skip to main content
research-article

Program termination and well partial orderings

Published:12 June 2008Publication History
Skip Abstract Section

Abstract

The following known observation is useful in establishing program termination: if a transitive relation R is covered by finitely many well-founded relations U1,…,Un then R is well-founded. A question arises how to bound the ordinal height |R| of the relation R in terms of the ordinals αi = |Ui|. We introduce the notion of the statureP∥ of a well partial ordering P and show that |R| ≤ ∥α1 × … × αn∥ and that this bound is tight. The notion of stature is of considerable independent interest. We define ∥ P ∥ as the ordinal height of the forest of nonempty bad sequences of P, but it has many other natural and equivalent definitions. In particular, ∥ P ∥ is the supremum, and in fact the maximum, of the lengths of linearizations of P. And ∥α1 × … × αn∥ is equal to the natural product α1 ⊗ … ⊗ αn.

References

  1. Aschenbrenner, M. and Pong, W. Y. 2004. Orderings of monomial ideals. Fund. Math. 181, 27--74.Google ScholarGoogle ScholarCross RefCross Ref
  2. Berdine, J., Chawdhary, A., Cook, B., Distefano, D., and O'Hearn, P. 2007. Variance analyses from invariance analyses. In Proceedings of the 2007 ACM Symposium on Principles of Programming Languages (POPL 2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bruynooghe, M., Codish, M., Gallagher, J. P., Genaim, S., and Vanhoof, W. 2006. Termination analysis of logic programs through combination of type-based norms. ACM Trans. Programm. Lang. Syst., To appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Carruth, P. W. 1942. Arithmetic of ordinals with applications to the theory of ordered Abelian groups. Bull. Amer. Math. Soc. 48, 262--271.Google ScholarGoogle ScholarCross RefCross Ref
  5. Codish, M., Genaim, S., Bruynooghe, M., Gallagher, J. P., and Vanhoof, W. 2003. One loop at a time. In Proceedings of the 2003 International Workshop on Termination (WST 2003). 1--4. Available online at http://www.dsic.upv.es/~rdp03/procs/WST03all.pdf.Google ScholarGoogle Scholar
  6. Cook, B. 2005. Private communication.Google ScholarGoogle Scholar
  7. Cook, B., Podelski, A., and Rybalchenko, A. 2006. Termination proofs for systems code. In Proceedings of the 2006 ACM Conference on Programming Language Design and Implementation (PLDI 2006). 415--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. de Jongh, D. H. J. and Parikh, R. 1977. Well-partial orderings and hierarchies. Nederl. Akad. Wetensch. Proc. Ser. A 80-Indag. Math. 39, 195--207.Google ScholarGoogle ScholarCross RefCross Ref
  9. Delhommé, C. 2006. Height of a superposition. Order 23, 221--233.Google ScholarGoogle ScholarCross RefCross Ref
  10. Dershowitz, N., Lindenstrauss, N., Sagiv, Y., and Serebrenik, A. 2001. A general framework for automatic termination analysis of logic programs. Applic. Alg. Eng. Commun. Comput. 12, 1/2, 117--156.Google ScholarGoogle Scholar
  11. Doornbos, H. and von Karger, B. 1998. On the union of well-founded relations. Log. J. IGPL 6, 195-201.Google ScholarGoogle ScholarCross RefCross Ref
  12. Dushnik, B. and Miller, E. W. 1941. Partially ordered sets. Amer. J. Math. 63, 600--610.Google ScholarGoogle ScholarCross RefCross Ref
  13. Geser, A. 1990. Relative Termination. Doctoral dissertation. University of Passau, Passau, Germany.Google ScholarGoogle Scholar
  14. Gurevich, Y. 1969. The decision problem for logic of predicates and operations. Algebra i Logika 8, 284--308 (Russian). English translation in Alg. Logic 8, 160--174.Google ScholarGoogle Scholar
  15. Hausdorff, F. 1927. Mengenlehre, 2nd ed. de Gruyter, Berlin, Germany.Google ScholarGoogle Scholar
  16. Hessenberg, G. 1906. Grundbegriffe der Mengenlehre. Vandenhoeck & Ruprecht, Gööttingen, Germany.Google ScholarGoogle Scholar
  17. Higman, G. 1952. Ordering by divisibility in abstract algebras. Proc. London Math. Soc. 3, 2 326--336.Google ScholarGoogle ScholarCross RefCross Ref
  18. Janet, M. 1920. Sur les systèmes d'équations au dérivées partielles. J. Math. Pures et Appliq. Série 8, 3, 65--151.Google ScholarGoogle Scholar
  19. Kříž, I. and Thomas, R. 1990. Ordinal types in Ramsey theory and well-partial-ordering theory. In Mathematics of Ramsey Theory, J. Nešetřil and V. Rödl, Eds. Springer-Verlag, Berlin, Germany, 57--95.Google ScholarGoogle Scholar
  20. Kruskal, J. B. 1960. Well-quasi-ordering, the tree theorem, and Vazsonyi's conjecture. Trans. Amer. Math. Soc. 95, 210--225.Google ScholarGoogle Scholar
  21. Kruskal, J. B. 1972. The theory of well-quasi-ordering: A frequently discovered concept. J. Comb. Theory A 13, 297--305.Google ScholarGoogle ScholarCross RefCross Ref
  22. Lee, C. S., Jones, N. D., and Ben-Amram, A. M. 2001. The size-change principle for program termination. In Proceedings of the 2001 ACM Symposium on Principles of Programming Languages (POPL 2001). 81--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lescanne, P. 1989. Well quasi-ordering in a paper by Maurice Janet. Bull. EATCS 39, Oct., 185--188.Google ScholarGoogle Scholar
  24. Lescanne, P. (moderator). 2003. Rewriting mailing list. Archive of older contributions. Available online at http://www.ens-lyon.fr/LIP/REWRITING/CONTRIBUTIONS/.Google ScholarGoogle Scholar
  25. Michael, E. 1960. A class of partially ordered sets. Amer. Math. Monthly 67, 448--449.Google ScholarGoogle ScholarCross RefCross Ref
  26. Podelski, A. and Rybalchenko, A. 2004. Transition invariants. In Proceedings of 2004 IEEE Symposium on Logic in Computer Science (LICS 2004). 32--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Podelski, A. and Rybalchenko, A. 2005. Transition predicate abstraction and fair termination. In Proceedings of the 2005 ACM Symposium on Principles of Programming Languages (POPL 2005) 132--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Ramsey, F. P. 1930. On a problem of formal logic. Proc. London Math. Soc. (2nd ser.) 30, 234--286.Google ScholarGoogle Scholar
  29. Schmidt, D. 1979. Well-Partial Orderings and their Maximal Order Types. Habilitationsschrift, University of Heidelberg, Heidelberg, Germany.Google ScholarGoogle Scholar
  30. Zuckerman, M. M. 1974. Sets and Transfinite Numbers. Macmillan, New York, NY.Google ScholarGoogle Scholar

Index Terms

  1. Program termination and well partial orderings

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Computational Logic
      ACM Transactions on Computational Logic  Volume 9, Issue 3
      June 2008
      289 pages
      ISSN:1529-3785
      EISSN:1557-945X
      DOI:10.1145/1352582
      Issue’s Table of Contents

      Copyright © 2008 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 June 2008
      • Accepted: 1 October 2006
      • Received: 1 May 2006
      Published in tocl Volume 9, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader