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Abstract

Lists, multisets, and sets are well-known data structures whose usefulness is widely rec-
ognized in various areas of Computer Science. These data structures have been analyzed
from an axiomatic point of view with a parametric approach in [11] where the relevant uni-
fication algorithms have been developed. In this paper we extend these results considering
more general constraints including not only equality but also membership constraints as
well as their negative counterparts.
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1 Introduction

Programming and specification languages usually allow the user to represent various forms of
aggregates of data objects, characterized by the way elements are organized and accessed. In
this paper we consider four different kinds of aggregates: lists, multisets, compact lists, and sets.
The basic difference between them lies in the order and/or repetitions of their data objects.

Importance of these forms of aggregates is widely recognized in various areas of Computer
Science. Lists are the classical example used to introduce dynamic data structures in imperative
programming languages. They are the fundamental data structure in functional and logic
languages. Sets are the main data structure used in specification languages (e.g., in Z [21]) and
in high-level declarative programming languages [4, 12, 16, 18]; but also imperative programming
languages may take advantage from the set data abstraction (e.g., SETL [22]). Multisets, often
called bags in the literature, emerge as the most natural data structure in several interesting
applications [3, 17, 25]. A compact list is a list in which contiguous occurrences of the same
element are immaterial; some possible application examples are suggested in [11].

Sets
ր տ

Multisets Compact lists
տ ր

Lists

The lattice of the four aggregates

Lists, multisets, compact lists, and sets have
been analyzed from an axiomatic point of view
and studied in the context of (Constraint) Logic
Programming (CLP) languages [11]—see figure
on the left for a lattice induced by their axiom-
atizations. In this context, these aggregates are
conveniently represented as terms, using differ-
ent constructors.

The theories studied deal with aggregate constructor symbols as well as with an arbitrary
number of free constant and function symbols. [11] focuses on equality between terms in each
of the four theories. This amounts to solve the unification problems in the equational theories
describing the properties of the four considered aggregates. Unification algorithms for all of
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them are provided in [11]; NP-unification algorithms for sets and multisets are also presented
in [1, 8]. In Section 3 and 5.1 we recall the main results of [11].

In this paper we extend the results of [11] to the case of more general constraints. The
constraints we consider are conjunctions of literals based on both equality and membership
predicate symbols. For the case of sets, the problem is studied in [13, 14]. In Section 4 we
define the notion of constraints and we identify the privileged models for the axiomatic theories
used to describe the considered aggregates. We show that satisfiability of constraints in those
models is equivalent to satisfiability in any model. We then define the notion of solved form for
constraints, and we prove that solved form constraints are satisfiable over the proposed privileged
models. In Section 5 we describe, for each kind of aggregate, the constraint rewriting procedures
used to eliminate all atomic constraints not in solved form. We use these procedures in Section 6
to solve the general satisfiability problem for the considered constraints. Some conclusions are
drawn in Section 7. Throughout the paper the word aggregate is used for denoting generically
one of the four considered aggregates, namely lists, multisets, compact lists, and sets.

2 Preliminary Notions

Basic knowledge of first-order logic (e.g., [5, 15]) is assumed; in this section we recall some
notions and we fix some notations that we will use throughout the paper.

A first-order language L = 〈Σ,V〉 is defined by a signature Σ = 〈F ,Π〉 composed by a set F
of constant and function symbols, by a set Π of predicate symbols, and by a denumerable set V
of variables. A (first-order) theory T on a language L is a set of closed first-order formulas of
L such that each closed formula of L which can be deduced from T is in T . A (first-order) set
of axioms Θ on L is a set of closed first-order formulas of L. A set of axioms Θ is said to be an
axiomatization of T if T is the smallest theory such that Θ ⊆ T . Sometimes we use the term
theory also to refer to an axiomatization of the theory. When Θ = {ϕ1, . . . , ϕn}, and A1, . . . , An

are the names of the formulas ϕ1, . . . , ϕn, we refer to that theory simply as: A1 · · ·An.

Capital letters X,Y, Z, etc. are used to represent variables, f , g, etc. to represent constant
and function symbols, and p, q, etc. to represent predicate symbols. We also use X̄ to denote
a (possibly empty) sequence of variables. T (F ,V) (T (F)) denotes the set of first-order terms
(resp., ground terms) built from F and V (resp., F). The function size : T (F ,V) −→ N returns
the number of occurrences of constant and function symbols in a term. Given a term t, with
FV (t) we denote the set of all variables which occur in the term t. Given a sequence of terms
t1, . . . , tn, FV (t1, . . . , tn) is the set

⋃n

i=1
FV (ti). When the context is clear, we use t̄ to denote

a sequence t1, . . . , tn of terms. If ϕ is a first-order formula, FV (ϕ) denotes the set of free
variables in ϕ. ∃ϕ (∀ϕ) is used to denote the existential (universal) closure of the formula ϕ,
namely ∃X1 · · · ∃Xn ϕ (∀X1 · · · ∀Xn ϕ), where {X1, . . . , Xn} = FV (ϕ). An equational axiom is
a formula of the form ∀X1 · · · ∀Xn(ℓ = r) where FV (ℓ = r) = {X1, . . . , Xn}. An equational
theory is an axiomatization whose axioms are equational axioms.

Given a first-order theory L = 〈Σ,V〉, a Σ-structure is a pair A = 〈A, I〉 where A is a
non-empty set (the domain) and I is the interpretation function of all constant, function, and
predicate symbols of Σ on A. A valuation σ is a function from a subset of the set of variables
V to A. σ and I determine uniquely a function σI from the set of first-order terms over L to A
and a function from the set of formulas over L to the set {false, true}. When the Σ-structure
is fixed, σI depends only by σ. Thus, with abuse of notation, σI is simply written as σ. Given a
Σ-structure A, a valuation σ is said a successful valuation of ϕ if σ(ϕ) = true. This fact is also
denoted by: A |= σI(ϕ). A formula ϕ is satisfiable in A if there is a valuation σ : FV (ϕ) −→ A
such that A |= σ(ϕ). In this case we say that A |= ∃ϕ. We say that A |= ϕ if for every valuation
σ from FV (ϕ) −→ A it holds that A |= σ(ϕ). A formula ϕ is satisfiable in A if there is a
valuation σ : FV (ϕ) −→ A such that A |= σ(ϕ). In this case we say that A |= ∃ϕ. We remind
that a formula is satisfiable in a Σ-structure A if and only if its existential closure is satisfiable
in A. Two formulas C1 and C2 are equi-satisfiable in A if: C1 is satisfiable in A if and only if
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C2 is satisfiable in A. A structure A is a model of a theory T if A |= ϕ for all ϕ in T . We say
that T |= ϕ if A |= ϕ for all models A of T .

3 The Theories

For each aggregate considered, we assume that Π is {=,∈} and F contains the constant symbol
nil and exactly one among the binary function symbols:

[ · | · ] for lists, {[ · | · ]} for multisets,
[[ · | · ]] for compact lists, { · | · } for sets,

Moreover, each signature can contain an arbitrary number of other constant and function sym-
bols. The four function symbols above are referred as the aggregate constructors. The empty list,
multiset, compact list, and set are all denoted by the constant symbol nil. We use simple syntac-
tic notations for terms built using these symbols. In particular, the list [ s1 | [ s2 | · · · [ sn | t ] · · ·]]
will be denoted by [s1, . . . , sn | t] or simply by [s1, . . . , sn] when t is nil. The same conventions
will be exploited also for the other aggregates.

3.1 Lists

The language LList is defined as 〈ΣList ,V〉, where ΣList = 〈FList ,Π〉, [ · | · ] and nil are in FList ,
and Π = {=,∈}. We recall that FList can contain other constant and function symbols. The
first-order theory List for lists is shown in the figure below.

(K) ∀x y1 · · · yn (x 6∈ f(y1, . . . , yn) ) f ∈ FList , f is not [ · | · ]

(W ) ∀y v x (x ∈ [ y | v ]↔ x ∈ v ∨ x = y)

(F1) ∀x1 · · ·xny1 · · · yn

(

f(x1, . . . , xn) = f(y1, . . . , yn)

→ x1 = y1 ∧ · · · ∧ xn = yn

)

f ∈ FList

(F2) ∀x1 · · ·xmy1 · · · yn f(x1, . . . , xm) 6= g(y1, . . . , ym) f, g ∈ FList , f is not g

(F3) ∀x (x 6= t[x])

where t[x] denotes a term t, having x as proper subterm

The three axiom schemata (F1), (F2), and (F3) (called freeness axioms, or Clark’s equality
axioms—see [6]) have been originally introduced by Mal’cev in [20]. Observe that (F1) holds
for [ · | · ] as a particular case. (F3) states that there is no term which is also a subterm of itself.
Note that (K) implies that ∀x (x /∈ nil).

3.2 Multisets

The language LMSet is defined as 〈ΣMSet ,V〉, where ΣMSet = 〈FMSet ,Π〉, {[ · | · ]} and nil are
in FMSet , and Π = {=,∈}. A theory of multisets—called MSet—can be simply obtained from
the theory of lists shown above. The constructor [ · | · ] is replaced by the constructor {[ · | · ]}
in axiom schema (K) and axiom (W ). The behavior of this new symbol is regulated by the
following equational axiom

(Em
p ) ∀xyz {[x, y | z ]} = {[ y, x | z ]} (permutativity)

which, intuitively, states that the order of elements in a multiset is immaterial. Axiom schema
(F1) does not hold for multisets, when f is {[ · | · ]}. It is replaced by axiom schemata (Fm

1 ):

(Fm
1 ) ∀x1 · · ·xny1 · · · yn

(

f(x1, . . . , xn) = f(y1, . . . , yn)

→ x1 = y1 ∧ · · · ∧ xn = yn

)

for any f ∈ FMSet , f distinct from {[ · | · ]}

3



In the theory KWEm
p Fm

1 F2F3, however, we lack in a general criterion for establishing equality
and disequality between multisets. To obtain it, the following multiset extensionality property
is introduced: Two multisets are equal if and only if they have the same number of occurrences
of each element, regardless of their order. The axiom proposed in [11] to force this property is
the following:

(Em
k ) ∀y1y2v1v2






{[ y1 | v1 ]} = {[ y2 | v2 ]} ↔

(y1 = y2 ∧ v1 = v2)∨

∃z (v1 = {[ y2 | z ]} ∧ v2 = {[ y1 | z ]})






(Em
k ) implies (Em

p ). Axiom schema (Fm
3 ) is also introduced:

(Fm
3 ) ∀x1 · · ·xmy1 · · · ynx

(

{[x1, . . . , xm |x ]} = {[ y1, . . . , yn |x ]}

→ {[x1, . . . , xm ]} = {[ y1, . . . , yn ]}

)

Axiom schema (Fm
3 ) reinforces the acyclicity condition imposed by standard axiom schema

(F3). As a matter of fact, X 6= {[ a, b, b |X ]} follows from (F3). Axiom schema (Fm
3 ) states that,

since {[ a, a, b ]} 6= {[ a, b, b ]}, then {[ a, a, b |X ]} 6= {[ a, b, b |X ]}. This property is not a consequence
of the the remaining part of the theory.

3.3 Compact Lists

The language LCList is defined as LCList = 〈ΣCList ,V〉, where ΣCList = 〈FCList ,Π〉, [[ · | · ]] and
nil are in FCList , and Π = {=,∈}. Similarly to multisets, the theory of compact lists—called
CList—is obtained from the theory of lists with only a few changes. The list constructor symbol
is replaced by the binary compact list constructor [[ · | · ]] in (K) and (W ). The behavior of this
symbol is regulated by the equational axiom

(Ec
a) ∀xy [[x, x | y ]] = [[x | y ]] (absorption)

which, intuitively, states that contiguous duplicates in a compact list are immaterial. As for
multisets, we introduce a general criterion for establishing both equality and disequality between
compact lists. This is obtained by introducing the following axiom:

(Ec
k) ∀y1y2v1v2








[[ y1 | v1 ]] = [[ y2 | v2 ]] ↔

(y1 = y2 ∧ v1 = v2)∨

(y1 = y2 ∧ v1 = [[ y2 | v2 ]])∨

(y1 = y2 ∧ [[ y1 | v1 ]] = v2)








(Ec
a) is implied by (Ec

k). Axiom schema (F1) is replaced by axiom schema (F c
1 ):

(F c
1 ) ∀x1 · · ·xny1 · · · yn

(

f(x1, . . . , xn) = f(y1, . . . , yn)

→ x1 = y1 ∧ · · · ∧ xn = yn

)

for any f ∈ FCList , f distinct from [[ · | · ]]

The freeness axiom (F3) needs to be suitably modified. The introduction of (F3) is motivated by
the requirement of finding solutions to equality constraints over Σ-structures with the domain
built based on Herbrand Universe, where each term is modeled by a finite tree. As opposed to
lists and multisets, an equation such as X = [[ nil |X ]] admits a solution in these structures.
Precisely, a solution that binds X to the term [[ nil | t ]], where t is any term. Therefore, as
explained in [11], axiom schema (F3) should be weakened and, thus, replaced by:

(F c
3 ) ∀x (x 6= t[x])

unless: t is of the form [[ t1, . . . , tn |x ]], with n > 0,

x /∈ FV (t1, . . . , tn), and t1 = · · · = tn

4



Name empty with Equality Herbrand Acycl. Perm. Abs. Equational Name

List (K) (W ) (F1) (F2) (F3) EList

MSet (K) (W ) (Em
k ) (Fm

1 ) (F2) (F3) (Em
p ) EMSet

CList (K) (W ) (Ec
k) (F c

1 ) (F2) (F c
3 ) (Ec

a) ECList

Set (K) (W ) (Es
k) (F s

1 ) (F2) (F s
3 ) (Es

p) (Es
a) ESet

Figure 1: Axioms for the four theories

3.4 Sets

The language LSet is defined as LSet = 〈ΣSet ,V〉, where ΣSet = 〈FSet ,Π〉, { · | · } and nil are
in FSet , and Π = {=,∈}. The last theory we consider is the simple theory of sets Set. Sets
have both the permutativity and the absorption properties which, in the case of { · | · }, can be
rewritten as follows:

(Es
p) ∀xyz {x, y | z} = {y, x | z}

(Es
a) ∀xy {x, x | y} = {x | y}

A criterion for testing equality (and disequality) between sets is obtained by merging the multiset
equality axiom (Em

k ) and the compact list equality axiom (Ec
k):

(Es
k) ∀y1y2v1v2











{y1 | v1} = {y2 | v2} ↔

(y1 = y2 ∧ v1 = v2)∨

(y1 = y2 ∧ v1 = {y2 | v2})∨

(y1 = y2 ∧ {y1 | v1} = v2)∨

∃k (v1 = {y2 | k} ∧ v2 = {y1 | k})











According to (Es
k) duplicates and ordering of elements in sets are immaterial. Thus, (Es

k) implies
the equational axioms (Es

p) and (Es
a). In [11] it is also proved that they are equivalent when

domains are made by terms. The theory Set also contains axioms (K), (W ) with [ · | · ] replaced
by { · | · }, and axiom schemata (F2) Axiom schema (F1) is replaced by:

(F s
1 ) ∀x1 · · ·xny1 · · · yn

(

f(x1, . . . , xn) = f(y1, . . . , yn)

→ x1 = y1 ∧ · · · ∧ xn = yn

)

for any f ∈ FSet , f distinct from { · | · }

The modification of axiom schema (F3) for sets, instead, simplifies the one used for compact
lists:

(F s
3 ) ∀x (x 6= t[x])

unless: t is of the form {t1, . . . , tn |x} and x ∈ FV (t1, . . . , tn)

3.5 Equational theories

As we have seen in this section, each aggregate constructor is precisely characterized by zero,
one or 2 equational axioms. We define the four corresponding equational theories as follows:

EList the empty theory for List,
EMSet consisting of the Permutativity axiom (Em

p ) for MSet,
ECList consisting of the Absorption axiom (Ec

a) for CList,
ESet consisting of both the Permutativity (Es

p) and Absorption (Es
a) axioms for Set.

Relationships between these equational theories, Σ-structures, and the proposed first-order the-
ories for aggregates are explained in the next section. Figure 1 summarizes the axiomatizations
of the four theories.
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4 Constraints, Privileged Models, and Solved Form

In this section we introduce the privileged models for the four theories introduced in the previous
section. These models are used to testing satisfiability of the particular kind of formulas we are
concerned with, namely, constraints. We then show that the models and the theories defined
in the previous section correspond on the class of constraints considered. Moreover, we give
a general notion of solved form for constraints, and we prove that a solved form constraint is
satisfiable in the corresponding privileged model.

Definition 4.1 (Constraints) Let T be either List or MSet or CList or Set. A T-constraint
CT is a conjunction of atomic LT-formulas or negation of atomic LT-formulas of the form s π t,
where π ∈ Π, and s, t ∈ T (FT,V).

Throughout the paper we will use the following terminology to refer to particular kinds of
constraints: equality (resp., disequality) constraints are conjunctions of atomic formulas of the
form s = t (resp., s 6= t). Membership (resp., not-membership) constraints are conjunctions of
membership atoms (resp., membership negative literals), i.e. formulas of the kind s ∈ t (resp.,
s 6∈ t).

4.1 Privileged Models

As discussed in Section 3.5, each aggregate constructor is precisely characterized by an equa-
tional theory, that we have named EList , EMSet , ECList , and ESet . Using the appropriate
equational theory we can define a privileged model for the first-order theory List , MSet , CList ,
and Set for each aggregate. Each model is obtained as a partition of the Herbrand Universe.

Definition 4.2 Let T be List (resp., MSet, CList , or Set). A privileged Σ-structure for T is
defined as follows.

1. The domain of the Σ-structure is the quotient T (FT)/ ≡T of the Herbrand Universe T (FT)
over the smallest congruence relation ≡T induced by the equational theory ET on T (FT).

2. The interpretation of a term t is its equivalence class w.r.t. ≡T, denoted by ✐t .

3. = is interpreted as the identity on the domain T (FT)/ ≡T.

4. The interpretation of membership is: ✐t ∈ ✐s is true if and only if there is a term in ✐s
of the form [t1, . . . , tn, t | r] (resp., {[ t1, . . . , tn, t | r ]}, [[ t1, . . . , tn, t | r ]], or {t1, . . . , tn, t | r})
for some terms t1, . . . , tn, r.

It is easy to prove that the above defined Σ-structures are in fact models of the corresponding
theories. In Lemma A.2 we prove this property for multisets. ¿From now on, we will call the
privileged Σ-structures above defined privileged models for List , MSet , CList , and Set . We refer
to them as LIST ,MSET , CLIST , and SET , respectively.

Remark 4.3 When ✐s is the class of a multiset (resp., a set), since the permutativity property
holds, the requirement for ✐t ∈ ✐s to be true can be simplified to: {[ t | r ]} (resp., {t | r}) is in
✐s .

The following notion from [19] is crucial for characterizing the above privileged models.

Definition 4.4 Given a first-order language L = 〈Σ,V〉, a set of first-order formulas C on L,
a theory T on L, and a Σ-structure A, T and A correspond on the set C if, for each ϕ ∈ C, we
have that T |= ∃ϕ if and only if A |= ∃ϕ.

This property means that if ϕ is an element of C and ϕ is satisfiable in A, then it is satisfiable
in all the models of T . We prove the correspondence property for our theories and the privileged
models, when the class C is the class of constraints defined in Definition 4.1. We show below
the proof of this result in the case of the modelMSET and the theory MSet. The other cases
are similar. In the proof we use some basic results which can be found in the Appendix A
(Lemmas A.1–A.3).

6



Theorem 4.5 The model MSET (resp., LIST , CLIST , SET ) and the theory MSet (resp.,
List, CList, and Set) correspond on the class of MSet- (resp., List-, CList-, and Set-)constraints.

Proof. From Lemma A.2 it follows thatMSET is a model of MSet, namely that if C is a first-order
formula and MSet |= C, thenMSET |= C.

On the other hand, if ∃C is a formula with only existential quantifiers, then MSET |= ∃C if and
only if there exists σ such thatMSET |= σ(C). Assume thatM |= σ(C). From Lemmas A.1 and A.3,
we have thatM |= ∃C for all modelsM of MSet. This implies that MSet |= ∃C. ✷

4.2 Solved Form

Solved form constraints play a fundamental rôle in establishing satisfiability of constraints in
the corresponding privileged model. The solved form is obtained by defining first a weaker form,
called the pre-solved form, and then by adding to this form two further conditions.

Definition 4.6 A constraint C = c1 ∧ · · · ∧ cn is in pre-solved form if for i ∈ {1, . . . , n}, ci is
in pre-solved form in C, i.e. in one of the following forms:

• X = t and X does not occur elsewhere in C

• t ∈ X and X does not occur in t

• X 6= t and X does not occur in t

• t /∈ X and X does not occur in t.

A constraint in pre-solved form is not guaranteed to be satisfiable in the corresponding
privileged model. For example, the constraint X ∈ Y ∧ Y ∈ X is in pre-solved form but it
is unsatisfiable in each of the privileged models LIST ,MSET , CLIST , and SET . The first
condition we introduce below takes care of this situation.

Definition 4.7 (Acyclicity Condition) Let C be a pre-solved form constraint and C∈ be the
part of C containing only membership constraints. Let G∈C be the directed graph obtained as
follows:

Nodes. Associate a distinct node to each variable X in C∈.

Edges. If t ∈ X is in C∈, ν1, . . . , νn are the nodes associated with the variables in t, and µ is
the node associated with the variable X, then add the edges 〈ν1, µ〉, . . . , 〈νn, µ〉.

We say that a pre-solved form constraint C is acyclic if G∈C is acyclic.

The acyclicity condition is not sufficient for satisfiability. Consider the constraint {A,B} ∈
X ∧ {B,A} /∈ X . It is in pre-solved form and acyclic but unsatisfiable in all the considered
privileged models. Conversely, the constraint {A} ∈ X ∧ {a} /∈ X is satisfiable in SET (e.g.,
A = b,X = {{b}}). We observe that whenever there are two constraints t ∈ X and t′ 6∈ X
in C such that t and t′ are equivalent terms in the equational theory ET, the constraint C is
unsatisfiable.

This analysis, however, does not cover all the possible cases in which an acyclic constraint
in pre-solved form is unsatisfiable, as it ensues from the following example:

a ∈ X ∧X ∈ Y ∧ {a |X} 6∈ Y.

Observe that there are no pairs of terms t, t′ of the form singled out above. Nevertheless, since
the satisfiability of a ∈ X is equivalent in Set to that of X = {a |N} (N is a new variable), we
have that the constraint is equi-satisfiable to:

X = {a |N} ∧ {a |N} ∈ Y ∧ {a, a |N} 6∈ Y.

Now, {a |N} and {a, a |N} are equivalent terms in ESet , and thus the constraint is unsatisfiable.

To formally define the second condition for solved form constraints, taking into account all
the possible cases informally described above, we introduce the following definitions.
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Definition 4.8 Let θ ≡ [X1/t1, . . . , Xn/tn] be a substitution and m ∈ N. We recursively define
the substitution θm as:

{
θ1 = θ

θm+1 = [X1/θ
m(t1), . . . , Xn/θ

m(tn)] m > 0

If there exists m > 0 such that θm+1 ≡ θm we say that θ is stabilizing. Given a stabilizing
substitution θ, the closure θ∗ of θ is the substitution θm such that ∀k > m we have that θk ≡ θm.

Definition 4.9 Let C be a constraint in pre-solved form over the language LList (LMSet ,LCList ,LSet)

and let t11 ∈ X1, . . . , t
k1

1 ∈ X1, . . . , t
1
q ∈ Xq, . . . , t

kq
q ∈ Xq be all membership atoms of C. We

define the member substitution σC as follows:

σC ≡ [X1/[F1, t
1
1, . . . , t

k1

1 |M1], . . . , Xq/[Fq, t
1
q, . . . , t

kq
q |Mq]]

(respectively, σC ≡ [X1/{[F1, t
1
1, . . . , t

k1

1 |M1 ]}, . . .], σC ≡ [X1/[[F1, t
1
1, . . . , t

k1

1 |M1 ]], . . .],
σC ≡ [X1/{F1, t

1
1, . . . , t

k1

1 |M1}, . . .]) where Fi and Mi are new variables not occurring in C.

The member substitution σC forces all the terms tji ’s to be member of the aggregate repre-
sented by Xi. The variable Fi in Xi is necessary in the case of compact lists. As a matter of
fact, in every valuation σ satisfying the constraint:

Y ∈ X1 ∧ [[Y |X1 ]] ∈ X2 ∧X1 6∈ X2

it must be σ(X1) 6= σ([[Y |X1 ]]). Thus, in σC we give the possibility to the first element of
σ(X1) to be different from σ(Y ). We show in the Appendix A that if C is a constraint in
pre-solved form and acyclic, then σC is stabilizing (Lemma A.4).

We are now ready to state the second condition for the solved form.

Definition 4.10 (Membership Consistency Condition) Let ET be one of the four equa-
tional theories for aggregates. A constraint C in pre-solved form and acyclic is membership
consistent if for each pair of literals of the form t 6∈ X, t′ ∈ X in C we have that:

ET 6|= ∀(σ
∗

C(t) = σ∗

C(t
′)).

The definition of solved form, therefore, can be given simply as follows:

Definition 4.11 (Solved Form) A constraint C in pre-solved form is said to be in solved
form if it satisfies the membership consistent condition.

Observe that the membership consistency condition implies the acyclicity condition. It is a
semantic requirement of equivalence of two terms under a given equational theory. However,
this test can be automatized in the following way. As well-known from unification theory (see,
e.g., [2, 23]), given an equational theory E, knowing whether two terms are equivalent modulo
≡E is the same as verifying whether the two terms t and t′ are E-unifiable with empty m.g.u.
(ε). Thus, the test is connected with the availability of a unification algorithm for the theory
ET. In [11] it is proved that the four equational theories we are dealing with are finitary (i.e.,
they admit a finite set of mgu’s that covers all possible unifiers) and, moreover, the unification
algorithms for the four theories are presented. This give us a decision procedure for the above
test.

As an example, let C be the pre-solved form and acyclic Set-constraint: a ∈ Y ∧Y ∈ X∧X ∈
Z ∧ {{a |Y } |X} 6∈ Z. It holds that:

σC = [Y/{FY , a |MY }, X/{FX, Y |MX}, Z/{FZ , X |MZ}] ,
σ∗

C = [Y/{FY , a |MY }, X/{FX, {FY , a |MY } |MX},
Z/{FZ , {FX , {FY , a |MY } |MX} |MZ}]

σ∗

C(X) = {FX , {FY , a |MY } |MX}
σ∗

C({{a |Y } |X}) = {{a, FY , a |MY }, FX , {FY , a |MY } |MX}

The constraint is not in solved form since ESet |= ∀(σ
∗

C(X) = σ∗

C({{a |Y } |X})).

We prove now that solved form constraints are satisfiable in the corresponding privileged
models. We prove the property for Set-constraints. The proof is similar for the other cases.
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Theorem 4.12 (Satisfiability of the Solved Form) Let C be a constraint in solved form
over the language LSet (resp., LList , LMSet , LCList). Then SET |= ∃C (resp., LIST ,MSET ,
and CLIST ).

Proof. We split C into the four parts: C=, C∈, C /∈, and C 6=, containing =,∈, /∈, and 6= literals,
respectively. For all pairs of literals p ∈ V, r /∈ V in C let NEQpr be an auxiliary variable, that will be
used as a ‘constraint store’, initialized to the empty set ∅. We will use the two auxiliary functions rank
and find. The rank of a well-founded set is basically the maximum nesting of braces needed to write
it. Precisely:

rank(s) =

{
0 if s is not of the form {u | v}
max{1 + rank(u), rank(v)} if s is {u | v}

find(X, t) is a function that produces for each pair (X, t) a set of integer numbers indicating the ‘depth’
of the occurrences of the variable X in t. It can be defined as:

find(X, t) =







∅ if t is a constant term
{0} if t is a variable X
{1 + n : n ∈ find(X, y)} if t is {y | f(t1, . . . , tm)}, f is not { · | · }
{1 + n : n ∈ find(X, t1) ∪ · · · ∪ find(X, tm)} if t is f(t1, . . . , tm), f is not { · | · }
{1 + n : n ∈ find(X, y)} ∪ find(X, s) if t is {y | s}, s 6= nil

We build a successful valuation γ of C, in various steps.

C= is of the form X1 = t1 ∧ · · · ∧Xm = tm. We define the mapping: θ1 = [X1/t1, . . . , Xm/tm].

C∈ is of the form p11 ∈ V1 ∧ · · · ∧ pv11 ∈ V1 ∧ · · · ∧ pvqq ∈ Vq. Consider the member substitution

σC = [V1/{F1, p
1
1, . . . , p

v1
1 |M1}, . . . , Vq/{Fq , p

1
q, . . . , p

vq
q |Mq}].

Since, by hypothesis, C is acyclic, then σ∗
C can be computed (see Lemma A.4).

For each pair of literals p ∈ V , r /∈ V of C consider the equality constraints in solved form
D1, . . . , Dk that are the solutions to the unification problem σ∗

C(p) = σ∗
C(r) (since C is in solved

form they are all different from the empty substitution). By the results concerning unification
(cf. [11]) we have that

σ∗
C(p) = σ∗

C(r)↔
k∨

j=1

(∃N̄(Dj)),

where N̄ are new variables, and each Dj is a conjunction of equations which contains at least
one atom of the form A = {a1, . . . , ah |B} with A ∈ FV (σ∗

C(p)) ∪ FV (σ∗
C(r)) and FV (ai) ⊆

FV (σ∗
C(p))∪ FV (σ∗

C(r)), or one atom of the form A = B with A,B ∈ FV (σ∗
C(p))∪ FV (σ∗

C(r)).

Since we want to satisfy σ∗
C(r) /∈ σ∗

C(V ) we are interested in satisfying σ∗
C(r) 6= σ∗

C(p), which is
in turn equivalent to:

k∧

j=1

(∀N¬Dj).

For doing that, for each Dj we choose an atom of the form A = {a1, . . . , ah |B} or A = B and we
store it in the variable NEQpr. Points (5) and (6) below will take care of this constraint store.

C /∈ is of the form r1 /∈ Y1 ∧ · · · ∧ rn /∈ Yn (Yi does not occur in ri) and C 6= is of the form Z1 6=
s1∧· · ·∧Zo 6= so (Zi does not occur in si). Let W1, . . . ,Wh be the variables occurring in C other
than X1, . . . , Xm, V1, . . . , Vq, Y1, . . . , Yn, Z1, . . . , Zo.

Let s̄ = max{rank (t) : t occurs in σ∗
C(θ1(C))}+ 1 + h.

Let R1, . . . , Rj be the variables occurring in σ∗
C(θ1(C

/∈ ∧C 6=)) (actually, the variables F̄ , M̄ , and
some of the Ȳ and Z̄) and n1, . . . , nj be auxiliary variables ranging over N.

We build an integer disequation system S in the following way:

1. S = {ni > s̄ : ∀i ∈ {1, . . . , j}} ∪ {ni1 6= ni2 : ∀i1, i2 ∈ {1, . . . , j}, i1 6= i2}.

2. For each literal Ri1 6= t in σ∗
C(C

6=)

S = S ∪ {ni1 6= ni2 + c : ∀i2 6= i1,∀c ∈ find(Ri2 , t)}
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3. For each literal {Ri1 , p
1
j , . . . , p

vj
j |Rh} 6= t in σ∗

C(C
6=)

S = S ∪ {ni1 6= ni2 + c− 1 : ∀i2 6= i1, ∀c ∈ find(Ri2 , t)}

4. For each literal t /∈ Ri1 in σ∗
C(C

/∈)

S = S ∪ {ni1 6= ni2 + c+ 1 : ∀i2 6= i1, ∀c ∈ find(Ri2 , t)}

5. For each literal t /∈ {Rh, p
1
j , . . . , p

vj
j |Ri1}, for each k ≤ vj, for all Ri2 = {a1, . . . , ah |B} in

NEQpk
j
t

S = S ∪ {ni2 6= ni3 + c+ 1 : ∀i3 6= i2,∀c ∈ find(Ri3 , a1)}

6. For each literal t /∈ {Rh, p
1
j , . . . , p

vj
j |Ri1}, for each k ≤ vj, for all Ri2 = Ri3 in NEQpk

j
t

S = S ∪ {ni2 6= ni3}

7. For each literal t /∈ {Ri1 , p
1
j , . . . , p

vj
j |Rh},

S = S ∪ {ni1 6= ni2 + c : ∀i2 6= i1,∀c ∈ find(Ri2 , t)}

8. For each literal t /∈ {Rh, p
1
j , . . . , p

vj
j |Ri1},

S = S ∪ {ni1 6= ni2 + c+ 1 : ∀i2 6= i1, ∀c ∈ find(Ri2 , t)}

An integer disequation is safe if, after expression evaluation, it is not of the form u 6= u. A safe
disequation has always an infinite number of solutions. A finite set of safe disequations has always an
infinite number of solutions. We show that all disequations of S are safe. The disequations generated
at point (1) are safe by definition; those introduced in points (2), (4), (5), (6), (7), and (8) are safe since
c is always a positive number. We prove that the disequations generated at point (3) are safe. If in
C there was a situation of the form p1 ∈ Y ∧ . . . ∧ pm ∈ Y ∧ Y 6= t from which we have obtained
{FY , σ∗

C(p1), . . . , σ
∗
C(pm) |MY } 6= σ∗

C(t), then we had, from the definition of solved form, that Y does
not occur in t, hence FY does not occur at depth 1 in σ∗

C(t), hence we do not obtain a disequation of
the form nFY

6= nFY
+ 1− 1.

From the safeness property, it is possible to find an integer solution to the system S by choosing
arbitrarily large values satisfying the constraints. Let {n1 = n̄1, . . . , nj = n̄j} be a solution and define

θ2 = [Ri/{nil}
n̄i : ∀i ∈ {1, . . . , j}] .

where {nil}n̄ denotes the term {· · · {
︸ ︷︷ ︸

n̄

nil} · · ·} (similarly for the other theories employed).

Let γ = θ1σ
∗
Cθ2 (where sµν stands for (sµ)ν) and observe that Cγ is a conjunction of ground

literals. We show that KEs
kF

s
1F2F

3
s |= Cγ. We analyze each literal of C.

X = t : θ1(X) coincides syntactically with θ1(t) = t. Hence, a literal of this form is true in any model
of equality.

t ∈ X : θ2(σ
∗
C(X)) = {. . . , θ2(σ

∗
C(t)), . . .}, so the atom is satisfied.

Z 6= u : two cases are possible:

1. if there are no atoms of the form t ∈ Z in C, then the conditions in S and over s̄ ensure
that rank(γ(Z)) 6= rank(γ(u));

2. if there is at least one atom of the form t ∈ Z in C, then σ∗
C(Z) = {F, t1, . . . , tk |M}, the

conditions in S and over s̄ ensure that rank(γ(F )) 6= rank(γ(u))− 1, hence γ(F ) is not an
element of γ(u).

r /∈ Y : two cases are possible:

1. no atoms of the form t ∈ Y occur in C: if r is ground, then it can not be an element of Y
since γ(Y ) = {nil}i, with i ≥ s̄; if r is not ground, then the conditions in S ensure that
rank(γ(Y )) 6= rank(γ(r)) + 1;

2. at least one atom of the form t ∈ Y occurs in C, hence σ∗
C(Y ) = {F, t1, . . . , tk |M}: if

r is ground the result is trivial; if r is not ground then the conditions in S ensure that
rank(γ(tj)) 6= rank(γ(r)) for all j ≤ k, rank(γ(F )) 6= rank (γ(r)), and rank(γ(M)) 6=
rank(γ(r)) + 1.
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✷

Remark 4.13 The task of testing whether a pre-solved form constraint C is in solved form
could be avoided in the cases of multisets and sets, where all membership atoms can be removed.
As a matter of fact, in the privileged models considered for sets and multisets it holds that:

s ∈ t↔ ∃N(t = {s |N}).

We can therefore replace each membership atom s ∈ t with an equi-satisfiable equality atom
t = {s |N} with N a new variable. This implies that the additional conditions on the pre-solved
form are not required at all, since membership atoms can be removed.

5 Constraint Rewriting Procedures

In this section we describe the procedures that can be used to rewrite a given constraint C
into a equi-satisfiable disjunction of constraints in pre-solved form. All the procedures have the
same overall structure shown in Figure 2: they take a constraint C as their input and repeatedly
select an conjunct c in C not in pre-solved form (if any) and apply one of the rewriting rules
to it. The procedure stops when the constraint C is in pre-solved or false is a conjunct of the
constraint. The procedure is non-deterministic. Some rewriting rules have two or more possible
non-deterministic choices. Each non deterministic computation returns a constraint of the form
above. However there is globally a finite set C1, . . . , Ck of constraints non-deterministically
returned. The input constraint C and the disjunction C1 ∨ · · · ∨Ck are equi-satisfiable.

Let T be one of the theories List, MSet, CList, Set, π a symbol in {=,6=,∈,6∈}, and C a T-constraint

while C contains an atomic constraint c of the form ℓπr not in pre-solved form and c 6= false do
select c;
if c = false then return false

else if c = true then erase c
else apply to c any rewriting rule for T-constraints of the form ·π·;

return C

Figure 2: Main loop of constraint rewriting procedures

5.1 Equality Constraints

Unification algorithms for verifying the satisfiability and producing the solutions of equality con-
straints in the four aggregate’s theories have been proposed in [11]. The unification algorithms
proposed in [11] fall in the general schema of Figure 2. Some determinism in the statement
select c is added to ensure termination. They are called:

Unify lists for lists Unify msets (Unify bags in [11]) for multisets
Unify clists for compact lists Unify sets for sets

and they are used unaltered in the four global constraint solvers that we propose in this paper.
The output of the algorithms is either false, when the constraint is unsatisfiable, or a

collection of solved form constraints (Def. 4.11) composed only by equality atoms. In Figure 3
we have reported the rewriting rules for the multisets unification used in algorithm Unify msets.

The algorithm uses the auxiliary functions tail and untail defined as follows:

tail(f(t1, . . . , tn)) = f(t1, . . . , tn) f is not {[ · | · ]}, n ≥ 0
tail(X) = X X is a variable
tail({[ t | s ]}) = tail(s)
untail(X) = nil X is a variable
untail({[ t | s ]}) = {[ t | untail(s) ]}
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Rules for Unify msets

(1) X = X 7→ true

(2)
t = X

t is not a variable

}

7→ X = t

(3)
X = t

X does not occur in t, X occurs in C

}

7→

X = t and apply the substitution X/t to C

(4)
X = t

X is not t and X occurs in t

}

7→ false

(5)
f(s1, . . . , sm) = g(t1, . . . , tn)

f is not g

}

7→ false

(6)
f(s1, . . . , sm) = f(t1, . . . , tm)

m ≥ 0, f is not {[ · | · ]}

}

7→

s1 = t1 ∧ . . . ∧ sm = tm

(7)
{[ t | s ]} = {[ t′ | s′ ]}

tail(s) and tail(s′) are not the same variable

}

7→

(i) (t = t′ ∧ s = s′)∨
(ii) (s = {[ t′ |N ]} ∧ {[ t |N ]} = s′)

(8)
{[ t | s ]} = {[ t′ | s′ ]}

tail(s) and tail(s′) are the same variable

}

7→

untail({[ t | s ]}) = untail({[ t′ | s′ ]})

Figure 3: Rewriting rules for the Unification algorithm for multisets

5.2 Membership and not-Membership Constraints

The rewriting rules for membership and not-membership constraints are justified by axioms (K)
and (W ) that hold in all the four theories. Therefore, in Figure 4 we give a single definition of
these rules. They are used within the main loop in Figure 2 to define the rewriting procedures
for membership and not-membership constraints over the considered aggregate. When useful,
we will refer to these procedures with the generic names in-T and nin-T, where T is any of the
aggregate theories.

Let consT( · , · ) be the aggregate constructor for the theory T

Rules for in-T

(1)
r ∈ f(t1, . . . , tn)

f is not consT( · , · )

}

7→ false

(2) r ∈ consT(t, s)
}
7→ r = t ∨ (a)

r ∈ s (b)

(3)
r ∈ X

X ∈ FV (r)

}

7→ false

Rules for nin-T

(1)
r /∈ f(t1, . . . , tn)

f is not consT( · , · )

}

7→ true

(2) r /∈ consT(t, s)
}
7→ r 6= t ∧ r /∈ s

(3)
r /∈ X

X ∈ FV (r)

}

7→ true

Figure 4: Parametric rewriting rules for membership and not-membership constraints

Lemma 5.1 Let T be one of the theories List, MSet, CList, Set, and AT the privileged model
for the theory T. Let C be a T-constraint, C1, . . . , Ck be the constraints non-deterministically

returned by nin-T(in-T(C))), and N̄i = FV (Ci) \ FV (C). Then AT |= ∀
(

C ↔
∨k

i=1
∃N̄iCi

)

.
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Proof. We prove correctness and completeness for lists, thus with respect to the model LIST .
Soundness and completeness for the other aggregates are proved in the very same way. Soundness and
completeness is proved for each rewriting rule separately since the rules are mutually exclusive. When
possible, we simply point out the axioms of the corresponding theory List involved in the proof (note
that LIST is a model of those axioms):

in-List, rule (1). r ∈ f(t1, . . . , tn), with f different from [· | ·] is equivalent to true by axiom (K).

in-List, rule (2). This is exactly axiom (W ).

in-List, rule (3). Assume that there is a valuation σ such that LIST |= σ(r ∈ X). This means that
σ(X) contains a term of the form: [s1, . . . , sn, r

′ | t] for some terms s1, . . . , sn, t, and some term
r′ in σ(r). Axiom (F3) ensures that X can not be a subterm of r.

nin-List, rules (1), (2), (3). Same proofs as for the corresponding in-List rules, using the same axioms.

✷

In the above lemma it holds that the lists of variables N̄i are all empty. However, for the
sake of uniformity with respect to the other similar correctness results, we have made them
explicit. Let us observe that the rewriting rules for procedure in-MSet and in-Set could safely
be extended by the rule:

(4)
r ∈ X

X 6∈ FV (r)

}

7→ X = {[ r |N ]} (X = {r |N})

where N is a new variable (see also Remark 4.13). In this way, we are sure to completely remove
membership atoms from the constraints and that the pre-solved form constraints obtained are
in solved form.

5.3 Disequality constraints

Rewriting rules for disequality constraints consist of a part which is the same for the four theories
(although parametric with respect to the considered theory), and a part which is specific for
each one of the four theories. Rules of the common part are shown in Figure 5, while specific
rules are described in the next subsections.

Let consT( · , · ) be the aggregate constructor for the theory T

Rules for neq-T

(1)
d 6= d

d is a constant

}

7→ false

(2)
f(s1, . . . , sm) 6= g(t1, . . . , tn)

f is not g

}

7→ true

(3)
t 6= X

t is not a variable

}

7→ X 6= t

(4)
X 6= X

X is a variable

}

7→ false

(5)
f(s1, . . . , sn) 6= f(t1, . . . , tn)
n > 0, f is not consT( · , · )

}

7→ s1 6= t1∨ (1)
...

...
sn 6= tn (n)

Figure 5: General rewriting rules for disequality constraints

5.3.1 Lists

Specific rules for the theory List are presented in Figure 6. These rules are inserted in the
general schema of Figure 2 to generate the procedure neq-List.
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Rules for neq-List

(1)−(5) see Figure 5

(6) [s1 | s2] 6= [t1 | t2]
}
7→ s1 6= t1∨ (i)

s2 6= t2 (ii)

(7)
X 6= f(t1, . . . , tn)

X ∈ FV (t1, . . . , tn)

}

7→ true

Figure 6: Rewriting rules for disequality constraints over lists

Lemma 5.2 Let C be a List-constraint, C1, . . . , Ck be the constraints non-deterministically

returned by neq-List(C), and N̄i = FV (Ci) \ FV (C). Then List |= ∀
(

C ↔
∨k

i=1
∃N̄iCi

)

.

Proof. Soundness and completeness of the rewriting rules (and, hence, of the whole rewriting procedure
neq-List) are immediate consequence of standard equality axioms and axiom schemata (F1), (F2), and
(F3). ✷

5.3.2 Multisets

Disequality constraints over multisets are simplified using the rewriting rules presented in Fig-
ure 7. They make use of functions tail and untail defined in Section 5.1. Using these rules
within the generic rewriting scheme of Figure 2 we get the rewriting procedure for disequality
constraints over multisets, called neq-MSet.

Rules for neq-MSet

(1)−(5) see Figure 5

(6.1)
{[ t1 | s1 ]} 6= {[ t2 | s2 ]}
tail(s1) and tail(s2)

are the same variable






7→ untail({[ t1 | s1 ]}) 6= untail({[ t2 | s2 ]})

(6.2)
{[ t1 | s1 ]} 6= {[ t2 | s2 ]}
tail(s1) and tail(s2)

are not the same variable






7→ (t1 6= t2 ∧ t1 /∈ s2)∨ (a)

({[ t2 | s2 ]} = {[ t1 |N ]} ∧ s1 6= N) (b)

(7)
X 6= f(t1, . . . , tn)

X ∈ FV (t1, . . . , tn)

}

7→ true

Figure 7: Rewriting rules for disequality constraints over multisets

Some words are needed for explaining the rules related to the management of disequalities
between multisets; in particular rule (6.2) of Figure 7. If we use directly axiom (Em

k ), we have
that:

{[ t1 | s1 ]} 6= {[ t2 | s2 ]} ↔ (t1 6= t2 ∨ s1 6= s2)∧
∀N (s2 6= {[ t2 |N ]} ∨ s1 6= {[ t1 |N ]})

This way, an universal quantification is introduced: this is no longer a constraint according to
Definition 4.1.

Alternatively, we could use the intuitive notion of multi-membership: x ∈i y if x belongs at
least i times to the multiset y. This way, one can provide an alternative version of equality and
disequality between multisets. In particular, we have:

{[ t1 | s1 ]} 6= {[ t2 | s2 ]} ↔ ∃X∃n (n ∈ N∧
(X ∈n {[ t1 | s1 ]} ∧X /∈n {[ t2 | s2 ]})∨
(X ∈n {[ t2 | s2 ]} ∧X /∈

n
{[ t1 | s1 ]}{[ t2 | s2 ]}))

In this case, however, we have a quantification on natural numbers: we are outside the language
we are studying. The rewriting rule (6.2) adopted in Figure 7 avoids these difficulties introducing
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only existential quantification. Its correctness and completeness are proved in the following
lemma.

Lemma 5.3 Let C be a MSet-constraint, C1, . . . , Ck be the constraints non-deterministically

returned by neq-MSet(C), and N̄i = FV (Ci) \ FV (C). Then MSET |= ∀
(

C ↔
∨k

i=1
∃N̄iCi

)

.

Proof. From Lemma 5.2 we know that the result holds for rules (1)–(5) and (7) for the model LIST .
Since permutativity has not been used for that result, and axiom (F3) holds for both the theories, the
same holds for the model MSET . We need to prove correctness and completeness of rewriting rules
(6.1) and (6.2).

(6.1) It is immediately justified by axiom schema (Fm
3 ).

(6.2) The constraint {[ t1 | s1 ]} 6= {[ t2 | s2 ]} is equivalent to:

t1 /∈ {[ t2 | s2 ]} ∧ {[ t1 | s1 ]} 6= {[ t2 | s2 ]} ∨ (1)

t1 ∈ {[ t2 | s2 ]} ∧ {[ t1 | s1 ]} 6= {[ t2 | s2 ]} (2)

Since we are looking for successful valuations over MSET that deal with multisets of finite
elements, axiom (Em

k ) ensures that t1 /∈ {[ t2 | s2 ]} implies {[ t1 | s1 ]} 6= {[ t2 | s2 ]}. Thus, formula
(1) is equivalent to t1 ∈ {[ t2 | s2 ]} which, in turn, is equivalent by (W ) to the disjunct (a) of the
rewriting rule.

Consider now formula (2). It is easy to see that

MSET |= ∀(t1 ∈ {[ t2 | s2 ]} ↔ ∃M ({[ t1 |M ]} = {[ t2 | s2 ]})) (3)

Thus, (2) is equivalent to

∃M ({[ t1 |M ]} = {[ t2 | s2 ]} ∧ {[ t1 | s1 ]} 6= {[ t2 | s2 ]}) (4)

It remains to prove that (4) is equivalent to the disjunct (b), namely:

∃N (s1 6= N ∧ {[ t2 | s2 ]} = {[ t1 |N ]}) (5)

(4)→ (5) Assume there isM so as to satisfy (4). M = s1 will immediately lead to a contradiction.
Thus, (5) is satisfied by N = M .

(5)→ (4) Assume there is N so as to satisfy (5). It follows immediately from the fact, true for
finite multisets, that s1 6= N implies {[ t1 | s1 ]} 6= {[ t1 |N ]}. Thus, choose M = N .

✷

5.3.3 Compact Lists

The rewriting rules for disequality constraints over compact lists are shown in Figure 8. These
rules can be immediately exploited in conjunction with the generic scheme of Figure 2 to obtain
a rewriting procedure for disequality constraints over multisets–called neq-CList. Soundness and
completeness of neq-CList are stated by the following lemma.

Lemma 5.4 Let C be a CList-constraint, C1, . . . , Ck be the constraints non-deterministically

returned by neq-CList(C), and N̄i = FV (Ci) \ FV (C). Then CLIST |= ∀
(

C ↔
∨k

i=1
∃N̄iCi

)

.

Proof. For rules (1)–(5) the result follows immediately from those for lists. Rules (7.1)–(7.3) follows
from axiom (F c

3 ). Rule (6) is exactly axiom (Ec
k). ✷

Observe that, differently from multisets, the rewriting rule for disequality between compact
lists follows immediately from axiom (Ec

k). As a matter of fact, this axiom does not introduce
any new variable.
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Rules for neq-CList

(1)−(5) see Figure 5

(6) [[ t1 | s1 ]] 6= [[ t2 | s2 ]]
}
7→

t1 6= t2∨ (a)
s1 6= s2 ∧ [[ t1 | s1 ]] 6= s2 ∧ s1 6= [[ t2 | s2 ]] (b)

(7.1)
X 6= f(t1, . . . , tn)

X ∈ FV (t1, . . . , tn), f is not [[ · | · ]]

}

7→ true

(7.2)
X 6= [[ t1, . . . , tn |X ]]
X ∈ FV (t1, . . . , tn)

}

7→ true

(7.3)
X 6= [[ t1, . . . , tn |X ]]
X /∈ FV (t1, . . . , tn)

}

7→ t1 6= t2∨ (a.1)
...

...
t1 6= tn∨ (a.n)
X = nil ∨ (b)
X = [[N1 |N2 ]] ∧N1 6= t1 (c)

Figure 8: Rewriting rules for disequality constraints over compact lists

Rules for neq-Set

(1)−(5) see Figure 5

(6) {t1 | s1} 6= {t2 | s2}
}
7→

Z ∈ {t1 | s1} ∧ Z /∈ {t2 | s2}∨ (a)
Z ∈ {t2 | s2} ∧ Z /∈ {t1 | s1} (b)

(7.1)
X 6= f(t1, . . . , tn)

X ∈ FV (t1, . . . , tn), f is not { · | · }

}

7→ true

(7.2)
X 6= {t1, . . . , tn |X}
X ∈ FV (t1, . . . , tn)

}

7→ true

(7.3)
X 6= {t1, . . . , tn |X}
X /∈ FV (t1, . . . , tn)

}

7→ t1 /∈ X∨ (i)
...

...
tn /∈ X (n)

Figure 9: Rewriting rules for disequality constraints over sets

5.3.4 Sets

Disequality constraints over sets are dealt with by the rewriting rules shown in Figure 9, and
they constitute the procedure neq-Set.

Some remarks are needed regarding rule (6). As for multisets, axiom (Es
k) introduces an

existentially quantified variable to state equality. Thus, its direct application for stating dise-
quality requires universally quantified constraints that go outside the language. On the other
hand, the rewriting rule (6.2) used for multisets can not be used in this context. In fact, the
property that s1 6= N implies {[ t1 | s1 ]} 6= {[ t1 |N ]}, that holds for finite multisets, does not hold
for sets. For instance, {a} 6= {a, b} but {b, a} = {b, a, b}. Thus, this rewriting rule would be not
correct for sets.

A rewriting rule for disequality constraints over sets can be obtained by taking the negation
of the standard extensionality axiom

(Ek) x = y ↔ ∀z (z ∈ x↔ z ∈ y)

Lemma 5.5 Let C be a Set-constraint, C1, . . . , Ck be the constraints non-deterministically re-

turned by neq-Set(C), and N̄i = FV (Ci) \ FV (C). Then SET |= ∀
(

C ←
∨k

i=1
∃N̄iCi

)

.
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Proof. For rules (1)–(5) the result follows from those for lists. Rules (7.1) and (7.2) are exactly axiom
(F s

3 ). Rule (6) is axiom (Ek), implied by (Es
k) on SET . ✷

Remark 5.6 In our theories an aggregate can be built by starting from any ground uninterpreted
Herbrand term—called the kernel—and then adding to this term the elements that compose the
aggregate. Thus, two aggregates can contain the same elements but nevertheless they can be
different because of their different kernels. For example, the two terms {a | b} and {a | c} denote
two different sets containing the same elements (a) but based on different kernels (b and c,
respectively).

Rewriting rules for disequality constraints over aggregates other than sets are formulated in
such a way to take care of the (possibly different) kernels in the two aggregates without having
to explicitly resort to kernels. Conversely, the rewriting rule for disequality constraints over sets
(rule (6)) is not able to “force” disequality between two sets when they have the same elements
but different kernels. This the reason why the (→) direction of Lemma 5.5 does not hold.

A possible completion of the above procedures to take care of this case is presented in [14];
for doing that some technical complications are introduced. Basically, a new constraint (ker) is
introduced and the rewriting rule (6) is endowed with a third non-deterministic case: ker(s1) 6=
ker(s2). The advantage of this solution is completeness (the (→) direction of Lemma 5.5).
However, for the sake of simplicity, we do not add here the details on the modifications of the
rewriting rules for dealing with ker that are instead presented in [14].

6 Constraint solving

In this section we address the problem of establishing if a constraint C is satisfiable or not in
the corresponding privileged model. The correspondence result (Theorem 4.5) ensures that the
property is inherited by any model.

Constraint satisfiability for the theory T is checked by the non-deterministic rewriting pro-
cedure SATT shown in Figure 10. Its definition is completely parametric with respect to the
theory involved. SATT uses iteratively the various rewriting procedures presented in the previ-
ous section, until a fixed-point is reached—i.e., any new rewritings do not further simplify the
constraint. This happens exactly when the constraint is in pre-solved form or it is false. The
two conditions that guarantee that a constraint in pre-solved form is in solved form are tested
by function is solvedT shown in Figure 11.

By Theorem 4.12 a constraint in solved form is guaranteed to be satisfiable in the corre-
sponding model. Moreover, it will be proved (see Theorem 6.2) that the disjunction of solved
form constraints returned by SATT is equi-satisfiable in that model to the original constraint
C. Therefore, SATT can be used as a test procedure to check satisfiability of C: if it is able
to reduce C to at least one solved form constraint C′ then C is satisfiable; otherwise, C is
unsatisfiable. Moreover, the generated constraint in solved form can be immediately exploited
to compute all possible solutions for C.

function SATT(C)
repeat

C′ := C;
C := Unify Ts(neq-T(nin-T(in-T(C))))

until C = C′;
return( is solved

T
(C)).

Figure 10: The satisfiability procedure, parametric with respect to T

The rest of this section is devoted to prove the crucial result of termination for procedure
SATT(C) and, then, to prove its soundness and completeness.
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function is solvedT(C)
build the directed graph G∈C ;
if G∈C has a cycle

then return false

else
compute σ∗

C

if there is a pair t ∈ X, t′ /∈ X in C s.t. T |= ∀(σ∗
C(t) = σ∗

C(t
′))

then return false

else return C.

Figure 11: Final check for solved form constraints

Theorem 6.1 (Termination) Let T be one of the theories List, MSet, CList, Set, and C be
a T-constraint. Each non-deterministic execution of SATT(C) terminates in a finite number of
steps. Moreover, the constraint returned is either false or a solved form constraint.

Proof. We give the proof for the case of MSet. The other proofs are in Appendix B.
It is immediate to see, by the definition of the procedures, that if C is different from false and not in

pre-solved form, then some rewriting rule can be applied. The function is solvedMSet , whose termination
follows from termination of Unify msets [11], needed for the solved form test T |= ∀(σ∗

C(t) = σ∗
C(t

′)),
produces by definition solved form constraints or false.

We prove that the repeat cycle can not loop forever. For doing that, we define a complexity measure
for constraints. Let us assume that constraints of the form X = t, with X neither in t nor elsewhere in
C, are removed from C. Similarly, we assume that true constraints are not counted in the complexity
measure. These two assumptions are safe since those constraints do not fire any new rule application.
The complexity measure that we associate with a constraint is the following triple:

compl(C) = 〈 α(C) = # vars in C,
β(C) = {[ size(s) + size(t) : s op t ∈ C ]},
γ(C) =

∑

s op t∈C size(s) 〉

The first and third element of the tuple are non-negative integers. The second is a multiset of
non-negative integers. They are well-ordered [9] by the ordering obtained as the transitive closure of
the rule:

{[ s1, . . . , si−1, t1, . . . , tn, si+1, . . . , sm ]} ≺ {[ s1, . . . , sm ]} ,

for i ∈ {1, . . . ,m}, n ≥ 0, t1 < si, . . . , tn < si. The ordering on triples is the (well-founded) lexico-
graphical ordering.

We will prove that given a constraint C, in a finite number of non-failing successive rule applications,
a constraint C′ with lower complexity is reached. We show, by case analysis, this property. Most rule
applications decreases the complexity in one step. When this does not happen, we enter in more detail.

Unify msets(1) α does not increase, β decreases.

Unify msets(2) α and β do not increase. γ decreases, since size(X) = 0 and size(t) > 0.

Unify msets(3) α decreases by 1.

Unify msets(6) α does not increase. β decreases, since an equation of size 1 +
∑m

i=1 size(si) + size(ti)
is replaced by m smaller equations of size size(si) + size(ti).

Unify msets(7) In this case the complexity may remain unchanged at the first step. However, the
unification algorithm adopts a selection strategy that ensures that after a finite number of steps,
we either reach a situation such that α decreases or a situation where α is unchanged and β
decreases (see [11] for details).

Unify msets(8) After one rule application, we are in the case (7) with both the tails of the multisets
non variables. After a finite number of steps, we enter the situation where α is unchanged and β
decreases.

in-MSet(2) α does not increase. β decreases, since a constraint of size 1 + size(r) + size(s) + size(t) is
non-deterministically replaced by one of smaller size size(r) + size(s) or size(r) + size(t).

nin-MSet(1), (3) Trivially, α does not increase and β decreases.
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nin-MSet(2) α does not increase. β decreases, since a constraint of size 1+ size(r) + size(s)+ size(t) is
non-deterministically replaced by two of smaller size size(r) + size(s) and size(r) + size(t).

neq-MSet(2), (7) Trivially, α does not increase and β decreases.

neq-MSet(3) α and β do not increase. γ decreases, since size(X) = 0 and size(t) > 0.

neq-MSet(5) α does not increase. β decreases, since a constraint of size 1 +
∑m

i=1 size(si) + size(ti) is
non-deterministically replaced by one of size size(si) + size(ti).

neq-MSet(6.2) A unique application of this rule may not decrease the constraint complexity. Thus, we
enter in some detail. The rule removes {[ t1 | s1 ]} 6= {[ t2 | s2 ]} and introduces

{[ t2 | s2 ]} = {[ t1 |N ]} ∧ (6)

s1 6= N (7)

Consider now the two cases:

1. {[ t2 | s2 ]} is {[ r1, . . . , rn ]}

2. {[ t2 | s2 ]} is {[ r1, . . . , rn |A ]}, for some variable A distinct from N that has just been intro-
duced.

In the first case the successive execution of Unify bags replaces equation (6) by:

t1 = ri, N = {[ r1, . . . , ri−1, ri+1, . . . , rn ]}

for some i = 1, . . . , n. We have that

size(t1) + size(ri) < size({[ t1 | s1 ]}) + size({[ t2 | s2 ]}).

The equation N = {[ r1, . . . , ri−1, ri+1, . . . , rn ]} is eliminated by applying the substitution for N .
N occurs only in the constraint s1 6= N , that becomes s1 6= {[ r1, . . . , ri−1, ri+1, . . . , rn ]}. Again,
its size is strictly smaller than that of the original disequality constraint. Thus, after some further
steps, α remains unchanged while β decreases. Strictly speaking, some other actions may occur
during that sequence of actions. However, if no other rule (6.2) is executed, then all rules decrease
the complexity tuples. Conversely, if other rules of this form are executed, then we need to wait
for all the substitutions of this form to be applied. But they are all independent processes.

The second case is similar, but in this case a substitution also for A is computed, ensuring that
α decreases.

neq-MSet(6.1) After one step, we are in the above situation (6.2).

✷

The soundness and completeness result of the global constraint solving procedure for List, MSet,
and CList follows from the lemmas in the previous section and two lemmas in the Appendix A.

Theorem 6.2 (Soundness - Completeness) Let T be one of the theories List, MSet, CList,
and Set, C be a T-constraint, and C1, . . . , Ck be the solved form constraints non-deterministically

returned by SATT(C), and N̄i be FV (Ci) \ FV (C). Then AT |= ∀
(

C ↔
∨k

i=1
∃N̄iCi

)

, where

AT is the model which corresponds with T.

Proof. Theorem 6.1 ensures the termination of each non-deterministic branch. At each branch
point, the number of non-deterministic choices is finite. Thus, C1, . . . , Ck can be effectively computed.
Soundness and completeness follow from the results proved individually for the procedures involved:
Lemma 5.1 for in-T and nin-T; Lemma 5.2, Lemma 5.3, Lemma 5.4, and Lemma 5.5 for neq-MSet,
neq-List, neq-CList, and neq-Set, respectively; Lemma A.6 for is solvedT(C); [11] for unification. ✷

Corollary 6.3 (Decidability) Given a T-constraint C, it is decidable whether A |= ∃C, where
A is one of the privileged models LIST ,MSET , CLIST , SET .

Proof. From Theorem 6.2 we know that C is equi-satisfiable to C1 ∨ · · · ∨Ck. If all the Ci are false,
then C is unsatisfiable in LIST (MSET , CLIST , SET ). Otherwise, it is satisfiable, since solved form
constraints are satisfiable (Theorem 4.12). ✷
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6.1 Complexity Issues

Complexity of the four unification problems is studied in [11]: the decision problem for uni-
fication is proved to be solvable in linear time for lists, and it is NP-complete for the other
cases.

In the case of lists, if the constraint is a conjunction of equality and disequality constraints,
then the satisfiability problem for a constraint C is solvable in O(n2) where n = |C| [2, 7].
Instead, the satisfiability problem for conjunctions of membership and disequality constraints
over lists is NP-hard. As a matter of fact, let us consider the following instance of 3-SAT:

(X1 ∨X2 ∨ ¬X3) ∧ (¬X1 ∨X2 ∨X3) ∧ (X1 ∨ ¬X2 ∨X3) .

The above instance of 3-SAT can be re-written as the following constraint problem:

X1 ∈ [0, 1] ∧ Y1 ∈ [0, 1] ∧
[X1, Y1] 6= [0, 0] ∧ [X1, Y1] 6= [1, 1] ∧

X2 ∈ [0, 1] ∧ Y2 ∈ [0, 1] ∧
[X2, Y2] 6= [0, 0] ∧ [X2, Y2] 6= [1, 1] ∧

X3 ∈ [0, 1] ∧ Y3 ∈ [0, 1] ∧
[X3, Y3] 6= [0, 0] ∧ [X3, Y3] 6= [1, 1] ∧

[X1, X2, Y3] 6= [0, 0, 0] ∧ [Y1, X2, X3] 6= [0, 0, 0] ∧ [X1, Y2, X3] 6= [0, 0, 0]

where 0 and 1 can be represented by nil and [nil], respectively, and Yi takes the place of ¬Xi

and vice versa. It is immediate to prove that any substitution satisfying the constraint problem
is also a solution for the above formula, provided 0 is interpreted as false and 1 is interpreted
as true, and vice versa.

7 Conclusions

In this paper we have extended the results of [11] studying the constraint solving problem for
four different theories: the theories of lists, multisets, compact lists, and sets. The analyzed
constraints are conjunctions of literals based on equality and membership predicate symbols.
We have identified the privileged models for these theories by showing that they correspond
with the theories on the class of considered constraints. We have developed a notion of solved
form (proved to be satisfiable) and presented the rewriting algorithms which allow this notion
to be used to decide the satisfiability problems in the four contexts.

In particular, we have shown how constraint solving can be developed parametrically for
these theories and we have pointed out the differences and similarities between the four kinds
of aggregates.

As further work it could be interesting to study the properties of the four aggregates in
presence of append-like operators (append for lists, ∪ for sets, ⊎ for multisets). These operators
can not be defined without using universal quantifiers (or recursion) with the languages analyzed
in this paper [10].
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A Proofs of Model Properties

We recall some technical definitions. Given two Σ-structures A and B, B = 〈B, (·)B〉 is a substructure
of A = 〈A, (·)A〉 if B ⊆ A and for all x ∈ B it holds that (x)A = (x)B. Given two Σ-structures A and
B, a function h : A −→ B is said to be an homomorphism from A to B if: (i) ∀f ∈ F , a1, . . . , an ∈
A (h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an))) and (ii) ∀p ∈ Π, a1, . . . , am ∈ A (pA(a1, . . . , am) →
pB(h(a1), . . . , h(am))) . h is said to be an isomorphism if f is bijective and in the property (ii) also the
← implication holds. Given two Σ-structures A and B, an embedding of A in B is an isomorphism from
A to a substructure of B.

Lemma A.1 ([5]) Let A and B be two Σ-structures and let h be an embedding of A in B. If ϕ is an
open formula of L = 〈Σ,V〉, then for each valuation σ on A it holds that:

A |= σ(ϕ)↔ B |= h(σ(ϕ)) .

Lemma A.2 MSET is a model of the theory MSet.

Proof. For each axioms/axiom schemata (A) of the theory MSet we need to prove that MSET
models (A) (briefly,MSET |= (A)). We give only the sketch of the proof.

(K), (W ): The fact thatMSET is a model of (K) and (W ) is a consequence of the interpretation of
the membership predicate inMSET (cf. point (4) of Def. 4.2).

(Fm
1 ): This axiom holds in MSET , since f(t1, . . . , tn) and f(s1, . . . , sn) can be in the same class in
MSET , only if for all i = 1, . . . , n it holds that ti and si belong to the same class.

(F2): It holds trivially, by definition ofMSET , since terms beginning with different free symbols belong
to different classes.

(F3), (F
m
3 ): The fact thatMSET |= (F3) andMSET |= (Fm

3 ) holds in virtue of the finite size of each
ground term; it can be formally proved by induction on the complexity of the terms.

(Em
p ): MSET is a model of (Em

p ), since for any equational theory E, T (F)/ ≡E is a model of E [23].

(Em
k ): MSET is a model of (Em

p ), as seen in the previous point, but it is also the initial model, namely
two terms s and t are in the same class if and only if (Em

p ) can prove that s = t. This is exactly
the meaning of the axiom (Em

k ).

✷

Lemma A.3 If M is a model of MSet, then the function h : T (FMSet)/ ≡EMSet
−→ M , defined as

h( ✐t ) = tM is an embedding ofMSET in M.

Proof. We will prove the following facts:

1. The definition of h( ✐t ) does not depend on the choice of the representative of the class;

2. h is an homomorphism;

3. h is injective;

4. if h( ✐t ) ∈M h( ✐s ), then ✐t ∈MSET ✐s .

These facts imply the thesis.

1. If t1 and t2 are two terms such that
✞
✝

☎
✆t1 =

✞
✝

☎
✆t2 , then by definition (Em

p ) |= t1 = t2. Since
A |= t1 = t2 holds in every model A of (Em

p ), then in particular it holds inM, i.e., tM1 = tM2 .

2. We need to prove that:

(a) for all f ∈ FMSet and for all terms t1, . . . , tn ∈ T (FMSet) it holds that

h(fMSET (
✞
✝

☎
✆t1 , . . . ,

✞
✝

☎
✆tn )) = fM(h(t1), . . . , h(tn))

Now,

h(fMSET (
✞
✝

☎
✆t1 , . . . ,

✞
✝

☎
✆tn )) = h(f(t1, . . . , tn)) By fact (1) above

= (f(t1, . . . , tn))
M By def. of h

= fM(tM1 , . . . , tMn ) By def. of structure
= fM(h(t1), . . . , h(tn)) By def. of h
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(b) for all terms t and s, if ✐t ∈MSET ✐s , then h( ✐t ) ∈M h( ✐s ). From ✐t ∈MSET ✐s , using
fact 1. above, we have that there is a term s′ in ✐s of the form {[ t |r ]} and that h( ✐s ) = s′M.
Hence, we have that h( ✐s ) = {[ tM | rM ]}M; (W ) ensures that h( ✐t ) = tM belongs to it.

3. We prove, by structural induction on t1, that if h(
✞
✝

☎
✆t1 ) = h(

✞
✝

☎
✆t2 ), then

✞
✝

☎
✆t1 =

✞
✝

☎
✆t2 .

Basis. Let t1 be a constant c. Since M is a model of axiom schema (F2), it can not be that
t2 = f(s1, . . . , sn), with f different from c. Hence, it must be that t2 = c.

Step. Let t1 be f(s1, . . . , sn), with f 6≡ {[ · | · ]}. It cannot be t2 ≡ g(r1, . . . , rm), with g 6≡ f ,
since M is a model of (F2). So, it must be t2 ≡ f(r1, . . . , rn), and, by (F1), s

M
i = rMi , for all

i ≤ n. Using the inductive hypothesis we have
✞
✝

☎
✆t1 =

✞
✝

☎
✆t2 .

Let t1 be {[ s1, . . . , sn | r ]}, with r not of the form {[ r1 | r2 ]}. Since it cannot be that t2 is
f(v1, . . . , vn) (from the previous case applied to t2), then it must be t2 is {[ u1, . . . , um | v ]}, for
some v not of the form {[ v1 | v2 ]}. Let us assume, by contradiction, that

✞
✝

☎
✆t1 6=

✞
✝

☎
✆t2 , and tM1 = tM2 ,

while the thesis holds for all terms of lower complexity. From tM1 = tM2 we obtain that the two
terms have inM the same elements. SinceM is a model of (W ), the elements of tM1 are exactly
sM1 , . . . , sMn and the elements of tM2 are exactly uM

1 , . . . , uM
m . So, by inductive hypothesis, there

is a bijection b : {1, . . . , n} −→ {1, . . . ,m} such that
✞
✝

☎
✆si =

✞
✝

☎
✆ub(i) . This means that m = n

and that there is a term t′2 in
✞
✝

☎
✆t2 of the form {[ s1, . . . , sm | v ]}. Applying n times (Em

k ), in all
possible ways, we obtain that rM = vM, hence by inductive hypothesis ✐r = ✐v . From this
fact, we conclude that

✞
✝

☎
✆t2 =

✞
✝

☎
✆t′2 =

✞
✝

☎
✆{[ s1, . . . , sn | r ]} =

✞
✝

☎
✆t1 , which is in contradiction with our

assumption.

4. If h( ✐t ) ∈M h( ✐s ), then tM ∈M sM and hence (K) implies that s must be a term of the form
{[ t1 | t2 ]}. By induction on s using (W ), we can prove that in particular s must be a term of the
form {[ t1, . . . , ti, . . . , tn | r ]}, with tM1 = tM = h( ✐t ). We have already proved that h is injective,
hence it must be t1 ∈ ✐t , and from this we obtain ✐t ∈MSET ✐s .

✷

Lemma A.4 If C is a constraint in pre-solved form and acyclic, then σC is stabilizing.

Proof. We prove that σ∗
C ≡ σq−1

C , where q is the number of variables which occur in the right-hand
side of membership atoms.

The acyclicity condition ensures that there are no loops in the graph G∈C . Consider now the substi-
tution σC and let B be the set of the nodes of the graph that belong to its domain (we identify variables
and corresponding nodes). Each application of σC on the terms of its codomain can be intuitively mim-
icked by a game that updates the value of B with the nodes corresponding to the variables occurring in
the terms σC(B). These nodes can be computed by collecting the nodes that can be reached by crossing
an edge from a node of B (new variables Fi,Mi are all different, and they are not in the domain of
σC , so we can forget them). The process will terminate when either B is empty or it contains only
variables that are not in the domain of σC . Since G

∈
C is acyclic, this process must terminate, and since

the longest path in the graph is shorter than q, it is plain o see that q − 1 is an upper bound to the
number of iterations. ✷

Lemma A.5 Let T be one of the theories List, MSet, CList, AT the model (structure) which corresponds
with T, and ET the associated equational theory. Let t, t′ be two terms and C a solved form constraint
over the language LT, such that FV (t) ∪ FV (t′) ⊆ FV (C). If AT 6|= ∀(t = t′), then ET 6|= ∀(σ

∗
C(t) =

σ∗
C(t

′)).

Proof. Let R = {X1, . . . , Xn} be the set of variables over which σC is defined. By induction on the
sum of the complexities of t and t′ we prove the following property that implies the thesis of the lemma.

If there exists θ such that AT |= θ(t) 6= θ(t′), then there exists θ′ such that AT |= θ′(σ∗
C(t)) 6=

θ′(σ∗
C(t

′)).

Let us consider the valuation θ′′ defined as:

θ′′(Y ) =

{
θ(Y ) if Y 6∈ R
θ(Xi) if Y ≡MXi

Observe that θ′′ is not defined over the variables FX1
, . . . , FXn .
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Let m = max{size(θ′′(σ∗
C(t))), size(θ

′′(σ∗
C(t

′)))} + 1. We can now define the valuation θ′ in the
following way:

θ′(Y ) =

{
[nil]m∗i({[ nil ]}m∗i, [[ nil ]]m∗i) if Y ≡ FXi

θ′′(Y ) otherwise

If t = Y1 and t′ = Y2 are variables then:

• if σC is not defined neither on Y1 nor on Y2, then θ′(σ∗
C(Y1)) = θ′(Y1) = θ(Y1) 6= θ(Y2) = θ′(Y2) =

θ′(σ∗
C(Y2));

• if σC is defined on Y1 and not on Y2 (or viceversa), then size(θ′(σ∗
C(Y1))) ≥ size(θ′(FY1

)) >
size(θ′(Y2));

• if σC is defined both on Y1 and on Y2, then:

List and CList: θ′(σ∗
C(Y1)) and θ′(σ∗

C(Y2)) differ on their first element.

MSet: θ′(σ∗
C(Y1)) and θ′(σ∗

C(Y2)) differ on their elements θ′(FY1
) and θ′(FY2

).

If t = Y is a variable and t′ is f(t′1, . . . , t
′
h), also when f is of the form [ · | · ], [[ · | · ]], {[ · | · ]}, then:

• if σC is not defined on FV (t′) ∪ Y , then we have immediately the thesis since θ′(σ∗
C(Y )) = θ(Y )

and θ′(σ∗
C(t

′)) = θ(t′);

• if σC is defined on Y , but not on FV (t′), then we have the thesis since size(θ′(σ∗
C(Y ))) >

size(θ(t′));

• if σC is defined on at least one variable of t′ and not on Y , then as in the previous case we have
the thesis;

• if σC is defined on Y and on at least one of the variables of t′, then:

List and CList: it can never be the case that the first element of θ′(σ∗
C(Y ))—i.e. θ′(FY )—is

equal to the first element of θ′(σ∗
C(t

′)); this follows from the conditions we have imposed on
all the θ′(FXi

).

MSet: two cases are possible: θ′(FY ) is not an element of θ′(σ∗
C(t

′)), from which we have the
thesis.
θ′(FY ) is an element of θ′(σ∗

C(t
′)): this means that tail(t′) = Y , hence the thesis follows.

If t is f(t1, . . . , th) and t′ = g(t′1, . . . , t
′
k), with f different from g, then it is trivial.

If t is f(t1, . . . , th) and t′ is f(t′1, . . . , t
′
h), with f different from [ · | · ], [[ · | · ]], {[ · | · ]}, then by inductive

hypothesis we have the thesis.
If t is [t1 | t2] and t′ is [t′1 | t

′
2], then from LIST |= θ(t) 6= θ(t′) we have that it must be LIST |= θ(t1) 6=

θ(t′1) or LIST |= θ(t2) 6= θ(t′2), hence, in both cases, we obtain the thesis by inductive hypothesis.
If t is [[ t1 | t2 ]] and t′ is [[ t′1 | t

′
2 ]], then from CLIST |= θ(t) 6= θ(t′) we have that it must be CLIST |=

θ(t1) 6= θ(t′1) or CLIST |= θ(t2) 6= θ(t′2) ∧ θ(t2) 6= [[ θ(t′1) | θ(t
′
2) ]] ∧ θ(t′2) 6= [[ θ(t1) | θ(t2) ]], hence:

• in the first case we obtain the thesis by inductive hypothesis on t1 and t′1.

• in the second case by inductive hypothesis on t2 and t′2, on t2 and [[ t′1 | t
′
2 ]], on t′2 and [[ t1 | t2 ]],

we obtain that CLIST |= θ′(σ∗
C(t2)) 6= θ′(σ∗

C(t
′
2)) and CLIST |= θ′(σ∗

C(t2)) 6= θ′(σ∗
C([[ t

′
1 | t

′
2 ]]))

and CLIST |= θ′(σ∗
C(t

′
2)) 6= θ′(σ∗

C([[ t1 | t2 ]])), which implies our thesis.

If t is {[ t1 | t2 ]} and t′ is {[ t′1 | t
′
2 ]}, then:

• if tail(t2) and tail(t′2) are the same variable, the we obtain the thesis by inductive hypothesis on
untail({[ t1 | t2 ]}) and untail({[ t′1 | t

′
2 ]});

• if tail(t2) = Y and tail(t′2) = Y ′ are not the same variable and σC is not defined on Y or on Y ′,
then θ′(FY ) or θ′(FY ′ is not an element of both θ′(σ∗

C(t)) and θ′(σ∗
C(t

′));

• if tail(t2) = Y and tail(t′2) = Y ′ are not the same variable and σC is not defined on Y and on Y ′,
then we can restrict ourselves to the case in which there is an element s of θ(t) which is not an
element of θ(t′) (in the general case we would have to consider that there exists s such that there
are m occurrences of s in θ(t) and n occurrences in θ(t′) with m 6= n):

– if s is an element of θ(Y ), then, from the fact that σC is not defined on Y , we have the
thesis, since it cannot be the case that one of the elements of untail(t′) becomes equal to
θ(s) (the new elements have a size which is greater);

– if s is an element of untail(t), then we have t = {[u1, . . . , uh, . . . , um |Y ]} and s = θ(uh),
hence, from the inductive hypothesis, we have that θ′(σ∗

C(uh)) is still different from all
elements of θ′(σ∗

C(untail(t
′))), and it is immediate that it is different from all the elements

of θ′(Y ′), hence θ′(σ∗
C(uh)) is an element of θ′(σ∗

C(t)) which is not in θ′(σ∗
C(t

′)).
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✷

Lemma A.6 Let T be one of the theories List, CList, MSet and Set, and C a constraint in pre-solved
form over the language of T. If is solvedT(C) returns false, then C is not satisfiable in the model AT

which corresponds with T.

Proof. If is solvedT(C) returns false because G∈C has a cycle then the result is trivial, since all
aggregates in A are well-founded. Otherwise:

For List, MSet, CList: From Lemma A.5 we know that T |= ∀(σ∗
C(t) = σ∗

C(t
′)) implies T |= ∀(t = t′),

hence, since t ∈ X and t′ 6∈ X are in C, C is not satisfiable in the model A which corresponds
with T.

For Set: Let σ∗
C ≡ [X1/{F1, p

1
1, . . . , p

k1

1 |M1}, . . . , Xq/{Fq , p
1
q, . . . , p

kq
q |Mq}], we have that if SET |=

Cγ, then SET |= (Cσ∗
C)γ

′, where γ′ is defined as follows

γ′(Y ) =







γ(Xi) if Y ≡Mi

p1i if Y ≡ Fi

γ(Y ) otherwise

Hence, if is solvedSet returns false this means that Cσ∗
C is not satisfiable in SET , which implies

that C is not satisfiable in SET .

✷

B Termination Proofs (Theorem 6.1)

Termination of SATList

Using the same measure as for SATMSet termination follows. ✷

Termination of SATCList

Finding a global decreasing measure implies that this measure is decreased by each rule of each algorithm
involved. The measure developed in [11] for proving termination of Unify clists is rather complex. This is
due to the fact that new variables are (apparently) freely introduced in the constraint by this procedure.
Instead of extending such complex measure to the general case, we use here a different approach for
proving termination. The proof is based:

• on the fact that each single rewriting procedure terminates (for Unify clists it follows from [11];
for the other three procedures the result is trivial) and

• on the fact that it is possible to find a bound on the number of possible repeat cycles.

The remaining part of the proof is devoted to find this bound. First of all observe that:

• After the execution of in-CList there are only membership atoms of the form t ∈ X with X /∈
FV (t). New equations can be introduced.

• After the execution of in-CList there are only not-membership literals of the form t /∈ X with X /∈
FV (t). New disequality constraints can be introduced. Membership atoms are not introduced.

• After the execution of neq-CList there are only disequality constraints of the form X 6= t with
X /∈ FV (t). New equations can be introduced. ∈ and /∈-constraints are not introduced.

• Unify clists eliminates all equality constraints producing a substitution. This substitution, when
applied to membership, not-membership, and disequality literals in pre-solved form can force a
new execution of the procedures in-CList, nin-CList, and neq-CList. However, new executions of
Unify clists are possible only if in-CList and neq-CList introduce new equations. In the following
we will find a bound on the number of possible new equations inserted.

Let us analyze membership constraints. Each membership atom of the form t ∈ [[ s′ | s′′ ]] is rewritten
to false or to t = s′ ∨ t ∈ s′′. This means that in each non-deterministic branch of the rewriting
process at most one equation is introduced for each initial membership atom. Thus, if k is the number
of membership atoms in C at the beginning of the computation, at most k equality atoms (that can fire
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Unify clists) can be introduced. If we prove termination with k = 0 then full termination easily follows,
since it is the same as considering k successive (terminating) executions.

Let us consider the procedure neq-CList. Action (7.2) can replace a disequality constraint of the
form: X 6= [[ t1, . . . , tn |X ]] with the following equations, identifying a substitution:

X = nil (8)

X = [[N1 |N2 ]] with N1, N2 new variables. (9)

Let us analyze the various cases in which substitutions of this form have some effects on the con-
straint.

• there is t ∈ X in C. This is not possible by hypothesis, since k = 0.

• t /∈ X or X 6= t and we know that X does not occur in t. This implies a finite number of
executions of rules of nin-CList or neq-CList. Since X is not in t and the variables N1 and N2 are
newly introduced, it is impossible to generate a situation firing rule (7.2).

• Assume there are more than one equation introduced for the same variable X.

– If they are all of the form (8), then Unify clists will apply the substitution and remove the
redundant equations.

– If they are all of the form (9), then Unify clists will perform a unification process between
these new equations. The particular form of the equations allows us to see that the effect
is to introduce new equations of the form N1 = N ′

1 between all the new variables used as
elements and equations of the form N2 = N ′

2 or N2 = [[N ′
1 |N

′
2 ]] between the new variables

used as rests. The situation is similar to that in which a unique substitution is computed.

– If there are both equations of the form (8) and of the form (9), then a failing (thus, termi-
nating) situation will be detected by Unify clists. ✷

Termination of SATSet

Finding a global decreasing measure implies that this measure is decreased by each rule of each algorithm
involved. This is rather complex since it must subsume the measure developed in [11] for proving
termination of Unify sets. Thus, instead of extending such complex measure, we use here a different
approach for proving termination. The proof is based:

• on the fact that each single rewriting procedure terminates (for Unify sets it follows from [11]; for
the other three procedures the result is trivial) and

• on the fact that it is possible to control the number of new calls to unification.

In order to simplify the proof we assume a strategy for handling the non-determinism. The strategy
will be pointed out during the discussion.

As observed in the proof of SATCList , if k is the number of membership atoms in C at the beginning
of the computation, at most k equality atoms (that can fire Unify sets) can be introduced. For this
reason, we can safely forget this kind of constraints from the whole reasoning.

The only problem for termination is given by rules (6a) and (6b) of neq-CList. As a strategy, we
can unfold the application of this rules (actually, adding a bit of determinism to the whole procedure).
This means that rule (6a) (for (6b) the situation is symmetrical) is as follows: assume that {t1 | s1} is
{v1, . . . , vm |h} and {t2 | s2} is {w1, . . . , wn | k}, with h, k variables or terms of the form f(. . .), g(. . .),
f and g different from { · | · }. The global effect of the subcomputation is that of returning a constraint
of the form (1 ≤ i ≤ m):

N = vi, vi 6= w1, . . . , vi 6= wn, vi /∈ k (10)

or one constraint of the form

h = {N |N ′}, N 6= w1, . . . , N 6= wn, N /∈ k (11)

if h is a variable. Notice that the application of this substitution is a sort of application of rule (4) of
the procedure in-Set.

In the following discussion let us assume that termination by failure do not occur (but, in this case,
termination follows trivially). Suppose to have already executed the first cycle of the repeat loop. Local
termination ensures that this can be done in finite time. In the constraint there are no equations, while
there can be negated membership and disequality literals not necessarily in pre-solved form.
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Let us execute procedure nin-Set. No equations are introduced. In the constraint there are not-
membership literals in pre-solved form and disequality constraints not necessarily in pre-solved form.

Let us execute the procedure neq-Set. We adopt a weak strategy to face the non-determinism:
delay the constraints that fire action (6) as much as possible. This means that after a finite time the
constraint is composed by a number of constraints of the form X 6= t or t /∈ X with X /∈ FV (t) plus a
(possibly empty) constraint C̃ of constraints all firing action (6) of neq-Set. Pick one constraint c from
C̃ and consider the possible non-deterministic executions.

• Assume that the situation of case (11) above does not occur in a non-deterministic branch. Then
(see case (10)) the constraint c is replaced in C by a number of constraints vi 6= wj of fewer size.
If they do not fire action (6) they can be directly processed to reach a pre-solved form. Otherwise,
they are inserted in C̃, but since they are of fewer size, if the situation of case (11) never occur,
this again implies termination.

• Assume now that the situation of case (11) occurs when processing the constraint c. Constraints

N 6= w1, . . . , N 6= wn, N /∈ k

are introduced. Constraints in pre-solved form of the form above, with N a variable introduced as
element of a set by action (6), are said passive constraints. Variables N of this form are inserted
in the constraint only by this step. We will see that passive disequality constraints remain in
pre-solved form forever while negated membership passive literals have a controlled growth.

Assume to apply immediately the substitution h/{N |N ′}. Its effect can be the following, ac-
cording to the position of h in a constraint:

– X 6= t[h] or t[h] /∈ X: the terms gets changed but the constraints remain in pre-solved form.

– s[h] 6= t or s 6= t[h] or s[h] 6= t[h]: the terms change but the constraints remain in C̃ to be
processed later.

– t /∈ h is transformed to t /∈ {N |N ′}. One step of nin-Set is applied to obtain: t 6= N∧t /∈ N ′.
The first constraint is immediately transformed into N 6= t (a passive constraint) while the
second is in pre-solved form. Observe that if t /∈ h is passive (i.e., t is a variable of type N),
then only passive constraints are introduced.

– h 6= t is transformed to {N |N ′} 6= t. Observe that h 6= t can not be a passive constraint
since h is a ‘rest’ variable while the variables of passive constraints are ‘element’ variables,
like N here. A constraint in pre-solved form is no longer in pre-solved form. Let us apply the
rewriting rules to it. It is immediately rewritten to true (e.g., when t is f(· · ·), f 6= { · | · })
or it becomes in pre-solved form (when t is a variable) or action (6) can be applied.

Both in cases (10) and in the case (11) we introduce a number of passive constraints and,
in the last case, a substitution N ′/{N1 |N

′
1} is applied. Notice that the global effect on

the system it the fact that in the other constraints the original variable h is replaced by
{N,N1 |N

′
1}. This means that this situation can be performed at most once per each occur-

rence of h. And, the reasoning starting from substitutions of the form {N,N1, . . . , Nℓ |N
′
ℓ}

is the same as that done here for N ′/{N1 |N
′
1}. At the end of the process, the number

of constraints in C̃ is decreased and we have only introduced pre-solved form and passive
constraints. ✷
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