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Abstract

We introduce a proof system for Hájek’s logic BL based on a rela-
tional hypersequents framework. We prove that the rules of our logical
calculus, called RHBL, are sound and invertible with respect to any val-
uation of BL into a suitable algebra, called (ω)[0, 1]. Refining the notion
of reduction tree that arises naturally from RHBL, we obtain a decision
algorithm for BL provability whose running time upper bound is 2O(n),
where n is the number of connectives of the input formula. Moreover, if
a formula is unprovable, we exploit the constructiveness of a polynomial
time algorithm for leaves validity for providing a procedure to build coun-
termodels in (ω)[0, 1]. Finally, since the size of the reduction tree branches
is O(n3), we can describe a polynomial time verification algorithm for BL

unprovability.

1 Introduction

A t-norm is a binary operation on [0, 1] that is associative, commutative, weakly
increasing and has 1 as unit. Given a t-norm ∗, the associated residuum is the
binary operation x →∗ y = max{z : z ∗ x ≤ y} and the associated t-algebra is
the algebra [0, 1]∗ = ([0, 1], ∗,→∗, 0). For each t-norm ∗, L∗ is the propositional
logic on the connectives ⊙,→ and the constant ⊥, respectively interpreted on
[0, 1]∗ as ∗, →∗ and 0. The tautologies of L∗ are the formulas evaluating to 1
on [0, 1]∗ under any valuation of the variables in [0, 1].

In this paper we study the proof-theoretical and proof complexity properties
of a proof search system for Hájek’s Basic Logic BL [Háj98] (see Definition 2.2
for BL axioms). As shown in [CEGT00], BL is the logic of all continuous t-
norms and their residua, that is, a formula A is a tautology of BL if and only
if, for all continuous t-norms ∗, A is a tautology of L∗. Moreover, as shown
in [BHMV02], the unprovability problem of BL is NP-complete, hence the
provability problem of BL is decidable.
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The proof-theoretical coverage of continuous t-norm based logics is not ho-
mogeneous. On the one hand, a variety of logical calculi has been proposed
for the fundamental schematic extensions of BL, namely  Lukasiewicz logic  L,
Product logic Π, Gödel logic G. On the other hand, the lack of a natural logical
calculus for BL is a recurrent remark in the literature [CFM04]. In [Agu04] a
general method for deriving routinely a sequent calculus sound and complete for
BL (and generally for any continuous t-norm based logic) is presented, but it
seems unsuitable for proof search, due to the huge branching factor of the proof
trees generated. Therefore, as far as we know, the only proof system for BL
suitable for proof search is the tableaux calculus presented in [MPT03], called
TBL.

Unfortunately, we recently discovered a counterexample in TBL, finding
that the residuation axiom (A5) of BL is unprovable in TBL, or, equivalently,
that the leaf of a branch of the TBL reduction tree of (A5) is not an axiom.

For instance, the following branch of the TBL reduction tree of (A5):

. . .

. . .

. . .

. . .

. . .

. . . C ⊳ A,C ⊳ B,A < ⊤, B < ⊤
(≤,⊙,L)

C < A ⊙ B,C ⊳ B,A < ⊤, B < ⊤
(≺,⊙,L)

C < A ⊙ B,C ⊳ B, (A ⊙ B + 1 + C ≺ C + 1 + A)+

(≺,→,L)
C < A ⊙ B, (A ⊙ B + 1 + B → C ≺ C + 1 + A)+

(≺,→,L)
C < A ⊙ B, (A → (B → C) + A ⊙ B ≺ C + 1)+

(≤,→,R)
A → (B → C) ≤ (A ⊙ B) → C

(= ⊤,→)
(A → (B → C)) → ((A ⊙ B) → C) = ⊤

has a leaf that is not an axiom. In fact, the leaf corresponds to the disjunction
of C ⊳A, C ⊳B, A < ⊤ and B < ⊤, and its negation, corresponding to the
conjunction of C ⊳ A, C ⊳ B, A = ⊤ and B = ⊤, is satisfied by any valuation
of BL into (ω)[0, 1] satisfying A = B = ⊤ e C < ⊤.

Instead of making the necessary changes to TBL, we tried to present an
alternative and more efficient proof system for BL, called RWBL. From the
proof-theoretical point of view, the kernel of our proof system is a relational
hypersequents calculus, called RHBL, based on the promising approach that
produced uniform rules for  L, Π and G [CFM04]. The calculus is sound and
complete and, interestingly, it allows for automatic proof search, being cut free
and having the subformula property. From the proof complexity point of view,
we remark that, if a formula A has n connectives, the proof tree of A in RWBL
has height at most n. This fact lowers immediately the upper bounds derivable
from TBL, with respect to both the provability and the unprovability problems
of BL. Specifically, the upper bound on the size of a certificate of provability
of A is 2O(n) (compared with the 2O(n2) and 2O(n3) bounds implicit in [Agu04]
and [MPT03] respectively) and the upper bound on the size of a certificate
of unprovability of A is O(n) as in [Agu04] (compared with the O(n3) bound
presented in [MPT03]). The time complexity of the algorithms for searching and
verifying BL proofs follows immediately from these bounds, being dominated
by the proof size.
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The paper is organized as follows. In Section 2, we outline the algebraic
foundations of our semantic-based proof system. In Section 3, we introduce
the relational hypersequents calculus RHBL and the reduction tree framework
RWBL. In Section 4, we describe a polynomial time algorithm for checking
the validity of the leaves of a reduction tree. In Section 5, we show that our
proof system is sound and complete for BL and we study its computational
complexity.

2 Preliminaries

Definition 2.1 (formula). The set of formulas is the smallest set F such that
⊥ ∈ F , {pi : i ∈ N} ⊆ F and, if A,A′ ∈ F , then (A ⊙A′), (A → A′) ∈ F . The
complexity c(A) of a formula A is the number of connectives occurring in A.

In the sequel, we write ⊤ for ⊥ → ⊥ and ◦ denotes an arbitrary connective.
Moreover, we say that B is more complex than A, A <c B, if c(A) < c(B) or
c(A) = c(B) but A ≤lex B, assuming a lexicographical order over the underlying
alphabet.

Definition 2.2 (BL). Let A,B,C ∈ F . The theory of BL is defined by the
modus ponens deduction rule and the axiom schemata

(A1) (A → B) → ((B → C) → (A → C))

(A2) (A⊙B) → A

(A3) (A⊙B) → (B ⊙A)

(A4) (A⊙ (A → B)) → (B ⊙ (B → A))

(A5) ((A → (B → C)) ↔ ((A⊙B) → C))

(A6) ((A → B) → C) → (((B → A) → C) → C)

(A7) ⊥ → A

A proof of a formula A in BL is a sequence (A1, . . . , An) of n formulas, n ∈ N,
such that An = A and, for all i = 1, . . . , n, Ai is a BL axiom or Ai is the result
of a modus ponens application to formulas Aj , Ak, where j, k < i. A formula
A is a BL theorem if there is a proof of A in BL (we write BL ⊢ A).

Definition 2.3 ((ω)[0, 1] algebra). The algebra (ω)[0, 1] is the algebra on the
support [0,+∞] equipped with the operations ∗, ⇒∗ and the constants 0, +∞,
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where ∗ and ⇒∗ are respectively defined by

x ∗ y =











min(x, y) if ⌊x⌋ 6= ⌊y⌋

max(⌊x⌋, x + y − ⌊x⌋ − 1) if ⌊x⌋ = ⌊y⌋ < +∞

+∞ if x = y = +∞

x ⇒∗ y =











y if ⌊y⌋ < ⌊x⌋

⌊x⌋ + 1 − x + y if ⌊x⌋ = ⌊y⌋ and y < x

+∞ if x ≤ y

where ⌊x⌋ denotes the lower integer part of x and ⌊+∞⌋ = +∞.

Definition 2.4 (valuation). Let A,B ∈ F . A valuation (of BL into (ω)[0, 1])
is a function v such that v(⊥) = 0, v(pn) ∈ [0,+∞], v(A ⊙ B) = v(A) ∗ v(B)
and v(A → B) = v(A) ⇒∗ v(B).

Let v(A) = v(A)−⌊v(A)⌋. In the sequel, we say that (the type of) a valuation
v with respect to a pair of formulas (A,B) is: ⊙1, if ⌊v(A)⌋ < ⌊v(B)⌋; ⊙2, if
⌊v(B)⌋ < ⌊v(A)⌋; ⊙3, if ⌊v(A)⌋ = ⌊v(B)⌋ < +∞ and 1 ≤ v(A) + v(B); ⊙4,
if ⌊v(A)⌋ = ⌊v(B)⌋ < +∞ and v(A) + v(B) < 1; ⊙5, if v(A) = v(B) = +∞;
→1, if ⌊v(B)⌋ < ⌊v(A)⌋; →2, if ⌊v(A)⌋ = ⌊v(B)⌋ and v(B) < v(A); →3, if
v(A) ≤ v(B).

Fact 2.1. Let A,B ∈ F and v be a valuation of BL into (ω)[0, 1]. Then, there
is exactly one i ∈ {1, 2, 3, 4, 5} such that v is ⊙i with respect to (A,B) and there
is exactly one i ∈ {1, 2, 3} such that v is →i with respect to (A,B). Moreover,
if ⌊v(A)⌋ = ⌊v(B)⌋, then ⌊v(A ⊙ B)⌋ = ⌊v(A)⌋ = ⌊v(B)⌋, and ⌊v(A → B)⌋ =
⌊v(A)⌋ = ⌊v(B)⌋ or ⌊v(A → B)⌋ = +∞.

The proof system we will introduce in the next section relies on the following
characterization of BL provability [MPT03].

Theorem 2.1. Let A ∈ F . Then, BL ⊢ A if and only if, for every valuation v
of BL into (ω)[0, 1], v(A) = +∞.

3 Logical Rules and Reduction Trees

Definition 3.1 (relational hypersequent). A BL relational sequent has the
form Γ ⊳ ∆, where, ⊳ ∈ {≪,4z,≺z: z ∈ Z}, Γ and ∆ are finite multisets of
formulas and, if ⊳ is ≪, then |Γ| ≤ 1 and |∆| ≤ 1. A BL relational hypersequent
is a finite set of BL relational sequents of the form Γ1 ⊳1 ∆1| . . . |Γn ⊳n ∆n, and
∅ is the empty relational hypersequent. The set of BL relational hypersequents
is called RH. A relational hypersequent is called irreducible if all its formulas
are atomic.

In the sequel, ⊳ ∈ {≪,4z,≺z: z ∈ Z} and we write ⊳ for ⊳0.
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Definition 3.2 (satisfaction, validity). Let G ∈ RH be determined as in
Definition 3.1 and v be a valuation. Then, v satisfies G, v � G, if, for some
i = 1, . . . , n:

(i) Γi ⊳i ∆i is A ≪ B and ⌊v(A)⌋ < ⌊v(B)⌋;

(ii) Γi ⊳i ∆i is A 4 B and both the following conditions hold

⌊v(A)⌋ = ⌊v(B)⌋ (3.1)

v(A) ≤ v(B) (3.2)

and similarly for ≺ and < instead of 4 and ≤ respectively;

(iii) Γi ⊳i ∆i is A1, . . . , An 4z B1, . . . , Bm, where n,m ≥ 0, n + m ≥ 2 and, if
n + m = 2, then z 6= 0. Moreover, both the following conditions hold

⌊v(A1)⌋ = . . . = ⌊v(An)⌋ = ⌊v(B1)⌋ = . . . = ⌊v(Bm)⌋ < +∞ (3.3)

v(A1) + . . . + v(An) − n ≤ v(B1) + . . . + v(Bm) −m + z (3.4)

and similarly for ≺ and < instead of 4 and ≤ respectively.

The hypersequent G is valid for BL, � G, if, for all valuations v, v � G.

We remark that condition (3.3) is stronger than condition (3.1), since it
requires integer parts less than +∞. We observe that, given a valuation v,
v satisfies A ≪ ⊤ only if v(A) < +∞ and v satisfies A 4 ⊤|⊤ 4 A only if
v(A) = +∞. Moreover, ⊤ ≪ A, ⊤ ≺ A, A ≺ ⊤ and ∅ are unsatisfiable and
⊤ ≺ A|A ≺ ⊤|⊤ 4 A|A 4 ⊤ is equivalent to ⊤ 4 A.

Representing the negation of a relational hypersequent G by G simplifies the
notation of implications. For instance, the implication G ⇒ G′ is represented
by G|G′.

Notation 3.1. We introduce the following abbreviations: A ≤ B ≡ A ≪ B|A 4

B; A ∼ B ≡ A 4 B|B 4 A; A ≪ B ≡ A 4 B|B 4 A|B ≪ A; A ≤ B ≡ B ≺
A|B ≪ A; A 4 B ≡ A ≪ B|B ≺ A|B ≪ A; A ≺ B ≡ A ≪ B|B 4 A|B ≪
A; A ∼ B ≡ A ≪ B|B ≪ A; 41 A,B ≡ A ∼ B|A ≪ ⊤|B ≪ ⊤|A,B ≺−1;
A,B ≺−1 ≡ A ∼ B|A ≪ ⊤|B ≪ ⊤| 41 A,B.

Fact 3.1. Let A,B ∈ F and v be a valuation. Then: v � A ≤ B if and only
if v(A) ≤ v(B); v � A ∼ B if and only if ⌊v(A)⌋ = ⌊v(B)⌋; v � A ≪ B if and
only if ⌊v(B)⌋ ≤ ⌊v(A)⌋; v � A ≤ B if and only if v(B) < v(A); v � A 4 B
if and only if ⌊v(A)⌋ 6= ⌊v(B)⌋ or v(B) < v(A); v � A ≺ B if and only if
⌊v(A)⌋ 6= ⌊v(B)⌋ or v(B) ≤ v(A); v � A ∼ B if and only if ⌊v(A)⌋ 6= ⌊v(B)⌋;
v � 41 A,B if and only if ⌊v(A)⌋ 6= ⌊v(B)⌋ or v(A) = +∞ or v(B) = +∞ or
v(A) + v(B) < 1; v � A,B ≺−1 if and only if ⌊v(A)⌋ 6= ⌊v(B)⌋ or v(A) = +∞
or v(B) = +∞ or 1 ≤ v(A) + v(B).

Let H be an arbitrary relational hypersequent, G◦i
be relational hyperse-

quents which will be specified in the sequel, Γ,∆ be arbitrary finite multisets
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of formulas and and A,B ∈ F . We define the relational hypersequents calculus
RHBL as a set of logical rules having one of the following forms:

(⊙, ⊳, l)
H|A ≪ B|G⊙1

H|B ≪ A|G⊙2
H|41 A, B|G⊙3

H|A,B ≺−1|G⊙4
H|⊤ 4 A|⊤ 4 B|G⊙5

H|Γ, A ⊙ B ⊳ ∆
(3.5)

(⊙, ⊳, r)
H|A ≪ B|G⊙1

H|B ≪ A|G⊙2
H|41 A,B|G⊙3

H|A,B ≺−1|G⊙4
H|⊤ 4 A|⊤ 4 B|G⊙5

H|Γ ⊳ A ⊙ B,∆
(3.6)

(→, ⊳, l)
H|B ≪ A|G→1 H|B ≺ A|G→2 H|A ≤ B|G→3

H|Γ, A → B ⊳ ∆
(3.7)

(→, ⊳, r)
H|B ≪ A|G→1 H|B ≺ A|G→2 H|A ≤ B|G→3

H|Γ ⊳ A → B,∆
(3.8)

With respect to (3.5)-(3.8) above, we introduce the following terminology.
The relational hypersequents above are respectively called premises (of type)
◦1, . . . , ◦n, the relational hypersequent below is called conclusion, the formula
A ◦B is called pivot and H is called side relational hypersequent of the logical
rule. With respect to the premise ◦i of a logical rule, the overlined relational
hypersequent is called antecedent (◦i) and G◦i

is called consequent (◦i) of the
premise. Notice that, for reasons that will become apparent in Definition 3.5,
we regard the premise of a rule as a relational hypersequents tuple, ordered by
occurrence from left to right.

Definition 3.3 (RHBL). The relational hypersequent calculus RHBL con-
tains the following rules (we omit the side relational hypersequent of the rules
and we abbreviate the antecedent of the premise ◦i with I◦i

):

(⊙,≪, l)
I⊙1 |A ≪ C I⊙2 |B ≪ C I⊙3 |A ≪ C I⊙4 |A ≪ C I⊙5

A⊙B ≪ C

(⊙,≪, r)
I⊙1 |C ≪ A I⊙2 |C ≪ B I⊙3 |C ≪ A I⊙4 |C ≪ A I⊙5 |C ≪ ⊤

C ≪ A⊙ B

(→,≪, l)
I→1 |B ≪ C I→2 |A ≪ C I→3

A → B ≪ C

(→,≪, r)
I→1 |C ≪ B I→2 |C ≪ A I→3 |C ≪ ⊤

C ≪ A → B

(⊙, ⊳, l)
I⊙1 |Γ, A ⊳∆ I⊙2 |Γ, B ⊳∆ I⊙3 |Γ, A, B ⊳∆ I⊙4 |Γ, A,B ⊳+1 A,B,∆ I⊙5

Γ, A⊙ B ⊳∆

(⊙, ⊳, r)
I⊙1 |∆ ⊳ A,Γ I⊙2 |∆ ⊳ B,Γ I⊙3 |∆ ⊳ A,B,Γ I⊙4 |∆, A,B ⊳−1 A,B,Γ I⊙5

∆ ⊳ A⊙ B,Γ

(→, ⊳, l)
I→1 |Γ, B ⊳∆ I→2 |Γ, B ⊳ A,∆ I→3

Γ, A → B ⊳∆

(→, ⊳, r)
I→1 |∆ ⊳ B,Γ I→2 |∆,A ⊳ B,Γ I→3

∆ ⊳ A → B,Γ
.

As an exception, if Γ = ∅ and ∆ = C, C ∈ F , the premise ⊙5 of the rules
(⊙,4, l) and (⊙,4, r) is I⊙5 |⊤ 4 C and the premise →3 of the rules (→,4, l)
and (→,4, r) is I→3 |⊤ 4 C.

We point out by the means of an example that in the notation of Defini-
tion 3.3 the side relational hypersequent has been omitted and the antecedent
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of premises has been abbreviated. Moreover, we focus on the terminology in-
troduced.

Example 3.1. The fully scripted version of the rule (→, ⊳, r) is:

(→, ⊳, r)
H|B ≪ A|∆ ⊳ B,Γ H|B ≺ A|∆, A ⊳ B,Γ H|A ≤ B

H|∆ ⊳ A → B,Γ

With respect to the rule, H |∆ ⊳ A → B,Γ is the conclusion, H is the side
relational hypersequent, H |B ≪ A|∆ ⊳B,Γ is the premise →1, H |B ≺ A|∆, A ⊳
B,Γ is the premise →2 and H |A ≤ B is the premise →3. With respect to each
premise, B ≪ A is the antecedent (of premise) →1 and ∆⊳B,Γ is the consequent
(of premise) →1, B ≺ A is the antecedent (of premise) →2 and ∆, A ⊳ B,Γ is
the consequent (of premise) →2, A ≤ B is the antecedent (of premise) →3 and
∅ is the consequent (of premise) →3.

We remark that some unusual features of the rules, namely the emptiness of
consequents of premises ⊙5 and →3 and the occurrence of A,B on both sides
of ⊳ in premise ⊙4, are necessary conditions to prove the semantic properties of
the calculus, for reasons that will become apparent in the following, examining
in detail Definition 3.4 and Proposition 3.2.

The properties of soundness and invertibility of a logical rule are defined as
follows.

Definition 3.4 (soundness, invertibility). Let R be a logical rule. Then, R
is sound for BL if and only if, for all valuations v, if v satisfies all the premises
of R, then v satisfies the conclusion of R. Moreover, R is invertible for BL
if and only if, for all valuations v, if v satisfies the conclusion of R, then v
satisfies all the premises of R.

A logical calculus is sound and invertible if all its rules are sound and in-
vertible.

We must show that RHBL is sound and invertible. To this aim, we antici-
pate the following two propositions.

Proposition 3.1. Let R be a logical rule determined as in Definition 3.3 and
v be a valuation. Then, with respect to (A,B):

(i) if v is ⊙i, then v satisfies the antecedent of the premise ⊙j if and only if
j 6= i, for all i, j ∈ {1, 2, 3, 4, 5};

(ii) if v is →i, then v satisfies the antecedent of the premise →j if and only
if j 6= i, for all i, j ∈ {1, 2, 3}.

Proof. Both claims can be proved by cases as immediate consequences of Def-
inition 2.4, Definition 3.2 and Fact 3.1. As an example (the other cases are
similar), if v is ⊙3, then v �41 A,B, that is, v 2 41 A,B (the antecedent ⊙3),
whereas all of v � A ≪ B (the antecedent ⊙1), v � B ≪ A (the antecedent ⊙2),
v � A,B ≺−1 (the antecedent ⊙4) and v � ⊤ 4 A|⊤ 4 B (the antecedent ⊙5)
hold, thus the claim holds in this case.
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Proposition 3.2. Let R be a logical rule determined as in Definition 3.3 and
v be a valuation. Then, with respect to (A,B):

(i) if v is ⊙i, then v satisfies the consequent of premise ⊙i if and only if v
satisfies the conclusion, for all i ∈ {1, 2, 3, 4, 5};

(ii) if v is →i, then v satisfies the consequent of premise →i if and only if v
satisfies the conclusion, for all i ∈ {1, 2, 3};

Proof. The argument relies on Definitions 2.4 and 3.2 and on Fact 2.1.
(i) To prove the first claim we examine the ⊙ rules. Consider (⊙,≪, l) and

(⊙,≪, r). If v is ⊙1,⊙3,⊙4, then ⌊v(A ⊙ B)⌋ = ⌊v(A)⌋, thus v satisfies the
consequent of premise ⊙i if and only if v satisfies the conclusion, for i = 1, 3, 4.
If v is ⊙2, ⌊v(A ⊙ B)⌋ = ⌊v(B)⌋, thus v satisfies the consequent of premise ⊙2

if and only if v satisfies the conclusion. If v is ⊙5, the consequent of premise
⊙5 is equivalent to the conclusion, since, for the left version of the rule, ∅ and
⊤ ≪ C are both unsatisfiable, and, for the right version of the rule, v satisfies
C ≪ ⊤ if and only if v satisfies the conclusion.

Consider (⊙, ⊳, l) and (⊙, ⊳, r). If v is ⊙1 (⊙2), then v satisfies the consequent
of premise ⊙1 (⊙2) if and only if v satisfies the conclusion. If v is ⊙3, first we
observe that

v(A⊙B) − 1 = v(A) + v(B) − ⌊v(A)⌋ − 1 − ⌊v(B)⌋ − 1

= v(A) − 1 + v(B) − 1
(3.9)

Otherwise stated, the value of a relation of the form Γ, A⊙B⊳∆ does not change
replacing A⊙B on the left with A,B and, similarly, the value of a relation of the
form Γ⊳A⊙B,∆ does not change replacing A⊙B on the right with A,B. Then
we consider two cases, the first arising when |Γ| > 0 or |∆| > 1 and the second
arising when |Γ| = 0 and |∆| = 1, say, ∆ = C for some C ∈ F . In the first case,
v satisfies conditions (3.3) and (3.4) in the consequent of premise ⊙3 if and only
if v satisfies conditions (3.3) and (3.4) in the conclusion, exploiting (3.9) and
Fact 2.1. In the second case, for the soundness, if v satisfies the consequent of
premise ⊙3, then, by condition (3.3) of Definition 3.2(iii), ⌊v(A)⌋ = ⌊v(B)⌋ =
⌊v(C)⌋ < +∞, thus also ⌊v(C)⌋ = ⌊v(A⊙B)⌋ (weakening condition (3.3)), and
v satisfies condition (3.1) in the conclusion, but v satisfies also condition (3.2),
by (3.9), thus v satisfies the conclusion. For the invertibility, if v satisfies the
conclusion, then, by condition (3.1) of Definition 3.2(ii), ⌊v(C)⌋ = ⌊v(A⊙B)⌋,
then ⌊v(A)⌋ = ⌊v(B)⌋ = ⌊v(C)⌋ < +∞, thus v satisfies condition (3.3) of
Definition 3.2(iii) in the consequent of premise ⊙3, but v satisfies also the
condition (3.4), by (3.9), thus v satisfies the consequent of premise ⊙3. Notice
that we rely on the assumption that v is ⊙3 for strengthening condition (3.1).
If v is ⊙4, first we observe that

γ + v(A⊙B) − 1 ≤ δ ⇔ γ + ⌊v(A)⌋ − ⌊v(A)⌋ − 1 ≤ δ

⇔ γ ≤ δ + 1
(3.10)

γ, δ ∈ R+. Otherwise stated, the value of a relation Γ, A⊙B⊳∆ does not change
replacing A ⊙ B on the left with A,B, replacing ∆ on the right with A,B,∆
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and increasing the integer index of the relation by 1. Moreover, we observe that

γ ≤ v(A⊙B) − 1 + δ ⇔ γ ≤ ⌊v(A)⌋ − ⌊v(A)⌋ − 1 + δ

⇔ γ ≤ δ − 1
(3.11)

γ, δ ∈ R+. Otherwise stated, the value of a relation Γ⊳A⊙B,∆ does not change
replacing Γ on the left with Γ, A,B, replacing A⊙B on the right with A,B and
decreasing the integer index of the relation by 1. Then, treating the two cases
mentioned above as for ⊙3 valuations and exploiting (3.10) and (3.11), we obtain
the equivalence modulo v of the consequent of premise ⊙4 and the conclusion.
It may be worth mentioning that the apparent redundancy of A,B on both
sides of the consequent of premise ⊙4 is necessary to obtain the soundness of
the rule. The problem is to guarantee the condition (3.3) in the conclusion,
whereas to guarantee condition (3.4) a premise Γ ⊳ ∆ would be sufficient. In
fact, it is clear that the value of a relation Γ, A,B ⊳A,B,∆ is equal to the value
of the relation Γ ⊳ ∆. If v is ⊙5, we consider the two cases mentioned above.
In the first case, neither the consequent of premise ⊙5 nor the conclusion is
satisfied by v, the former being unsatisfiable and the latter violating condition
(3.3) of Definition 3.2(iii). In the second case, we distinguish three subcases.
If ⊳ is ≺z, neither the consequent of premise ⊙5 nor the conclusion is satisfied
by v, the former being unsatisfiable and the latter violating condition (3.4) of
Definition 3.2(ii). If ⊳ is 4z and z = 0, then v satisfies the consequent of premise
⊙5 if and only if ∆ = ⊤ if and only if v satisfies also the conclusion, by the
exception outlined in Definition 3.3. If ⊳ is 4z and z 6= 0, neither the consequent
of premise ⊙5 (which is ∅) nor the conclusion is satisfied by v, the former being
unsatisfiable and the latter violating condition (3.3) of Definition 3.2(iii), since
⌊A⊙B⌋ = +∞.

(ii) The proof is entirely analogous to (i). As a hint, we observe that

v(A → B) − 1 ≤ 0 ⇔ ⌊v(A)⌋ + 1 − v(A) + v(B) − ⌊v(B)⌋ − 1 ≤ 0

⇔ v(B) − ⌊v(B)⌋ − 1 ≤ v(A) − ⌊v(A)⌋ − 1

⇔ v(B) − 1 ≤ v(A) − 1

(3.12)

Otherwise stated, the value of a relation Γ, A → B⊳∆ does not change replacing
A → B on the left with B and replacing ∆ on the right with A,∆. Moreover,
we observe that

0 ≤ v(A → B) − 1 ⇔ 0 ≤ ⌊v(A)⌋ + 1 − v(A) + v(B) − ⌊v(B)⌋ − 1

⇔ v(A) − ⌊v(A)⌋ − 1 ≤ v(B) − ⌊v(B)⌋ − 1

⇔ v(A) − 1 ≤ v(B) − 1

(3.13)

Otherwise stated, the value of a relation ∆⊳A → B,Γ does not change replacing
∆ on the left with ∆, A and replacing A → B on the right with B.

Lemma 3.1. The calculus RHBL is sound and invertible.
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Proof. Let the logical rules for ⊙ and → be determined as in Definition 3.3 and
let v be a valuation.

We prove that ⊙ rules are sound and invertible. For soundness, by Fact 2.1,
v is ⊙i for exactly one i ∈ {1, . . . , 5} and, by Proposition 3.1(i), if v is ⊙i, then
v satisfies the antecedent of a premise ⊙j only if j 6= i. If v does not satisfy the
premise ⊙i, the claim holds trivially. Otherwise, if v satisfies the premise ⊙i,
then, by Proposition 3.1(i), v must satisfy the consequent of the premise ⊙i,
then, by Proposition 3.2(i), v satisfies the conclusion of the rule, and the claim
holds. For invertibility, if v does not satisfy the conclusion, the claim holds
trivially. Otherwise, let v be a ⊙i valuation such that v satisfies the conclusion.
By Proposition 3.2(i), v satisfies (the consequent of) the premise ⊙i and, by
Proposition 3.1(i), v satisfies (the antecedent of) the premises ⊙j, for all j 6= i,
thus the claim holds.

The argument for proving soundness and invertibility of → rules is similar.

In the remainder of this section we will introduce and refine a notion of
reduction based on RHBL, which will form the kernel of a decision algorithm
for the validity problem of BL (see Section 5).

Definition 3.5 (RHBL reduction). A RHBL reduction of A ∈ F is a labeled
rooted ordered tree TA such that all the following statements hold.

(i) The root of the tree is labeled by the relational hypersequent ⊤ 4 A.

(ii) If a node u of the tree is labeled by an irreducible relational hypersequent,
then u is a leaf of the tree.

(iii) Let u be a node of the tree labeled by a reducible relational hypersequent G,
let A ◦A′ be the most complex formula of G with respect to <c and choose
an arbitrary occurrence of A ◦ A′ in a relational context of type (⊳, s),
s ∈ {l, r}. Then the proper descendants of u are labeled by the premises of
the logical rule (◦, ⊳, s) with conclusion G and pivot A ◦ A′, the ith child
being labeled by the premise ◦i.

The length of the path from the root to a node u is the depth of the node, which
we write d(u). A simple downward path from the root to a leaf is a branch of
the tree. The height of a tree T , h(T ), is the number of edges on the longest
branch.

The tree produced by Definition 3.5 allows for refinements. Consider the
following example.

Example 3.2. Let G→ = H |A → B ≪ ∆1|∆2 ≺ A → B,Γ2, where A → B is
the most complex formula of G→ and A → B does not occur in H. We consider
the portion of the RHBL reduction tree which is rooted at G→ and follows the
second child of the nodes, corresponding to →2 premises. The reduction is:
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. . .

. . . H|B ≺ A|A ≪ ∆1|∆2, A ≺ B,Γ2 . . .
(→,≺, l)

H|B ≺ A|A ≪ ∆1|∆2,≺ A → B,Γ2 . . .
(→,≪, l)

H|A → B ≪ ∆1|∆2 ≺ A → B,Γ2

Notice that the antecedent →2 is sufficient to eliminate both occurrences of A →
B and that, in this case, eliminating two occurrences of A → B requires two
steps.

In the example, given a relational hypersequent G having A ◦B as its most
complex formula with respect to <c, the branches rooted at G start eliminating
each occurrence of A ◦ B, since the pivot of the rule is chosen as the most
complex formula of G by definition. To this aim, the very same antecedent is
used repeatedly along the branch to eliminate each occurrence of A ◦ B until
all occurrences are eliminated. This scenario suggests the idea to exploit the
antecedent for eliminating all the occurrences of the most complex formula via
a concise rule.

For this purpose, we introduce substitutions on relational hypersequents,
relying on the usual multiset operations for the manipulation of the formulas.
Let G,G

′

∈ RH and A,B,B
′

∈ F , then:

(i) the relational hypersequent G(A ⇐ B) is obtained replacing each occur-
rence of A with B in G;

(ii) the relational hypersequent G(A ⇐ B,B
′

) is obtained replacing each oc-
currence of A with B,B

′

in G;

(iii) if the occurrences of A ⊙ B on the left and right of ⊳ in G are l and r
respectively, then the relational hypersequent G(A⊙B ⇐ A,B⊳+l−rA,B)
is obtained deleting all the occurrences of A⊙B in relations of type ⊳ in
G, adding one copy of A,B on the left and right of ⊳ and updating by
l − r the index of ⊳;

(iv) if the occurrences of A → B on the left and right of ⊳ in G are l and r
respectively, then the relational hypersequent G(A → B ⇐ Ar, Bl⊳Al, Br)
is obtained deleting all the occurrences of A → B in relations of type ⊳ in
G, adding r occurrences of A and l occurrences of B on the left of ⊳ and
adding l occurrences of B and r occurrences of A on the right of ⊳.

Moreover, if σ and σ
′

are substitutions as above, then the relational hyper-
sequent Gσ|G

′

σ
′

is obtained executing simultaneously σ over G and σ
′

over
G

′

.
The notion of rewriting rule is based upon the substitution operation and

provides an effective means for eliminating all occurrences of a formula from a
relational hypersequent.

Definition 3.6 (rewriting rules). Let H,G◦, G
′

◦, G
′′

◦ , G
′′′

◦i
∈ RH such that

A ◦ B is the most complex formula occurring in G◦. Moreover, assume that
H ⊆ G◦ is the set of relational sequents in which A◦B does not occur, G

′

◦ ⊆ G◦

is the set of ≪ relational sequents in which A ◦ B occurs, that G
′′

◦ ⊆ G◦ is the
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set of ≺z,4z relational sequents in which A ◦ B occurs and that G
′′′

◦ ⊆ G
′′

◦ is
the set of 4 relational sequents with at most one formula on each side.

The BL rewriting rules for ⊙ and → are:

(⊙)
A ≪ B|G⊙1 B ≪ A|G⊙2 41 A,B|G⊙3 A,B ≺−1|G⊙4 ⊤ 4A|⊤ 4B|G⊙5

G⊙

(→)
B ≪ A|G→1 B ≺ A|G→2 A ≤ B|G→3

G→

where G◦i
is obtained by the following substitutions of A ◦B in G◦ (C = A if

c(A) <c c(B) and C = B otherwise):

(i) G⊙1 = G⊙(A⊙B ⇐ A)|H;

(ii) G⊙2 = G⊙(A⊙B ⇐ B)|H;

(iii) G⊙3 = G
′

⊙(A⊙B ⇐ C)|G
′′

⊙(A⊙B ⇐ A,B)|H;

(iv) G⊙4 = G
′

⊙(A⊙B ⇐ C)|G
′′

⊙(A⊙B ⇐ A,B ⊳+l−r A,B)|H;

(v) G⊙5 = G
′

⊙|G
′′′

⊙ (A⊙B ⇐ ⊤)|H;

(vi) G→1 = G→(A → B ⇐ B)|H;

(vii) G→2 = G
′

→(A → B ⇐ C)|G
′′

→(A → B ⇐ Ar, Bl ⊳ Al, Br)|H;

(viii) G→3 = G
′

→|G
′′′

→(A → B ⇐ ⊤)|H.

With respect to a rewriting rule, premise (of type) ◦i, conclusion, side, an-
tecedent (of type) ◦i are defined as in Definition 3.3. The consequent (of type)
◦i is G◦i

and the pivot is A ◦B.

We observe that, if n is the number of distinct subformulas occurring in the
conclusion of a rule, then the number of distinct subformulas occurring in each
premise of the rule is at most n− 1, since the pivot occurs in the conclusion but
not in the premises.

The semantic properties required follow immediately from the soundness and
invertibility of logical rules.

Corollary 3.1. The rewriting rules for BL are sound and invertible.

Proof. The argument used to prove soundness and invertibility of logical rules in
Proposition 3.1 works equally well for rewriting rules, once proved that, for both
rewriting rules, the consequent of premise ◦i and the conclusion are equivalent
modulo a valuation v of type ◦i. But this claim follows from Fact 2.1, from
(3.9), (3.10), (3.11), (3.12), (3.13) in the proof of Proposition 3.2 and from the
definition of the substitutions and Definition 3.6.

It is easy to realize that, with respect to the construction of the reduction
tree, the effect of a unique rewriting rule having pivot A on a given relational
hypersequent is equivalent to the effect of a sequence of logical rule having the
same pivot. Consider the following example.
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Example 3.3. Let G→ be as in Example 3.2. In the setting of Definition 3.6
we have:

G
′

→ = A → B ≪ ∆1

G
′′

→ = ∆2 ≺ A → B,Γ2

G→2 = G
′

→(⇐ A)|G
′′

→(A → B ⇐ A
1
, B

0 ≺ A
0
, B

1)

= A → B ≪ ∆1(⇐ A)|∆2 ≺ A → B,Γ2(A → B ⇐ A
1
, B

0 ≺ A
0
, B

1)

= A ≪ ∆1|∆2, A ≺ B,Γ2

The rewriting rule (→) produces the relational hypersequent H |B ≺ A|A ≪
∆1|∆2, A ≺ B,Γ2 in one step, whereas the logical rules of Example 3.2 require
two steps to obtain the same relational hypersequent.

Comparing Example 3.2 and 3.3, we observe that the rewriting rules require
1 step constant to eliminate all occurrences of a formula, whereas in the worst
case the logical rules require n steps to achieve the objective, if the formula
occurs n times. In this light, a refined notion of reduction arises naturally.

Definition 3.7 (RWBL reduction). The RWBL reduction of A ∈ F is a
labeled rooted ordered tree TA such that all the following statements hold.

(i) The root of the tree is labeled by the relational hypersequent ⊤ 4 A.

(ii) If a node u of the tree is labeled by an irreducible relational hypersequent,
then u is a leaf of the tree.

(iii) Let u be a node of the tree labeled by a reducible relational hypersequent G
and A◦A′ be the most complex formula of G. Then the proper descendants
of u are labeled by the premises of the rewriting rule (◦) with conclusion
G and pivot A ◦A′, the ith child being labeled by the premise ◦i.

Depth, branch, height and size are defined as in Definition 3.5

Notice that the rewriting rule (⊙) handles ⊙4 premise avoiding the combi-
natorial explosion of formulas along the branches of the reduction tree. This
complexity refinement of logical rules explains why the irreducible relational hy-
persequents produced by RHBL and RWBL reductions, however equivalent,
are distinct. Inspect the following example.

Example 3.4. Let G = ∆1, A ⊙ B,A ⊙ B 4z A ⊙ B,Γ1, where A ⊙ B is
the most complex formula of G. We consider the portion of the RHBL and
RWBL reductions tree which are rooted at G and follows the fourth child of the
nodes, corresponding to ⊙4 premises. The RHBL reduction is:

. . .

. . .

. . . A,B ≺−1|A3, B3 ⊳z+1 A3, B3 . . .
(⊙, ⊳z+2, r)

A,B ≺−1|A2, B2 ⊳z+2 A2, B2, A⊙ B . . .
(⊙, ⊳z+1, l)

A,B ≺−1|A⊙B,A,B ⊳z+1 A,B,A⊙ B . . .
(⊙, ⊳z , l)

A⊙ B2 ⊳z A⊙B
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and the RWBL reduction is:

. . . A, B ≺−1|A,B ⊳z+1 A,B . . .
(⊙)

A⊙B2 ⊳z A⊙B

As in Example 3.3, the RWBL reduction requires one step to eliminate A⊙B,
whereas the RHBL reduction requires one step for each occurrence of A ⊙ B.
Moreover, the irreducible relational hypersequent obtained via RWBL reduction
is smaller (but equivalent, as can be easily checked applying Definition 3.2).

We will take advantage of this remarkable feature of RWBL while studying
the size of the RWBL reductions. By means of the example below, we illustrate
another behaviour of the RWBL reductions, which will be exploited, again in
Lemma 5.2, to avoid the size explosion of the tree branches.

Example 3.5. We consider the following portion of a RWBL reduction tree,
generated applying upwards the ⊙ rewriting rule and showing only the fourth
child of the nodes (that is, the ⊙4 premise of the rule):

. . .

. . .

. . . C,D ≺−1|A,B, C,D ⊳+1 A,B, C,D,∆ . . .
(⊙)

A,B ≺−1|A,B, C ⊙D ⊳+1 A,B, C ⊙D,∆ . . .
(⊙)

A⊙B,C ⊙D ≺−1|A⊙B,C ⊙D ⊳+1 A⊙ B,C ⊙D,∆ . . .
(⊙)

(A⊙B) ⊙ (C ⊙D) ⊳∆

Once (A⊙B)⊙ (C⊙D), which occurs only on the left, is eliminated, the conse-
quent of premise ⊙4 contains the pair A⊙B,C ⊙D on both sides, thus its size
is almost two times the size of the conclusion. But the subsequent elimination of
A⊙B takes advantage of its balanced occurrence, since replacing A⊙B with the
pair A,B on both sides does not affect the size of the result (the same argument
holds for C ⊙D).

It is easy to realize that the phenomenon described is always verified, relying
on Definition 3.6. Lemma 5.2 will make this argument rigorous.

The following proposition establishes two structural properties of RWBL
reductions.

Proposition 3.3. Let TA be a RWBL reduction of a formula A and G be a
leaf of TA.

(i) Let q1, . . . , qs ⊳qs+1, . . . , qt be a relational sequent occurring in G, ⊳ ∈ {≺z

,4z}, t ≥ 2 and, if t = 2, then z 6= 0. Moreover, let m be the number
of distinct propositional variables among q1, . . . , qt. Then, there exists a
sequence (r1, . . . , rn) containing all such variables, with m ≤ n, such that
the relational sequents r1 ≪ r2, . . . , rn−1 ≪ rn, rn ≪ r1, ⊤ ≪ ri and
ri 4 ⊤, i = 1, . . . , n occur in G.

(ii) Let {pi : 0 ≤ i ≤ l} be the propositional variables of A. Then, the propo-
sitional variables occurring in G are exactly p1, . . . , pl.
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Proof. (i) By induction on the depth of TA nodes, we prove that, for all u ∈ V ,
if the relation A1, . . . , As ⊳ As+1, . . . , At occurs in the label H of u and m is
the number of distinct formulas among A1, . . . , At, then, for some sequence
(B1, . . . , Bn) containing all such formulas, with m ≤ n, the relations B1 ≪
B2, . . . , Bn−1 ≪ Bn, ⊤ ≪ Bi and Bi 4 ⊤, i = 1, . . . , n, occur in H . The
required conclusion follows immediately from the fact that G is irreducible,
that is, for i = 1, . . . , t, Ai is a propositional variable.

For the base case, if d(u) = 0, u is the root of TA and the claim holds trivially
since no relations of the required form occur in u.

For the inductive step, we assume by induction hypothesis that, for all nodes
u′ ∈ V with d(u′) = i, if the relation A′

1, . . . , A
′
s′ ⊳ A

′
s′+1, . . . , A

′
t′ occurs in the

label H ′ of u′ and m′ is the number of distinct formulas among A1, . . . , At′ , then,
for some sequence (B′

1, . . . , B
′
n′) containing all such formulas with m′ ≤ n′, the

relations B′
1 ≪ B′

2, . . . , B
′
n′−1 ≪ B′

n′ , ⊤ ≪ B′
i and B′

i 4 ⊤, i = 1, . . . , n′,
occur in H ′. We prove that, for any node u of depth i + 1 such that the
relation A1, . . . , As⊳As+1, . . . , At occurs in the label H of u and m is the number
of distinct formulas among A1, . . . , At, then, for some sequence (B1, . . . , Bn)
containing all such formulas with m ≤ n, the relations B1 ≪ B2, . . . , Bn−1 ≪
Bn, ⊤ ≪ Bi and Bi 4 ⊤, i = 1, . . . , n, occur in H . We examine two cases.

In the first case, H is a premise of the rewriting rule for ⊙ with conclusion
H ′ and a pivot C ⊙ D. If H is the ⊙1, ⊙2 or ⊙5 premise, the claim follows
directly from the induction hypothesis. If H is the ⊙3 premise, then we study
the antecedent and the consequent separately. For the antecedent, we observe
that a relation of the form ⊳, ⊳ ∈ {≺z,4z}, occurs in the antecedent, namely
C,D ≺−1, but, C ≪ D, D ≪ C, ⊤ ≪ C, ⊤ ≪ D, C 4 ⊤ and D 4 ⊤ occur
in the antecedent as well. For the consequent, we observe that the formula
C⊙D is replaced by the pair C,D in ⊳ relations and by the less complex among
C,D, say C, in ≪ relations, thus, on the one hand, the cycle we are assuming
by induction hypothesis is preserved with C instead of C ⊙ D and moreover
it includes also D, since we know that both C ≪ D and D ≪ C occur the
antecedent. On the other hand, the ⊳ relations in which C,D occur are covered
since also C 4 ⊤ and D 4 ⊤ occur the antecedent. If H is the ⊙4 premise, the
argument is similar.

In the second case, H is a premise of the rewriting rule for → with conclusion
H ′ and a pivot C → D. If H is the →1 or →3 premise, the claim follows directly
from the induction hypothesis. If H is the →2, the argument is similar to the
previous carried out for ⊙3,4 premises.

(ii) By induction on the depth of TA nodes, we prove that, for all u ∈ V with
label H , the propositional variables occurring in H are exactly the propositional
variables of A.

For the base case, if d(u) = 0, u is the root of TA and the claim holds
trivially. For the inductive step, we assume by induction hypothesis that the
claim holds for all nodes u′ with label H ′ of depth i and we prove that the
claim holds for a node u with label H of depth i + 1. If H is a premise ⊙1,
⊙2, ⊙3 or ⊙4 of the rewriting rule for ⊙, or also a premise →1 or →2 of the
rewriting rule for →, all the variables of the pivot occur in the antecedent of
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the premise. The other variables are unaffected by the rule and we can apply
the induction hypothesis. If H is a premise ⊙5 or →3, all the variables of the
pivot occur in the antecedent of the premise. However, by Definition 3.6 the
≺z,4z relations (with more than one formula on the right or left side or with
z 6= 0) have been removed from H together with their propositional variables.
But the previous claim (i) guarantees that the variables removed occur in ≪
relations in H . The other variables are unaffected by the rule and we can apply
the induction hypothesis.

4 Axiom Check and Countermodel Building

The main goal of this section is to show that the problem of checking if the leaf
of a RWBL reduction is an axiom or not can be decided by a suitable algorithm
in time polynomial in the size of the input. We refer the reader to [CLRS01]
and [Sch86] for standard notions and facts in the fields of algorithms and linear
programming respectively.

Preliminarily, we formalize the notion of size for formulas and relational
hypersequents. We will assume a finite alphabet Σ and a standard encoding 〈·〉
such that, for all s ∈ Σ∗, 〈s〉 ∈ {0, 1}∗ and |〈s〉| = O(|s|) For definiteness, we
will assume that the character set Σ and the character encoding 〈·〉 are provided
by the ASCII standard. From now on, formulas and relational hypersequents
will be considered as strings over Σ, that is, F,RH ⊆ Σ∗. Let A be a formula
with n0 occurrences of connectives and n1 occurrences of variables. Avoiding
redundant parenthesis, it is easy to define the syntax of formulas providing that
|A| = O(n0), since n1 = n0 + 1. Let G be a relational hypersequent with
n0 occurrences of connectives, n1 occurrences of variables and n2 occurrences
of relations. Observing that variables and relations bring at most a constant
number of parenthesis and commas, it is easy to define the syntax of relational
hypersequents providing that |G| = O(n0 + n1 + n2).

The following definition is legitimate in the light of the previous discussion.

Definition 4.1 (size). Let A ∈ F with n0 occurrences of connectives. The size
of A is the length |〈A〉| of its standard binary encoding 〈A〉.

Let G be a relational hypersequent with n0 occurrences of connectives, n1

occurrences of variables and n2 occurrences of relations. The size of G is the
length |〈G〉| of its standard binary encoding 〈G〉.

Note that |〈A〉| = O(n0) and |〈G〉| = O(n0 + n1 + n2). It is meant that,
with respect to reduction trees, the size of a node is the size of the relational
hypersequent labelling the node, the size of a branch is the sum of the sizes of
the nodes of the branch and the size of the tree is the sum of the sizes of the
nodes of the tree.

We introduce the notion of axiom in the context of RWBL reductions and,
in the usual formal languages framework, the axiom decision problem for a
RWBL reduction leaf.
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Definition 4.2 (axiom, BL-AX). Let H be the label of a leaf of a RWBL re-
duction. Then, H is an axiom if it is valid. BL-AX = {〈H〉 : H is an axiom} ⊆
{0, 1}∗.

We consider the problem of checking if the leaf of a RWBL reduction is an
axiom or not. An instance of the problem BL-AX is represented by the leaf
of a RWBL reduction, that is, an irreducible relational hypersequent H of the
form H1| . . . |Hk corresponding to the boolean disjunction H1 ∨ · · · ∨ Hk. The
question is if H is an axiom or not, equivalently, if H is valid or not. We reduce
to the question if the negation H , of the form ¬H1 ∧ · · · ∧ ¬Hk is satisfiable or
not. If H is satisfiable, then H is not an axiom, otherwise, if H is unsatisfiable,
H is an axiom.

Let V ar(H) = {p1, . . . , pn} be the propositional variables of H and v be
a valuation. Moreover, let q, r ∈ V ar(H) ∪ {⊤} and q1, . . . , ql, r1, . . . , rm ∈
V ar(H). Then any relational sequent ¬I ∈ {¬H1, . . . ,¬Hk} has one of the
following forms

q ≪ r (4.1)

q ≺ r (4.2)

q 4 r (4.3)

q1, . . . , ql ≺z r1, . . . , rm (4.4)

q1, . . . , ql 4z r1, . . . , rm (4.5)

which are respectively satisfied by v only if

⌊v(q)⌋ 6= ⌊v(r)⌋ ⇒ ⌊v(r)⌋ < ⌊v(q)⌋ (4.6)

⌊v(q)⌋ = ⌊v(r)⌋ ⇒ v(r) ≤ v(q) (4.7)

⌊v(q)⌋ = ⌊v(r)⌋ ⇒ v(r) < v(q) (4.8)

⌊v(q1)⌋ = · · · = ⌊v(rm)⌋ < +∞ ⇒
l

∑

i=1

−v(qi) +

m
∑

i=1

v(ri) ≤ m− l − z (4.9)

⌊v(q1)⌋ = · · · = ⌊v(rm)⌋ < +∞ ⇒
l

∑

i=1

−v(qi) +

m
∑

i=1

v(ri) < m− l− z (4.10)

We describe a three stages algorithm for BL-AX, called CheckAxiom.

Stage 1. The first stage of the algorithm is devoted to the initialization of
a directed vertex labeled graph G = (V,E). First, V = {v1, . . . , vn, vn+1},
n = |V ar(H)|, and the label of a vertex v is l(v) ⊆ V ar(H) ∪ {⊤}. We identify
a vertex by its label. At initialization time, for i = 1, . . . , n, l(vi) = {pi} and
l(vn+1) = {⊤}. Moreover, for each ¬I ∈ {¬H1, . . . ,¬Hk} of the form (4.1), the
set E contains and edge (r, q).

Stage 2. The second stage of the algorithm is devoted to define the constraints
of a linear program P of the form Ax < b,Bx ≤ c, where

x ∈ Rn×1, A ∈ Z(n1+n)×n, b ∈ Z(n1+n)×1, B ∈ Z(n2+n)×n, c ∈ Z(n2+n)×1
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and 0 ≤ n1, n2 ≤ k, where n1, n2 are at most equal to the number of His of the
form (4.3),(4.5) and (4.2),(4.4) respectively.

To this aim, the cycles eventually contained in G are iteratively detected and
removed, until the graph G becomes a forest. Specifically, if a cycle c is detected,
say c = 〈u1, . . . , um, u1〉, m ≤ n + 1, the vertices u1, . . . , um are removed from
V and a vertex v, with l(v) =

⋃m

i=1 l(ui), is added to V . All the edges (ui, uj)
with i, j ∈ {1, . . . ,m} are removed from E. Moreover, whenever ui is in the
cycle, uj is not in the cycle and (ui, uj) ∈ E (respectively (uj, ui) ∈ E), (ui, uj)
is removed and replaced by (v, uj) (respectively (ui, v)). At each iteration, |V |
decreases at least by one, then the loop iterates at most n times. At the end of
the loop, the graph G is topologically sortable to obtain an ordered list v0, . . . , vl
of the vertices such that, if G contains ad edge (vi, vj), then vi appears before
vj in the ordering.

Depending on the form of each ¬I ∈ {¬H1, . . . ,¬Hk}, the constraints of P
are initialized.

(i) If ¬I is like (4.1), no constraints are added to P .

(ii) If ¬I is like (4.2), there are two cases. If q = pi and r = pj for some
i, j ∈ {1, . . . , n} and, for some m ∈ {0, . . . , l}, both pi, pj ∈ l(vm), then
the constraint xj ≤ xi is added to P (no constraints are added if such m
does not exist). Otherwise, if q = ⊤ or r = ⊤ and, for some m ∈ {0, . . . , l},
both q, r ∈ l(vm), the constraint 0 ≤ 0 is added to P (no constraints are
added if such m does not exist).

(iii) If ¬I is like (4.3), there are two cases. If q = pi and r = pj for some
i, j ∈ {1, . . . , n} and, for some m ∈ {0, . . . , l}, both pi, pj ∈ l(vm), then
the constraint xj < xi is added to P (no constraints are added if such m
does not exist). Otherwise, if q = ⊤ or r = ⊤ and, for some m ∈ {0, . . . , l},
both q, r ∈ l(vm), then the constraint 0 < 0 is added to P (no constraints
are added if such m does not exist).

(iv) If ¬I is like (4.4), there are two cases. If there exist m,m′ ∈ {0, . . . , l}
such that all the variables of ¬I occur in l(vm), ⊤ /∈ l(vm), ⊤ ∈ l(vm′),
(vm, vm′) ∈ E and (vm′ , vm) /∈ E, then P is extended with the constraint
b1 · x1 + · · ·+ bn · xn ≤ c, where b1, . . . , bn, c are the integers derived from
(4.9), otherwise, no constraints are added to P .

(v) If ¬I is like (4.5), there are two cases. If there exist m,m′ ∈ {0, . . . , l}
such that all the variables of ¬I occur in l(vm), ⊤ /∈ l(vm), ⊤ ∈ l(vm′),
(vm, vm′) ∈ E and (vm′ , vm) /∈ E, then P is extended with the constraint
a1 ·x1 + · · ·+ an ·xn < b, where a1, . . . , an, b are the integers derived from
(4.10), otherwise, no constraints are added to P .

Finally, the constraint 0 ≤ x1, . . . , xn < 1 is added to P .

Stage 3. The third stage of the algorithm is devoted to check if the linear
program P is feasible or not. If P is feasible, then the algorithm returns in
output “No”, otherwise it returns in output “Yes”.
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Example 4.1. Let H be p1, p2 ≺−1|p1 ≪ p1|p1, p1, p2 ≺−1 p1, p2|p1, p1, p2 4−1

p1, p2|p1, p2 ≺1 p1, p1, p2|p1, p2 41 p1, p1, p2|⊤ 4 p1. By Notation 3.1, H is the
boolean disjunction of p1 ≪ p2, p2 ≪ p1, p1 4 ⊤, ⊤ 4 p1, ⊤ ≪ p1, p2 4 ⊤,
⊤ 4 p2, ⊤ ≪ p2, 41 p1, p2, p1 ≪ p1, p1, p1, p2 ≺−1 p1, p2, p1, p1, p2 4−1 p1, p2,
p1, p2 ≺1 p1, p1, p2, p1, p2 41 p1, p1, p2, ⊤ 4 p1.

Consequently, H is the boolean conjunction of p1 ≪ p2, p2 ≪ p1, p1 4 ⊤,
⊤ ≪ p1, ⊤ 4 p1, p2 4 ⊤, ⊤ ≪ p2, ⊤ 4 p2, 41 p1, p2, p1 ≪ p1, p1, p1, p2 ≺−1 p1, p2,
p1, p1, p2 4−1 p1, p2, p1, p2 ≺1 p1, p1, p2, p1, p2 41 p1, p1, p2, ⊤ 4 p1.

At initialization time the graph G has vertices V = {u1, u2, u3}, labels
l(u1) = {p1}, l(u2) = {p2}, l(u3) = {⊤} and edges p1 → p1, p1 → p2, p2 → p1,
p1 → ⊤, p2 → ⊤. At the end of the clustering loop G has vertices V = {v0, v1},
labels l(v0) = {p1, p2}, l(v1) = {⊤} and edges {p1, p2} → ⊤. The topological
sorting of G is (v0, v1).

At the end of the linear program initialization loop, the linear program P has
the form Ax < b,Bx ≤ c, where xT =

(

x1 · · ·x2

)

∈ R2×1 and

A =













1 1
1 0
−1 0
1 0
0 1













∈ Z
5×2

, b =













1
0
0
1
1













∈ Z
5×1

, B =









1 0
−1 0
−1 0
0 −1









∈ Z
4×2

, c =









0
0
0
0









∈ Z
4×1

.

The linear program P is unfeasible, since it contains the constraints x1 < 0 and
0 ≤ x1, then H is an axiom.

To the aim of characterize the soundness of CheckAxiom, it is useful to
observe that the clustering loop maintains the invariant that, at each iteration,
each propositional variable of H occurs in the label of exactly one vertex of
G. This property holds at initialization time and guarantees, when the loop
terminates, that the labels of the vertex of G form a partition of the propositional
variables of H .

Proposition 4.1. The relational hypersequent H is an axiom if and only if the
linear program P is unfeasible.

Proof. Equivalently, we show that H is unsatisfiable if and only if P is unfeasible.

(⇒) We prove that, if P is feasible and x =
(

x1 · · ·xn

)T
is a solution, then

there is a valuation v such that v satisfies ¬Hi for all i = 1, . . . , k.
We define a valuation v such that, for all i = 1, . . . , n, the valuation v(pi) is

the sum of an integer part, obtained from the topological sorting v0, . . . , vm of
G, and a decimal part, obtained from the feasible solution x of P . Specifically, if
pi ∈ l(vj) and ⊤ /∈ l(vj), j ∈ {0, . . . ,m}, then v(pi) = j+xi, that is, ⌊v(pi)⌋ = j
and v(pi) = xi. Otherwise, if pi ∈ l(vj) and ⊤ ∈ l(vj), then v(pi) = +∞.
Notice that v is well defined, by the invariant of clustering loop. We show that
v satisfies ¬Hi, for all i = 1, . . . , k.

If ¬Hi has the form q ≪ r, we examine two cases. If there is a cycle c =
〈r, q, . . . , r〉 in G at initialization time, then both q, r ∈ l(vj) for some j ∈
{0, . . . ,m}, then ⌊v(p)⌋ = ⌊v(q)⌋ = j and v satisfies ¬Hi. Otherwise, r ∈ l(vi)
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and q ∈ l(vj) for some i < j, with i, j ∈ {0, . . . ,m}, by the properties of the
topological sorting, then ⌊v(r)⌋ < ⌊v(q)⌋ and v satisfies ¬Hi.

If ¬Hi has the form q ≺ r, we examine two cases. If there is a cycle c =
〈r, q, . . . , r〉 in G at initialization time, then both q, r ∈ l(vj) for some j ∈
{0, . . . ,m} and, reasoning as before, ⌊v(p)⌋ = ⌊v(q)⌋. Now, if q = pi and
r = pj , for some i, j ∈ {1, . . . , n}, then the constraints xj ≤ xi, 0 ≤ xi, xj < 1,
have been added to P , then v(r) ≤ v(q) since xj = v(pj) and v(pi) = xi.
Otherwise, if q = ⊤ or r = ⊤, by the definition of v, v(r) ≤ v(q) holds since
v(r) = v(q) = +∞. In all cases, v satisfies ¬Hi. If there is not a cycle c in G at
initialization time, r ∈ l(vi) and q ∈ l(vj) for some i 6= j, with i, j ∈ {0, . . . ,m},
then ⌊v(r)⌋ 6= ⌊v(q)⌋ and v satisfies ¬Hi. If ¬Hi has the form q 4 r, the
argument is similar with the exception that the case in which there is a cycle
c = 〈r, q, . . . , r〉 in G at initialization time and q = ⊤ or r = ⊤ is excluded (in
this case P is unfeasible, since at Stage 2(iii) the constraint 0 < 0 is added to
P ).

If ¬Hi has the form (4.4), by Proposition 3.3(i) there is a cycle c in G at
initialization time involving all the variables of ¬Hi. We examine two cases. If
⊤ is involved in c, then there exists j ∈ {0, . . . ,m}, such that all the variables
of ¬Hi and ⊤ are in l(vj), but then v satisfies ¬Hi, since by definition v does
not satisfy the antecedent of (4.9). Otherwise, if ⊤ is not involved in c, then by
Proposition 3.3(i) the conditions for adding to P the constraints 0 ≤ xi, . . . , xj <
1 and b1 ·x1+· · ·+bn ·xn < c, for suitable integers b1, . . . , bn, c derived from (4.9),
are satisfied. Hence, v satisfies the consequent of (4.9), since for each variable
pi in ¬Hi, xi = v(pi). If ¬Hi has the form (4.5), the argument is similar.

(⇐) We show that, if H is satisfiable, then P is feasible. Specifically, if a

valuation v satisfies H, we show that x =
(

v(p1) · · · v(pn)
)T

is a solution of
P . To this aim, observe that, during the second stage of the algorithm, there
are two cases in which the linear program P is expanded with new constraints
corresponding to ¬His.

In the first case, ¬Hi has the form (4.2) or (4.3) and there is m ∈ {0, . . . , l}
such that q, r ∈ l(vm). In this case, the graph G at initialization time contains
a cycle c = 〈p1, . . . , pm, p1〉, with q, r ∈ {p1, . . . , pm}. Therefore, a valuation v
can satisfy H only if ⌊v(p1)⌋ = · · · = ⌊v(pm)⌋. But in this case, accordingly
with (4.7) and (4.8), the valuation v satisfies H only if it satisfies the conditions
over the decimal parts of p1, . . . , pm, and, particularly, over the decimal parts
of q, r. But then, the decimal parts of v satisfies also the constraints added to
P for the currently examined case.

In the second case, ¬Hi has the form (4.4) or (4.5), and there exist m,m′ ∈
{0, . . . , l} such that all the variables of ¬I occur in l(vm), ⊤ /∈ l(vm), ⊤ ∈ l(vm′),
(vm, vm′) ∈ E and (vm′ , vm) /∈ E. In this case, the graph G at initialization time
contains a cycle c involving all the variables of ¬I, but not ⊤, and each vertex
labeled by a variable of ¬I is connected to the vertex labeled by ⊤, but the
converse does not hold. Therefore, a valuation v can satisfy H only evaluating
each variable with the same integer part. Moreover, by Proposition 3.3(i), a
valuation v can satisfy H only assigning integer parts less than +∞ to the
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variables, for otherwise v must satisfy also ⊤ ≺ x for all the variables of H ,
which is a contradiction. But then, a valuation v can satisfy H only if it satisfies
also the antecedent of the implications (4.9) and (4.10), hence such a valuation
must satisfy the consequent of the implications (4.9) and (4.10). But then, the
decimal parts of v satisfies also the constraints added to P for the currently
examined case.

We conclude our argument proving that the problem BL-AX is in fact in P.

Lemma 4.1. BL-AX ∈ P.

Proof. The problems of searching graphs for cycles, topologically sort forests
and checking the feasibility of linear programs are in P. Thus, the termination
and soundness of CheckAxiom follow from the finiteness of the constructions
of G and P and Proposition 4.1, respectively, and CheckAxiom is a decision
algorithm for BL-AX. Moreover, both |〈G〉| and |〈P 〉| are polynomial in |〈H〉|,
for any reasonable binary representation of graphs and matrices, and the con-
structions involved can be easily implemented in time polynomial in the size of
the objects built, then CheckAxiom runs in polynomial time in the size |〈H〉|
of its input 〈H〉. We conclude that BL-AX ∈ P.

We remark that, if a leaf H is not valid, the proof of the right direction
of Proposition 4.1 provides an effective means for constructing a countermodel
of H , which propagates to the root of the reduction tree yielding the following
countermodel building procedure.

Let H ∈ RH be a leaf of the RWBL reduction tree of a formula A and
suppose that the valuation v is a countermodel of H . Let G0, . . . , Gn be the
labels of the nodes along the branch from the root to the leaf labeled by H , where
H = G0 and Gn is the label of the root. For i = 1, . . . , n, by Proposition 3.3(ii),
v is defined on the propositional variables of Gi, and, by the invertibility of the
rewriting rules, if v is a countermodel of H , then v is a countermodel of Gi.
Particularly, v is a countermodel of the root ⊤ 4 A, then v satisfies A ≪ ⊤.
Therefore, there is a valuation v such that v(A) < +∞, and, by Theorem 2.1,
BL 0 A.

5 Decidability and Complexity

The main goal of this section is to show that the tautology problem of BL is
decidable in deterministic time 2O(n). Also, we show that the problem is coNP-
complete. In the usual formal languages framework, the tautology decision
problem of BL is defined as follows.

Definition 5.1 (BL-TAUT). BL-TAUT = {〈A〉 : BL ⊢ A} ⊆ {0, 1}∗.

We study first the decidability of BL-TAUT, referring to the algorithm
CheckTautology described as follows. The algorithm receives in input (the
encoding of) a formula A and builds the RWBL reduction tree of A. The
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root of the tree is labeled with the relational hypersequent ⊤ 4 A. The tree is
built adding children to reducible external nodes, until all external nodes be-
come irreducible. The main connective of the most complex formula occurring
in the reducible external node determines the multiplicity and the labels of its
children. Then, the algorithm checks if all the leaves are axioms and returns a
positive answer if they are and a negative answer otherwise.

In order to prove that the algorithm CheckTautology is in fact a decision
algorithm for BL-TAUT, we must show that, given a formula A, the algorithm
CheckTautology always terminates, returning a positive answer if A is a BL
tautology and a negative answer otherwise.

These properties rely respectively on the finiteness of the reductions, which
is shown in Lemma 5.1 below, and on the soundness and invertibility of the
rewriting rules, which is shown in Corollary 3.1.

Lemma 5.1. Let A ∈ F with c(A) = n and TA = (V,E) be the RWBL
reduction of A. Then, for all leaves u of (TA), d(u) ≤ n, and h(TA) ≤ n.

Proof. Let A1, . . . , An be the n subformulas of A with at least one connective.
We assume, without loss of generality, that A1 <c . . . <c An. We say for short
that a node has a subformula if the subformula is a subformula of some of the
formulas occurring in its label.

By induction on the depth of the nodes, exploiting Definition 3.6 and Def-
inition 3.7, we prove that, for all u ∈ V , if d(u) = i, then u has at most n − i
subformulas of A with at least one connective, for some and i ≤ n. For the base
case, if d(u) = 0, then u is the root. Hence, u has n − 0 = n subformulas of
A with at least one connective (and 0 ≤ n). For the inductive step, we assume
that, for all nodes u′ ∈ V , if d(u′) = i, then u′ has at most n− i subformulas of
A with at least one connective, for some i ≤ n. We must prove that, if a node
u has depth i+ 1, then u has at most n− (i+ 1) subformulas of A with at least
one connective, i + 1 ≤ n. If d(u) = i + 1, then u is a children of a parent u′

with d(u′) = i and, by inductive hypothesis, u′ has at most n − i subformulas
of A with at least one connective, i ≤ n. Notice that i < n, since u′ is not a
leaf, thus, by the construction of Definition 3.7, u has at least subformula of
A with at least one connective less than its parent u′, that is, u has at most
(n− i) − 1 = n− (i + 1) subformulas of A with at least one connective, where
i + 1 ≤ n.

Now, consider a leaf u of (TA) and suppose, for a contradiction, that d(u) =
m, for some m > n. Then u would have n −m subformulas of A with at least
one connective, but 0 ≤ n−m < 0, which is a contradiction. Thus, for all leaves
u of (TA), d(u) ≤ n. But the height of TA is equal to the largest depth of any
leaf in the tree, hence h(TA) ≤ n.

We can conclude that CheckTautology decides BL-TAUT.

Theorem 5.1. Let A be a formula. Then, A ∈ BL-TAUT if and only the
algorithm CheckTautology outputs “Yes” on input 〈A〉.
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Now, we study the complexity of BL-TAUT. For this purpose, we show that
the overall size of a reduction tree is exponential in the size of the root, but the
size of each branch is polynomial in the size of the root.

Lemma 5.2. Let A ∈ F with c(A) = n, TA = (V,E) be the RWBL reduction
of A and b a TA’s branch. Then |〈b〉| = O(n3) and |〈TA〉| = 2O(n).

Proof. Let b = (u0, u1, . . . , un) be a branch of TA of maximal length (recall
Lemma 5.1), where u0 is the root of TA. We must compute the size of the labels
l0, . . . , ln of the nodes u0, . . . , un of b. For this purpose, we represent the labels
by the rows of a lower triangular matrix of relational hypersequents

L =











a1,1 ∅ . . . ∅
a2,1 a2,2 . . . ∅

...
...

. . .
...

an+1,1 an+1,2 . . . an+1,n+1











∈ RH(n+1)×(n+1) (5.1)

in the sense that the label l0 of the node u0 is a1,1, the label l1 of the node u1

is a2,1|a2,2, and generally the label li−1 of the node ui−1 is ai,1| . . . |ai,i. The
entries of the matrix are to be interpreted as follows (recall the terminology of
Definition 3.6). Consider first the entries along the diagonal. The element a1,1
is the label of u0, the element a2,2 is the antecedent of the relational hyperse-
quent labelling u1, and generally the element ai,i, for all 1 < i ≤ n + 1, is the
antecedent of the relational hypersequents labelling ui−1. Now, consider the
entries below the diagonal. The element a2,1 is the consequent of the relational
hypersequent labelling u1, the elements a3,1|a3,2 are the consequent of the rela-
tional hypersequent labelling u2, and generally the elements ai,1| . . . |ai,i−1, for
all 1 < i ≤ n + 1, are the consequent of the relational hypersequents labelling
ui−1. More specifically, with respect to the consequent of u1 the element a2,1
is to be interpreted as the rewriting of the relational hypersequent a1,1, with
respect to the consequent of u2 the elements a3,1 and a3,2 are to be interpreted
respectively as the rewriting of the relational hypersequents a2,1 and a2,2, and
generally with respect to the consequent of ui−1 the elements ai,1, . . . , ai,i−1,
for 1 < i ≤ n + 1, are to be interpreted respectively as the rewriting of the
relational hypersequents ai−1,1, . . . , ai−1,i−1.

Recall that the standard encoding 〈G〉 of a relational hypersequent G has
size |〈G〉| = O(n0 + n1 + n2), where n0, n1, n2 are respectively the occurrences
of connectives, variables and relations in G. We count ⊤ as a variable. Clearly,
O(|〈G1〉| + · · · + |〈Gn〉|) = O(|〈G1| . . . |Gn〉|), for G1, . . . , Gn ∈ RH . Therefore,
in order to determine an upper bound on the size of the branch b, we can inspect
the matrix L and count the number of connectives, variables and relations that
occur in b in the worst case.

First, a1,1 is ⊤ 4 A and it has n connectives, n+ 2 variables and 1 relation.
Thus, the root contributes 2n + 3 to the sum.

Second, the largest antecedent of b is the antecedent ⊙4 built upon the
immediate subformulas of A (that is, applying the rule for ⊙ with pivot A),
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as can be easily verified by counting the number of connectives, variables and
relations in the rules antecedents (recall Definition 3.6 and Notation 3.1). Such
an antecedent has 6(n−1) connectives, 6(n+1)+6 variables and ⊤’s occurrences
and 9 relations, and it contributes 12n+ 15 to the sum. We assume that all the
antecedents of b are sized as the largest one, thus each ai,j , for all 1 < i = j ≤
n + 1 contributes 12n + 15.

Third, we observe that the size of the consequent is less than the size of
the conclusion, with the only exception of the consequent ⊙4, as can be eas-
ily checked by counting inspecting Definition 3.6. For this reason, we assume
that a2,1 is the conclusion ⊙4 of the rewriting of a1,1, thus a2,1 has 2(n − 1)
connectives, 2(n + 1) variables and ⊤’s occurrences and 1 relation. Thus, a2,1
contributes 4n + 1 to the sum. In the following reductions, that is in ai,1 for
2 < i ≤ n + 1, the size of the conclusion is preserved, by the definition of sub-
stitution given before Definition 3.6 (recall also Example 3.5). Thus, each ai,1,
for 2 < i ≤ n + 1, contributes at most 4n + 1 to the sum. Moreover, the same
critical rewriting applied to the largest antecedent previously treated, yields to
a conclusion having has at most 2 · (6(n − 1) − 1) connectives, 2 · 6(n + 1) + 6
variables and ⊤’s occurrences and 9 relations, but subsequently the size is pre-
served. We assume that all the antecedents yield a critical rewriting, thus each
consequent ai,j , for 2 < i ≤ n + 1 and 1 < j ≤ n contributes 24n + 13.

Notice that, in a real case, the rules produce repetitions in the relational hy-
persequents, which are disregarded by the definition of relational hypersequent.
The contribute in terms of connectives, variables and relations of each relational
hypersequent occurring in b is summarized by the following matrix

S =















2n + 3 0 0 . . . 0
4n + 1 12n + 15 0 . . . 0
4n + 1 24n + 13 12n + 15 . . . 0

...
...

...
. . .

...
4n + 1 24n + 13 24n + 13 . . . 12n + 15















∈ Z(n+1)×(n+1) (5.2)

We evaluate the sum s = n0 + n1 + n2 of all the connectives, variables and
relations occurring in the relational hypersequents of b by

s = 2n + 3 +
n
∑

i=1

4n + 1 +
n
∑

i=1

12n + 15 +
n
∑

i=1

(24n + 13)(n− i)

≤ (24n + 13)

n
∑

i=0

i + 1

≤ (24n + 13)(n + 1)2 = 24n3 + 61n2 + 50n + 13

where the first inequality holds since n > 0. Therefore, we conclude that |〈b〉| =
|〈l0〉| + · · · + |〈ln〉| = O(n3) and the first claim holds.

For the second claim, we observe that, in the worst case, all the leaves of TA

have depth n, by Lemma 5.1, and all the internal nodes of TA have degree 5, by
Definition 3.5, thus |V | =

∑n

k=0 5k = 5n+1−1 = 2O(n). Moreover, inspecting the
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size matrix (5.2), we observe that the largest relational hypersequent l labelling
a node u of TA has a total of at most (24n + 13)(n + 1) connectives, variables
and relations, thus |〈l〉| = O(n2). Therefore |〈TA〉| = |V | · |〈l〉| = 2O(n).

As a consequence of Lemma 4.1 and Lemma 5.2 above, the running time
of CheckTautology is bounded from above in 2O(n), hence the problem
BL-TAUT is in DTIME(2O(n)).

Consider now the problem BL-TAUT = {〈A〉 : BL 0 A}. If a formula
A is not a BL theorem, or tautology, then the algorithm CheckTautology

outputs “No”, but in this case the RWBL reduction tree of A has at least
one branch with an invalid leaf, which size is polynomial in the size of A by
Lemma 5.2. We regard such a branch as a certificate that the formula A is not
a BL tautology and we describe a two input polynomial time algorithm, called
CheckNoTautology, as follows.

The first input is the standard encoding of a formula A. The second input
is the encoding of a certificate c, corresponding to the instructions for building
a branch of the RWBL reduction of A. Particularly, if c(A) = n, then c =
(m1, . . . ,mn), mi ∈ {0, . . . , 5}, for all i = 1, . . . , n, and each mi represents the
premise for extending the node of depth i−1. We stipulate for convenience that,
if mi = 0, then the node of depth i−1 has no children, and, if mi is inconsistent
with the node of depth i− 1, then the algorithm outputs “No”. The algorithm
builds the branch of the RWBL reduction of A, following the instructions in
c, and returns a positive answer if the leaf is not valid and a negative answer
otherwise.

Corollary 5.1. BL-TAUT ∈ coNP-complete.

Proof. We show that BL-TAUT ∈ NP. We consider the algorithm CheckNot-

Tautology, that receives in input a formula A, with c(A) = n, and a certificate
c of the form (m1, . . . ,mn), with mi ∈ {0, . . . , 5} for all i = 1, . . . , n.

We observe the following facts. First, |〈c〉| = O(n), since c is a sequence of
n nonnegative natural numbers, thus the size of c is polynomial in the size of
A, which is |〈A〉| = O(n) for n = c(A). Second, the size of each TA branch is
polynomial in the size of A, by Lemma 5.2 and its adjacency list representation
of has size Θ(|V |+ |E|) = Θ((n+ 1) +n) = O(n). Thus, the whole construction
of the branch specified by c is feasible polynomial time in the size of A, since
each step of the construction is feasible polynomial time in the size of the node
extended. Third, the validity of TA’s leaf, by Lemma 4.1, is decided polynomial
time in the size of the leaf, which in turn is polynomial in the size of A. Fourth,
the adjacency list representation of the branch has size Θ(|V | + |E|) = Θ((n +
1) + n), thus O(n). Thus CheckNotTautology terminates in polynomial
time in the size of the input A.

Moreover, CheckNotTautology is sound for BL-TAUT. In fact, suppose
that A is not a BL tautology and that c corresponds to a branch of the re-
duction tree of A with an invalid leaf. Then, on input (〈A〉, 〈c〉), the algorithm
CheckNotTautology returns the answer “Yes” in output. Otherwise, if A
is a BL tautology, there is no certificate c corresponding to a branch of the
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reduction tree of A with an invalid leaf, thus, on input (〈A〉, 〈c〉), the algorithm
CheckNotTautology returns the answer “No” in output.

We show that BL-TAUT is NP-hard. Let  LUK-TAUT be the complement
of the tautology problem of  Lukasiewicz logic, which is known [Mun87] to be
NP-hard. It is known [BHMV02, MPT03] also that, for each formula A, A is
provable in  Lukasiewicz logic if and only if ¬¬A is provable in BL. Thus, the
polynomial time algorithm that prefixes a double negation to a formula A is a
reduction of  LUK-TAUT to BL-TAUT.

We conclude that BL-TAUT ∈ NP-complete, thus BL-TAUT is coNP-
complete.
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