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This paper proposes and evaluates compile time and instruction-set techniques for improving the
accuracy of signal-processing algorithms run on fixed-point embedded processors. These techniques
are proposed in the context of a profile guided floating- to fixed-point compiler-based conversion
process. A novel fixed-point scaling algorithm (IRP) is introduced that exploits correlations be-
tween values in a program by applying fixed-point scaling, retaining as much precision as possible
without causing overflow. This approach is extended into a more aggressive scaling algorithm
(IRP-SA) by leveraging the modulo nature of 2’s complement addition and subtraction to discard
most significant bits that may not be redundant sign-extension bits. A complementary scaling
technique (IDS) is then proposed that enables the fixed-point scaling of a variable to be param-
eterized, depending upon the context of its definitions and uses. Finally, a novel instruction-set
enhancement—fractional multiplication with internal left shift (FMLS)—is proposed to further
leverage interoperand correlations uncovered by the IRP-SA scaling algorithm. FMLS preserves a
different subset of the full product’s bits than traditional fractional fixed-point or integer multipli-
cation. On average, FMLS combined with IRP-SA improves accuracy on processors with uniform
bitwidth register architectures by the equivalent of 0.61 bits of additional precision for a set of
signal-processing benchmarks (up to 2 bits). Even without employing FMLS, the IRP-SA scaling
algorithm achieves additional accuracy over two previous fixed-point scaling algorithms by aver-
ages of 1.71 and 0.49 bits. Furthermore, as FMLS combines multiplication with a scaling shift, it
reduces execution time by an average of 9.8%. An implementation of IDS, specialized to single-
nested loops, is found to improve accuracy of a lattice filter benchmark by the equivalent of more
than 16-bits of precision.
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1. INTRODUCTION

A challenge to efficient fixed-point implementation of signal-processing algo-
rithms is ensuring that the resulting software maintains a relatively low level
of noise due to rounding error. This paper investigates techniques for improving
the approximation of programs that use floating-point data types by programs
that use only fixed-point data types. The fixed-point version of the program
runs on a processor lacking floating-point hardware support and the improve-
ment in approximation is because of a reduction in the impact of rounding error.
A fixed-point version of a program is an approximation that may not produce
exactly the same output as the original program written using floating-point
data types. This transformation is often employed to reduce the recurring costs
and/or power consumption of high-volume products by using the minimum com-
puting power required to implement the functionality in a satisfactory manner.
To obtain a suitable fixed-point implementation of an algorithm, it is common
to manually determine the required scaling of source and destination operands
of fixed-point arithmetic instructions. The process of manually converting any
but the most trivial algorithms is time-consuming, tedious, and error prone.
This has motivated the development of floating- to fixed-point conversion utili-
ties that can at least partially automate this process [Alta Group 1994; Willems
et al. 1997; Kum et al. 1997; Aamodt and Chow 2000; Synopsys 2000a; Kum
et al. 2000; Menard et al. 2002].

Similar to these utilities, the floating- to fixed-point conversion utility used
in this study performs the conversion to fixed-point during program compi-
lation starting from a high-level language description in ANSI C and finish-
ing with fixed-point assembly language. Such conversion tools relax the usual
constraint upon a compiler that an optimization may be applied only if a pro-
gram’s observable input-output behavior is not affected. In particular, floating-
to fixed-point conversion relaxes this constraint in a carefully controlled way
to achieve a more aggressive optimization of execution time (compared with
emulated floating point), power consumption, and system cost. Placing the con-
version process as a step in the normal process of translating a source lan-
guage specification into binary executable eliminates the need for additional
language-level support for fractional fixed-point data types. Like traditional
profile-driven optimizations, the resulting fixed-point code is tailored by giv-
ing the conversion utility additional information about the expected program
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inputs. This information implicitly classifies some inputs as impossible, un-
likely, or irrelevant. However, unlike traditional profile-driven optimization, for
the purposes of floating- to fixed-point conversion, the output is essentially a
“don’t care” for these types of inputs. We note that program approximation may
have broader application than embedded signal processing: Recently, a differ-
ent form of program approximation—getting the precisely correct answer most
of the time—has been proposed as a way to improve performance in general-
purpose computation [Sundaramoorthy et al. 2000; Zilles and Sohi 2002].

The main contribution of this paper is a novel fixed-point instruction-set
enhancement and a set of fixed-point scaling algorithms designed to reduce
rounding noise. The instruction-set enhancement—Fractional multiplication
with internal left shift (FMLS)—requires a simple modification of the standard
fixed-point multiplication operation and often yields a reduction in execution
time because of a reduction in overall instruction count.

The rest of this paper is organized as follows: Section 2 summarizes related
work. Section 3 describes the floating- to fixed-point conversion process and
the proposed techniques for improving fixed-point accuracy. Section 4 describes
our evaluation methodology. Section 5 presents simulation results evaluating
the impact on both rounding noise and execution time. Section 6 concludes.
An earlier and more expanded discussion of this work appears in the related
dissertation [Aamodt 2001].

2. RELATED WORK

A rigorous method for determining the maximum dynamic range and estimat-
ing the impact of rounding error of each arithmetic operation in a digital fil-
ter was developed by Jackson [1970a, 1970b]. This technique applies to linear
time-invariant (LTI) systems and operates on a signal flow-graph description
of the algorithm. This analysis technique gives conservative dynamic range es-
timates, which can guarantee that overflow is avoided. However, empirically,
it has been observed that for many systems and signal classes of interest the
scaling determined by this technique is overly conservative. For example, Kim
and Sung [1994] demonstrated a signal to quantization noise improvement of
24.1 dB (roughly equivalent to 4 bits of additional precision) compared with this
analytical technique when using a profile driven technique that used dynamic-
range measurements of all variables in a program. Thus, many floating- to
fixed-point conversion utilities employ profile data to obtain tighter bounds on
dynamic-range estimates.

A number of filter design techniques have been developed for reducing round-
ing noise when employing fixed-point processors. Analytical techniques for
transforming the structure of an LTI filter to minimize the round-off noise
have been proposed for canonical representations of LTI systems, such as the
state space, extended state space, and lattice filter representations [Mullis and
Roberts 1976; Hwang 1977; Anspach et al. 1996; Chung and Parhi 1995]. A dy-
namic scaling technique that provides a trade-off between floating- and fixed-
point is block floating point [Oppeheim 1970]. Block floating point uses one
exponent for a set of data values that tend to take on similar dynamic ranges
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concurrently. A technique for reducing rounding noise in accumulator-based
architectures is quantization-error feedback [Spang and Schultheiss 1962].

Systems for automatically converting floating-point source code into fixed-
point specifications to help accelerate the usual iterative conversion process
have been previously proposed [Alta Group 1994; Kum et al. 1997; Willems et al.
1997; Kum et al. 1999; Synopsys 2000a]. These tools generate fixed-point code
that reduces or eliminates the likelihood of overflows by using conservative-
scaling heuristics. These systems use the same structure as the source floating-
point program, but change the type to fixed-point and automatically add the
required scaling shift operations. In contrast, this work proposes techniques to
improve accuracy while avoiding overflows.

FRIDGE [Willems et al. 1997] uses a worst-case estimation technique to
guide its fixed-point scaling algorithm. The input to the interpolation process
is the dynamic range of a limited set of signals and the maximum value any
signal is allowed to grow to. By using (conservative) worst-case inferences, such
as

max(A(t) + B(t)) = maxA(t) + maxB(¢)
vi vt vt

the input scaling is propagated to all other unspecified signals. Synopsys Inc.
provides a commercial system [Synopsys 2000a] closely resembling FRIDGE,
but using an undisclosed scaling technique to determine the scaling operations,
which operates on ANSI C inputs and produces both ANSI C and SystemC
output [Synopsys 2000b].

Another ANSI C floating- to fixed-point conversion utility, which was devel-
oped by Kum et al. [1997, 1999, 2000], employs a purely profile-based method-
ology, and a statistical scaling procedure that aggressively assumes no over-
flows will occur while propagating dynamic-range information in a bottom-up
fashion through expression-trees starting from measurements of the mean and
variance for leaf-operand values. This often works well because the dynamic
range of a leaf operand, say x, is overestimated. In particular, the dynamic
range of leaf operands is estimated using the relation,

max{(|u(x)| +n x o(x)), max |x|}

where u(x) is the average, o(x) is the standard deviation, and max |x| is the
maximum absolute value of x measured during profiling. Here n is a param-
eter, either chosen by the designer, or estimated using higher-order statistical
information of x, as described by Kim and Sung [1998]. By setting n large
enough, overflows are typically eliminated.

Menard et al. [2002] describe an ANSI C floating- to fixed-point conversion
system that they applied to converting IIR and FIR filters. This conversion
system uses an analytical signal-to-quantization noise ratio (SQNR) analysis
technique based upon transfer function norms and the modeling of truncation
as independent rounding noise sources to optimize performance while main-
taining a preset SQNR constraint. The approaches proposed in this paper are
largely orthogonal with their work as we propose techniques to improve the ac-
curacy achieved while using any given word length, while Menard et al. focus
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Floating-Point ANSI C Program

SUIF Front End
ANSI Math Library
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Code Generation
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Fixed-Point DSP Simulator

Fig. 1. Floating- to fixed-point conversion.

on finding techniques for reducing the conversion time required to determine
the minimum word lengths needed for a given architecture.

The next section describes techniques for improving the accuracy of fixed-
point implementations by using more aggressive scaling techniques and by the
introduction of the FMLS instruction.

3. IMPROVING FIXED-POINT ACCURACY

In this section the floating- to fixed-point conversion framework used for this
study is illustrated. The proposed scaling algorithms and the FMLS instruction
are then described. The scaling algorithms produce fixed-point code that retains
greater precision than prior techniques by (a) exploiting the additional informa-
tion contained in the dynamic range information associated with intermediate
results within expression trees (in addition to explicit program variables found
at the leaves of the expression trees); and (b) exploiting the modulo property of
2’s complement addition (described in Section 3.3.2).

3.1 Conversion Framework

The profile-based floating- to fixed-point conversion utility is outlined in
Figure 1. The infrastructure was developed by extending the SUIF compiler
ANSI C compiler infrastructure.! While AUTOSCALER [Kum et al. 2000]

Thttp:/suif.stanford.edu
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also used SUIF, our infrastructure is different in a number of ways: First,
we present scaling algorithms designed to improve the signal-to-quantization-
noise (SQNR) for a uniform datapath processor architecture. While AU-
TOSCALAR optimized scaling operations to reduce execution time, our util-
ity forces the optimization search toward improved functional fidelity with
the floating-point source code. While utilities for finding the minimum addi-
tional hardware precision required to yield sufficient accuracy have been pre-
sented [Kum and Sung 2001], no prior work on automated conversion to fixed-
point focuses on how to optimize scaling operations to make best use of an
existing datapath to maximize fidelity. Second, the introduction of the concept
of alias partitions in our utility solves the problem introduced by the ANSI C
language of maintaining common scaling among storage locations referenced
through pointers.

We use a modified version of the MIPS code generator included in the SUIF
distribution that specifically targets our ASIP/DSP architecture [Pujare et al.
1995], and a postoptimizer used for VLIW scheduling and machine-specific op-
timizations [Singh 1992; Saghir 1993; Stoodley and Lee 1996; Saghir 1998]. As
SUTF does not intrinsically support fractional fixed-point data types, we have
added several scalar optimizations that respect our extensions of the SUIF in-
termediate representation. These extensions were implemented using SUIF’s
annotation mechanism.

3.2 Dynamic Range Estimation

To generate suitable fixed-point scaling operations, the maximum dynamic
range of each value computed or used in the program must be determined. To
obtain the maximum dynamic range of each floating-point value, our infrastruc-
ture employs a profile-based approach. Analysis techniques, such as Jackson’s
algorithm (described in Section 2), that can provide accurate dynamic range es-
timates without profiling could potentially be used with the fixed-point scaling
algorithms we present. However, this is beyond the scope of this investigation.
Before generating the profile executable that measures these dynamic
ranges, an identifier is assigned for each group of floating-point variables and
instruction operands that share the same scaling after conversion to fixed point.
There are two reasons for grouping individual floating-point numbers together
to use the same scaling. First, the use of pointers to access data requires a
partitioning of floating-point values grouped with any load, or store operations
used to reference them so that a common statically determined scaling is pro-
vided for all accesses to the same location after conversion to fixed point. This
requirement is supported in our infrastructure by the incorporation of a context-
sensitive interprocedural alias-analysis that groups the variables and memory
access operations into alias partitions. Second, floating-point numbers grouped
together because of the use of arrays are given the same identifier by default.
After unique identifiers have been assigned to alias partitions, nonaddressed
floating-point data items, and intermediate floating-point calculations for
use during instrumentation and subsequent generation of scaling operations,
these identifiers are attached to nodes in the SUIF compiler’s intermediate
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representation using SUIF’s annotation facility. Control-flow, data-flow, and
dependence analysis are used to determine when any references in a given
alias partition access data in a regular way (i.e., through array accesses depen-
dent upon a surrounding loop’s index). Alias partition accesses for which this
property is known to always hold are assigned additional information provid-
ing summaries of the array offset dependence upon loop index variables. This
supports loop-index dependent analysis of floating-point ranges that enables
the index-dependent scaling described in more detail in Section 3.3.3.

After each assignment to a variable, calculation of an intermediate result,
or read/write access of an alias-partition value, profiling code is inserted into
the original floating-point version of the code to record the maximum and mini-
mum values encountered. The instrumented code is converted back to ANSI C,
compiled and run to obtain profile information.

Next, the fixed-point datapath word length (WL) is conceptually divided into
three parts—the sign bit, integer word length (IWL), and a fractional word
length (FWL). Profiling a variable X obtains the minimum allowable IWL for
X and thereby locates the binary-point so overflows are prevented using the
following relation [Kim and Sung 1994]

IWLX measured — flng(maX |X|)] (1)

where [v] is the smallest integer greater than or equal to v.

We note that accumulated rounding errors may change the dynamic range
of a signal after conversion to fixed-point. We found this to be true regardless of
which rounding mode is used, although rounding by truncation causes the worst
effects. For many applications, it may be possible to choose a set of benchmarks
for profiling to ensure the dynamic range of all internal variables are excited
to their maximum values. White noise, or chirp signals, are examples of stan-
dard inputs useful for this purpose. Another technique is to reprofile the system
once a first-order estimate of the dynamic-ranges is known so that rounding-
noise effects are accurately accounted for [Aamodt 2001]. For example, on the
Levinson—Durbin recursion benchmark we found that overflows could be elimi-
nated on a datapaths as narrow as 19 bits by gathering dynamic ranges using a
special floating-point version of the application that injects appropriate round-
ing errors to simulate the effect of conversion to fixed point after the initial
profile pass [Aamodt 2001]. In the results presented in Section 5, we employ
truncation and only a single profile phase.

3.3 Scaling Algorithms

In this section, we introduce our scaling algorithms for the four arithmetic oper-
ators. Prior research on fixed-point scaling [Kum et al. 1999, 2000] has focused
either on optimizing the execution time of an algorithm on a given processor
architecture by eliminating or reducing the size of scaling shift operations, or
finding an optimized hardware implementation [Kum and Sung 2001] assum-
ing the IWL is adjusted to avoid overflows. In contrast, the algorithms we pro-
pose are the first we are aware of that optimize the signal-to-quantization noise
ratio of the fixed-point implementation by leveraging the modulo nature of 2’s
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IWLA+B current ?
IWLA+B measured \/

IWL A current v/ +

IWL A measured v
IWL B current v

IWL B measured v/

Previously Converted

Subexpressions

Fig. 2. IRP conversion algorithm example.

complement addition and subtraction to exploit interoperand correlations. This
allows our optimization algorithms to scale the result of fractional multiplica-
tion operations by discarding most significant bits, which are often not merely
redundant sign-extension bits. In Section 3.4, we describe a novel and comple-
mentary hardware mechanism for both improving signal-to-quantization noise
and reducing execution time.

3.3.1 Local Optimization of Rounding Error. In this section, we introduce
the intermediate result profiling (IRP) algorithm. In IRP, scaling operations are
added to expression trees using a post order traversal that incorporates both
the measured IWL information and the current scaling of source operands. The
current IWL of X indicates the IWL of X given all the shift operations that
have been applied within the subexpression rooted at X . The following relation
always holds under the IRP algorithm:

IWLX current = IWLX measured (2)

This invariant holds trivially for leaf operands of the expression tree and is
inductively preserved by the IRP scaling rules presented below. This condition
ensures overflow is avoided, because it ensures there are always enough bits of
padding to accommodate the largest possible value as long as the sample inputs
to the profiling stage give a good statistical characterization and accumulated
roundoff error does not cause the dynamic range of any variable to exceed
the next larger power of two above the estimated maximum dynamic range.
By exploiting the additional information in IWLY ,eqsureq for internal nodes
within an expression tree, while maintaining the invariant (2), rounding error
is reduced by retaining extra precision when worst-case inferences would be
overly conservative.

To determine the general scaling rules for addition, consider the conversion
of the floating-point expression “A + B” into its fixed-point equivalent, as
illustrated in Figure 2. Here A and B could be variables, constants or subex-
pressions that have already been processed. To begin, we make the assumption
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that the relationship between the IWL values for A and B is given by:

IWL A+B measured = IWLmax (al)

IVVLA measured = IVVLB current (a2)

where IWL,,,, is the maximum measured IWL among both A and B. The first
condition states that the value of “A + B” can be represented in the same bit
width as the largest of the two source operands. The second condition states
that A is known to take on larger values than B’s current scaling. Given (a1) and

(a2) the most aggressive scaling, i.e., the scaling retaining the most precision
for future operations without causing overflow, is given by:

float-to-fixed

A+B —  (A<<npa)+ (B> [n—ng))
where:

nyg = IWL 4 cirrent — IWL A measured

np = IWL B current — IWL B measured

n = IWL A measured — IWL B measured
Asin ANSI C, we use the notation “«” for left-shift operations, and “>>” for right-
shift operations. Note that ny and np are shift amounts required to “maximize
the precision” in A and B, respectively, and n is the shift required to align the

binary points of A and B. By defining “x <« —n” = “x > n,” we can generalize
this result, assuming only (a1) holds:

float-to-fixed
—

A + B A >> [IWLmax - IWLA current]

+ B> [IWLmax - I‘N:[JB current] (T1l.a)
and IWL A, B current = I W Lpax. If assumption (al) is not true, i.e., the addi-

tive operator results in a result requiring bit width larger than that of either
operand, then it must be the case that:

IVVLA-&-B measured — IWL max T 1
this leads to the following alternate IRP rule for scaling additive operators that

our utility uses when (a1) does not hold:

float-to-fixed

A+B "— A>» [1+1IWL,.x — IWL4 current]
+ B >> [1+IWL nax — IWLE current] (T'1.0)

with IWL A, B current = IWLpax + 1. Note that the property

IWLA+B current = IVVLA-&-B measured

is preserved as required to maintain the IRP invariant specified in Equation (2),
and that (T'1.a) and (7T'1.b) also apply to subtraction operations.

For multiplication operations, the scaling applied to the source operands in
our conversion utility is:

float-to-fixed

A -B"— (A<« ny)-(B << ng) (T2)
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where ng and np are defined as before, and the resulting current IWL is given
by

IWLAB current — I\NLA measured T IWLB measured

For division, we assume that the hardware supports 2.-WL bit by 1-WL bit
integer division (the Analog Devices ADSP-2100, Motorola DSP56000, Texas
Instruments C5x and C6x all have primitives for such an operation) in which
case the scaling applied to the operands is:

A jeartefiva A >> [Ddividend — N Al
—

B B <« np
where n 4 and np are again defined as before and ngiyigend is given by:
ngiff = IWL% measured

- IWLA measured T IWLB measured
Ngividend = Naiff, if TN >0
Ndividend = O, otherwise

Note that ngivigeng must be greater than zero to ensure A does not overflow. The
resulting current IWL is given by:

IWL4 cyrrent = Ddividend + 10

This scaling is combined with the assumption that A is shifted by WL — 1 into
the most significant portion of the dividend double-precision register before
the actual division operation (the dividend must have two sign bits to ensure
the result is valid). Note that for division—unlike the addition, subtraction,
and multiplication operations—knowledge of the result’s IW L casured 18 Very
important when generating scaling operations. This is because the IWL of the
quotient cannot be inferred from knowledge of the IWL of the dividend and
divisor since the range of the quotient is the maximum ratio of dividend over
divisor. We note that conversion of the division operation is supported by the
assembly language floating-point to fixed-point translator presented by Kim
and Sung [1994], since their translator is able to profile the destination operand
of all floating-point instructions executed on the hypothetical floating-point
hardware model employed by the translator.

3.3.2 Global Optimization of Rounding Error. The IRP algorithm opti-
mizes roundoff error locally for the current node being processed in the expres-
sion tree. Each node is processed just once, so the algorithm has linear time
complexity. An important, but subtle, point is that, for (T'1.a) and (7'1.5), a pos-
itive value of ng or ng may indicate precision has been discarded unnecessarily
within the subexpression rooted at A or B, respectively.

To make better use of available bit width, we exploit the following “modulo”
property of addition using 2’s complement numbers: If the sum of N numbers
fits into the word length used to accumulate the values, then the result is
correct regardless of whether any of the partial sums overflows. To see that
this is true, consider a ripple-carry adder. In a ripple-carry adder, carry-out
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| OP: Operand to apply scaling to. |
| SHIFT: Shift we desire to apply at OP |
| (negative means left shift). |
| RESULT: Shift actually applied at OP |

operand ShiftAbsorption( operand OP,
integer SHIFT )

if( OP is a constant or symbol )
return (OP >> SHIFT);
else if( OP is an additive instruction ) {
if ( SHIFT < 0 ) {
integer Na = current shift of A
integer Nb = current shift of B
operand A, B = source operands of
OP w/o scaling
A = ShiftAbsorption( A, Na + SHIFT )
B = ShiftAbsorption( B, Nb + SHIFT )
return OP; // no shift applied to OP

}
}

else return (OP >> SHIFT)

Fig. 3. Shift absorption procedure.

t2 = xin + 1.742319554830%d20 - 0.820939679242%d21;
yout = t2 - 1.633101801841%d20 + d21;

d21 = d20;

d20 = t2;

Fig. 4. Original floating-point code.

information propagates toward most significant bits. As no information from
higher order input bits affects lower order bits of the output, it would not matter
if we did not even compute them so long as we know for sure that their end
result is just the sign extension of the resulting sum.

This property can be exploited and, at the same time, some redundant shift
operations may be eliminated if a left shift after an additive operation is trans-
formed into two equal left shift operations on the source operands. If a source
operand already has a shift applied to it, the new shift applied to it is the
original shift plus the “absorbed” left shift. If the result is a left shift and this
operand is additive, the absorption continues recursively down the expression
tree. Figure 3 illustrates a shift allocation subroutine which, when combined
with IRP, results in the IRP-SA algorithm that achieves greater accuracy by
retaining precision at nodes by allowing some localized overflows to occur. The
basic shift absorption routine is easily extended to eliminate redundant shift
operations not affecting numerical precision, e.g. ((A << 1) + (B << 1)) > 1. A
sample conversion is illustrated in Figures 4, 5, and 6.

We note that saturating arithmetic is commonly used to limit distortion in
digital signal processors when it is difficult to guarantee a dynamic range bound
on the result of some arithmetic operation. If this situation applies, then IRP-
SA may not be applicable, because, after discarding higher order bits, it is no
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t2 = ((xin >> 5) + 28546 * d20 - ((26901 * d21) >> 1)) << 1;
yout = ((((t2 >> 1) - 26757 * d20) << 1) + d21) << 2;
d21 = d20;
d20 = t2;
Fig. 5. IRP version.
t2 (xin >> 4) + ((28546 * d20) << 1) - 26901 * d21;
yout (t2 << 2) - ((26757 * d20) << 3) + (d21 << 2);

d21
d20

d20;
t2;

Fig. 6. IRP-SA version.

longer possible to detect when an overflow of the larger range will occur. Thus it
is important to use accurate dynamic-range estimates when applying IRP-SA.

3.3.3 Index-Dependent Fixed-Point Scaling. Next we discuss a technique
that was found to be helpful for reducing the rounding noise on two of our
benchmarks (the normalized and unnormalized lattice filter) and which we be-
lieve can be made more generally applicable when applying more sophisticated
dependence analysis.

Signal-processing algorithms typically involve repeating a set of operations
on a set of data. One convenient way to express such repetition is to encode it
in the signal-processing software using loops. The dynamic range of variables
within such a loop can change dramatically and, in some cases, predictably
across successive iterations. A well-known example of this phenomena occurs
for the FFT. At each stage of the FFT, the dynamic range of the calculations
tends to grow relative to the last stage. One way to prevent overflow in this
situation is to allow enough guard bits at the start that overflow does not occur,
however, this may significantly increase the impact of rounding noise. A better
solution is to use a block floating-point implementation. There are two flavors of
block floating-point commonly used for the FFT. A fully dynamic block floating-
point implementation requires additional comparisons to try to minimize the
lost precision. A different approach is to increase the dynamic range of each
FFT stage by a small quantity each iteration. The latter approach is sometimes
called static block-floating point.

A related property that may lead to unnecessary degradation from rounding
noise is the grouping together of values as part of an array of floating-point
numbers that may have vastly different dynamic ranges. For example, the dif-
ferent state variables in a feedback-control algorithm may be grouped into an
array, but have vastly different dynamic ranges corresponding to the fact that
they represent different physical quantities. In the previous two sections, we
described the IRP and IRP-SA algorithms that improve fixed-point scaling accu-
racy by retaining precision as a result of the relationship of the dynamic range
of values computed within an expression tree. In this section, we present a novel
profiling and scaling algorithm—called index-dependent scaling (IDS)—for au-
tomatically detecting and exploiting structured variations in the dynamic range
of a variable across loop iterations and in accesses to different array elements.
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#define N 16
double state([N+1], K[N], V[N+1];

double lattice( double
{

double .05
for( i=Qgyi < N; i++ ) {
@ (X)= - K[N-i-1]*state[N-i-1];
u
state[N-i] = state[N-i-1] + K[N—i—l;@;
y =y + V[N-i]*state[N-i]; u2
u3

}

state[0] = ;

return y + V[0]*state[0];
}

Fig. 7. Index-dependent scaling example. Lines in this figure show reaching definitions. All actual
usages and definitions must be scaled to the same IWL, but SQNR is greatly enhanced if the IWL
varies with each loop iteration.

IDS can yield dramatic reductions in rounding error that are not captured by
the IRP and IRP-SA scaling algorithms and which previous floating- to fixed-
point conversion utilities can only capture by manually unrolling loops in the
floating-point source code.

In many embedded applications, the size of input and output buffers is known
at design time and, hence, many loops have constant size loop bounds. IDS
provides a different scaling to different elements of an array and to instances
of an arithmetic operation from different loop iterations for loops that iterate a
constant number of times. Before IDS is applied to an array, a check is performed
to determine whether each access to an array within every loop iteration is
either to the same element or depends only on the value of the loop index.

In this case, particular attention must be paid to the lifetime of each scalar
variable instantiation. Some instantiations of a variable might only be defined
and used within the same iteration of the loop body, whereas others might
be defined in one iteration and then subsequently used in the next iteration.
Although both may be profiled by merely cataloging the samples by the loop
index value at the definition, care must be taken in the latter case when dealing
with the scaling applied to specific usages of this definition within the loop. In
the lattice filter benchmark, shown in Figure 7, the latter case applies to both
the “x” and “y” scalar variables. Specifically, usage ul has a reaching definition
from outside of the loop body (d1), and one from inside the loop body (d2).
Usage ul must, therefore, be scaled using the current IWL associated with
either d1 or d2, depending upon the loop index—clearly upon first entering the
loop, d1 is the appropriate definition to use and this definition has only one
current IWL associated with it. Thereafter, the current IWL of d2 should be
used and, furthermore, the current IWL of d2 changes with each iteration—
the appropriate IWL for ul being the IWL of d2 from the previous iteration.
Finally, usage u3 must use the current IWL of d2 from the last iteration of the
loop body. This additional complexity is contrasted by the relative simplicity
involved in scaling u2, which always uses the current IWL of d2 from the same
loop iteration.
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Using IDS each expression-tree within a loop must be assigned a scaling
that changes during each iteration. There are essentially two ways to do this:
One is to completely unroll the loop. The other is to conditionally apply each
scaling operation. The latter slows execution considerably even when using
special-purpose bidirectional shift operations that shift left, or right, depend-
ing upon the sign of the loop index-dependent shift distance that is loaded into
a general-purpose register from a lookup table. For the lattice filter benchmark,
a slowdown of roughly 20% was measured, in this case. Completely unrolling
the loop to avoid the need for loading a set of shift distances each iteration is
naturally faster (50% faster for the lattice filter, and 61% faster when combined
with induction-variable strength-reduction), but increases memory usage pro-
portional to the number of loop iterations. The exact memory usage trade-off
depends upon how efficiently the shift distances can be stored in memory when
using the former technique. For instance, if the shift distances were represented
using 4 bits, an operation (somewhat similar to a vector-processor scatter oper-
ation) that reads 8 shift distances from a 32-bit memory word could write them
to the set of registers allocated to hold the shift distances. Note that in our
implementation, loop unrolling is applied automatically by the conversion soft-
ware. An implementation detail related to loop unrolling in this context is the
application of induction-variable strength-reduction (IVSR). This well known
scalar optimization often yields considerable speedups, however, its applica-
tion destroys the high-level array-access information required to apply IDS.
Careful bookkeeping is required, because IVSR must be applied before loop un-
rolling, but the loop unrolling process itself requires information about index-
dependent scaling. While loop unrolling may seem preferable, in this instance,
we believe it should be the job of the float-to-fixed conversion software to make
this decision. To achieve similar SQNR benefit, previous float-to-fixed conver-
sion tools [Kum et al. 2000; Willems et al. 1997] require the user to manually
unroll the loop in the floating-point source code prior to conversion, because,
without IDS analysis, there is not enough information to automatically deter-
mine the change in fixed-point scaling as each iteration of the loop is unrolled.

3.4 Architectural Enhancements

IRP-SA frequently uncovers fractional-multiplication operations followed by a
left scaling shift (which discards most significant bits). This condition arises
for three distinct reasons: First, in some cases, the product of two 2’s comple-
ment numbers requires 1 bit less than the sum of the bit widths of the mul-
tiplicands to be fully represented [Aamodt 2001]; second, if the multiplicands
have some statistical degree of inverse proportionality; third, if the product is
additively combined with another quantity that is negatively correlated with
it. However, regardless of which specific reason causes the condition, when
it occurs, additional precision can be retained, leading to improved SQNR by
introducing a novel operation into the processor’s instruction-set: Fractional
multiplication with internal left shift (FMLS). This operation accesses addi-
tional least-significant bits of the 2x word length intermediate result, which
are usually rounded into the LSB of the 1x word length fractional product, by
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trading these for a corresponding number of most significant bits that would
have been discarded anyway. An additional benefit of this operation encoding
is that nontrivial speedups in the computation are also frequently possible.

While the execution time benefit of combining an output shift with fractional
multiplication have been realized in existing DSP architectures [Texas Instru-
ments 1993], to the best of our knowledge, the signal-to-noise ratio impact we
target is not captured by existing implementations. For example, in the Texas
Instruments C5x architecture [Texas Instruments 1993], a multiply can be com-
bined with either no shift, a left shift by one (zero filling the least-significant
bit) to discard the extra sign bit in fractional multiplication, a left shift by 4 bits
(zero filling the least significant 4 bits) to enable fractional multiplication of a
16-bit value with a 13-bit immediate value, and a right shift by 6 bits to al-
low up to 128 consecutive multiply accumulates without risk of overflow. Since
the C5x is an accumulator-based architecture (containing a 32-bit accumulator
and having 16-bit registers and source operands), these modes do not retain
precision that would otherwise be discarded during fractional multiplication.
For uniform bitwidth DSP architectures such as the C60, we advocate encoding
the output shift directly into the instruction word, because, in addition to en-
hancing SQNR, a very limited set of shift values is responsible for most of the
execution speedup. While the scaling algorithms we present optimize for SQNR
rather than execution time, it is likely further performance benefit would result
by also optimizing execution time [Kum and Sung 2001]; the focus in this paper
is uncovering the available SQNR benefit.

The FMLS operation is illustrated in Figure 8 and the code-generation pat-
tern is shown in Figure 9 (where symbol “«” represents fractional fixed-point
multiplication operations). Our simulation data indicates that a limited set of
left shift values—roughly 3 or 4—suffices to capture most of the benefits to both
SQNR and execution time. This is encouraging because it limits the impact on
both operation encoding and the fractional multiplier’s hardware implementa-
tion. Furthermore, this encoding exhibits good orthogonality between instruc-
tion selection and register allocation, and is, therefore, easy for a compiler to
generate.

Note that the FMLS instruction differs substantially from previous digital
signal processing data path proposals. For example, while Kum and Sung [2001]
propose scaling the source operands of fractional multiplication by discarding
least-significant bits to help reduce the cost of digital hardware during high-
level synthesis, the FMLS instruction retains additional least-significant bits
in the fractional product while discarding most significant bits. Often, the dis-
carded most-significant bits are not merely redundant sign-extension bits, but
rather they are inversely correlated to those of another signal internal to the
digital filter that the product is subsequently summed with.

4. METHODOLOGY

To assess the impact of the proposed techniques, we simulate a fixed-point VLIW
digital signal processor [Peng 1999; Saghir et al. 1994; Saghir 1998], with seven
parallel function units (two each for address, data, memory computations, and
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Full 8 x 8 bit Product

LI TPl

Discarded Bits Result Bits

(a) Integer product. Note that half of the bits in the full product are discarded before storing
the result on uniform bitwidth architectures. The *-operator in ANSI C has this behavior
for integer data types.

L PP PP PP Tl

(b) Fractional product. Note that the most significant bit is discarded as it is a redundant sign
bit. On uniform bit width architectures many of the least significant bits are also discarded.

Extra MSB’s discarded by FMLS LSB’s retained by FMLS to improve SQNR
~ = ~ =

HENENEEENNNNEEEEE

(¢) Fractional multiply with internal left shift (FMLS). The FMLS instruction retains least—
significant bits that would have been discarded if a traditional fractional multiply were
followed by a logical left shift. When employing IRP-SA, the MSB’s discarded are often
not merely redundant sign extension bils.

Fig. 8. Various Forms of 8 x 8 bit multiplication on uniform bitwidth architectures. The shaded
bits are those retained for use in subsequent arithmetic operations.

result

<<
* shift amount

SN

Fig. 9. FMLS code-generation pattern.

one for control flow). The data path bit width is varied to study its impact on
rounding error. For most benchmarks 14- and 16-bit data paths are simulated.
For the Levinson-Durbin recursion algorithm, we instead simulate 24- and 28-
bit data paths.

Using a profiling-based methodology means that our conversion results will
only be as reliable as the profile data is itself at predicting the inputs seen
in practice. In particular, if the value of an internal signal is not excited to its
maximum value during profiling, overflows causing degradation in the program
output may occur after conversion to fixed point. We found that the benchmarks
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Fig. 10. Measuring equivalent bits of SQNR improvement for IRP-SA w/ FMLS versus IRP for
the 4th order cascaded direct-form II filter (IIR4-C).

we study were effectively characterized using profile data by doing some test-
ing with other independent data inputs [Aamodt 2001]. Furthermore, we found
that certain input samples could conservatively model large classes of input sig-
nals. For example, a short duration “chirp” signal, defined as y(¢) = A cos wot?,

for ¢ € (0, fs‘;:f l) was effective at conservatively exciting the internal state of
linear filter structures to account for a wide range of speech inputs that are nor-
malized to lie in the range (—A,A). More detailed examples are given in Aamodt
[2001].

In the following section, we present results for seven typical digital signal-
processing kernels to illustrate the effectiveness of the two algorithms proposed
in this paper, both alone and in conjunction with the proposed FMLS operation.
For three of these kernels, the algorithmic implementation is varied to study
the impact on the rounding noise enhancement achieved using the proposed
conversion techniques and the FMLS instruction.

4.1 Measuring Conversion Fidelity

To measure the fidelity of the converted code we use the signal-to-quantization
noise ratio (SQNR), which is defined as the ratio of the signal power to the
quantization noise power. The signal, in this case, is the application output
using double-precision floating-point arithmetic, and the noise is the difference
between this and the output generated by the fixed-point code using truncation
(i.e., discarding least-significant bits). For a sampled data signal y, the SQNR
is defined as

>, v2nl
> (9n] — y[n))?

where J is the fixed-point version’s output signal, and the SQNR is measured
in decibels (dB).

In addition to presenting SQNR measurements, we present the SQNR en-
hancement of a technique by determining the increase in data path bit width
required to achieve the same SQNR improvement without that technique.
We define the number of equivalent bits (EB) of precision by measuring the
SQNR at two data path bit widths as shown in Figure 10. In this figure, SQNR
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measurements are made for two floating- to fixed-point conversion techniques,
labeled A and B, at two different data path bit widths w; (14 bits) and wq
(16 bits), with ws > w;. As the dashed lines indicating the improvement of
SQNR with techniques A and B may not be parallel, the SQNR enhance-
ment values reported in this paper are averages of the horizontal measure-
ment indicated in the figure measured from the two end points (wq, B(w1))
and (wsg, A(ws)), which simplifies to the following expression for the number of
equivalent bits:

EB

B 1<B(w1) — A(wy) n B(wsg) — A(ws)
- 2\ A(wg) — A(w1)  B(wg) — B(w)

We compare the IRP and IRP-SA scaling techniques against our own im-
plementation of the scaling technique of Kum et al. [1997, 1999], which we
designate as SNU-n (where n is defined as in Section 2), and the worst-case
(WC) scaling technique used in FRIDGE [Willems et al. 1997]. In addition, for
WC, we use IWLeasureq information for all leaf operands (i.e., explicit program
variables) in expression trees. Profiling all leaf operands in this way provides
better SQNR results than if the dynamic range of leaf operands were to be set
by the worst-case scaling of a prior expression tree.

)(wz —w1)

4.2 Execution Time

While our fixed-point scaling algorithms do not attempt to optimize perfor-
mance we nevertheless present their performance impact. For this measure-
ment we model a four-stage VLIW pipeline with instruction fetch, decode, ex-
ecute, and writeback stages. Bypassing is allowed from any execution unit to
any other execution unit. Our compiler infrastructure applies several tradi-
tional scalar optimizations.

4.3 Benchmarks

Before describing the results, we briefly summarize the benchmarks used in
this study.? The first two benchmarks are 4th order Chebyshev type II low-pass
filters realized using both a cascaded and a parallel realization (ITR4-C, and
IIR4-P, respectively). We designed the filter coefficients for stop-band ripple
suppression of 40 dB and a normalized passband and stop-band edge frequen-
cies of 0.1 and 0.2, respectively. This benchmark is sensitive to accumulated
rounding errors.

The next two benchmarks are 16th order elliptic band-pass filters im-
plemented using both normalized and unnormalized lattice filter topologies
(NLAT and LAT respectively). Simulation results are presented for an input
signal consisting of 2000 samples of a uniformly distributed random variable.
The next two benchmarks are two variants of the fast fourier transform
(FF'T). The first evaluates the twiddle factors directly (FFT-MW), and second
uses trigonometric recurrence relations to reduce the impact on execution

2Benchmarks and inputs are available at http://www.ece.ubc.ca/"aamodt/float-to-fixed/benchmarks.
tgz
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time (FFT-NR). Both implement a 128-point radix-2 decimation in time
FFT. The Levinson-Durbin recursion kernel (LEVDUR) is often found in
speech-coding applications. Matrix multiplication (MMUL10) is used in many
signal-processing applications. In this paper, we investigate the transformation
of a 10 x 10 matrix multiply kernel.

The rotational inverted pendulum (INVPEND) is a testbed for nonlinear con-
trol design. It is open-loop unstable and highly nonlinear. Practical examples
of embedded nonlinear control applications, such as automotive antilock brak-
ing systems, are growing rapidly with increasing understanding of nonlinear
dynamics. For our study, we use ANSI C source code for a nonlinear feedback
controller for the rotational inverted pendulum that was generated automati-
cally from a Mathematica high-level description designed by Bortoff [1997]. We
simulate the rotational inverted pendulum’s dynamics using adaptive step size
4th order Runge—Kutta concurrently with the operation of the control processor
with the controller and pendulum actuator and sensors communicating at fixed-
sample interval. During each time sample, the control processor must perform
23 transcendental function evaluations, 1835 multiplications, 21 divisions, and
roughly 1000 additions and subtractions. Unlike many of the other benchmarks
we studied, for this benchmark, the expression trees are quite large—with ex-
pression trees frequently containing over 100 arithmetic operations.

Finally, we also investigate the conversion of the trigonometric function
sin(x) over the range [—27m, 27].

5. EXPERIMENTAL RESULTS

In this section, we present simulation results. We start by presenting SQNR
results, then proceed to describe the impact on performance (execution time).

5.1 SQNR Enhancement—IRP, IRP-SA, FMLS

Table I summarizes the SQNR results for SNU-4, WC, IRP, and IRP-SA both
with and without the FMLS instruction. The SQNR value obtained using IRP-
SA with the FMLS operation is better or roughly the same as that achieved
using the other approaches. Figure 11 illustrates this data using the equivalent
bits of SQNR enhancement of IRP-SA versus SNU-4, WC, and IRP. We see that,
on average, IRP-SA improves rounding error by the equivalent of 1.71 bits
versus SNU-4, 0.49 bits versus WC and 0.075 bits versus IRP. Improvements of
up to 4.5 bits are seen over SNU-4 for the normalized lattice filter benchmark.
For the Levinson—Durbin kernel, we found that SNU-4’s more conservative
approach produced significantly better results for the smaller data path width
as some overflows were introduced by the IRP and WC scaling because of the
effects of accumulated rounding errors [Aamodt 2001].

Figure 12 illustrates the SQNR improvement over IRP of IRP-SA and the
FMLS instruction, both alone and in combination. On average, IRP-SA achieves
an SQNR enhancement of 0.070 bits over IRP, FMLS used with IRP achieves
an SQNR enhancement of 0.35 bits over IRP alone. However, in combination,
FMLS and IRP-SA obtain an average SQNR enhancement of 0.70 bits over IRP
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Table I. Fixed-Point SQNR versus Floating-Point

14 Bit (dB) 16 Bit (dB)
Algorithm w/o FMLS | w/ FMLS | w/o FMLS | w/ FMLS
4th Order cascaded IIR filter (IIR4-C)

SNU-4 31.5 31.6 43.5 43.6
wC 37.4 37.5 49.4 49.5
IRP 38.6 38.1 50.6 50.2

IRP-SA 38.4 44.0 50.4 56.2

4th Order parallel IIR filter (IIR4-P)

SNU-4 28.7 28.7 40.7 40.7
WwC 18.2 18.2 49.1 49.1
IRP 18.2 18.2 51.0 51.0

IRP-SA 41.6 45.8 52.8 56.3

16th Order normalized lattice filter (NLAT)

SNU-4 39.9 39.9 41.7 41.7
wC 44.3 44.3 55.8 55.8
IRP 45.8 46.0 57.6 57.5

IRP-SA 45.8 46.0 57.6 57.5

16th Order lattice filter (LAT)

SNU-4 34.6 34.6 47.4 474
wC 34.0 34.0 47.1 47.1
IRP 37.5 37.5 50.0 50.0

IRP-SA 37.5 37.1 50.0 51.0

128-Point radix-2 FFT (FFT-NR)

SNU-4 13.1 21.7 28.5 36.9
wC 23.4 25.4 36.0 40.0
IRP 26.2 29.7 42.0 45.2

IRP-SA 26.2 29.5 42.0 45.0

128-Point radix-2 FFT (FFT-MW)

SNU-4 14.3 32.6 31.6 33.6
wC 20.8 32.8 33.2 53.5
IRP 20.7 33.0 33.0 56.5

IRP-SA 20.7 32.7 33.0 56.5

Levinson-Durbin recursion (24,28)-bit (LEVDUR)

SNU-4 55.6 53.6 74.9 75.2
wC 42.0 42.0 66.9 68.3
IRP 45.4 45.4 75.0 74.9

IRP-SA 45.4 55.0 75.0 74.8

10 x 10 Matrix multiply (MMUL10)

SNU-4 40.7 40.7 52.8 52.8
wC 46.7 46.7 58.8 58.8
IRP 46.7 46.7 58.8 58.8

IRP-SA 46.7 46.7 58.8 58.8

Rotational inverted pendulum (INVPEND)

SNU-4 4.0 42.7 30.7 54.9
wC 47.3 54.3 59.2 66.1
IRP 53.1 58.4 65.8 71.8

IRP-SA 52.8 59.4 64.4 72.0

Sine function (SINE)

SNU-4 42.0 51.7 54.2 64.3
wC 60.3 60.9 73.7 74.3
IRP 59.1 63.7 78.8 79.9

IRP-SA 59.1 66.8 78.8 79.9
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SQNR Enhancement (Equivalent Bits)
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Fig. 11. SQNR enhancement of IRP-SA. For each benchmark there are three bars. The first repre-
sents the SQNR improvement of IRP-SA over SNU-4, the second represents the SQNR improvement
over WC, and the third represents the SQNR enhancement over IRP.
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Fig. 12. SQNR enhancement of IRP-SA and FMLS. For each benchmark there are three bars.
The first represents the SQNR improvement of IRP-SA versus IRP, the second represents the
SQNR improvement of FMLS versus IRP, and the third represents the SQNR improvement when
combining FMLS with IRP-SA versus IRP.
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Fig. 13. Change in shift distribution.

(up to 2.0 bits), which is larger than the sum of the benefits of either optimization
alone. Thus, application of the IRP-SA scaling algorithm enhances the benefits
of the FMLS instruction.

To better understand the apparent “synergistic effect” of combining FMLS
with IRP-SA, Figure 13 compares the distribution of scaling shifts applied to the
result of fractional multiplication operations using IRP versus IRP-SA on the
ITR4-C benchmark. IRP-SA causes the distribution of shifts to include larger
left shifts resulting in more opportunities for the FMLS instruction (when it is
used) to retain precision.

To give a better feel for the impact that the FMLS instruction can provide,
Figure 14 shows the step response of the feedback control system for the rota-
tional inverted pendulum benchmark contrasting the closed loop behavior with
a 12-bit fixed-point processor with that of far more expensive floating-point
processor. Three curves are plotted in addition to the floating-point response,
for WC, IRP-SA, and IRP-SA with FMLS. The curve for IRP-SA with FMLS is
the only fixed-point response that is nearly indistinguishable from the floating-
point response.

The FMLS instruction improves SQNR, but may impact cycle time because
of the delay of the multiplexer required to implement the shift following a frac-
tional multiply, which is proportional to the log of the number of shift distances
encoded by the FMLS instruction. Figure 15 illustrates the impact on SQNR
of limiting the shift distances encoded to 8, 4, or 2 output shift distances. The
specific distances used were determined by examining the output shift distribu-
tions across all the benchmarks. All of the benchmarks use the FMLS operation,
with a left shift of one bit most frequently. Left shifts greater than 3 where found
to be infrequent. For the bar labeled “limiting,” all output shift distances are
available for each arithmetic operation. For FMLS-8, eight fractional multiply
output shift values ranging between four left and three right are available; For
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Fig. 15. SQNR enhancement of FMLS with limited shift encoding.

FMLS-4, four fractional multiply output shift values are available ranging from
left shift by two to right shift by one. Finally, FMLS-2 includes only left shift
and no shift.

5.2 SQNR Enhancement—IDS

As our implementation of the IDS optimization currently supports only sin-
gle nested loops, its application is limited to the two lattice filter bench-
marks. Table II summarizes data comparing SQNR achieved both with and
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Table II. Enhancement with
Index-Dependent Scaling

Lattice filter (dB)
Algorithm 32 Bit w/o IDS | 16 Bit w/ IDS
SNU-4 22.8 47.1
wC 28.1 48.3
IRP 36.1 51.3
IRP-SA 36.1 51.3

Normalized lattice filter (dB)
16 Bit w/o IDS | 16 Bit w/ IDS

SNU-4 44.4 41.7
WC 48.2 55.6
IRP 53.5 57.2
IRP-SA 53.5 57.5
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Fig. 16. Performance enhancement of IRP-SA.

without IDS. Because of the large dynamic range of floating-point variables, the
unnormalized lattice filter (“lattice filter” in Table II) required greater than
16-bits of precision to avoid overflows resulting from rounding errors. When
applying IDS, using a 16-bit data path on this benchmark it achieves a better
SQNR than obtained using a 32-bit data path without IDS. The normalized
lattice filter also obtains substantial benefit from the application of IDS. With
improvements to the analysis phase of our implementation of IDS, particularly
to exploit sophisticated data-dependence analysis information, we believe it
should also be possible to obtain significant benefits to both the FFT bench-
marks as well as the Levinson—Durbin benchmark.

5.3 Execution Time Performance Impact

Figure 16 shows the speedup of IRP-SA versus WC, SNU-4, and IRP without
using the FMLS instruction. We note that for SNU-4, we have not incorpo-
rated the shift-optimization algorithms presented in Kum et al. [2000], which
may provide additional benefits. Differences in performance range from a 25%
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Fig. 17. Performance enhancement with FMLS.

speedup over WC on LAT, to a slowdown of 13% versus WC on INVPEND.
IRP-SA is slower than WC and SNU-4 for both SINE and INVPEND. Both
SINE and INVPEND have larger expression trees. Hence, the slowdowns indi-
cate that IRP-SA may increase overhead because of additional shift operations
used to improve SQNR. On the other hand, shift operations required for scal-
ing before assignment, but redundant for rounding noise, can be eliminated
by our implementation of IRP-SA, which tends to reduce the overhead of shift
operations for benchmarks with small expression trees. Note that relative to
the differences in performance obtained by using a fixed-point approximation
versus floating-point emulation, which can improve performance on the Texas
Instruments C60 by factors of 406.6 for a 4th order IIR filter kernel, and 24.6
times faster for a QCELP Codec application [Kum et al. 2000], the differences
in performance resulting from reducing the overhead of shift operations used
for fixed-point scaling are smaller—providing speedups by factors of 1.33 and
1.045, respectively [Kum et al. 2000]. By refining IRP-SA to use sensitivity
information to introduce additional scaling overhead only on those operations
most likely to impact SQNR, it may be possible to eliminate most of the impact
on execution time (this is beyond the scope of this work).

The speedup when using the FMLS instruction in combination with the IRP-
SA algorithm is plotted in Figure 17 when FMLS can encode an arbitrary shift
distance (i.e., bars labeled “Limiting” in Figure 17), an average speedup of 9.8%
is achieved. Most of the benefit to performance is captured by encoding only
four shift distances, which also captures most of the benefits for SQNR (see
Figure 15). The data in Figure 17 shows that FMLS-4 achieves an average
speedup of 4.7% and up to 13% for INVPEND.

6. CONCLUSIONS

An algorithm for automatically generating fixed-point scaling operations was
presented in conjunction with a novel embedded fixed-point ISA extension:
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fractional-multiply with internal left shift (FMLS). Nontrivial improvements in
signal quality over previous conversion approaches were illustrated and some
impressive speedups noted. It is seen that an SQNR improvement equivalent to
carrying up to 2.0 extra bits of precision throughout the computation is achiev-
able using IRP-SA in conjunction with the FMLS operation. Furthermore, by
simply adding a FMLS operation with a few output shift distances, a speedup
of 13% is achievable. In addition, a complementary-scaling technique (IDS) was
proposed that enables the fixed-point scaling of a variable to be parameterized
depending upon the context of its definitions and uses. An implementation of
IDS specialized to single-nested loops was found to improve accuracy of a lattice
filter benchmark by the equivalent of more than 16 bits of precision.

ACKNOWLEDGMENTS

This research was supported by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and by Communications and Information
Technology Ontario.

REFERENCES

Aawmopt, T. 2001. Floating-point to Fixed-Point Compilation and Embedded Architectural Sup-
port. M.S. thesis, University of Toronto.

Aamopr, T. anp Caow, P.  2000. Embedded ISA support for enhanced floating-point to fixed-point
ANSI C compilation. In 3rd International Conference on Compilers, Architectures, and Synthesis
for Embedded Systems.

Arra Group. 1994. Fixed-Point Optimizer User’s Guide. Cadence Design Systems, Inc. Sunny-
vale, CA.

AnspacH, K. M., Bomar, B. W,, ExceLs, R. C., aNp JosepH, R. D.  1996. Minimization of fixed-point
roundoff noise in extended state-space digital filters. IEEE Trans. Circuits Syst. II 43, 3 (Mar.).

Borrorr, S. A. 1997. Approximate state-feedback linearization using spline functions. Automat-
ica 33, 8 (Aug.).

CHUNG, J.-G. aND Parui, K. K. 1995. Scaled normalized lattice digital filter structures. IEEE
Trans. Circuits Syst. I 42, 4 (Apr.).

Hwang, S.Y. 1977. Minimum uncorrelated unit noise in state-space digital filtering. IEEE Trans-
actions on Accoustics, Speech, and Signal Processing ASSP-25, 273-281.

Jackson, L. B. 1970a. On the interaction of roundoff noise and dynamic range in digital filters.
Bell Syst. Tech. J. 49, 2 (Feb.).

JACKsoN, L. B.  1970b. Roundoff-noise analysis for fixed-point digital filters realized in cascade or
parallel form. In IEEE Transactions on Audio and Electroacoustics AU-18, 2 (June).

Kim, S. anD Sung, W. 1994. A floating-point to fixed-point assembly program translator for the
TMS 320C25. IEEE Trans. Circuits Syst. I1 41, 11 (Nov.).

Kim, S. anDp Sung, W. 1998. Fixed-point optimization utility for C and C++ based digital signal
processing programs. IEEE Trans. Circuits Syst. II 45, 11 (Nov.).

Kum, K.-I. anD Sung, W. 2001. Combined word-length optimization and high-level synthesis of
digital signal processing systems. In IEEE Trans. Comput.-Aided Design Integ. Circuits Syst. 20,8
(Aug.), 921-930.

Kum, K.-1., Kang, J., anD Sung, W, 1997. A floating-point to fixed-point C converter for fixed-point
digital signal processors. In Proceedings of the 2nd SUIF Compiler Workshop.

Kum, K.-1., Kang, J., anD Sung, W.  1999. A floating-point to integer C converter with shift reduc-
tion for fixed-point digital signal processors. In Proceedings of the ICASSP. Vol. 4. 2163-2166.
Kum, K.-1., Kang, J., aND Sung, W. 2000. AUTOSCALER for C: An optimizing floating-point to
integer C program converter for fixed-point digital signal processors. IEEE Trans. Circuits Syst.

11 47, 9 (Sept.), 840-848.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 26, Publication date: April 2008.



Compile-Time and Instruction-Set Methods o 26:27

MEeNArD, D., CHILLET, D., CHAROT, F., AND SENTIESYS, O. 2002. Automatic floating-point to fixed-point
conversion for DSP code generation. In 5th International Conference on Compilers, Architectures,
and Synthesis for Embedded Systems.

Mutuis, C. T. aND RoBERTS, R. A. 1976. Synthesis of minimum roundoff noise fixed-point digital
filters. IEEE Transactions on Circuits and Systems CAS-23, 551-561.

OppeHEIM, A. V. 1970. Realization of digital filters using block-floating-point arithmetic. IEEE
Transactions on Audio and Electroacoustics AU-18, 2 (June).

PEng, S. 1999. UTDSP: A VLIW programmable DSP processor in 0.35 um CMOS. M.S. thesis,
University of Toronto. http://www.eecg.utoronto.ca/"speng.

Puiarg, S., LeEg, C. G., aND CHow, P. 1995. Machine-independent compiler optimizations for the
UofT DSP architecture. In Proceedings of the 6th ICSPAT. 860-865.

SacHIR, M. A. 1993. Architectural and compiler support for DSP applications. M.S. thesis, Uni-
versity of Toronto.

SacHIR, M. A. 1998. Application-specific instruction-set architectures for embedded DSP appli-
cations. Ph.D. thesis, University of Toronto.

SacHIR, M. A., CHow, P., aND LEE, C. G. 1994. Application-driven design of DSP architectures and
compilers. In Proceedings of the ICASSP. 11-437-11-440.

SiNngH, V. 1992, An optimizing C compiler for a general purpose DSP architecture. M.S. thesis,
Univeristy of Toronto.

Spang, H. A. anDp ScHULTHEISS, P. M. 1962. Reduction of quantization noise by use of feedback.
IRE Trans. Commun. CS-10, 373—-380.

StoopLey, M. G. anp LEEg, C. G. 1996. Software pipelining loops with conditional branches. In
Proceedings of the 29th IEEE | ACM International Symposium on Microarchitecture. 262—273.
SUNDARAMOORTHY, K., PURSER, Z., AND ROTENBERG, E. 2000. Slipstream processors: Improving both

performance and fault tolerance. In ASPLOS-IX. 257-268.

Synopsys 2000a. Press Release: Synopsys Accelerates System-Level C-Based DSP Design With
CoCentric Fixed-Point Designer Tool. Synopsys Inc.

Synopsys 2000b. Synopsys CoCentric Fixed-Point Designer Datasheet. Synopsys Inc.

Texas INsTRUMENTS. 1993. TMS320C5x User’s Guide.

WiLLEMS, M., BURSGENS, V., GROTKER, T., AND MEYR, H. 1997. FRIDGE: An interactive code gener-
ation environment for HW/SW CoDesign. In Proceedings of the ICASSP.

Z1.LEs, C. AND SoHI, G.  2002. Master/slave speculative parallelization. In MICRO-35. 85-96.

Received January 2004; revised March 2006; accepted January 2007

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 26, Publication date: April 2008.



