Desca as a union of all the marked weakest constraints.

12: Return (Desca)

13: End
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For example, the following group of describing-constraints sets {Credit.Period ≥ 30,

Specialty.Type = Motor-vehicles}, {Credit.Period ≥ 15, Specialty.Type ⊆ {Motor-

vehicles, Food-Products}}, are aggregated to {Credit.Period ≥ 15, Specialty.Type

= Motor-vehicles}. The constraint (Credit.Period ≥ 15) is the weakest constraint of

the subset {Credit.Period ≥ 15, Credit.Period ≥ 30}, as the corresponding CMM is as

follows.

Credit.Period ≥ 15 Credit.Period ≥ 30

Credit.Period ≥ 15 1 0

Credit.Period ≥ 30 1 1

Similarly, the constraint (Specialty.Type = Motor-vehicles) is the weakest constraint

of the subset {Specialty.Type = Motor-vehicles, Specialty.Type ⊆ {Motor-vehicles,

Food-Products}}, as the corresponding CMM is as follows.

Specialty.Type = Motor-vehicles Specialty.Type ⊆ {Motor-vehicles,

Food-Products}

Specialty.Type = Motor-vehicles 1 0

Specialty.Type ⊆ {Motor-vehicles, Food-Products} 1 1

When a constraint has a column of ones in the corresponding CMM, this means it can

be substituted by all the other elements of the subset, hence it is considered the weakest

constraint. But when there is no column of ones in a given CMM, this means the constraints of

the subset are contradicting constraints, and the describing-constraints cannot be aggregated.

Theorem 14 provides the conditions must hold in order to aggregate a sequence of

describing-constraints with respect to a given goal. That the union of the describing con-

straints can be divided into a group of independent subsets, and every subset can be reduced

to its weakest constraint.

Theorem 14 (Goal-based Describing-Constraints Aggregation) Given a sequence of

services 〈Srv1, Srv2, .., Srvn〉 and a goal G such that their goal achievement processes are

described as (Gi ` 〈GCtxtPre
i , GCtxtPost

i , βi, GCtxtDesc
i 〉), where 1 ≤ i ≤ n. The describing-

constraints of these services can be aggregated with respect to G (denoted as
⊎n

i=1 GCtxtDesc
i )

if (
⋃n

i=1 GCtxtDesc
i ) is divided into a group of independent subsets, and every subset has a

weakest constraint.
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Proof: As every component service guarantees the satisfaction of its describing-constraints,

the describing-constraints of the aggregate pattern must be satisfied by the describing-constraints

of component services. This is achieved when the aggregated describing-constraints is formed

from the weakest constraints of the component services’ describing-constraints.

In what follows, we will use the notation (
⊎n

i=1 GCtxtDesc
i ) to refer to the aggregated

describing-constraints set. Theorem 15 indicates the criteria required for the high-level func-

tional context aggregate matching. That the user’s pre-constraints satisfy the pre-constraints

of the first component service, the persisting constraints at the last transition point of the ser-

vices sequence satisfy the user’s post-constraints, and the aggregated describing constraints

of the service sequence satisfy the user’s describing constraints.

Theorem 15 (High-Level Functional Context Aggregate Matching) Given a sequence

of services 〈Srv1, Srv2, .., Srvn〉 such that their goal achievement processes are described as

(Gi ` 〈 GCtxtPre
i , GCtxtPost

i , βi, GCtxtDesc
i 〉), where 1 ≤ i ≤ n, and a user request that

is described by the goal achievement process (Gu ` 〈GCtxtPre
u , GCtxtPost

u , βu, GCtxtDesc
u 〉).

The aggregate high-level functional context of the service sequence matches the high-level

functional context of the user’s request if (GCtxtPre
u DGu GCtxtPre

1 ) ∧ (fn DGu GCtxtPost
u )

∧ ((
⊎n

i=1 GCtxtDesc
i ) DGu GCtxtDesc

u ), where f0 = GCtxtPre
u , fi = ((fi−1 ¦G GCtxtPre

i ) +

GCtxtPost
i ), and (1 ≤ i ≤ n).

Proof: In order to have a valid service sequence, the persisting constraints at every

transition point must satisfy the pre-constraints of the following service, and the describing-

constraints of the service sequence must be valid to be aggregated. As indicated in Figure 5.11,

GCtxtPre
u represents f0. Hence, (GCtxtPre

u DGu GCtxtPre
1 ) must hold in order to be able

to invoke the aggregate service ...(1). The persisting constraints will be determined similarly

as in Theorem 12, by replacing the operations by services. Assuming (1) holds, then fn and

(
⊎n

i=1 GCtxtDesc
i ) are guaranteed to be satisfied. Therefore, in order to match the functional

context of the user (fn DGu GCtxtPost
u ) ∧ ((

⊎n
i=1 GCtxtDesc

i )DGu GCtxtDesc
u ) must hold in

order to consider Gu achieved according to Definition 26.
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5.2.2 GAP Aggregate Matching

The GAP aggregate matching process starts by scanning the service registry for services

with plug-in GAPs. The result of this scanning process is an array for stacks corresponding

to the required behavior model, as indicated in Figure 5.9. The aggregation process starts

by checking the chunks in the stack corresponding to the first target state S0, this stack is

known by Stack-0. For every chunk in stack-0, a new stack will be created containing all

the chunks that starts with the value of its End field. The stack-0 is known as the ancestral

stack, while the newly created stacks are known as the descendent stacks (see Figure 5.13).

An accepted aggregate

pattern is  Found

Stack-0

Descendent Stack

Ancestral Stack

An Aggregation

Pattern

Figure 5.13: GAP Aggregation Approach

The descendent stacks will be examined to see if one of their chunks has covered the

remaining target subsequence by checking if its End field contains the index of the last

target state. If this case occurs, this means an accepted aggregate pattern is found, otherwise

the scenario will be repeated by considering the descendent stack as an ancestral stack and

generating the new descendent stacks. The pseudo code of the aggregation process is depicted

in Algorithm 8. This algorithm is a recursive algorithm that takes the GAP request and

the start and end indices to be examined. The algorithm uses GetChunkStack function
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that returns the stack corresponding to SeqStart from the array of stacks representing the

chunks list. The algorithm indicates that once an accepted aggregate pattern is found, the

corresponding high-level functional context must match the request high-level functional

context according to Theorem 15, otherwise the aggregate pattern will be considered as

an invalid pattern. The recursive call of the algorithm uses (Chunk.End) as the SeqStart

instead of (Chunk.End+1). This is because there exists a common state between any two

consecutive chunks that must be taken into consideration. That, the state index represented

by Chunk.End appears as the first state in the successor chunk, therefore the call with

Chunk.End guarantees no state transitions will be missed. For example, Service1 and Service2

are part of a solution for the request indicated in Example 4, Figure 5.14 illustrates that the

corresponding state sequences have a common state (〈{b}, {}〉) which is the state of the

transition point between service1 and service2. Example 4 illustrates how Algorithm 8 is

applied.

Example 4 (GAP Aggregation) Figure 5.14 depicts the GAP request and the retrieved

plug-in GAPs and their corresponding state sequences. Every stack corresponds to a state

index. The corresponding chunk list in the array of stacks format will be as follows:

Stack 0 contains Chunk1 = 〈 Service1,0,1〉, Chunk4 = 〈 Service4,0,2〉.

Stack 1 contains Chunk2 = 〈 Service2,1,3〉 , Chunk6 = 〈 Service6,1,4〉.

Stack 2 contains Chunk5 = 〈 Service5,2,4〉.

Stack 3 contains Chunk3 = 〈 Service3,3,4〉.

Stack 4 is empty.
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Algorithm 8 GAP Aggregator

Input: SeqStart, SeqEnd, Request

Output: True when solution list is found, False otherwise.

1: Begin

2: if (SeqStart= 0) then

3: Create a new Aggregate Pattern

4: end if

5: ChunkStack = GetChunkStack(SeqStart)

6: if (ChunkStack.Size = 0) then

7: Return (False)

8: else

9: for each Chunk in the ChunkStack do

10: Add Chunk.Service-ID to the Aggregate Pattern

11: if (Chunk.End = SeqEnd) then

12: if (HLFC of the aggregate pattern matches HLFC of the request) then

13: Add the Aggregate Pattern to the solutions list

14: Return(True)

15: end if

16: else

17: Apply Algorithm 8 over (Chunk.End, SeqEnd,Request)

18: end if

19: end for

20: end if

21: End
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Figure 5.14: A Request GAP and its corresponding Plug-in GAPs
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Algorithm 8 is initially invoked with (0,4,request), which constructs a stack from the stack

0 contents: Chunk1, Chunk4. Starting by the first chunk Chunk1, the algorithm finds the

pattern (Service1) does not cover all the required sequence, hence it makes a recursive call

with (1,4, request). This call will construct a stack from stack 1 contents: Chunk2, Chunk6.

Starting by Chunk2 the algorithms finds that the pattern (Service1-Service2) does not

cover all the required sequence, hence it makes a recursive call (3,4,request). This call will con-

struct a stack from stack 3 contents: Chunk3, the algorithm finds that the pattern (Service1-

Service2-Service3) fulfils the request so that it returns the sequence as a solution. Then it

backtracks to the predecessor ancestral Chunk2; as there is no more descendants for Chunk2.

The algorithm processes the next available chunk in the stack: Chunk6; the corresponding

aggregation pattern at this chunk is (Service1). The algorithm finds the pattern (Service1-

Service6) fulfils the sequence, so it returns it as a solution, then backtracks to the ancestral

Chunk1, as no more descendants for this chunk, the algorithm moves to Chunk4 as it is the

next available chunk in the stack, the algorithms finds the pattern (Service4) does not cover

all the required sequence, hence it makes a recursive call with (2,4,request). This call will

construct a stack from stack 2 contents: Chunk5, starting by Chunk5, the algorithm will find

that (Service4-Service5) fulfills the request so it reports it as a solution, then it terminates

reporting the following three solutions, as depicted in Figure 5.15:

5Chunk

1
Chunk

4Chunk

6Chunk

2Chunk
3

Chunk

Figure 5.15: Aggregation Process Trace
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1. Service1-Service6.

2. Service1-Service2-Service3.

3. Service4-Service5.

Assuming d1, d2, d3, d4 are independent, the aggregate set of describing-constraints will

be {d1, d2, d3, d4}, which satisfies the required set of describing-constraints {d1, d2, d3}.

The complexity of the aggregation algorithm is analyzed by Theorem 16. The complexity

of the aggregation process is high, however this was expected as Berardi et al. [2003] proved

that the lower bound for composition of services expressed as finite state machines is decidable

in EXPTIME. However, we believe our algorithms could be more optimized, but this is out

of the scope of this thesis.

Theorem 16 (GAP Aggregation Complexity) Let m is the number of states in the re-

quired behavior model, n is the number of retrieved chunks for every chunk stack. The worst

case complexity of GAP aggregation to find a solution is O(nm).

Proof: The worst case scenario is that every state in the required behavior is matched

only to one chunk in the corresponding. Hence the algorithm must make m recursive calls to

find a solution. As every chunk stack has n possible chunks, hence every recursive call costs

O(n). Therefore the worst case total cost of the algorithm will be O(nm).

After obtaining the aggregate solutions, they will be filtered according to the aggregate

NTC, NFC, and LLFC, using the same rules indicated in Section 5.1. The aggregate NTC

will contain the aggregate price, which is the summation of all component services’ prices.

The aggregate LLFC will contain the common device types supported by all component

services, while the required aggregate bandwidth will be the maximum value of the component

services’ bandwidth values. The aggregate NFC will contain the aggregate reliability (which is

computed as the minimum value of the component services’ reliability values), the aggregate

availability (which is computed as the minimum value of the component services’ availability

values), and the aggregate reputation (which is computed as the minimum value of the

component services’ reputation values).
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5.2.3 GAP Forest Aggregation

In forest aggregate matching, the solution could be formed from different abstraction levels

of the component services. In other words, it is not necessary that when a given request

is represented in a given abstraction level, the aggregation pattern should be formed from

GAPs represented in the same abstraction level. Therefore, in order to find the aggregate

pattern for a given request GAP represented in a given abstraction level, all abstraction levels

of services’ GAPs will be examined, as every GAP could be a potential plug-in of the request.

Hence, when examining the matching cases for a given request GAP-forest, every abstraction

level of the GAP forest will have it own chunk list, that will submitted to the aggregation

algorithm in order to find the corresponding list of solutions, as indicated in Figure 5.16. It

indicates that for every GAP in the forest, a separate chunk-list will be generated by checking

all the GAPs in the service registry.
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Plug-In
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Plug-In
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Figure 5.16: GAP Forest Aggregation
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Algorithm 8 will be applied on every chunk-list resulting a list of solutions. The generated

lists of solutions will form one final solution list. Algorithm 9 depicts the pseudo code of GAP-

forest Aggregation. After obtaining the aggregate solutions, they will be filtered according

to the aggregate NTC, NFC, and LLFC.

Algorithm 9 GAP-Forest Aggregation

Input: Request

Output: List All possible solutions

1: Begin

2: for each GAP in the Request GAP-Forest do

3: Create the corresponding Chunk-list

4: Apply Algorithm 8 on the created list.

5: end for

6: Collect all the generated solutions in one list

7: End

5.3 Service Matching Techniques Evaluation

As the devised matching techniques are semantic high-level functional matching techniques,

this section evaluates the devised service matching techniques against the corresponding

service matching approaches of the classification indicated in Table 2.1 (page 28). We use the

F-measure as the comparison criterion between the matching approaches as 100% F-measure

implies the matching results are totally correct. F-measure is calculated as 2×Precision×Recall
Recall+Precision

,

where Precision is calculated as the ratio NumOfRetrievedCorrectAnswers
NumOfRetrievedAnswers

, and recall is calculated

as the ratio NumOfRetrievedCorrectAnswers
NumOfCorrectAnswers

.

As the devised service direct matching approach is a semantic high-level functional-based

service matching approach, first we will show that it provides better F-measure values when

compared to the unstructured-based matching approaches (syntactic and semantic) as well

as syntactic high-level functional approaches. Second, we will show that when adopting m-

to-n state matching approach, better F-measure values are obtained when compared to the
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one-to-one state matching approach (syntactic and semantic). Finally, we will show that

the devised aggregate matching technique provides better F-measure values when compared

to the devised service direct matching technique, which indicates that the aggregate service

matching technique can find solutions for requests that the direct service matching technique

could not.

We adopt a basic implementation for realizing the service matching approaches of the

proposed classification during the evaluation process. For example, a simple keyword-based

matching technique is adopted to represent the syntactic unstructured service matching app-

roach. Unfortunately, there are neither benchmarks nor standard data sets for semantic web

services matching. Even the semantic data set for web services provided by WS-Challenge

[2005] contains only abstract WSCD descriptions for WSDL interfaces, which does not con-

tain any high-level functional specifications that could be adopted in our experiments [Tate-

mura et al., 2005]. Furthermore, currently there are no ontologies that can capture the

substitution semantics of application domains. Hence we opted to use a simulation app-

roach, where random data set and queries are generated to validate the devised matching

techniques.

Work-Load Generation: The proposed techniques require the existence of a domain

ontology that adopts the meta-ontology structure. The elements of the conducted experi-

ments are: a domain ontology (that includes concepts, operations and concepts substitutabil-

ity graph); a data set of services’ G+ models; and a query set and its correct answers. We

have generated a random number of concepts and a random number of operations to rep-

resent the domain elements. In order to make sure there are no contradicting constraints

during operations generation, the following restrictions are required when generating the

domain operations:

• Every operation has one distinct concept as input parameter and same input concept

will be the operation output.

• Every operation has one comparative pre-constraint over an attribute of the input

concept such that the value of this attribute equals its lower limit.
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• Every operation has one comparative post-constraint over the same attribute used in

the pre-constraints such that the value of this attribute less than its upper limit.

Distinct random sets of operations are generated using the generated operations. This is

a mandatory requirement in order to avoid appearance of multiple answers for a given query

during the experiments. From these distinct sets of operations we will generate a sequence of

operations. The union of the pre-constraints of the operations will be the pre-constraints of

the functional context, similarly the union of the post-constraints of the operations will be the

post-constraints of the functional context. For every generated sequence of operations and its

corresponding functional context we generate a random number of new equality constraints

based on a newly generated number of concepts to have the describing-constraints of the

functional context. Finally, for every generated sequence of operations and its corresponding

functional context we generate a new operation to represent the required goal. This represents

a data set of G+ models, in which every G+ model has only one GAP.

Experiments Plot: A distinct data set of G+ models will be generated from the gen-

erated ontology as indicated above. The query set is constructed by randomly selecting 10%

of the data set, hence the correct answers of the queries are known a priori, every query

will have only one answer as the generated data set are generated from a distinct sets of

operations. This query set will be mutated such that every experiment applies a different

mutation process. Ten mutated query sets are produced such that the first mutated query set

has the first 10% of the query set being mutated, the second mutated query set has the first

20% of the query set being mutated, and so on until the tenth mutated query set has 100%

mutated queries. Later, the original query set and the mutated query sets are applied to

the matchmaker. The concepts substitutability graph will be generated during the mutation

processes (details will be given later). The F-measure metric is computed for every query

set. The above procedure is repeated 1000 times and the final average result is computed.

The matching algorithms are implemented using a basic sequential search and the satis-

fiability checker is implemented using enumeration for the attribute domain values (which is

restricted to a small range since the attributes range does not affect the values of the retrieval

metrics). Figure 5.17 summarizes how the simulation experiments will be performed.
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Figure 5.17: Simulation Experiments Plot

5.3.1 Service Direct Matching

In this experiment we compare between the devised direct service matching technique in-

dicated in Theorem 13 and the imprecise service matching approaches that represent the

unstructured matching approaches (syntactic and semantic) and a more restricted version

of the technique indicated in Theorem 13 to represent the syntactic high-level functional-

based matching approach. This restricted technique will use only direct satisfiability during

constraint matching and adopts a one-to-one state matching approach when matching the

operation sequences. First we introduce the imprecise matching approaches.
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Imprecise Service Matching Approaches

The unstructured syntactic matching approach takes into consideration neither the structure

nor the semantics of services during the matching process. Keyword-based matching is

an example of this approach. To resemble keyword-based matching adopting our functional

context model, we define the concept of Context Flat Scope (CFS) that is defined as indicated

in Definition 39.

Definition 39 (Context Flat Scope) Given a high-level functional context Ctxti = 〈 Pre,

Descr, Post 〉, the context flat scope of Ctxti (denoted as CFS(Ctxti)) is defined as Ξ(CtxtPre
i )

∪ Ξ(CtxtDescr
i ) ∪ Ξ(CtxtPost

i ).

The context flat scope is a set of all the scopes of the constraints that belong to pre-

constraints set, describing-constraints set and post-constraints set. The elements of CFS will

be considered keywords to be used in the matching process. Thus, a service will be repre-

sented by the CFS of its high-level functional context (denoted as CFSs) and the request

will be represented by the CFS of its high-level functional context (denoted as CFSu). Ser-

vice matching is determined simply by comparing the elements of CFSs and CFSu. Any

set classical coefficient such as Jaccard’s Coefficient (JC) [Ganesan et al., 2003] could be

used to compute the proximity between the two sets. In our implementation, we calculated

the proximity as ‖CFSs∩CFSu‖
‖CFSu‖

, which is a variation of the original Jaccard’s Coefficient that

computed as ‖CFSs∩CFSu‖
‖CFSS∪CFSu‖

. This is because the original Jaccard’s Coefficient is symmetric

while our variation is asymmetric, which resembles the asymmetric nature of goal achieve-

ment operator. A service is considered a match for a goal when the proximity ratio equals

to 1. This matching approach is known to be Matching via Syntactic CFS. Such matching

approach leads to the appearance of both false negatives and false positives as it ignore the

semantics of services, users and application domains. We will show that just by taking struc-

ture information into consideration a considerable improvement of the F-measure value will

be obtained. To realize this approach, we define the concept of Context Structured Scope

(CSS) that is defined as indicated in Definition 39.
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Definition 40 (Context Structured Scope) Given a high-level functional context Ctxti

= 〈 Pre, Descr, Post 〉, the context structured scope of Ctxti (denoted as CSS(Ctxti)) is

defined as 〈 Ξ(CtxtPre
i ) , Ξ(CtxtDescr

i ) , Ξ(CtxtPost
i ) 〉.

The context structure scope is a tuple of the scopes of the pre-constraints set, describing-

constraints set and post-constraints set. Thus, a service will be represented by the CSS

of its high-level functional context (denoted as CSSs) and the request will be represented

by the CSS of its high-level functional context (denoted as CSSu). Service matching is

determined simply by comparing the elements of CSSs and CSSg. The proximity be-

tween the tuples is computed as 1
3× ( ‖Ξ(CtxtPre

s )∩Ξ(CtxtPre
u )‖

‖Ξ(CtxtPre
u )‖

+ ‖Ξ(CtxtDesc
s )∩Ξ(CtxtDesc

u )‖
‖Ξ(CtxtDesc

u )‖
+

‖Ξ(CtxtPost
s )∩Ξ(CtxtPost

u )‖
‖Ξ(CtxtPost

u )‖
). A service is considered a match for a goal when the proximity

ratio equals to 1. This matching approach is known to be Matching via Syntactic CSS.

Such matching approach leads to the appearance of both false negatives and false positives

as well, because it ignores the semantics of services, users and application domains. We

will show by adopting the semantics of the application domain as well as the structure in-

formation considerable improvement of the F-measure value will be obtained. This could

be realized by checking the reachability between the scopes of the CSS elements instead

of syntactically comparing them. Hence, the proximity between the tuples is computed as

1
3× (

‖Ξ(CtxtPre
s )³gΞ(CtxtPre

u )‖
‖Ξ(CtxtPre

u )‖
+

‖Ξ(CtxtDesc
s )³gΞ(CtxtDesc

u )‖
‖Ξ(CtxtDesc

u )‖
+

‖Ξ(CtxtPost
s )³gΞ(CtxtPost

u )‖
‖Ξ(CtxtPost

u )‖
), where

‖ Ξ(CtxtPpre
s ) ³g Ξ(CtxtPre

u ) ‖ is the number of scopes in Ξg(Pre) that are reachable (di-

rectly or indirectly) to scopes in Ξs(Pre), similarly the other ratios are computed. A service is

considered a match for a goal when the proximity ratio equals to 1. This matching approach

is known to be Matching via Semantic CSS.

So the comparison will be between the following approaches:

1. Matching via Transformation: This adopts models’ structure information, the seman-

tics of services, users and application domain during the matching process, such as the

one indicated in Theorem 13.

2. Matching via Implication: This adopts models’ structure information, the semantics of

services and users during the matching process, and ignores the semantics of application
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domain. This is a restrictive version of Theorem 13, where constraints are matched via

direct satisfiability, and one-to-one state sequence approach is adopted.

3. Matching via Semantic CSS: This adopts models’ structure information, and the se-

mantics of application domain during the matching process.

4. Matching via Syntactic CSS: This adopts only models’ structure information during

the matching process.

5. Matching via Syntactic CFS: This adopts neither models’ structure information nor

any semantics during the matching process.

The aim of the comparison is to show that the more information and more semantics

about services, users and application domains are used during the matching process, the more

precise matching results could be obtained. Unlike other matching approaches, matching via

transformation approach uses all available information and semantics during the matching

process, thus it is capable of retrieving only the correct results.

Mutation Process: Query mutation is performed as follows: the high-level functional

context of a query element will be replaced by another different but substitutable high-level

functional context. The new substitutable high-level functional context is generated by re-

placing every constraint in its sets by another constraint that has a distinct new scope,

the same comparative operator, and the same value. An entry in the corresponding substi-

tutability graph is generated between the old scope and the new scope with respect to the

operation attached to the functional context of the query element, having values equality as

the conversion function, and has no substitution constraints. For example, constraint x = 10,

will be replaced by constraint y = 10 such that an entry in the substitutability graph for x

and y will be created using x=y as the conversion function, and an OMM that maps = to

=. By doing so, constraints matching via direct satisfiability, matching via syntactic CSS,

matching via syntactic CFS will fail to identify the newly generated constraints, whereas con-

straints matching via transformation and matching via semantic CSS succeed to recognize

the substitutability between the old and new scopes. Results of the experiment are depicted

in Figure 5.18.
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Figure 5.18: Simulated Comparison between Service Direct Matching Approaches

Results indicate that as the mutation percentage increases syntactical approaches fails to

identify the new scopes, which increases the number of false negatives, which is negatively

reflected on the precision and recall metrics. Before applying any mutations, the imprecise

matching approaches failed to provide 100% precision due to the existence of false positives.

When the false negatives start to appear due to mutations, the precision of imprecise ap-

proaches start to decline more, except the case of matching via semantic CSS. Matching via

Semantic CSS succeeds in eliminating the false negatives as it adopts application domain se-

mantic but failed to eliminate the false positives as no user or service semantics are adopted.

On the contrary, matching via implication succeeded to eliminate the false positives but

failed to eliminate the false negatives. Also all the semantic approaches have 100% recall,
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as adopting semantics during matching eliminates the effects of the mutations, hence they

succeed to eliminate the false negatives, but not all of them succeed to eliminate the false

positives (reflected in the precision metric), as the only approach that succeeds to eliminate

both of false negatives and false positives is matching via transformation.

The average query times curves indicated in the figure are computed in order to give

the reader an intuition about the performance of the approaches. The more information

and semantics that are adopted during the matching process, the more time required to

obtain the results which is expected as more processing is required. As one can notice,

the time complexity of the syntactic imprecise approach using CSS is less than the time

complexity of the syntactic imprecise approach using CFS. This is because matching using

syntactic CSS require less number of comparisons than matching using CFS. Matching via

syntactic CSS requires (||Ξ(CtxtPre
s )|| × ||Ξ(CtxtPre

u )|| + ||Ξ(CtxtDesc
s )|| × ||Ξ(CtxtDesc

u )||

+ ||Ξ(CtxtPost
s )|| × ||Ξ(CtxtPost

u )||) comparisons, while matching via syntactic CFS requires

(||Ξ(CtxtPre
s )|| + ||Ξ(CtxtDesc

s )|| + ||Ξ(CtxtPost
s )||) × (||Ξ(CtxtPre

u )|| + ||Ξ(CtxtDesc
u )|| +

||Ξ(CtxtPost
u )||) comparisons.

5.3.2 Behavior Models Direct Matching

This section provides an evaluation for the devised m-to-n state matching approach. It

compares it with the semantic one-to-one state matching approach indicated in Theorem 7,

and the syntactic one-to-one operation sequences matching. The syntactic one-to-one oper-

ation sequences matching is determined as indicated in Proposition 13, where the operator

‖ OpSeq ‖ determines the number of operations of OpSeq.

Proposition 13 (Syntactic Operation Sequence Matching) Given two operation se-

quences OpSeqi and OpSeqj, OpSeqj matches OpSeqi if ‖OpSeqi‖ = ‖OpSeqj‖ and ∀〈Opx,

Opx+1〉 ∈ OpSeqj, ∃ 〈Opy, Opy+1〉 ∈ OpSeqi such that (Opy = Opx) ∧ (Opy+1 = Opx+1).

Proof: This proposition matches the operation sequences when the are identical.

Matching adopting Proposition 13, checks first the length of the source and target opera-

tion sequences before checking operations’ signatures, that if the two sequences have different

lengths, this implies they will not be matched.



CHAPTER 5. CORRECTNESS-AWARE SERVICE MATCHING APPROACHES 163

Mutation Process: The mutation process is performed by merging all the operations

of a given sequence into one operation such that the new mutated operation sequence will

have only one operation. The new mutated operation is constructed such that:

• Its input is a collection of the sequence operations’ inputs.

• Its output is a collection of the sequence operations’ outputs.

• Its pre-constraint is a conjunction of the sequence operations’ pre-constraints.

• Its post-constraint is a conjunction of the sequence operations’ post-constraints.

• Replacing its input and output concepts by new substitutable concepts, where these

concepts as well as the concepts substitutability graph will be created as indicated in

last experiment. Hence, its pre and post-constraints will be replaced by new substi-

tutable constraints.

For example, given a GAP with the operation sequence Op1, Op2, Op3 such that:

• Op1(C1) : C1, Op2(C2) : C2, Op3(C3) : C3.

• OpPre
1 is {C1.t = lowerLimit(t)}, OpPre

2 is {C2.v = lowerLimit(v)}, OpPre
3 is {C3.r =

lowerLimit(r)}.

• OpPost
1 is {C1.t < UpperLimit(t)}, OpPost

2 is {C2.v < UpperLimit(v)}, OpPost
3 is

{C3.r < UpperLimit(r)}.

The new constructed operation Op4 will be defined as follows:

• Op4(C1, C2, C3) : (C1, C2, C3).

• OpPre
4 is {C1.t = lowerLimit(t), C2.v = lowerLimit(v), C3.r = lowerLimit(r)}.

• OpPost
4 is {C1.t < UpperLimit(t), C2.v < UpperLimit(v), C3.r < UpperLimit(r)}.

Having the attributes of C1, C2, C3 to be substitutable to the attributes of C4, C5, C6,

respectively. Then the operation will be mutated to:
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• Op4(C4, C5, C6) : (C4, C5, C6).

• OpPre
4 is {C4.t = lowerLimit(t), C5.v = lowerLimit(v), C6.r = lowerLimit(r)}.

• OpPost
4 is {C4.t < UpperLimit(t), C5.v < UpperLimit(v), C6.r < UpperLimit(r)}.

As the original query set and the mutated query sets have the same answers, one-to-one

matching approaches fail to answer the mutated queries. We have indicated this by showing

how the retrieval metrics decreases as the percentage of mutated queries increases.
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Figure 5.19: Comparison between Operations Sequence Matching Approaches

Figure 5.19 indicates that adopting the m-to-n state matching approach succeeds in ob-

taining the correct results in spite of the mutations, while other approaches fail to do so.

Adopting one-to-one semantic matching could not obtain better matching results than the

syntactic approach, except in the cases that have only one operation in the sequence, as it
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succeeds to match the new corresponding states, while syntactical approach could not match

the new signatures (this is seen as the slight increase on the retrieval precision and recall for

the one-to-one semantic approach). Therefore, we argue only semantic state matching can-

not prevent the appearance of false negatives unless m-to-n matching approach is adopted.

In this experiment, one-to-one matching approaches have similar response times. This is

because sequences are filtered first according to their length before checking the matching of

individual operations/states. In spite of the higher response time of the m-to-n approach,

we argue that it is yet still acceptable.

5.3.3 Service Aggregate Matching

This section provides an evaluation for the G+ aggregate matching approach against the

G+ direct matching approach using the F-measure metric. Both approaches are full fledged

semantic approaches (that is they use the semantics of services, users and application do-

mains).

Mutation Process: The randomly selected elements of the query set to be mutated

will be used to form a sequence of G+ models. The corresponding aggregate context will be

generated and matched according to Theorem 15. A new operation will be used to represent

the goal of this aggregated G+ model. This aggregated G+ model is the new query to be

submitted. The answer of this query is guaranteed to exist, as the answers for the component

G+ models already exist. Experiment results are shown in Figure 5.20.

Due to this mutation procedure, the direct matching approach will fail to find a solution

for the newly generated complex G+ model while the aggregate approach will be able to find a

solution, which is the sequence of simple G+ models used to form the complex model. As the

original query set and the mutated query sets have the same answers, the direct approach fails

to answer the mutated queries. We have indicated this by showing how the retrieval metrics

decrease as the percentage of mutated queries increases. However, the average response time

noticeably increased due to aggregate matching.
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Figure 5.20: Direct versus Aggregate Semantic Matching

5.4 Conclusion

In this chapter, we proposed two new correctness-aware matching techniques for semantic

web services adopting FSMS (direct and aggregate). First, we proposed the service direct

matching technique, in which services are matched according to the substitutability of their

G+ models. Second, we proposed the service aggregate matching technique. We proposed the

criteria for correct high-level functional context aggregation as well as the criteria for detect-

ing plug-in GAPs. Finally, we evaluated the devised matching techniques using simulation

experiments. We used the F-measure as the comparison aspect against the major existing

service matching approaches. Simulation results showed that all the results retrieved by the

devised matching techniques were correct answers, while existing matching approaches could

not eliminate the appearance of false positives and false negatives.



Chapter 6

Conclusion

In this thesis, we investigated the existing obstacles to fully automate the service matching

process, providing a number of integrated solutions to overcome such obstacles. We argued

that to automate the service matching process, the matchmaker must be able to determine

the correctness of the matching results with respect to the defined users’ goals. Hence, cap-

turing the semantics of services, users, and application domains in a machine-understandable

format becomes a necessity to enable the matchmaker to process such semantics. We empha-

sized the importance of adopting formal matching schemes during the matching process, as

this provides the matchmaker with the techniques required for determining the correctness

of the matching results. Also we argued that the service matching process should be pri-

marily based on the high-level functional specifications (roles, goals, contexts, and external

behaviors), as this enables the mediation process to be performed on the ontological level of

application domains, while other types of specifications should be used as secondary filters.

We indicated that services’ external behavior should be adopted instead of their internal be-

havior to maintain services’ encapsulation. We proposed use of scenarios to partially capture

the services’ external behavior, however we argued that m-to-n state matching approaches

should be adopted during behavior matching instead of one-to-one state matching approaches

in order to minimize the appearance of false negatives. In this thesis, we indicated the types

of semantics to be captured, the models to be used, the matching rules to be applied, the cor-

rectness criteria to be followed, the mediation techniques to be embraced and the matching
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approaches to be adopted, in order to automate the service matching process. We summarize

the proposed solutions as follows:

• We proposed the SWSMF framework to capture the technical and non-technical specifi-

cations of services’ descriptions and users’ requests in a machine-understandable format.

Within SWSMF, we proposed the G+ model that captures the goals of both users and

services. The G+ model links between the goals, the achievement contexts, and the

corresponding realization scenarios.

• We proposed a meta-ontology approach for modelling application domains to overcome

the semantic interoperability problem as well as facilitate the ontology mapping process.

The proposed meta-ontology captures the concepts and the operations of application

domains in its schematic layer, and captures in its semantic layer, in a context-based

manner, the functional substitution semantics between application domain concepts;

using the proposed Concepts Substitutability Graph (CSG).

• We proposed the Functional Substitutability Matching Scheme (FSMS) to match the

high-level functional specifications. FSMS uses substitutability as the matching rule

and user goal achievement as a correctness criterion. FSMS adopts two mediation

techniques using the semantics captured in the CSG: it uses the proposed constraint

substitutability approach to match constraints, and it uses the proposed state sequence

mediation procedure (SMP) to match behavior models. The proposed constraint substi-

tutability approach is able to match constraints with different scopes, while SMP is able

to match state sequences with different length, as it adopts an m-to-n state matching

approach. FSMS does not adopt any rigid taxonomies to determine concepts’ func-

tional equivalence but it determine such equivalence in a context-based manner with

respect to users’ goals.

• We proposed two correctness-aware high-level functional service matching approaches

(direct and aggregate) that match services according to their G+ goals, adopting FSMS.

Hence, they guarantee the achievement of users’ goals and do not require services’

descriptions and users’ requests to be described using the same concepts.
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6.1 Future Work

We emphasis on the following directions as extension of the work proposed in this thesis.

6.1.1 Flexibility and Performance Enhancement

Adopting more advanced constraint model and optimizing the developed algorithms are

important directions for future work. We believe there is good potential for enhancing the

complexity of SMP algorithm and the aggregation algorithm using different heuristics. Also

work in this thesis is based only on the mandatory constraints captured in the functional

contexts, however more flexibility could be achieved by taking into consideration both the

mandatory and optional constraints when matching functional context. This can be achieved

by adopting imprecise computation techniques such as the one discussed in [Elhaweet et al.,

2001]. Also to optimize service registry storage, the G+ models could be described via XML

files, then stored in a compressed format. Taking the advantage of having the exact queries

over G+ models to be matched without the need for decompression [Tolani and Haritsa, 2002;

Arion et al., 2003; Cheng and Ng, 2004].

6.1.2 Service Selection

As this thesis proposed a matching scheme for the high-level functional specifications. Match-

ing schemes for other types of specifications need to be developed. The matching scheme

required for non-functional and non-technical specifications need to indicate what will be the

matching rules as well as what will be the correctness criteria, taking into consideration the

need for End-to-End measures when aggregate services are adopted. Hence, the proposed

NTC, NFC, and LLFC need to be extended to capture more semantics such as information

about service level agreements, security, and negotiations.

6.1.3 Service Discovery

Work in this thesis is based on a single service registry, which is considered a solution for

the centralized service discovery problem. However, we are not expecting all services will
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be registered in one registry. Therefore peer-to-peer technologies such as distributed hash

indexing protocols [Stoica et al., 2001; Wang et al., 2003; Schmidt and Parashar, 2004] could

be adopted to manage the service matching over multiple registries. Request rewriting and

rerouting becomes mandatory in such environment.

6.1.4 Service Composition

In this thesis, we provided a solution for sequential service aggregation. However, we have

not investigated the execution details in order to determine whether the aggregate service is

executable or not. Hence, specifying what should be stored in LLFC to check if services are

executable is an important research direction. Another research direction is to adopt a con-

current composition approach instead of the sequential one. However, concurrent execution

for the services will trigger new levels of complexity to ensure the execution correctness.



Appendix A

SWSMF Realization

There are four perspectives that should be taken into consideration for the realization of the

SWSMF framework, as each perspective plays a different role during the matching process.

These perspectives are: an ontology engineer’s perspective, a service provider’s perspective,

a user’s perspective, and a matchmaker’s perspective. In what follows we show how SWSMF

is realized for each perspective by listing the tasks required within each perspective. Inte-

grating the four perspectives together gives the whole picture of how our approach handles

the matching process.

Ontology Engineer Perspective: An ontology engineer is the person responsible for

building application domain ontologies. As SWSMF specifies a meta-schema for building

domain ontologies, an ontology engineer should adopt this meta-schema in order to be able

to build valid application domains’ ontologies. Therefore, an ontology engineer has to ac-

complish the following tasks.

1. Identify the application domain. Every application domain has a unique code

registered in the application domain repository. If the required application domain is

not registered (does not exist in the repository), the ontology engineer has to register

the application domain in order to obtain its corresponding code.

2. Identify the concepts of the application domain. The ontology engineer has to
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define the entities of the application domain as well as their attributes. The type and

range of every attribute should be defined.

3. Identify the roles of the application domain. The ontology engineer has to define

the different roles (social actors) of the application domain, as well as their attributes.

The type and range of every attribute should be defined.

4. Identify the operations of the application domain. The ontology engineer has to

identify the transactions’ types of the application domain. For every transaction type,

the corresponding operation should be defined. For every operation, its input, output,

pre-conditions, post-conditions, and attributes need to be defined. Inputs and outputs

are chosen from the defined concepts.

5. Build concept substitutability graph. The ontology engineer has to define the

substitution rules, conversion functions, and operator mapping matrices for every pair

of the defined concepts with respect to every defined operation in order to be able to

build the concepts substitutability graph.

6. Register the devised ontology. After accomplishing the previous tasks, the ontology

engineer will have an application domain reference and it corresponding valid ontology,

which should be published in the required repositories.

The correctness and the quality of the models used in building an application domain

ontology is the responsibility of the ontology engineer.

Service Provider Perspective: Service providers are the ones responsible for creating

and publishing a given service. Therefore, they have to accomplish the following tasks in

order to publish a new service.

1. Identify the application domains. Using the application domain repository, they

have to select the application domains (get the codes) for the new services.

2. Identify the used ontologies. Using the ontologies repository (that adopts the
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proposed meta-ontology), they have to choose the ontologies to be adopted for every

required application domain.

3. Identify service goals. For every chosen application domain and for every adopted

ontology, they have to choose the operations that represent the service’s goals.

4. Identify the high-level functional contexts. For every defined goal, they have

to define the corresponding high-level functional context by listing the corresponding

pre-constraints, describing-constraints, and post-constraints.

5. Identify users roles. For every defined goal, they have to define the beneficiary roles

of the corresponding application domain, which represent the target market sectors for

their services.

6. Identify the expected GAPs. For every defined goal, they have to define the

expected interaction scenarios between the new service and the prospective users, in

order to achieve the goal.

7. Extract GAP forests. For every defined goal, they have to build the corresponding

G+ model using the defined functional contexts and GAPs. Then, they have to extract

the corresponding GAP-forest for every G+ model.

8. Identify the Supported Non-functional Specifications. For every defined goal,

they have to define the supported non-functional specifications in order to build the

non-functional contexts.

9. Identify Supported Non-technical Specifications. For every defined goal, they

have to define the supported non-technical specifications in order to build the non-

technical contexts.

10. Identify Low-Level functional Specifications. For every defined goal, they have

to define the supported low-level functional specifications in order to build the low-level

functional contexts.
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11. Build SAVs and SPVs. From the above, they have to build the corresponding SAVs.

Also if they like to publish any documents for human users they have to included in

the SPVs.

12. Publish the new service. After building the SAVs and SPVs of the new web services,

they have to register the services in the desired service directory.

User Perspective: Users need to format their request according to SWSMF specifica-

tions. For this, they have to accomplish the following tasks.

1. Identify the application domains. Using the application domain repository, they

have to select the required application domain (that is get the codes).

2. Identify the used ontologies. Using the ontologies repository (that adopts the

proposed meta-ontology), they have to select an ontology for the selected application

domain.

3. Identify required goals. For every chosen application domain and for every adopted

ontology, they have to choose the operations that represent the required goals.

4. Identify the high-level functional contexts. For every defined goal, they have to

define the required high-level functional context by listing the required pre-constraints,

describing constraints, and post-constraints.

5. Identify users roles. For every defined goal, they have to define their role.

6. Identify the expected GAPs. For every defined goal, they have to define the

expected interaction scenarios between them and the required service.

7. Identify the Required Non-functional Specifications. For every defined goal,

they have to define the required non-functional specifications in order to build the

non-functional context.

8. Identify the Required Non-technical Specifications. For every defined goal,

they have to define the required non-technical specifications in order to build the non-

technical context.
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9. Identify the Required Low-Level Functional Specifications. For every defined

goal, they have to define the required low-level functional specifications in order to

build the low-level functional context.

10. Build UAVs. For the above, they have to build the corresponding UAV.

11. Submit UAVs. Generated UAVs will be submitted to the matchmaker to retrieve the

results.

Human users might not be capable to build their own UAVs. Therefore, templates for

various goals supported by the chosen ontologies could be given to the user to select from,

and some to modify, as every ontology has a finite set of operations. Also, tools (such as

ontology navigators) could be provided to build the required UAVs.

Matchmaker Perspective: The matchmaker will examine the submitted UAVs against

the published SAVs. Therefore, a matchmaker needs the following in order to be able to work.

• A global coding scheme for applications domains. This is ensured when one

repository is used to maintain application domain codes.

• Access to a valid ontologies repository. This repository contains all the defined

ontologies for the registered application domains. All these ontologies must follow the

proposed meta-ontology. Also, a list of mapped ontologies should be available in the

repository.

• A defined matching scheme. A matchmaker should know which matching scheme

is required for every type of specifications.

• At least one SAV for every registered service.

• At least one UAV for every user request. The matchmaker need to generate the

corresponding GAP-forest from a user UAV.

The matching process will be performed in a multi-stage manner, in which every stage

applies a different filter. The used filters and their corresponding order is as follows.
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1. Application domain filter: Services with different application domain codes from

the ones defined in the UAV will be ignored.

2. Adopted ontology filter: Services with different ontology codes from the one defined

in the UAV and that do not exist in the ontology mapping list, will be ignored.

3. Role filter: Services with different supported roles from the role defined in the UAV

(that is cannot functionally substitute the user’s role) will be ignored.

4. G+ filter: Adopting the required matching scheme, services with G+ models that do

not match the required G+ model in the UAV will be ignored.

5. Other Specifications filters: Adopting the required matching schemes for non-

technical, non-functional, and low-level functional specifications, the remaining set of

services will filtered.

After applying all of these filters in the indicated order, the remaining results are guar-

anteed to correctly fulfill the user request. For human users, SPVs can be used in service

selection process.
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B. Orriëns, J. Yang, and M. Papazoglou. Servicecom: A tool for service composition reuse and

specialization. In Proceedings of the fourth International Conference on Web Information

Systems Engineering (WISE), pages 355–358, Rome, Italy, 2003.
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