
Ucigame, A Java Library for Games
Daniel Frost

Donald Bren School of Information and Computer Sciences
University of California, Irvine
Irvine, CA 92697-3440 U. S. A.

frost@uci.edu

ABSTRACT
Ucigame (pronounced OO-see-GAH-me) is a Java package that

supports the programming of 2D sprite-based computer games.

Designed for novice programmers, it enables students in an

introductory class to write computer games that have animated

sprites, music and sound effects, and event-driven keyboard and

mouse handling. Ucigame has also been used successfully in a

senior-level class for experienced programmers.

Categories and Subject Descriptors
D.2.13 [Reusable Software]: Reusable Libraries.

General Terms
Design, Human Factors, Languages.

Keywords
Computer games, Java, Java library, Ucigame.

1. INTRODUCTION
“Our practice of embedding a programming language in

the first courses, started when languages were easy for

beginners, has created a monster. Our students are being

overwhelmed by the complexities of languages that many

experts find challenging (typically Java and C++)…

Many do not experience the joy of computing: the

interplay between the great principles, the ways of

algorithmic thinking, and the solutions of interesting

problems.” – Peter J. Denning [2].

The Ucigame (pronounced OO-see-GAH-me) framework is

designed to enable novice programmers to create 2D computer

games in Java. It has also been used by relatively experienced

programmers in a senior-level game development course.

Ucigame is a Java package, distributed as ucigame.jar, that

handles many of the more complex game programming tasks,

including loading and playing sound files, handling concurrency

and multi-threading issues, and sprite-related tasks such as

loading images from files, animating the images, and detecting

collisions. A challenge in teaching an introductory Java

programming course is to find short projects that excite the

students, are not too difficult, and do not rely on Java libraries

that have not yet been covered. Simple game projects with

Ucigame may fulfill this need.

2. MOTIVATION
Ucigame was developed to make introductory Java programming

more engaging. For many high school and college students,

computer games are an important component of their culture, and

also the most visible type of computer program. (The variety,

frequent updates, and even the bugginess of computer games

make them more visible as computer programs than the more

widely used software in operating systems, office productivity

applications, and electronic devices.) Familiarity, interactivity,

and certainly the “fun factor” all make computer games effective

programming projects for novice programmers.

Programming courses often teach, at least initially, a subset of the

language and its libraries. A new programmer is learning new

skills and a new way of thinking, and teachers often want to

minimize complexity at the language and library levels. For

example, in Java the case statement may be put off, in favor of

solely using if. Sometimes teachers use a development

environment that only accepts a subset of the language (e.g.

DrJava [6]) or start with a different and simpler language

altogether [12].

A related technique is to use simplified or modified versions of

standard libraries, with the goal of substituting ease of learning

and ease of use for flexibility and generality. A classic example in

Java is to replace the console input facilities provided by

System.in and the InputStream class. (The Java Standard

Library’s Scanner class, introduced in Java 1.5, alleviates this

need somewhat.)

We have articulated two goals: to engage students with computer

game projects, and to ease students’ paths into Java programming

with a digestible subset of the Java language and its libraries.

These goals may be contradictory, since even a simple computer

game can require a fairly complex implementation. We attempt to

resolve the conflict by restricting the computer games to 2D,

sprite-based games and by encapsulating in the Ucigame library

many of the mundane and yet complex chores required for even a

simple game. Ucigame contains a number of classes and objects

which provide easily comprehended and used abstractions of

common game components.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SIGCSE ’08, March 12-15, 2008, Portland, Oregon, USA.

Copyright 2008 ACM 1-59593-947-0/ 08/0003…$5.00.

310

3. THE UCIGAME PACKAGE
Computer games written with Ucigame are based on sprites, small

graphics that can move around in the game window. A sprite that

doesn’t move might be a tree, building, or some other part of the

background. A moving sprite might be a character or a spaceship.

We have found that students enjoy designing sprite-based games

and that they provide plenty of room for students’ creativity.

3.1 Pong.java
The best way to see how Ucigame works is to look at a relatively

simple example program. The source code for Pong.java follows.

A screen capture is in Figure 1. Although based on the traditional

Pong video game, the Ucigame version is simpler: a single player

controls a single paddle, and there are no goals and no scoring.

Nevertheless, Pong.java illustrates the elements of all Ucigame-

based games.

// Pong.java
import ucigame.*;

public class Pong extends Ucigame {
 Sprite ball;
 Sprite paddle;

 public void setup() {
 window.size(400, 250);
 window.title("Pong");
 framerate(30);

 Image bkg = getImage("images/pic.png");
 canvas.background(bkg);

 ball = makeSprite(getImage(
 "images/ball.gif", 255, 255, 255));
 paddle = makeSprite(getImage(
 "images/pad.png"));

 ball.position(
 canvas.width()/2 - ball.width()/2,
 canvas.height()/2 - ball.height()/2);
 ball.motion(6, 3);
 paddle.position(
 canvas.width() - paddle.width() - 10,
 canvas.height() - paddle.height())/2);
 }

 public void draw() {
 canvas.clear(); // draw background
 ball.move();

 ball.bounceIfCollidesWith(paddle);
 ball.bounceIfCollidesWith(TOPEDGE,
 BOTTOMEDGE, LEFTEDGE, RIGHTEDGE);
 paddle.stopIfCollidesWith(TOPEDGE,
 BOTTOMEDGE, LEFTEDGE, RIGHTEDGE);

 paddle.draw();
 ball.draw();
 }

 public void onKeyPress() {
 if (keyboard.isDown(
 keyboard.UP, keyboard.W))
 paddle.nextY(paddle.y() - 2);
 if (keyboard.isDown(
 keyboard.DOWN, keyboard.S))

 paddle.nextY(paddle.y() + 2);
 if (keyboard.isDown(
 keyboard.LEFT, keyboard.A))
 paddle.nextX(paddle.x() - 2);
 if (keyboard.isDown(
 keyboard.RIGHT, keyboard.D))
 paddle.nextX(paddle.x() + 2);
 }
}

Every Ucigame-based game imports ucigame.* and has a class

that extends Ucigame. The Ucigame superclass contains a public

static void main() method which is invoked when Pong is run

from the command line, and init(), start(), stop(), and destroy()

methods which override those in Applet, which is Ucigame’s

superclass. The Ucigame superclass also contains the methods

setup(), draw(), and onKeyPress() which are meant to be

overridden by game programs. The setup() method is called once

at the start of the game, and is a good place to load images and

sounds and to initialize sprites. The draw() method is called every

time the game’s window needs to be refreshed—either due to

normal window events such as a covered area being exposed, or

due to the game’s animation. The onKeyPress() method is called

when the player presses a key on the keyboard.

Figure 1. The Pong game, with a bouncing ball, a player

controlled paddle, and programmer art background.

Ucigame provides several useful built-in objects; three used in

Pong.java are window, canvas, and keyboard. window represents

the operating system window on the screen in which the game

appears, canvas refers to the drawable area within that window,

and keyboard, of course, represents the physical keyboard. A

complete list of objects appears in Table 1.

Now let’s look inside each of Pong.java’s methods. The first line

in the setup() method sets the game window’s width and height

(the inner dimensions; when the borders and title area are

included the window will be slightly larger). This method has no

effect when the program is running as an applet. In the next line

window.title() sets the text in the caption area. (If the program is

running as an applet the text displays in the browser’s status area.)

311

The parameter passed to the framerate() method specifies the

number of times per second that draw() will be called. The next

two lines in setup() create a ucigame.Image object based on a

file’s data, and specify that the Image object should be the

canvas’s background—that is, the image will be painted on the

canvas when canvas.clear() is called. The remaining lines in

setup() create and position the ball and paddle sprites. Note that

ball is initialized using a four-parameter version of getImage().

The last three parameters specify that any pixels in the

images/ball.gif file with RGB color (255, 255, 255), that is, white,

will be transparent. (Image files always contain rectangular

images, but when some pixels are transparent the image can

appear to have a non-rectangular shape.) The motion, if any, of a

sprite can be completely controlled by the programmer, or can be

handled automatically by Ucigame. Specifying ball.motion(6,3)

makes the ball sprite move 6 pixels to the right and 3 pixels down

every time ball.move() is called (in draw()).

Table 1. Objects and classes provided by Ucigame.

window object Represents the entire game window.

canvas object Represents the rectangular interior of the

window..

keyboard object Represents the computer keyboard.

mouse object Represents the computer mouse.

Sprite class A Sprite object is a movable, possibly

animated image.

Image class An Image object is created by copying the

pixels from an image file.

Sound class A Sound object is a sound or a piece of

music.

Ucigame class The superclass that initiates and controls

the game.

Pong.java’s draw() method is invoked 30 times per second,

providing smooth animation. As mentioned above, canvas.clear()

overwrites the canvas area with the specified background, and

ball.move() repositions the ball sprite by its movement amount.

The next three lines use the Sprite class’s bounceIfCollidesWith()

and stopIfCollidesWith() methods. These methods can take any

number of Sprite objects as parameters. If there is a collision or

overlap between the “this” Sprite and any listed as parameters,

then the “this” Sprite object’s movement amounts are modified

appropriately—either to cause a bounce or to stop the sprite

completely. TOPEDGE, BOTTOMEDGE, LEFTEDGE, and

RIGHTEDGE are final ucigame.Sprite objects defined in the

superclass and representing the edges of the canvas area. Finally,

the Sprite objects’ draw() methods are called, which display the

images on the canvas at the correct locations.

The onKeyPress() method is optional, but if it is coded it is called

whenever the player presses down or holds down one or more

keyboard keys. The programmer can turn off the autorepeat

feature, so that holding down a key only results in a single call to

onKeyPress(). onKeyPress() is executed immediately before

draw(), which means that the autorepeat rate is determined by the

window’s frame rate. The keyboard.isDown() method is passed

any number of (integer) constants representing specific keys, and

returns true if any of those keys is down. nextX() and nextY()

from the Sprite class specify where the sprite will be positioned

on the next call to draw(), subject to modification by the

stopIfCollidesWith() method. In Pong.java, the arrow and WASD

keys move the paddle by two pixels per frame.

For a new programmer, Pong.java is a fairly long program and

certainly cannot be comprehended without time and effort.

However, two factors mitigate the difficulty and make this

program pedagogically effective. First, the only control structure

used in Pong.java is a simple if; otherwise there are no

conditionals, loops, or blocks. Of course, a lot of implicit control

is occurring: the setup(), draw(), and onKeyPress() methods are

invoked at the right times, and the bounce/stopIfCollidesWith()

methods have implicit conditionals. Secondly, most of the code

consists of calls to methods in objects. Since the objects in the

program all correspond to visible aspects of the computer game,

and their methods are all easily understood functions of those

objects, students have little trouble tinkering with the code to

extend or modify it. In our freshman class students are introduced

to Pong.java in the second lab, and they add a second paddle to

the game with its own keys to control it. By the end of the ten

week quarter, many students are writing moderately complex

games with multiple moving objects, interesting gameplay,

original art and music, and often accommodating two players.

The students’ games are usually modeled closely on classic arcade

games of the 1980s, but for the students the implementations are

satisfying accomplishments.

3.2 Other Ucigame Features
Several capabilities of Ucigame not illustrated by Pong.java will

be briefly described.

An animated sprite has more than one “frame,” each frame being

a separate image. Cycling through the frames creates the illusion

of motion within the sprite. (Whether the sprite’s position on the

canvas is changing is an orthogonal issue.) The frame images

may be stored in multiple files, but often they are stored within a

single large file. In the following snippet, a Sprite object named

dancer has already been declared, and its frames come from three

segments of a PNG image file, with upper left hand pixels at

(0, 0), (50,0), and (100, 0).

 Image frames =
 getImage("images/frames.png", 0, 0, 0);
 dancer = makeSprite(50, 75); // width, ht
 dancer.addFrames(frames,0,0, 50,0, 100,0);

Each time dancer.draw() is called, Ucigame displays the next

frame, cycling from the last back to the first.

Ucigame programs can be run as applets or applications without

recompilation. The Ucigame superclass includes both a public

static void main() method (for applications) and is itself a subclass

of Applet, overriding the methods init(), start(), stop(), and

destroy().

Computer games written in Java utilize multithreading to handle

keyboard, mouse, and window events, maintain timers for steady

animation and gameplay related occurrences, and perform

calculations. The concept of multithreading is within reach of

most college level beginning programmers, but coordinating

threads with Java’s Swing library—for example, with

312

SwingUtilities.invokeLater()—is not. Ucigame makes most

aspects of multithreading and event driven programming trivial,

since the superclass manages the threads and calls programmer

supplied methods at the correct times. The Ucigame programmer

does not need to know about any threading issues.

Sound effects and background music are important components

of games. Java’s AudioClip class makes playing, stopping, and

looping one or more sound files fairly easy, but it only handles

uncompressed audio formats such as .au and .wav files. Ucigame

includes the open source JLayer library to decode and play MP3

format audio files [10]. To the game programmer all audio files

are handled with the same methods. For example:

 Sound theme =
 getSound("sounds/MyTheme.mp3");
 theme.loop();

Game programmers can create sprites which act as buttons, by

supplying three images for the button’s resting, mouse-over, and

clicked states. When the button is clicked, Ucigame calls a

method specified by the programmer.

Text of any size, color, and font can be drawn by Ucigame on

sprites or on the background of the window.

The Ucigame library is compatible with Java 1.5. As Java has

evolved, class files created with one version of Java can usually

not be run by earlier versions of Java. This is primarily a concern

with applets, where the programmer and web page writer cannot

control what version of Java exists on the user’s computer.

Ucigame makes use of several Java features introduced in version

1.5, most visibly varargs. For instance, the keyboard.isDown()

method can be passed any number of (int) parameters.

Several features that could be put into Ucigame have been

deliberately left out. One example is a possible camera object.

Many games have a world, level, or map that is larger than the

game’s window. Often the player uses the arrow keys to move the

window over the map. For the programmer, it can be challenging

to correctly set the coordinates of the background image and the

sprites so that they appear in the correct positions relative to each

other and to the visible window. A camera object could simplify

this task by encapsulating the appropriate offsets that must be

added to the sprites’ positions. However, the goal of Ucigame is

to hide infrastructure and particularly tricky game code (such as

collision detection), not to take all game logic programming out of

the student’s hands.

4. UCIGAME FOR SENIORS
Although the original intention was to use Ucigame in an

introductory course, we also used it in a capstone type course for

seniors on computer game development. In this course students

work in teams of three or four, and teams spend the first half of

the term writing a design document. During this period we

assigned each student to work independently on a Ucigame-based

game. Since the students were already competent Java

programmers, a 45 minute introduction to the library was

sufficient. The seniors generally liked this assignment, and many

of the resulting games were ambitious and extensive.

5. RELATED WORK
The development of Ucigame—most importantly the setup() and

draw() method structure—was influenced by the marvelous

Processing language [13].

Several fine libraries have been designed to shield new Java

programmers from some of the language’s murkier features. The

Java Task Force’s jtf.jar package provides simplified and

improved (at least for beginners) input mechanisms, GUI

components, and graphical capabilities [9]. The objectdraw

library, developed at Williams College, supports events, multiple

threads, and a more object-oriented graphics system [7].

A wide variety of tools and kits exists to help with the writing of

computer games. All give the game designer at least a taste of the

programmer’s task of iteratively refining a design into a

satisfactory executable program. At the “drag and drop” end of

the spectrum are tools such as GameMaker [15], Scratch [12,14],

and Alice [1], all of which have the wonderful characteristic of

making syntax errors impossible. LWJGL [5], the Java Game

Toolkit [8], and the Golden T Game Engine [3] are Java libraries

which overlap Ucigame in functionality, but none is as strongly

oriented towards beginning programmers.

6. CONCLUSIONS
[T]he most significant bit in helping people learn

programming is the motivation. What are you doing with

programming? The language can get in the way, but

people will go through a huge amount of effort to do

something that they want to do. – Mark Guzdial [4]

Learning to program is difficult, and many approaches to teaching

programming have been proposed. The focus of Ucigame is on

motivating students by giving them a tool to write simple

computer games as they acquire the fundamentals of Java

programming. The Ucigame website, at www.ucigame.org,

provides documentation, a link to the .jar file, access to the source

code, and a number of sample programs, all of which are freely

available.

7. REFERENCES
[1] Alice: Free, Easy, Interactive 3D Graphics for the WWW.

http://www.alice.org/. Accessed September, 2007.

[2] Denning, P. J. 2003. Great Principles of Computing. In
Comm. of the ACM, Nov. 2003, Vol. 46 No. 11.

[3] Golden T Studios – Golden T Game Engine (GTGE).
http://www.goldenstudios.or.id/products/GTGE/index.php.

Accessed September, 2007.

[4] Guzdial, M. 2007. What is the role of language in learning
programming? Blog entry dated Oct. 25, 2007, at

http://www.amazon.com/gp/blog/post/PLNK161I4L1UV4A43.

[5] Home of the Lightweight Java Game Library.
http://lwjgl.org/. Accessed September, 2007.

[6] Hsia, J. I., Simpson, E., Smith, D., Cartwright, R. Taming
Java for the Classroom. SIGCSE 2005: Proceedings of the

Thirty-Sixth SIGCSE Technical Symposium on Computer

Science Education, St. Louis, Missouri, 2005.

313

[7] Java: An Eventful Approach.
http://eventfuljava.cs.williams.edu/. Accessed September,

2007.

[8] Java Game Toolkit. http://www.jpemartin.com/jgt/.
Accessed September, 2007.

[9] Java Task Force Home Page. http://jtf.acm.org. Accessed
September, 2007.

[10] JLayer MP3 library for the Java Platform.
http://www.javazoom.net/javalayer/javalayer.html. Accessed

September, 2007.

[11] Leutenegger, S. and Edgington, J. 2007. A Games First
Approach to Teaching Introductory Programming. In

SIGCSE 2007: Proceedings of the Thirty-Eighth SIGCSE

Technical Symposium on Computer Science Education,

Covington, Kentucky, 2007.

[12] Malan, D. J. and Leitner, H. H. Scratch for Budding
Computer Scientists. In SIGCSE 2007: Proceedings of the

Thirty-Eighth SIGCSE Technical Symposium on Computer

Science Education, pages 223-227, Covington, Kentucky,

2007.

[13] Processing 1.0 website. http://www.processing.org/.
Accessed September, 2007.

[14] Scratch | Home | imagine, program, share.
http://scratch.mit.edu/. Accessed September, 2007.

[15] YoYo Games | Gamemaker.
http://www.yoyogames.com/gamemaker/. Accessed

September, 2007.

314

