Linguistic Symbiosis between Actors and Threads*

Tom Van Cutsem**, Stijn Mostinckx* * *, and Wolfgang De Meuter
{tvcutsem|smostinc|wdmeuter}@vub.ac.be

Programming Technology Lab
Vrije Universiteit Brussel
Brussels — Belgium

Abstract. We describe a linguistic symbiosis between AmbientTalk, a flexible,
domain-specific language for writing distributed programs and Java, a conven-
tional object-oriented language. This symbiosis allows concerns related to distri-
bution (service discovery, asynchronous communication, failure handling) to be
handled in the domain-specific language, while still enabling the reuse of existing
software components written in a conventional language. The symbiosis is novel
in the sense that a mapping is defined between the concurrency models of both
languages. AmbientTalk employs an inherently event-driven model based on ac-
tors, while conventional object-oriented languages employ a concurrency model
based on threads. The contribution of this paper is a linguistic symbiosis which
ensures that the invariants of the event-driven concurrency model are not violated
by engaging in symbiosis with multithreaded programs.

Keywords: actors, threads, events, linguistic symbiosis, AmbientTalk

1 Introduction

The hardware advances in networking technology of the past decade have resulted in
novel kinds of distributed systems, commonly referred to as mobile ad hoc networks.
Such networks are no longer populated by large, immobile servers and desktop ma-
chines interconnected by reliable network cables, but rather are populated by small, mo-
bile handheld computers or cellular phones interconnected by highly volatile wireless
communication links. These hardware changes profoundly affect the design of software
that has to run reliably in such an environment.

Our approach to tackle the novel distributed computing issues in mobile networks
is based on dedicated programming language support. Language support can aid the
programmer to build software that has been designed to run in such inherently volatile
networks. Novel language constructs help the software developer both during the design
phase (different programming paradigms foster different solutions to similar problems)
as well as during actual development (dedicated language constructs can abstract away
many low-level issues).

* Revised version accepted at the International Conference on Dynamic Languages (ESUGO07).
** Research Assistant of the Fund for Scientific Research Flanders, Belgium (F.W.O.)
*** Funded by a doctoral scholarship of the Institute for the Promotion of Innovation through
Science and Technology in Flanders IWT-Vlaanderen), Belgium.

We have developed a domain-specific language called AmbientTalk which provides
built-in language constructs specifically geared towards distributed development for
highly asynchronous, volatile, infrastructure-shy mobile ad hoc networks [1]. Natu-
rally, the advantage of this approach is that programs related to AmbientTalk’s problem
domain can be more easily expressed. The downside of having a domain-specific lan-
guage is that it is either not always appropriate to model regular application logic or
simply that a lot of existing software components developed in other languages cannot
be reused.

In this paper, we describe a linguistic symbiosis between the domain-specific, actor-
based AmbientTalk language and the general-purpose object-oriented and multithreaded
Java language. The symbiosis is profitable for both symbionts: AmbientTalk profits
from the large amount of available Java software components, while Java profits from
AmbientTalk’s high-level support for distributed programming.

The main difficulty to be tackled by the AmbientTalk/Java symbiosis is the mapping
of both languages’ fundamentally different concurrency models. While AmbientTalk is
entirely built on an event-driven actor-based architecture, Java employs a traditional
multithreaded model. A linguistic symbiosis between two such models is not without
danger: the event-driven model enforces certain concurrency constraints which could
be violated by Java’s multithreaded concurrency if Java objects access AmbientTalk
objects without proper provisions. The contribution of this paper is a mapping between
actors and threads which does not violate the properties of the event-driven actor model
of AmbientTalk.

1.1 Motivation

Before describing the AmbientTalk/Java symbiosis and the problems that have to be
tackled, we briefly highlight why AmbientTalk enforces an actor-based, event-driven
model rather than a traditional multithreaded model. The first motivation for employing
such a model has to do with the beneficial properties of actor-based distributed commu-
nication in the context of mobile ad hoc networks. In such networks, network partitions
occur much more frequently because e.g. two mobile devices may move out of one
another’s wireless communication range. Such network partitions are often temporary:
the partition is healed when the mobile devices move back into one another’s communi-
cation range. The asynchronous nature of the actor model enables distributed commu-
nication to be decoupled in time by means of an actor’s built-in message queues. For
example, an object can send an asynchronous message to a disconnected object without
being blocked because the message can be stored in a message queue while the recip-
ient is disconnected. A more extensive discussion of the beneficial properties of actors
in mobile networks can be found elsewhere [2].

The second motivation behind employing an event-driven concurrency model stems
from the inherently event-driven nature of distributed systems. Devices may join or
leave the network and messages can be received from remote devices at any point in
time. In an event-driven concurrency model, event handlers implicitly denote an atomic
block, restricting the non-determinism to the order in which events are processed. This
is in contrast with pre-emptive multithreading where the programmer should manually

denote such atomic blocks to ensure that the code is consistent with every possible
interleaving of all threads in the system.

1.2 Problem Statement

We now describe the main concurrency problem that has to be tackled by the Ambi-
entTalk/Java symbiosis. As will be explained in more detail in section 2.3, each Ambi-
entTalk object is associated with a single actor and only this actor may directly invoke
the object’s methods. This ensures that race conditions on regular objects cannot occur.
However, when an AmbientTalk object is passed as a parameter to a Java method in-
vocation (via symbiosis), the object can become accessible to Java threads. When these
threads in turn invoke a method on the AmbientTalk object (via symbiosis), the Ambi-
entTalk object and any other accessible objects may be manipulated concurrently both
by the object’s actor and by other Java threads, violating the guarantee that race condi-
tions on AmbientTalk objects cannot occur. As an example of how race conditions on
objects could be caused, consider this following code which registers an AmbientTalk
object as a Java ActionListener on an AWT Button instance.

actor: {
// code executed by AmbientTalk actor
def obj := object: { ... }

button.addActionListener (object: {
def actionPerformed (actionEvent) {
// code executed by Java thread
+i
b
}

The actionPerformed method is invoked by the AWT framework’s thread
when the button is clicked. Hence, objects visible to both the actor and the anony-
mous listener object, such as the ob j object, could be manipulated by multiple concur-
rent threads, requiring the introduction of locks and other synchronisation constructs in
AmbientTalk. In other words, AmbientTalk’s actor model would have to be abandoned
when engaging in symbiosis with Java. In section 4 a symbiotic protocol mapping is de-
scribed that enables an event-driven actor language to safely engage in symbiosis with a
multithreaded programming language, such that problems like the one illustrated above
are avoided.

Although most prevalent object-oriented languages are multithreaded, that does not
prevent programs written in those languages to foster an event-driven programming
style (which is upheld by convention, not enforced by the language). Therefore the
symbiosis described later pays specific attention to map the event-driven style of the
thread-based language directly onto the appropriate event constructs of the event-driven
programming language.

2 AmbientTalk

Before describing the AmbientTalk/Java symbiosis, we briefly introduce the Ambi-
entTalk language, particularly emphasising its concurrency model. Although Ambi-
entTalk is domain-specific in terms of its abstractions for distributed programming, it

is a full-fledged object-oriented programming language in its own right. AmbientTalk
inherits most of its standard language features from Self, Scheme and Smalltalk. From
Scheme, it inherits the notion of true lexically scoped closures. From Self and Smalltalk,
it inherits an expressive block closure syntax, the representation of closures as objects
and the use of block closures for the definition of control structures. AmbientTalk’s ob-
ject model is derived from Self: classless, slot-based objects using delegation [3] as a
reuse mechanism.

The concurrent and distributed features of the language have a different lineage.
Rather than employing a multithreaded concurrency model, AmbientTalk’s model is
founded on the actor model of computation [4] and its many incarnations in languages
such as Actl [5], ABCL [6] and Actalk [7]. However, AmbientTalk’s closest relative is
the E programming language [8] (further described in section 7.1). E combines actors
and objects into a unified model called communicating event loops, which is based on
event loop concurrency, described in section 2.2.

2.1 Object-oriented Programming

The following code illustrates standard object-oriented programming in AmbientTalk.

def Account := object: {
def balance := 0;
def init (amount) { balance := amount };
def deposit(amnt) { balance := balance + amnt };
def withdraw(amnt) { balance := balance - amnt };
}i
def LimitAccount := object: {
super := Account;
def limit := 0;
def init (lowest, amount) {
super := Account new (amount);
limit := lowest;
+i
def withdraw(amnt) {
(self.balance - amnt < limit).ifTrue: {

raise: TransactionException.new(self, amnt);
} ifFalse: {
super “withdraw (amnt) ;
}i
;

def account := LimitAccount.new(-500, 1000);
account .deposit (20);
account.balance; // returns 1020

Two prototypes are defined, one for Account objects and one for LimitAccount
child objects, which set a limit to the amount of money that can be withdrawn from the
account. Objects can be created ex-nihilo, by cloning or by instantiating objects. In-
stantiating an object is done by sending it the message new, which creates a shallow
copy of that object and initialises the copy using its init method, which plays the role
of “constructor”. AmbientTalk’s object instantiation is similar to class instantiation, ex-
cept that the new object is a clone of an existing object, rather than an empty object
allocated from a class.

Every object has a field slot named super denoting the “parent object” to which
it delegates messages it cannot handle. The parent of an Account object is ni1, the

parent of a LimitAccount object is an Account object. Next to this implicit del-
egation, which occurs when an object receives a message it does not understand, Am-
bientTalk also allows objects to explicitly delegate a request to another object. The
expression obj”m () delegates the message m to ob7j, leaving self bound to the
sender. A traditional “super send” in AmbientTalk is then a message that is delegated
to the object stored in an object’s super slot.

Block closures are constructed by means of the syntax { |args| body }, where
the arguments can be omitted if the block takes no arguments. Note that AmbientTalk
supports both traditional canonical syntax as well as keyworded syntax for method def-
initions and invocations.

2.2 Event Loop Concurrency

AmbientTalk’s concurrency model is based on communicating event loops [8]. In this
model, an actor is represented as an event loop, rather than as a traditional “active
object”. An event loop is a thread of execution that perpetually processes events from
its event queue by invoking a corresponding event handler. Communicating event loops
enforce three essential concurrency control properties:

Property 1 (Serial Execution) An event loop processes incoming events from its event
queue one by one, i.e. in a strictly serial order.

Property 1 ensures that the handling of a single event is atomic: race conditions on
the event handler’s state while handling the event cannot occur.

Property 2 (Non-blocking Communication) An event loop never blocks waiting for
another event loop to finish a computation. Rather, all communication between event
loops occurs strictly by means of asynchronous event notifications.

Property 2 ensures that event loops can never deadlock one another. However, in or-
der to guarantee progress, event handlers should not execute e.g. infinite while loops.
Long-running actions should be performed piecemeal by means of scheduling recursive
events, such that an event loop always gets the chance to respond to other incoming
events. An event loop can only be suspended when its event queue is empty.

Property 3 (Exclusive State Access) An event loop has exclusive access to its mutable
state. In other words, two or more event loops may never have direct access to shared
mutable state.

Property 3 ensures that event handlers never have to lock mutable state. Mutating
another event loop’s state has to be performed indirectly, by asking the event loop to
mutate its own state via an event notification.

Event loop concurrency avoids deadlocks and race conditions by design. The non-
determinism of the system is confined to the order in which events are processed. In
standard pre-emptive thread-based systems, the non-determinism is much greater be-
cause threads may interleave upon each single instruction. In the following section,
we describe how the abstract event loop model is incorporated into the AmbientTalk
language.

2.3 AmbientTalk actors

In AmbientTalk, actors are represented as event loops: the event queue is represented
by an actor’s message queue, events are represented as asynchronous message sends,
and event handlers are represented as the methods of regular objects. The actor’s event
loop thread perpetually takes a message from the message queue and invokes the corre-
sponding method of the object denoted as the receiver of the message.

In AmbientTalk, each object is said to be owned by exactly one actor. Only an
object’s owning actor may directly execute one of its methods. Objects owned by the
same actor communicate using standard, sequential message passing. It is possible for
objects owned by an actor to refer to objects owned by other actors. Such references
that span different actors are named far references (the terminology stems from E [8])
and only allow asynchronous access to the referenced object. Any messages sent via
a far reference to an object are enqueued in the message queue of the object’s owning
actor and processed by that actor itself. AmbientTalk borrows from the E language
the syntactic distinction between sequential message sends (expressed as o.m ()) and
asynchronous message sends (expressed as o<-m ()). In the remainder of this paper,
we assume that asynchronous sends do not return a value. Another semantics for return
values is discussed in future work (see section 8).

Figure 1 illustrates AmbientTalk actors as communicating event loops. The dot-
ted lines represent the control flow of event loops which perpetually take messages
from their message queue and synchronously execute the corresponding methods on
the actor’s owned objects. The control flow of an event loop never “escapes” its actor
boundary. When communication with an object in another actor is required, a message
is sent asynchronously via a far reference to the object. The message is enqueued and
eventually processed by the receiver object’s own actor.

Actor Actor Event Loop
(TTT) < (LT
Message s ‘\\ @/ \ \
queue ‘@\‘ A Message ‘\ED
TS @\\/

Object

Far reference

Fig. 1. AmbientTalk actors as communicating event loops

Because objects residing on different devices are necessarily owned by different
actors, the only kinds of object references that can span across different devices are
far references. This ensures by design that all distributed communication is asynchron-
ous. AmbientTalk’s far references are by default resilient to network disconnections:
asynchronous messages may be buffered within the reference while the remote receiver
object is disconnected. It is this design that makes AmbientTalk’s distribution model
suitable for mobile ad hoc networks because it allows one to abstract over temporary
network partitions.

3 The AmbientTalk/Java Symbiosis

Our model for explaining the AmbientTalk/Java linguistic symbiosis is based on that of
Inter-language Reflection [9]. In this model, a linguistic symbiosis consists of:

— adata mapping which ensures that data in one language looks like data in the other
language, such that the symbiosis becomes as syntactically transparent as possible.
For example, it is desirable that Java objects are equally represented as objects in
AmbientTalk, such that messages can be sent to objects regardless of their native
language.

— aprotocol mapping between the meta-level representation of both languages’ data.
For example, both AmbientTalk and Java objects communicate by sending mes-
sages, but AmbientTalk is dynamically typed while Java is statically typed and
exploits type overloading during method lookup. A proper symbiosis needs to map
these message sending protocols onto one another.

AmbientTalk has been implemented in Java. Because of this, Java plays two roles:
it is both a symbiont language and the implementation language of AmbientTalk (and
hence of the linguistic symbiosis itself). Figure 2 illustrates the different objects that
play a part in the AmbientTalk/Java symbiosis, according to the implementation model
of Inter-language reflection [9]. AmbientTalk objects are physically implemented as
Java objects. This is illustrated by means of the “represents” relationship. To enable
symbiosis, additional objects are required which denote the appearance of objects from
one language in the other language. At the implementation level, such appearances
are implemented as wrapper objects, which wrap an object from a different language
and which perform the protocol mapping which translates between the semantics of
the symbiont languages. In what follows, we describe the standard data and protocol
mappings for the AmbientTalk/Java symbiosis.

AmbientTalk AT Wrapper Java
for Java Object Java Object
AT Object --%» Data Mapping
--+ Protocol Mapping
T <~ A—O B Arepresents B
— Appearance of
- N foreign object
. e AT Wrapber) (implemented
AT Object Java Wrapper for Java (F))E)ject - by wrapper)
Implementation for AT Object Implementation L)
AmbientTalk implementation in Java

Fig. 2. Symbiotic representation of AmbientTalk and Java Objects

3.1 Data Mapping

AmbientTalk’s data mapping is similar to that of other dynamic languages implemented
on top of the JVM such as Jython and JRuby (as discussed later in section 7.1). We in-
troduce the linguistic constructs by means of a toy chat program, shown below. This
small AmbientTalk program constructs a graphical user interface using the Java Swing
framework. The GUI consists of a simple input field and an output text area. The code
assumes that all connected chat participants are stored in a participants array.
When the user enters text in the text field, AmbientTalk code broadcasts the text mes-
sage to all connected participants. Note the registration of an anonymous AmbientTalk
object as an action listener on the text field.

def swing := jlobby.javax.swing;
def JFrame := swing.JFrame;

def JTextField := swing.JTextField;
def JTextArea := swing.JTextArea;

// instantiate classes by sending them the "new" message

def frame := JFrame.new("Chat");
def textfield := JTextField.new(20);
def outputArea := JTextArea.new();

// static Java fields appear as fields on class wrapper
frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;

// symbiotic method invocations
def pane := frame.getContentPane();
pane.setlLayout (jlobby. java.awt.GridLayout.new(2,1));
pane.add (textfield);
pane.add (outputArea);
// the anonymous object is an AmbientTalk object that
// masquerades as a Java ActionListener object
textfield.addActionListener (object: {
def actionPerformed (actionEvent) {
// String returned by getText () is converted into AmbientTalk text
def msg := textfield.getText ();
// participants is an array of all connected participants
participants.each: { |chat| chat<-tell(msg) }
// AmbientTalk text 1is turned into a String
outputArea.append (msg) ;
+i
hi

frame.setVisible (true);

Appearance of Java objects in AmbientTalk In order for AmbientTalk objects to
talk to Java objects, they first need to get access to Java classes. From classes, objects
can then be referenced via static fields or by instantiating the referenced classes. Java
classes are organised hierarchically by means of packages. We have chosen to mimick
this structural hierarchy by means of simple objects whose public slot names correspond
to nested Java package or class names. The root of this hierarchy is named jlobby!.
As can be seen from the code example, package objects can be created by selecting the
slot with the appropriate name from jlobby.

! Ordinary AmbientTalk programs use an object called the 1obby to load external objects,
hence the name j1lobby for loading Java classes.

Given a package object like the swing object in the chat example, it suffices to
select the slot matching the Java class name to refer to a Java class as if it were an Am-
bientTalk object. Java classes appear as AmbientTalk objects whose fields and method
slots correspond to public static fields and methods in the Java class. Hence, these fields
and methods can be accessed or invoked using regular AmbientTalk syntax.

Java classes can be instantiated in AmbientTalk similar to how AmbientTalk ob-
jects are instantiated, i.e. by sending new to the wrapper for the class, which returns
a wrapped instance of the Java class. Arguments to new are passed as arguments to
the Java constructor. For example, in the chat application above, a new instance of a
JFrame is created with the title of the frame passed as an AmbientTalk string. Java ob-
jects appear as AmbientTalk objects whose field and method slots correspond to public
instance-level fields and methods in the Java object. These are accessed or invoked as if
they were plain AmbientTalk slots.

The symbiotic architecture has a number of built-in conversions between several
native datatypes. For example, AmbientTalk numbers are automatically converted into
Java integers (e.g. JTextField.new (20)), AmbientTalk text is converted into Java
Strings, AmbientTalk arrays into Java arrays, AmbientTalk’s nil value into Java’s
null value, etc. If the parameter-passed AmbientTalk object is actually a wrapper for
a Java object, the unwrapped object is passed instead. These predefined conversions
make the symbiosis highly transparent in most cases.

Appearance of AmbientTalk objects in Java There are two ways for Java code to
gain access to AmbientTalk objects. The first is by embedding an AmbientTalk inter-
preter in existing Java code. The second is by means of a conversion rule when Ambi-
entTalk code invokes a Java method which expects an argument typed as an interface.
Any AmbientTalk object can be converted by the symbiosis into a Java object which
implements that interface. Any messages sent by Java objects to this interface object are
transformed into AmbientTalk message sends on the wrapped AmbientTalk object. In
the chat example, the symbiotic call to addActionListener requires a parameter
of type ActionListener, which is an interface type. Instead of passing a wrapped
Java object implementing this interface, it is allowed to pass any AmbientTalk object;
the object is not even required to implement all declared interface methods. The anony-
mous object passed in the above code properly implements the act ionPerformed
callback, and will be notified by Java code whenever the user has entered new text
in the text field. A discussion on how the concomitant threading issues are avoided is
postponed until section 4.

3.2 Protocol Mapping

For a linguistic symbiosis to work correctly, more is required than simply an appearance
for the entities of the foreign language. A protocol mapping must be defined between
the meta-level operations defined on the appearance of an object in the one language and
the meta-level operations defined on the actual object in the other language [9]. In the
case of AmbientTalk/Java, we consider three protocols: the slot access/method invoca-
tion protocol, which translates between AmbientTalk message sends and Java method

invocations, the delegation/inheritance protocol, which translates between object del-
egation and class inheritance and the actor/thread protocol, which translates between
event-driven and multithreaded concurrency control. We briefly describe the first two
protocols below. The thread/actor protocol is described in detail in section 4.

The Slot Access/Method Invocation Protocol AmbientTalk’s message sending pro-
tocol is entirely based on the concept that a selector (a symbol) uniquely denotes a slot
in an object. In Java, on the other hand, static types can be used to overload a method
name. At call time, the static types of the arguments are used to disambiguate the call.
Another notable difference is that AmbientTalk supports explicit delegation, which im-
plies that the object bound to self during method execution is not necessarily the
object in which the method was found during method lookup. In Java, the value of
this cannot be explicitly set to a separate delegating object. As a consequence, dele-
gating a message to a Java object from within AmbientTalk does not allow the delegator
to intercept self-sends performed by Java code.

Invoking Java methods in AmbientTalk The AmbientTalk/Java symbiosis treats mes-
sage sends from AmbientTalk to Java as follows: if a message is sent to a class wrapper,
only static fields or methods of the Java class are considered. If the message is sent to
an instance wrapper, only non-static fields or methods of the Java class of the wrapped
object are considered. If the AmbientTalk selector uniquely identifies a method (i.e. no
overloading on the method name is performed in Java), the matching method is invoked.
All AmbientTalk arguments are converted to Java objects by means of the data mapping
described in the previous section. The Java return value is mapped back to an Ambi-
entTalk value. If the Java method is overloaded based on arity (i.e. each overloaded
method takes a different number of arguments), the number of arguments in the Am-
bientTalk invocation can be used to identify a unique Java method. If the Java method
is overloaded based solely on argument types, the interpreter may derive that the actual
arguments can only be converted from AmbientTalk to the appropriate Java types for
exactly one of the matching overloaded signatures. In the remaining case in which the
actual AmbientTalk arguments satisfy more than one overloaded method signature, the
symbiotic invocation fails. It is then the AmbientTalk programmer’s responsibility to
provide explicit type information in the method invocation.

Invoking AmbientTalk methods in Java When an AmbientTalk object is passed as
an argument to a Java method expecting an object of an interface type, the Ambi-
entTalk object will appear to Java objects as a regular Java object implementing that
interface. Hence, messages sent to this wrapped AmbientTalk object appear as reg-
ular Java method invocations on an interface type. For example, the action listener
in the chat example can be notified as if it were a normal Java object by performing
listener.actionPerformed (event).

If Java invokes a method declared in an interface with an overloaded method sig-
nature, all overloaded invocations are transformed into the same method invocation on
the AmbientTalk object. In other words, the AmbientTalk object does not take the types
into consideration. However, if the Java method is overloaded based on arity, the Ambi-
entTalk programmer can take this into account in the parameter list of the corresponding

AmbientTalk method, by means of a variable-argument list or optional parameters. Oth-
erwise, the Java invocation may fail because of an arity mismatch.

The Delegation/Inheritance Protocol In AmbientTalk, when objects need shared ac-
cess to state or behaviour, they can do so by designating an object to hold that state
or behaviour as their common parent. This use of delegation was first advocated by
Lieberman [3] and is a key programming pattern in the prototype-based language Self.
In Self, these shared parent objects are called traits and they play the role of shared
repositories of behaviour normally played by classes in class-based languages [10].

The AmbientTalk/Java symbiosis represents the instance-class relationship of Java
objects by means of the delegation link of the AmbientTalk wrappers: the super slot of
an AmbientTalk wrapper for a Java object always points to the wrapper of that Java ob-
ject’s class. Because of this design, the concept of a class in Java symbiotically appears
as the concept of a trait in AmbientTalk.

The delegation relationship between AmbientTalk objects is not mapped to Java in-
heritance concepts when passing an AmbientTalk object to Java code. To Java code,
the AmbientTalk object appears as an instance of a class implementing some interface.
Java interfaces may extend other interfaces. It may be that the AmbientTalk object im-
plements those extended interfaces by delegating to other AmbientTalk objects, but this
is an implementation detail, just like it is an implementation detail how a Java class
implements the methods of its declared interfaces.

4 The Actor/Thread Protocol

In this section, we describe a symbiotic protocol mapping for representing AmbientTalk
actors as Java threads, and more interestingly, for streamlining multithreaded concur-
rency in Java as asynchronous message sending in AmbientTalk.

4.1 Viewing Actors as Threads

As described previously, an AmbientTalk actor consists of a message queue, an event
loop and a number of objects owned by the actor. The event loop is essentially a thread
which perpetually reads the next message from the message queue and invokes the
method on an owned object designated as the receiver of the message. The invoked
method is executed by the actor’s event loop thread.

Symbiotic invocations on Java objects If an AmbientTalk object performs a symbiotic
invocation on a Java object, the symbiotically invoked Java code is still executed by the
actor’s event loop thread. From a symbiosis point of view, an actor in AmbientTalk
appears as a thread in Java by representing the actor as its own event loop thread. When
an actor appears as a thread at the Java level, it has to abide by the rules of shared-state
multithreaded concurrency: the event loop thread may take locks on Java objects and use
Java’s wait and notify synchronisation primitives. When the symbiotic invocation

AmbientTalk Java

Actor

\ -

cflow

E
=N
Py \ : Data mapping
1]
~ / ' oA L | e >
message N\ ¢ H
R SR e NI
- -’-T _: :_ _——— w
— = NS
AmbientTalk =~ 525 ' Java Tava Thrend
Object ' Object

Fig. 3. Representing AmbientTalk actors as Java threads

finally returns, the event loop thread transparently starts executing AmbientTalk code
again and is trivially converted into the event loop of an actor again.

Figure 3 illustrates the control flow of passing from the AmbientTalk level to the
Java level. On the left-hand side of the figure, an AmbientTalk actor is executing a
symbiotic invocation on a wrapped Java object. Notice how the event loop thread flows
from the AmbientTalk into the Java level to execute the invoked Java method. Because
other Java threads may be concurrently operating on the same object, synchronisation
between the threads may be required.

Immediate symbiotic invocations When an AmbientTalk actor appears as a Java
thread, it is possible that the thread performs a symbiotic invocation on a wrapped Am-
bientTalk object. For example, consider an AmbientTalk visitor object that is passed as
argument in the accept method of a Java object which calls back on the visitor to visit
the appropriate type. To enable a Java thread representing an actor to perform invoca-
tions on AmbientTalk objects, the symbiosis must define an appropriate equivalent in
Java for the “ownership” relationship between objects and actors in AmbientTalk.

When an event loop thread enters the Java level, the symbiosis considers any Java
object on which the thread operates as being owned by the actor represented by the
thread. Hence, Java objects which are reachable from objects owned by an AmbientTalk
actor are transitively considered owned by that actor. When multiple event loop threads
access the same Java object, this object becomes owned by multiple actors, which may
lead to ill-defined behaviour (see below). When a Java object that is transitively owned
by an actor invokes a method on a wrapped AmbientTalk object, the protocol is as
follows:

— If the owner of the wrapped AmbientTalk object equals the owner of the Java object,
the invocation is performed immediately, by the Java thread representing the event
loop itself. There is no need to synchronise access with the AmbientTalk actor’s
event loop because the Java thread is that event loop. If access would be synchro-
nised, the event loop would wait for itself, resulting in immediate deadlock.

— If the owner of the wrapped AmbientTalk object does not equal the owner of the
Java object, this implies that an AmbientTalk actor has gained direct access to an
AmbientTalk object owned by another actor. Hence, the actor has circumvented

the exclusive state access property by sharing an object with another actor at the
Java level. In this case, the interpreter aborts the symbiotic invocation, rather than
allowing race conditions to occur between the actors. The alternative of synchro-
nising access to the AmbientTalk object is not viable, as this would violate the
non-blocking communication property: one event loop (the executing Java thread)
would be blocked waiting for another event loop (the event loop of the actor owning
the wrapped object).

4.2 Viewing Threads as Actors

We now describe the protocol mapping that allows the threading model of Java to co-
exist with the actor model based on communicating event loops of AmbientTalk. The
symbiosis distinguishes between synchronous and asynchronous symbiotic invocations
on AmbientTalk objects by Java code.

Synchronous Symbiotic Invocations When a Java thread (which does not represent an
AmbientTalk actor) performs a method invocation on a wrapped AmbientTalk object,
the method invocation cannot be executed immediately by the Java thread. Doing this
would violate the serial access property of event loop concurrency, which ensures that
no race conditions can occur on objects owned by an actor.

The solution employed by the AmbientTalk/Java symbiosis is to regard a Java wrap-
per for an AmbientTalk object as a far reference to the actual AmbientTalk object, and
to interpret every Java method invocation on that wrapper as an asynchronous message
send. The Java thread schedules the symbiotic method invocation for asynchronous ex-
ecution in the message queue of the actor owning the wrapped AmbientTalk object,
rather than synchronously invoking the method on the actual AmbientTalk object it-
self. Hence, it is the actor’s own event loop that will process the symbiotic invocation,
ensuring that the serial access property of the event-loop model remains intact.

By turning synchronous Java invocations on wrapped AmbientTalk objects into
asynchronous AmbientTalk message sends, the properties of AmbientTalk’s actor model
remain intact. However, Java’s threading model based on synchronous method invoca-
tion cannot always deal with this asynchrony: a method invocation normally returns a
value or it may throw an exception. To reconcile asynchronous message sends with syn-
chronous method invocations, we employ futures, which are a well-known abstraction
that represent a handle to the return value of an asynchronous request (see section 7.3).

The asynchronous scheduling of the symbiotic invocation immediately returns a
future object to the Java thread that schedules the request. The Java thread can then
(explicitly) synchronise on the future, suspending the thread until the future either gets
resolved with a return value, or until it is ruined by an exception (raised in the asyn-
chronously invoked AmbientTalk code). When the event loop of an actor dequeues a
symbiotic invocation request, it invokes the AmbientTalk method and uses the return
value (respectively a caught exception) to resolve (respectively ruin) the future attached
to the symbiotic invocation. This wakes up the waiting Java thread, which can then
return from the symbiotic method invocation.

Figure 4 illustrates the appearance of Java wrappers for AmbientTalk objects as far
references at the AmbientTalk level. On the left-hand side of the figure, a Java thread

Java AmbientTalk

Actor ey
Data mapping

]
Future :
i
]

$ Event Loop
J —_— — >

- ‘ - Java Thread

et \-,\.;_/./ AmbientTalk —»} Wait

Object

> Notify

Fig. 4. Java method invocations appear as AmbientTalk message sends

is performing a symbiotic invocation on a wrapped AmbientTalk object. Rather than
making the Java thread enter the AmbientTalk actor, a symbiotic invocation is scheduled
in the message queue of the wrapped object’s actor. The Java thread synchronises on
the associated future object. While the Java thread is blocked, the actor event loop
processes its incoming messages. When the symbiotic invocation has been completed,
the future object is notified and the symbiotic invocation returns, enabling the Java
thread to proceed its execution. At the Java level, the call appeared to be synchronous,
at the AmbientTalk level, it appeared to be an asynchronous message send.

Asynchronous Symbiotic Invocations Java’s native concurrency model is based on
shared-state concurrency, i.e. multiple threads communicating by modifying shared ob-
jects. For many applications, this concurrency model is inappropriate. Many interactive
applications (e.g. games, user interface frameworks) or discrete-event simulations re-
quire an event-driven approach. In Java, event-driven programming cannot be enforced.
However, an event-driven style can be adopted by using an event loop framework. The
Java AWT and Swing toolkits are the quintessence of such an approach.

In event-driven Java frameworks, asynchronous message sends are necessarily rep-
resented implicitly by synchronously invoking the methods of so-called /istener objects.
The documentation of most event-driven Java frameworks specifies that such methods
must return as soon as possible, and should preferably only schedule tasks for later
execution. In effect, this means that asynchronous message passing in Java is imple-
mented as a second-class language construct by means of listener invocations. How-
ever, our symbiosis can detect such second-class asynchronous message sends and map
them onto actual asynchronous sends in AmbientTalk, without having to synchronise
the Java thread. This is highly desirable because it ensures the responsiveness of the
event-driven Java framework.

As an example, consider an AmbientTalk object that is registered as an Action-—
Listener on an AWT Button. When the AWT event loop invokes the action-
Performed method on the AmbientTalk object, this implicitly indicates an event noti-
fication, which is conceptually asynchronous. Hence, rather than making the AWT event
loop suspend until the AmbientTalk actor has actually processed the actionPer—
formed method, as is the case for a synchronous symbiotic invocation, the method in-

vocation is turned into an actual asynchronous message send, and the event loop thread
can return immediately.

The AmbientTalk/Java symbiosis treats the invocation of any method belonging to
(an extension of) the java.util.EventListener interface as an asynchronous
message send, provided the method has a void return type and does not declare any
thrown exception. It is a convention of Java frameworks that objects representing event
listeners be tagged with (a subtype of) this interface. When a method on a wrapped
AmbientTalk object representing an EventListener is invoked, a symbiotic call is
scheduled as described previously, but no future is created on which to synchronise the
Java thread. Rather, the Java thread returns immediately. Hence, the Java method invo-
cationbuttonlistener.actionPerformed (event) is effectively interpreted
by AmbientTalk as buttonListener<-actionPerformed (event).

The symbiosis described above only covers asynchronous message sends without
return values. A discussion on the possibility of allowing symbiotic future-type message
sends is postponed until section 8.

4.3 Summary

In this section, we have described how actors and threads interact. When AmbientTalk
objects invoke methods on Java objects, the invocation is always synchronous. When
Java objects invoke methods on AmbientTalk objects, we distinguish three different
kinds of symbiotic method invocations:

— Immediate symbiotic invocations occur when a Java thread that represents an Am-
bientTalk actor calls back on its own objects.

— Synchronous symbiotic invocations occur when a regular Java thread invokes a
method on an AmbientTalk object.

— Asynchronous symbiotic invocations occur when a regular Java thread invokes a
method that represents an event notification on an AmbientTalk object (i.e. the Am-
bientTalk object acts as a listener).

5 Applications

We now give concrete examples of each of the three symbiotic invocations on Ambi-
entTalk objects described in the previous section, thereby illustrating how the thread/actor
protocol mapping behaves in practice.

5.1 Immediate Invocation

A traditional advantage of introducing symbiosis between a small language like Ambi-
entTalk and an industry-strength language like Java is that the vast amount of libraries
available in the latter language can be reused. However, the use of a Java library is
hardly ever restricted to simple one-way calls from AmbientTalk to Java. In many Java
frameworks, for example, the framework objects call back on the parameter-passed
AmbientTalk objects. We illustrate this interchange of messages by means of the Java

Collection Framework. In the example, an AmbientTalk program periodically receives
address card objects from PDAs in its environment. It will store these objects in a set to
filter out duplicates. Moreover, the address cards should be ordered by name so that the
user can be presented with an alphabetical overview of all nearby persons. This can be
achieved with the following AmbientTalk code excerpt:

def vCardPrototype := object: {
// implements the java.lang.Comparable interface
def compareTo (vCard) {
self.fullName.compareTo (vCard.fullName) ;

+i

// define fields for fullName, address, etc.
}i
def contacts := jlobby.java.util.TreeSet.new();

whenever: VCard discovered: { |vCard]|
contacts.add (vCard) ;

}i

Whenever a vCard object is discovered in the network, the add method is invoked
on the wrapped TreeSet. In order to correctly insert the element, the set repeatedly
invokes the compareTo method on the Java wrapper for the inserted vCard object.
As the thread invoking the method is the event loop thread owning the wrapped Ambi-
entTalk object, the method can be executed immediately.

The immediate invocation presented in this section is the most common form of
symbiotic invocations, often being the result of passing AmbientTalk objects as param-
eters to Java libraries. The Visitor design pattern [11] can be seen as the epitome of such
an interaction. When traversing a Java data structure with an AmbientTalk visitor, a dou-
ble dispatch across the language boundary occurs between accept and visitType
messages. Such examples illustrate why it is necessary for the thread/actor protocol
mapping to distinguish immediate invocations from synchronous invocations. If the
callback operation from Java to AmbientTalk is not executed immediately, but rather
by means of a synchronous invocation, the AmbientTalk actor would wait for itself,
resulting in immediate deadlock.

5.2 Synchronous Invocation

As noted previously, linguistic symbiosis is often useful for a small language like Am-
bientTalk to reuse the large amount of software components available in a language
like Java. However, it is equally viable for the Java programmer to embed AmbientTalk
components into an existing Java framework. This allows the Java programmer to profit
from e.g. AmbientTalk’s language support for distributed programming.

In this section, we illustrate how AmbientTalk unit tests can be incorporated into
the JUnit unit testing framework, allowing a Java developer to integrate all unit tests in
a consistent testing framework. In AmbientTalk, a unit test is an object whose methods
are prefixed with test. All unit test objects delegate to the prototypical unit test ob-
ject, which contains reflective code to invoke all test cases. Note that this object also
implicitly implements the junit . framework . Test interface.

def UnitTestPrototype := object: {
def testMethods; // array of first-class method objects
def init () {
testMethods := retrieveTestMethods (self);
def countTestCases() { testMethods.length };
def run(reporter) {
reporter.startTest (self);
testMethods.each: { |method| /* perform the test */ };
reporter.endTest (self) ;

i

Now consider a TestSuite that is composed of both unit tests written in Java
and unit tests written in AmbientTalk. All unit tests uniformly implement the Test
interface. In order to incorporate an AmbientTalk unit test into the test suite, it suffices
to wrap the AmbientTalk object representing the unit test explicitly in the Test inter-
face. The following code excerpt assumes that exampleATTest is a reference to an
AmbientTalk unit test object.

public static void main(String[] args) {
TestSuite suite = new TestSuite();
ATObject exampleATTest = /% load AmbientTalk test */;
Test exampleJavaTest = /» load Java test */;
suite.addTest ((Test) wrap (exampleATTest, Test.class));
suite.addTest (exampleJavaTest) ;
junit.textui.TestRunner.run (suite);
}
// see section 6 for details on wrapping AmbientTalk objects
static Object wrap (ATObject obj, Class interface) {
return Proxy.newProxylInstance (interface.getClassLoader (),
new Class[] { interface },
new JavaWrapperForATObject (obj));

A TestRunner executes the test suite by sequentially invoking each unit test’s
run method. This execution is performed by a Java application thread. Because an
embedded AmbientTalk unit test should be run inside its owning actor, an invocation
of the run method on the wrapped AmbientTalk unit test schedules an asynchronous
request in the actor owning exampleATTest. However, the JUnit framework expects
run () to be a synchronous invocation, implying that the Java thread should obviously
wait for the test to be completed before executing the next test or terminating. Therefore,
the Java thread suspends transparently until the AmbientTalk actor has processed the
run method.

Synchronous invocation is enforced when a Java thread (which does not represent an
actor) performs invocations on a wrapped AmbientTalk object. This is typically the case
when using AmbientTalk from within a Java application, or when passing AmbientTalk
objects to libraries which internally start their own threads.

5.3 Asynchronous Invocation

As described in section 4.2, many Java applications are themselves event-driven. We
have already shown how AmbientTalk objects can engage in a proper symbiosis with

event-driven frameworks without any problem. AmbientTalk objects may implement
event listener interfaces whose methods are invoked purely asynchronously. In this sec-
tion, we illustrate another use of asynchronous symbiotic invocations. The goal is for
AmbientTalk code to be able to reuse Java’s java.util.Timer abstraction. The
Timer class is typically used to schedule tasks for execution at a later point in time as
follows:

Timer timer = new Timer ();
TimerTask task = new TimerTask () {
public void run() {
System.out.println ("executing task");
}
}

// schedule task to be executed in 5 sec
timer.schedule (task, 5000);

The run method of the TimerTask instance is invoked by the t imer object
after 5000 milliseconds have elapsed. In Java, this callback is executed by the thread
of timer, which is not necessarily the thread that scheduled the task. Hence, explicit
synchronisation between both threads is often necessary to prevent race conditions.

In AmbientTalk, we would like to be able to schedule code for execution at a later
point in time, without causing race conditions in the actor. Unfortunately, TimerTask
is not an interface but an abstract Java class, so it cannot be instantiated. Neither can
AmbientTalk code create a concrete subclass of TimerTask. To make the symbiosis
work, a small auxiliary class needs to be written in Java:

public class ATTimerTask extends TimerTask {
public interface AsyncRunnable extends EventListener {
public void run();
¥
private AsyncRunnable code;
public ATTimerTask (AsyncRunnable r) {
code = r;

public void run() {
code.run();
}
}

The above class defines a simple wrapper around an object that understands the
message run. By means of this auxiliary class, it is easy to wrap AmbientTalk objects
in Java TimerTask instances:

def timer := jlobby.java.util.Timer.new();
def task := jlobby.at.support.ATTimerTask.new (
object: {
def run() { system.println("executing task") }
1

timer.schedule (task, 5000);

The above code assumes that the class at . support .ATTimerTask is avail-
able on the JVM’s class path. The thread/actor protocol mapping ensures that the run
method of the anonymous AmbientTalk object is executed by its owning actor, not by

the thread of the timer. Moreover, because the AsyncRunnable interface has been
marked as an EventListener interface, the AmbientTalk/Java symbiosis treats the
code.run () call in the auxiliary Java class as an asynchronous send. This ensures
that the Java timer thread is not blocked waiting for the AmbientTalk actor to process
the invocation, such that it can timely execute other scheduled tasks.

The AmbientTalk/Java symbiosis allows AmbientTalk code to use Java’s Timer
framework in exactly the same way as the framework would be used in Java, except
that the multithreaded concurrency of Java is automatically adapted to the event-driven
concurrency of AmbientTalk. The symbiosis layer ensures that this mapping is done
transparently, without additional programming effort in AmbientTalk itself.

6 Implementation

This section describes the detailed implementation of the thread/actor protocol map-
ping introduced in section 4.2. The thread/actor mapping occurs in the Java wrapper of
an AmbientTalk object. This Java wrapper is implemented by means of Java’s standard
support for dynamic proxies. When an AmbientTalk object is passed as an argument
to a Java method requiring a parameter of an interface type, a dynamic proxy imple-
menting that interface is generated by the symbiosis. The proxy requires an object im-
plementing the InvocationHandler interface whose invoke method is used to
intercept messages sent to the proxy. The JavaWrapperForATOb ject class imple-
ments Java wrappers for AmbientTalk objects. The essential part of the code is shown
below.

class JavaWrapperForATObject implements InvocationHandler {
final ATObject principal; // the wrapped AmbientTalk object
final EventLoop owningEventLoop; // the thread of the owner actor
JavaWrapperForATObject (ATObject atObj) {
principal = atObj;
owningEventLoop = EventLoop.fromThread (Thread.currentThread());

Object invoke (Object rcv, final Method method, Object[] args) throws Throwable {
final ATObject[] atArgs = new ATObject[args.length];
for (int i = 0; i < atArgs.length; i++) {

atArgs[i] = Symbiosis.javaToAmbientTalk (args[i]);
Event symbioticInvocation = new Event () {
public Object process() throws Exception {
ATObject result = Symbiosis.downInvocation (principal, method, atArgs);
return Symbiosis.ambientTalkToJava (result, method.getReturnType());
}
if (owningEventLoop.equals (Thread.currentThread())) { // immediate invocation

return symbioticInvocation.process(); // immediately perform invocation
} else { // detecting exclusive access violations
if (EventLoop.isEventLoop (Thread.currentThread())) {
throw new RuntimeException ("Violated exclusive access property");

if (Symbiosis.isEvent (method)) { // asynchronous invocation
owningEventLoop.schedule (symbioticInvocation);
return null; // void return type

} else { // synchronous invocation
Future f = new Future(); // to make the Java thread wait for the result
owningEventLoop.schedule (symbioticInvocation, f);
return f.get(); // blocks until invocation has been executed by actor

A JavaWrapperForATObject wraps an AmbientTalk object (the principal)
and the event loop thread of the actor that owns that object (the owningEventLoop).
The implementation assumes that the thread creating the wrapper is the event loop
thread of the owning actor (line 6).

When a method is invoked on the dynamic proxy, the Java arguments to the call
are mapped onto AmbientTalk values (lines 9-12). The data mapping is performed by
means of the JavaToAmbientTalk method. Subsequently, an event object is created
which can be scheduled in an actor’s event queue (lines 13-18). When the event is
processed, it transforms the Java method invocation into an AmbientTalk invocation,
according to the protocol mapping outlined in section 3.2. The AmbientTalk return
value is mapped to a Java value of the appropriate return type (line 16). The rest of the
code implements the thread/actor protocol mapping. It is subdivided into four parts:

Immediate invocation First, it is checked whether the symbiotic invocation is performed
by the owning actor’s own event loop thread (line 19). If this is the case, the symbiotic
invocation is performed immediately using the current thread. This ensures that e.g. the
callback messages described in section 5.1 operate correctly.

Detecting exclusive access violations By providing AmbientTalk actors with the power
to access Java objects, we have introduced the problem that two or more actors may
share their objects via the Java level, bypassing the exclusive access property. However,
by treating Java objects as being “owned” by the thread that operates on them, we can
detect when the event loop thread of one actor tries to access an object owned by another
actor. In the code, it is checked whether the accessing thread is the event loop of another
actor (line 22). If this is the case, an AmbientTalk actor has gained access to an object
owned by another actor, and the symbiotic invocation is aborted.

Asynchronous invocation 1If the thread performing the symbiotic invocation is a regular
Java thread, but the invoked method represents an event notification (i.e. it belongs
to an EventListener interface, has a void return type and does not declare any
thrown exceptions), the invocation is scheduled asynchronously and the thread returns
immediately (lines 25-27). The schedule method places the event in the event queue
of the owning actor. This queue is served by the actor’s own event loop thread which
will eventually invoke the process method of the scheduled Event object.

Synchronous invocation In the final case, the symbiotic invocation is performed by a
regular Java thread on a non-event method (lines 29-31). In this case, the Java thread
must wait until the owning actor has processed the invocation. This synchronisation is
performed by means of a small auxiliary Future class. A future is passed to the actor’s
schedule method which will be resolved by the actor with the result of processing
the scheduled Event. The Java thread subsequently suspends and waits for this result
by invoking the future’s get method.

Performance Measurements To determine the performance of symbiotic method
invocations from Java to AmbientTalk, we have compared the overhead of synchronous
symbiotic invocations (which require the Java thread to schedule an event and suspend
on a future) with respect to immediate invocations (which allow the calling thread to
immediately execute the symbiotic invocation). The results are shown below?. Three
kinds of methods are invoked: a method with an empty body and two calculating a
linear function requiring 25 resp. 50 iterations. The methods are invoked by Java code
ran by the AmbientTalk actor itself (immediate invocation) and by an auxiliary Java
thread (synchronous invocation).

Runtime (in milliseconds) of

Empty Method|For-loop 25|For-loop 50
Immediate 3.24 57.35 112.51
Synchronous 4.36 58.39 113.19
Difference 1.12 1.04 0.68
Overhead| 25.69% 1.78% 0.60%

The results show the expected result that synchronous invocations are slower than
immediate invocations. Especially for very small methods this overhead is significant.
Naturally, the overhead quickly decreases when methods take longer to execute. On
average, the overhead introduced by synchronous invocations is .94 milliseconds. One
important point is that all synchronous symbiotic invocations were performed on an
actor whose message queue was empty. As the load of an actor increases, it takes more
time before the synchronous invocation is served from the queue which of course dras-
tically influences the runtime of the synchronous invocation.

7 Related Work

7.1 Linguistic Symbiosis

The reference model that we used for explaining linguistic symbiosis is that of Inter-
language Reflection [9] which is itself based on an open design of object-oriented lan-
guages [12]. The purpose of these models is to clearly identify which objects define the
boundaries between two languages (data mapping) and to identify consistent rules for
crossing the boundaries (protocol mapping).

Performing a linguistic symbiosis between two languages in order to combine dif-
ferent programming paradigms is not novel. For example, SOUL/Smalltalk is a linguis-
tic symbiosis between a logic programming language and an object-oriented language,
where the goal is to use the logic language to reason about the object-oriented lan-
guage [9, 13].

There exist a vast number of dynamic languages that have been implemented on top
of the Java Virtual Machine and which provide a symbiotic layer to interface with Java
objects. Examples include JRuby, Jython, JScheme, LuaJava and JPiccola. The data

% Average runtime of 300 invocations on an AmbientTalk (version 2.5) object by a Java thread
as measured on an Apple Powerbook G4 1Ghz using the HotSpot JVM v1.3.1 on Mac OS X.

and protocol mappings of these languages is often similar in spirit, differing only in the
details of e.g. how method overloading is handled. Some implementations are more ad-
vanced than others. For example, Jython allows Python classes to subclass Java classes.
To the best of our knowledge, none of these linguistic symbioses define a concurrency
protocol mapping, often because the two symbionts employ a similar thread-based con-
currency model.

Piccola [14] is a composition language designed to glue together components from
its underlying host language. Hence, Piccola requires a linguistic symbiosis with its
host language in order to access and manipulate the language’s components. For exam-
ple, JPiccola — which uses Java as the host language — defines a so-called composition
style that allows Java AWT components to be easily composed in Piccola. Piccola’s
concurrency control is based on the m-calculus, where agent processes communicate
via channels. To the best of our knowledge, Piccola does not define a mapping between
its host language’s concurrency model and the agent and channel abstractions of the
m-calculus, although the Piccola programmer may define such a mapping himself by
defining his own composition style.

AmbientTalk’s event loop concurrency model is based on that of the E language [8].
E is a language for capability-secure distributed computing in open networks. E also
provides symbiotic access to Java, the language in which it is implemented. However,
to the best of our knowledge, E does not provide a concurrency protocol mapping as de-
scribed in this paper. The only documented feature in this regard is E’s ability to allow
one of its event loops to morph into an AWT or Swing event loop thread. In this way,
all threads in the system correspond to E event loops, which effectively rules out a co-
existence of the thread-based concurrency model of Java with the communicating event
loops of E. This solution can be regarded as a specific instance of AmbientTalk/Java’s
asynchronous symbiotic invocations.

7.2 Unifying threads and events

The Scala language offers a concurrency library based on actors that unify threads and
events [15, 16]. Scala actors are equipped with two kinds of message reception mecha-
nisms. Thread-based actors have a receive operation that suspends the actor’s thread
until a suitable message specified in the receive block arrives in the actor’s mailbox.
When such a message finally arrives, the thread is resumed and the receive oper-
ation returns normally. Event-based actors have a react operation which, when no
suitable message is available in the mailbox, does not suspend the current thread, but
rather stores the actor’s react code as a closure and signals to the executing thread
that the actor is “suspended” by throwing a special exception. This exception allows the
executing thread of the event-based actor to continue executing other actors. Scala’s ap-
proach differs from ours in the sense that they provide one unified concurrency model,
while we provide a language symbiosis that bridges the distinct concurrency models
of two separate languages. Also, the actor model of Scala is more liberal than that of
AmbientTalk, in the sense that the three properties of event loop concurrency are not
enforced by Scala’s model. It is the programmer’s own responsibility to guarantee that
Scala actors do not perform concurrent updates on shared state but communicate only
by message passing.

Li and Zdancewic describe a concurrency model that unifies threads and events,
implemented in Haskell [17]. In their approach, the system offers two views on multi-
threaded programs: a thread view, which allows regular application code to program in a
thread-based way, and an event view, which allows programmers to manipulate threads
as passive entities by means of an event-driven thread scheduler. Technically, threads
are cut into a series of event handlers at points where the code performs blocking I/0
operations. The difference with our approach lies again in the fact that a unified model is
presented, not a symbiosis between two languages with a separate model. Also, Li and
Zdancewic stress the use of their event-driven model to write custom thread schedul-
ing code, to achieve better performance. In our approach, the event-driven model is
meant to be used for actual application-level code in order to avoid race conditions and
deadlocks by design in highly volatile distributed systems.

7.3 Futures

Our synchronisation technique between synchronous Java invocations and asynchron-
ous AmbientTalk message sends is essentially an application of futures [18]. In concur-
rent object-oriented programming languages, futures have been a recurring language
abstraction to reconcile asynchronous message passing with return values (e.g. future-
type message passing in ABCL [6], promises in Argus [19] and E [8], wait-by-necessity
in Eiffel// [20]). A future is essentially a handle for the result of an asynchronous mes-
sage send. In our thread/actor protocol mapping, a synchronous Java invocation can
be thought of as an asynchronous AmbientTalk message send that returns a future, on
which the Java code immediately synchronises. Because of this immediate synchroni-
sation, it has to be noted that the full power of futures is not really required: Java’s
standard wait and notify primitives suffice. However, in the next section we dis-
cuss how futures could help in achieving true symbiotic future-type message sends.
Although our symbiosis hosts a trivial application of futures, to the best of our knowl-
edge it has not before been used to synchronise between method invocations performed
in different languages.

8 Research Status and Future Work

The AmbientTalk language is implemented as an interpreter on top of the Java Virtual
Machine®. AmbientTalk is a research artifact, serving as a practical platform for experi-
mentation, but lacking extensive performance optimisations. The interpreter runs on the
Java Micro Edition platform and has been successfully deployed on PDAs connected
via an ad hoc WiFi network. We are currently planning on applying the symbiosis by
distributing a sequential Java application using AmbientTalk as the “distribution mid-
dleware”.

With respect to the AmbientTalk/Java data mapping, one area of future work is the
ability for AmbientTalk objects to “subclass” Java classes. This would allow Ambi-
entTalk objects to function directly as Java anonymous inner classes without the need

3 The language can be downloaded at http: //prog.vub.ac.be/amop/at /download.

for manually written adaptor classes such as the ATTimerTask introduced in sec-
tion 5.3, improving AmbientTalk’s ability to integrate with existing Java frameworks.

With respect to the AmbientTalk/Java protocol mapping, we are planning on ex-
tending it with more elaborate support for future-type message sending. Although we
have not discussed it in this paper, AmbientTalk supports asynchronous message sends
that return futures. AmbientTalk’s futures are based on the E language’s non-blocking
futures [8]: an event loop is never allowed to block, waiting for a future to become
fulfilled. Instead, it is possible to register a listener on the future which is notified asyn-
chronously when the future is fulfilled. Since version 1.5, Java also supports futures
(as a library abstraction), but these are traditional futures that allow a thread to block,
waiting for the future to become fulfilled. A logical next step in the symbiosis is to de-
fine a mapping between AmbientTalk’s non-blocking and Java’s blocking futures. This
protocol mapping would fill a missing gap in the symbiosis: currently a Java invocation
is either purely asynchronous or purely synchronous. If the symbiosis would support a
future mapping (e.g. by detecting that the invoked Java method’s return type is a sub-
type of java.util.concurrent.Future), Java invocations can be turned into
future-type asynchronous AmbientTalk message sends.

9 Conclusions

We have described the AmbientTalk/Java linguistic symbiosis, which defines a pro-
tocol mapping between the event-driven concurrency model of AmbientTalk and the
multithreaded concurrency model of Java. The motivation behind the symbiosis is that
AmbientTalk can benefit from Java’s vast number of existing components, while Java
can benefit from AmbientTalk’s high-level concurrent and distributed language features.
The main problem to be tackled by the symbiosis is that Java’s threading model should
not violate the properties of the event-driven concurrency model (e.g. the prevention of
race conditions on AmbientTalk objects).

The contribution of this paper is a protocol mapping between actors and threads
which ensures that the concurrency properties of the actor-based model are preserved.
To reconcile Java’s synchronous method invocations with AmbientTalk’s asynchron-
ous message sends, we have distinguished three different kinds of symbiotic invo-
cations: immediate invocations (performed by the actor’s own thread representation),
synchronous invocations (which require a Java thread to wait for an event loop) and
asynchronous invocations (which treats Java method invocations on listeners as pure
asynchronous message sends). We have described an application of each symbiotic in-
vocation by means of concrete examples in our AmbientTalk/Java symbiosis.

Acknowledgments. The authors would like to thank Kris Gybels for his suggestions
for improvement, in particular the structuring of the section on the actor/thread protocol
mapping, and the anonymous referees for their helpful suggestions for improvement.

References

1. Dedecker, J., Van Cutsem, T., Mostinckx, S., D’Hondt, T., De Meuter, W.: Ambient-oriented
Programming in Ambienttalk. In Thomas, D., ed.: Proceedings of the 20th European Con-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

ference on Object-oriented Programming (ECOOP). Volume 4067 of Lecture Notes in Com-
puter Science., Springer (2006) 230-254

. Dedecker, J., Van Belle, W.: Actors for mobile ad-hoc networks. In Yang, L., Guo, M., Gao,

J., Jha, N., eds.: Embedded and Ubiquitous Computing. Volume 3207 of Lecture Notes in
Computer Science., Springer-Verlag (2004) 482-494

. Lieberman, H.: Using prototypical objects to implement shared behavior in object-oriented

systems. In: Conference proceedings on Object-oriented Programming Systems, Languages
and Applications, ACM Press (1986) 214-223

. Agha, G.: Actors: a Model of Concurrent Computation in Distributed Systems. MIT Press

(1986)

. Lieberman, H.: Concurrent object-oriented programming in ACT 1. In Yonezawa, A.,

Tokoro, M., eds.: Object-Oriented Concurrent Programming. MIT Press (1987) 9-36

. Yonezawa, A., Briot, J.P., Shibayama, E.: Object-oriented concurrent programming in

ABCL/1. In: Conference proceedings on Object-oriented programming systems, languages
and applications, ACM Press (1986) 258-268

. Briot, J.P.: From objects to actors: study of a limited symbiosis in smalltalk-80. In: Proceed-

ings of the 1988 ACM SIGPLAN workshop on Object-based concurrent programming, New
York, NY, USA, ACM Press (1988) 69-72

. Miller, M., Tribble, E.D., Shapiro, J.: Concurrency among strangers: Programming in E as

plan coordination. In Nicola, R.D., Sangiorgi, D., eds.: Symposium on Trustworthy Global
Computing. Volume 3705 of LNCS., Springer (2005) 195-229

. Gybels, K., Wuyts, R., Ducasse, S., D’Hondt, M.: Inter-language reflection: A conceptual

model and its implementation. Computer Languages, Systems & Structures 32(2-3) (2006)
109-124

Ungar, D., Chambers, C., Chang, B.W., Holzle, U.: Organizing programs without classes.
Lisp Symb. Comput. 4(3) (1991) 223-242

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley (1995)

Steyaert, P.: Open Design of Object-Oriented Languages, A Foundation for Specialisable
Reflective Language Frameworks. PhD thesis, Vrije Universiteit Brussel (1994)

Wuyts, R., Ducasse, S.: Symbiotic reflection between an object-oriented and a logic pro-
gramming language. In: ECOOP 2001 International Workshop on MultiParadigm Program-
ming with Object-Oriented Languages. (2001)

Achermann, F., Nierstrasz, O.: Applications = Components + Scripts — a tour of Piccola.
Software Architectures and Component Technology (2001) 261-292

Haller, P., Odersky, M.: Event-based programming without inversion of control. In: Proc.
Joint Modular Languages Conference. Springer LNCS (2006)

Haller, P., Odersky, M.: Actors that Unify Threads and Events. In: International Conference
on Coordination Models and Languages. Lecture Notes in Computer Science (LNCS) (2007)
Li, P., Zdancewic, S.: Combining events and threads for scalable network services. In: ACM
SIGPLAN Conference on Programming Languages Design and Implementation (PLDI),
ACM Press (2007)

Baker Jr., H.G., Hewitt, C.: The incremental garbage collection of processes. In: Proceedings
of Symposium on Al and Programming Languages. Volume 8 of ACM Sigplan Notices.
(1977) 55-59

Liskov, B., Shrira, L.: Promises: linguistic support for efficient asynchronous procedure
calls in distributed systems. In: Proceedings of the ACM SIGPLAN 1988 conference on
Programming Language design and Implementation, ACM Press (1988) 260-267

Caromel, D.: Towards a method of object-oriented concurrent programming. Communica-
tions of the ACM 36(9) (1993) 90-102

