
OrthoCluster: A New Tool for Mining Synteny Blocks and
Applications in Comparative Genomics

Xinghuo Zeng† Jian Pei† Ismael A. Vergara‡
Matthew J. Nesbitt‡ Ke Wang† Nansheng Chen‡

† School of Computing Science ‡ Department of Molecular Biology and Biochemistry
Simon Fraser University, Burnaby, BC Canada V5A 1S6

†{xzeng, jpei, wangk}@cs.sfu.ca ‡{iav, mnesbitt, chenn}@sfu.ca

ABSTRACT
By comparing genomes among both closely and distally re-
lated species, comparative genomics analysis characterizes
structures and functions of different genomes in both con-
served and divergent regions. Synteny blocks, which are
conserved blocks of genes on chromosomes of related species,
play important roles in comparative genomics analysis. Al-
though a few tools have been designed to identify synteny
blocks, most of them cannot handle some challenging appli-
cation requirements, particularly the strandedness of genes,
gene inversions, gene duplications, and comparison of more
than two genomes. We developed a data mining tool, Ortho-
Cluster, which can handle all those challenges. It is publicly
available at http://genome.sfu.ca/projects/orthocluster. Or-
thoCluster takes the annotated gene sets of candidate
genomes and pairwise orthologous relationships as input and
efficiently identifies the complete set of synteny blocks. In
addition, OrthoCluster identifies four types of genome re-
arrangement events namely inversion, transposition, inser-
tion/deletion, and reciprocal translocation. To be flexible
in various application scenarios, OrthoCluster comes with a
systematic set of parameters such as the synteny block size,
number of mismatches allowed, whether the strandedness is
enforced, whether gene ordering is preserved. Furthermore,
OrthoCluster can be used to identify segmental duplication
in a genome. In this paper, we introduce the major tech-
nical ideas, and present some interesting findings using Or-
thoCluster.

1. INTRODUCTION
Genome sequences contain ultimate genetic information

and instructions defining essentially all aspects of different
forms of living organisms ranging from a simple virus to
highly sophisticated humans. Genome analysis enables us
to understand mechanisms underlying biological processes
like development, aging, learning and memory, as well as
disease conditions such as cancer, diabetes, and many types
of devastating neurodegenerative diseases.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

Since the initiation of the unprecedented Human Genome
Project in 1980s, an increasing number of genomes have
been fully sequenced, assembled, and annotated due largely
to major technological advances in DNA sequencing. Mile-
stones include the complete genome sequences of the bac-
terium Haemophilus influenza [13], the budding yeast Sac-
charomyces cerevisiae [14], the multicellular organism nema-
tode worm Caenorhabditis elegans [11], the popular genet-
ics model organism fruit fly Drosophila melanogaster [1, 23],
and humans (Homo sapiens) [38, 19] were published between
1995 and 2001. More recently, the sequencing of James Wat-
son’s genome1 and Craig Venter’s diploid genome [20] were
published in 2007.

The availability of a large number of genome sequences
offers a huge potential to comparative genomics analysis
projects, which aim to understand structures and functions
of genomic features and their roles in gene expression in
closely or distally related species [22, 16]. Through such
comparative analysis, we can relate knowledge gained in
well-studied genomes or simple genomes of model organisms
(the “reference” genomes) to newly sequenced genomes or
more complex genomes (the “target” genomes). We can also
discover novel knowledge about yet unidentified functional
elements in the genomes under analysis. Furthermore, com-
parative analysis facilitates understanding of driving forces
for molecular evolution and speciation.

Generally, comparative genomics analysis highlights two
categories of functional elements. The first category is widely
known as “ultraconserved elements”, which are a few hun-
dred bases (bp) long and show 100% identity between ele-
ments in genomes of closely related species and are conserved
in other species [3]. Another category is synteny blocks,
which are tens of kilobases (Kb) to multiple megabases (Mb)
long and contain usually multiple genes. A synteny block is a
conserved block of genes on chromosomes of related species.

Using the newly developed methods, hundreds of ultracon-
served elements have been identified in the human genome [3].
More recently, ultraconserved elements in repetitive regions
and transposable elements of the human genome were identi-
fied [39]. Those discoveries have led to some critical insights
into the regulatory function of non-coding DNAs and have
prompted reevaluation of 95% of the intergenic genomic se-
quences in the human genome, which were once widely called
junk DNAs.

In contrast to the comprehensive identification of short
ultraconserved elements, the progress on identification of

1http://www.454.com/news-events/press-
releases.asp?display=detail&id=68

656

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1353343.1353423&domain=pdf&date_stamp=2008-03-25

synteny blocks among genomes, especially the genomes of
higher organisms such as animals and plants, has been rather
limited. On the one hand, there are well documented cases
of synteny blocks where genes are often co-regulated, and
share similar functions. For example, synteny blocks in sim-
ple bacteria genomes are usually organized as blocks of genes
called operons. Because of the small size of the prokaryote
genomes and the high density of genes, it is rather straight-
forward to identify synteny blocks in those genomes. Iden-
tification and characterization of those prokaryote operons
have greatly facilitated the understanding of gene functions
and regulations in prokaryote species such as bacteria. It has
been known that genes within a bacterial operon are under
the control of a single regulatory signal or sequence [18].

On the other hand, synteny blocks in higher eukaryote
genomes are much more complex. Operons, like those iden-
tified in prokaryote genomes, have not been found in higher
animal and plant genomes except for a small number of
genomes such as the genome of the C. elegans [5]. About
1, 000 operons, which contain only 15% of all genes in the
C. elegans [5] genome, have been identified, each containing
two or more genes.

Nevertheless, synteny blocks are critical for comparative
genomics research. The accumulating evidence strongly sug-
gests that genes in the eukaryote genomes are not randomly
distributed. Instead, they form various types of functional
clusters [17] and topological arrangements [9]. Because of
the functional significance of those gene blocks, they may
be under evolutionary pressure that prevents genes within
a block from escaping the block. Therefore, identification
of such synteny blocks may provide important insights into
the functions of genes and gene blocks. Successful devel-
opment and application of data mining tools for identifying
such large scale functional elements can also assist in iden-
tifying copy number genomic variations (CNVs) [28] where
segments of DNA are present at variable copy numbers in
comparison with a reference genome. Some recently identi-
fied genomic variations have been associated to many disease
conditions including the autism spectrum disorders
(ASDs) [29]. The tools also play an essential role in in-
terpreting results from large scale projects including the
ENCODE projects [4], the cancer genomics atlas projects
(http://cancergenome.nih.gov/), and the HapMap
projects [12].

Earlier efforts in identification of synteny blocks often used
ad hoc methods. Those ad hoc methods tend to be slow,
not fully reproducible, unaware of strandedness that indi-
cates the DNA double-helix strand in which a gene resides,
and inappropriate for general applications. In the last five
years, a few computational methods have been developed
for identifying synteny blocks between genomes. Compared
to the early ad hoc methods, those methods are generally
more effective. However, since most of them were developed
to tackle specific problems, they usually lack many impor-
tant functionalities and, therefore, may not be general for
other applications.

We developed a data mining tool OrthoCluster, which is
capable of handling multiple challenging scenarios. Ortho-
Cluster is publicly available at http://genome.sfu.ca/
projects/orthocluster. Briefly, OrthoCluster takes the an-
notated gene sets of candidate genomes and pairwise orthol-
ogous relationships as the input and efficiently computes the
complete set of synteny blocks. In addition, OrthoCluster

also identifies four types of genome rearrangement events
namely inversion, transposition, insertion/deletion, and re-
ciprocal translocation. Users can obtain desirable output by
setting the related parameters including the synteny block
sizes, mismatches allowed, whether the strandedness is en-
forced, whether gene ordering is preserved, etc. Further-
more, OrthoCluster can be used to identify segmental dupli-
cation in a genome. In contrast to the existing methods, Or-
thoCluster can resolve one-to-many relationships and work
on multiple genomes. Moreover, it is aware of strandedness
and ordering of genes. It can allow different levels of order
differences. Another important feature is that OrthoCluster
distinguishes between two types of mismatches: “in-map”
mismatches and “out-map” mismatches. This distinction is
very critical for separation of two different types of genome
rearrangement events: insertion/deletion and transposition.

In this paper, we introduce the major technical ideas in
OrthoCluster and present some interesting findings using
OrthoCluster. We make the following contributions. First,
we identify some important challenges in data mining tools
for comparative genomics. Second, we introduce OrthoClus-
ter, a novel tool for mining blocks in comparative genomics.
The tool is publicly available and has been used by work-
ing biologists in comparative genomics research. Third, we
present some case studies using OrthoCluster and an empir-
ical evaluation of the data mining techniques in OrthoClus-
ter. Last, we systematically compare OrthoCluster with the
existing major comparative genomics data mining tools.

The rest of the paper is organized as follows. In Section 2,
we introduce OrthoCluster. In Section 3, we present the
case studies using OrthoCluster and an empirical evaluation
of the major techniques. OrthoCluster is compared with the
existing major comparative genomics data mining tools in
Section 4. Section 5 concludes the paper.

2. ORTHOCLUSTER
In this section, we first describe the problem of mining

synteny blocks. Then, we present the core algorithm in Or-
thoCluster to tackle the problem. We also discuss how the
core algorithm is extended to provide a wide range of syn-
teny block mining functionalities for various applications in
comparative genomics research.

OrthoCluster can compare multiple chromosomes or com-
pare a chromosome to itself. To keep our presentation con-
cise, in this paper, we often elaborate ideas using exam-
ples comparing two chromosomes. Our discussion can be
straightforwardly extended to the general case where more
than two chromosomes are compared, as OrthoCluster is
implemented.

2.1 The Synteny Block Mining Problem
Conceptually, a chromosome can be modeled as a sequence

of genes. Roughly speaking, the synteny block mining prob-
lem in genome comparison is to compare genes in multiple
genomes and identify fragments that contain similarly or-
dered genes as synteny blocks.

In order to conduct the comparison, a mapping between
genes in the genomes under comparison is assumed. Bio-
logically, mapping between genes in two genomes is made
by “connecting” orthologous gene pairs. Orthologous gene
pairs can be simply taken as the “same” genes in different
genomes due to speciation, i.e., the orthologous genes share
a common ancestor. The majority of the mappings between

657

a b c d f g h i j k

c’ m’ q’ k’ g’ z’ j’ i’a’1 a’2

Mapping

Gene in Chromosome 1 – Gene in Chromosome 2
a – a′1
a – a′2
c – c′

g – g′

i – i′

j – j′

k – k′

Figure 1: Two chromosomes and the mapping of
genes.

two closely related species such as the worms C. elegans
and C. briggsae, or human and mouse, are called one-to-one
relationships. Sometimes gene duplication can occur after
speciation so that a gene in one species is duplicated while
the ortholog of the gene in the other species remains a single
copy. Such gene duplication events create numerous one-to-
many or many-to-one relationships.

Generally, for two genomes C1 and C2, let G(C1) and
G(C2) be the sets of genes in C1 and C2, respectively. When
it is clear from context, we also write G(C1) and G(C2) as
G1 and G2, respectively. A mapping between genes in C1

and C2 is a set of tuples MC1,C2 = {(g, g′)} where g ∈ G(C1)
and g′ ∈ G(C2). Gene g is called a correspondence of g′ and
g′ a correspondence of g, too.

In general, a gene in a genome may have zero, one, or more
than one correspondence gene in another genome. A gene is
called an in-map gene if it has at least one correspondence
gene in the other genome under analysis. Otherwise, it is
called an out-map gene.

Each chromosome of a genome has two strands: a positive
one and a negative one. A gene stays in one strand. Thus,
a gene carries a “direction”: either positive or negative.

For example, Figure 1 shows the segments of two chromo-
somes. The direction of a gene is represented using an arrow
in the figure. A gene may be duplicated in a chromosome,
such as a′1 and a′2 in the figure.

Structurally, a synteny block is a set of fragments from
multiple genomes under analysis, one fragment from each
genome, such that the genes in the fragments are well pre-
served (i.e., very similar to each other). Technically, we can
model a synteny block as follows.

Given two genomes C1 and C2, a synteny block is a pair
(S1, S2) such that S1 and S2 are subsequences in genomes
C1 and C2, respectively, and S1 and S2 are similar to each
other. To measure the similarity between S1 and S2, we
consider the following factors.

Set similarity.
Let #(S1/S2) be the number of genes in S1 that have at

least a correspondence gene in S2. Then, #(S1/S2)
|S1| measures

how well S1 is presented by S2 under the mapping. Similarly,
#(S2/S1)
|S2| reflects how well S1 presents S2 under the mapping.

A user may specify a set-similarity threshold α. (S1, S2) is

a cluster if #(S1/S2)
|S1| ≥ α and #(S2/S1)

|S2| ≥ α.

Strandedness-aware similarity.
In this case, we consider the strandedness of the corre-

sponding genes. Two cases may arise.
Case 1: Consistent strandedness. That is, a gene g in S1

and a gene g′ in S2 are considered matched if g and g′ are
correspondences of each other, and g and g′ are in the same
type of strands (i.e., in the same direction, both positive or
both negative) in the two genomes.

Case 2: Reversed strandedness. That is, a gene g in S1

and a gene g′ in S2 are considered matched if g and g′ are
correspondences of each other, and g and g′ are in the dif-
ferent type of strands (i.e., in different directions, one in
positive and the other one in negative) in the two genomes.

In sequel, let #strand(S1/S2) be the number of genes in S1

that have at least a matched gene in S2 under the consistent
(or reversed) strandedness constraint. (S1, S2) is a synteny

block if #strand(S1/S2)
|S1| ≥ β and #strand(S2/S1)

|S2| ≥ β, where β

is a user-specified strandedness similarity threshold.

Order-preserving similarity.
In this case, we consider the ordering of the corresponding

genes. Again, due to the existence of the two strands, two
cases may arise.

Case 1: Consistent order-preserving. That is, the genes
in the fragments of the two genomes follow the same order
under the mapping. Technically, a sequence of genes g1 · · · gn

in S1 and g′1 · · · g′n in S2 are considered matched if gi and g′i
(1 ≤ i ≤ n) are correspondence genes of each other.

Case 2: Inverted order-preserving. That is, the genes in
the fragments of the two genomes follow the inverted orders
under the mapping. Technically, a sequence of genes g1 · · · gn

in S1 and g′1 · · · g′n in S2 are considered matched if gi and
g′n+1−i (1 ≤ i ≤ n) are correspondence genes of each other.

In the above two cases, g1 · · · gn and g′1 · · · g′n are called the
(order-preserving) correspondence sequences to each other.
Let 4(S1, S2) be the longest sequences of genes in S1 which
has a consistent (or inverted) order-preserving correspon-
dence sequence in S2. It is easy to see that |4(S1, S2)| =
|4(S2, S1)|.

To measure the similarity, let #order(S1, S2) = |4(S2, S1)|.
(S1, S2) is a synteny block if #order(S1,S2)

|S1| ≥ γ and
#order(S1,S2)

|S2| ≥ γ, where γ is a user-specified order-preserving

similarity threshold.
Often, synteny blocks of short fragments are insignificant

in comparative genomics. For example, (g, g′) is a trivial
synteny block if g and g′ are correspondence genes to each
other. To avoid the triviality, a user can specify a minimum
length constraint lmin. A synteny block (S1, S2) is signifi-
cant if |S1| ≥ lmin and |S2| ≥ lmin.

Simultaneously, a user can also specify a maximum length
constraint lmax such that only synteny blocks (S1, S2) are
returned if |S1| ≤ lmax and |S2| ≤ lmax. The constraint is
useful for closely-related genomes where the genes are rel-
atively well preserved. Without the maximum length con-
straint, the whole chromosomes may be reported as a trivial
synteny block when the settings of the other parameters are
loose.

If both (S1, S2) and (S′1, S
′
2) are synteny blocks and S′1 ⊂

S1 and S′2 ⊂ S2., (S1, S2) is more interesting in comparative
genomics since longer fragments of chromosomes often indi-

658

g1g2

g1g2g3

g1g2g3g4

g1g2g4 g1g3g4

g1g3 g1g4

g2

g2g3 g2g4 g3g4

g2g3g4

g4g3

Empty set

g1

Figure 2: A set enumeration tree enumerating all
synteny blocks of G(C) = {g1, g2, g3, g4}.

cate greater significance in biology. Larger synteny blocks
often suggest stronger evolutionary constraint for maintain-
ing the synteny blocks, while smaller nested blocks may be
due to stochastic events.

To avoid the redundancy and focus on synteny blocks most
interesting to users, we call a synteny block (S1, S2) maximal
if there does not exist another synteny block (S′′1 , S′′2) such
that S1 ⊆ S′′1 , S2 ⊆ S′′2 and at least one inequality holds.
OrthoCluster outputs only maximal synteny blocks.

Although the above discussion involves only two chromo-
somes, it can be straightforwardly generalized to the synteny
blocks among more than two genomes.

Problem definition. Given a set of genomes, the mapping
between genes in the genomes, the similarity requirements,
the user-specified similarity thresholds, and the minimum
and/or maximum length threshold. The problem of min-
ing synteny blocks is to find the complete set of maximal
significant synteny blocks.

The above problem definition can be easily extended to
incorporate more user requirements. As will be discussed
later, OrthoCluster provides a systematic set of parameters
for users to specify various constraints. In the next sub-
section, we will first introduce a core algorithm using the
set similarity. In Section 2.3, we will discuss how the core
algorithm can be extended to handle other constraints.

2.2 The Core Mining Algorithm
In this section, we present the core data mining algorithm

in OrthoCluster. The core algorithm tackles the essential
version of the synteny block mining problem as follows.

Given two genomes C1 and C2, the mapping M between
genes in the genomes, a set similarity threshold α, a maxi-
mum length threshold lmax, find the complete set of synteny
blocks.

Consider the genes in C1, G(C1) = {g1, . . . , gn}. We only
need to consider the in-map genes in G(C1). For out-map
genes in G(C1), we can replace them with a dummy symbol
“−”. To keep our presentation simple, let us overload G(C1)
as the set of in-map genes in C1 as well.

The set of synteny blocks can be divided into the following
n subsets according to their fragments on C1: the blocks
containing g1, the blocks containing g2 but not g1, the blocks
containing g3 but not g1 or g2, . . . , and the blocks containing
gn but not g1, . . . , gn−1.

Using a set enumeration tree [26], we can enumerate all
possible blocks systematically. For example, suppose we
have a genome C containing only 4 in-map genes, i.e., G(C) =
{g1, g2, g3, g4}. Figure 2 shows a set enumeration tree to

enumerate all synteny blocks according to their fragments
on genome C. Since we are interested in only the synteny
blocks whose fragments have up to lmax genes, we only need
to grow the set enumeration tree up to lmax levels.

A straightforward method to find the complete set of syn-
teny blocks checks every node in the set enumeration tree
of G(C1). For each node which represents a subset X of
G(C1), we check whether there exist some fragments S1 in

C1 such that X ⊆ S and |X|
|S1| ≥ α. If so, for each such a

fragment S1, we check whether there exist some fragments
S2 in C2 such that the following two conditions hold: (1) S2

contains a subset of genes Y such that every gene in X has
exactly one correspondence in Y under the mapping M ; and

(2) |Y |
|S2| ≥ α. If so, for each such a S2, (S1, S2) is a synteny

block. After all synteny blocks are found, only the maximal
ones are output.

The above straightforward method can be very costly when
a chromosome has many genes and lmax is not small: the
set enumeration tree is huge. Generally, if G(C1) has m

in-map genes, there are in total
∑lmax

i=1 (
m
i

) nodes in the

tree. Searching all nodes in a huge set enumeration tree is
computationally prohibitive.

In OrthoCluster, we developed an efficient algorithm to
tackle the challenges in searching the set enumeration tree.
It searches genome C1 gene by gene from left to right.

As the preprocessing, we scan C1 and C2 once. For each
tuple (g, g′) in the mapping M , we find the occurrences of
g and g′ in C1 and C2, respectively. Therefore, after the
preprocessing, we can find the locations of g (g′) in C1 (C2)
in constant time.

When OrthoCluster meets an in-map gene g1 in genome
C1, we check a window W (g1) of size (2lmax − 1) on C1

with g1 as the center, as shown in Figure 3. Window W (g1)
contains both in-map and out-map genes. Let Tail(g1) be
the set of in-map genes in W (g1). The genes in Tail(g1)
may find correspondences in genome C2.

After we generate the initial tail of {g1}, we refine Tail(g1)
by removing from it the genes that cannot form a synteny
block with g1. This refining process works as follows.

For a tuple (g1, g
′
1) in the mapping M , we find the occur-

rences of g′1 in genome C2. For each occurrence g′1, we also
check a window W (g′1) of size (2lmax − 1) on C2 with g′1 as
the center, as shown in Figure 3. Let Tail(g′1) be the set of
in-map genes in W (g′1).

Then, for each gene gi ∈ Tail(g1), we count the number
of genes that is located between g1 and gi and do not have
a correspondence in Tail(g′1). If this number exceeds (1 −
α)lmax, then gi is removed from Tail(g1). This is because
if g1 and gi form a synteny block, its set similarity must be
less than α.

Symmetrically, we can remove genes in Tail(g′1). We ap-
ply the above process iteratively until no more genes can
be removed from either Tail(g1) or Tail(g′1). We call this
process the iterative refining process.

After refining Tail(g1) and Tail(g′1), if at least one of the
tail sets is empty, then (g1, g

′
1) is a synteny block. If both

tail sets are not empty, we search the set enumeration tree
of Tail(g1) in a depth-first manner. For each gene gi ∈
Tail(g1), we generate a child X = {g1}∪ {gi} of {g1} in the
set enumeration tree. Suppose an order of genes is adopted
to enumerate gene combinations as in a set enumeration

659

window W(g’_1)

window W(g1)

1C2 ...g’...

C1 ...g1...

Figure 3: Matching two genes.

tree. We form Tail(X) as the set of genes in Tail(g1) that
is ordered after gi. Only those genes can be used to extend
X to a large block. We refine Tail(X) in the same way as
we refine Tail(g1). After the refinement, the children of X
are generated and searched in a recursive way.

If the subtree of node X is searched and no other synteny
block is found in the subtree, or if X does not have children
at all, we check the minimal fragments W (M(X)) in W (g′1)
where M(X) is the set of correspondences of genes in X. If

the set similarity requirement is satisfied, i.e., |X|
|W (X)| ≥ α

and |M(X)|
|W (M(X))| ≥ α, then (W (X), W (M(X))) is a synteny

block and is output. This guarantees the maximality of the
synteny block.

We have also developed two pruning techniques which can
effectively prune the search space.

First, a synteny block (W (X), W (M(X)) already found
can be used to prune the search of the set enumeration tree.
A block containing a subset of gene set Y cannot contain
any gene not in Tail(Y). When searching a node Y in the
set enumeration tree such that Y ⊂ X, if Tail(Y) ⊆ X,
then a block containing Y but not some genes in X cannot
be maximal, and thus can be pruned.

Second, consider a gene g2 ∈ Tail(g1) such that both g2

and the correspondence gene g′2 occur at the same side (i.e.,
either to the left or to the right) of g1 and g′1, respectively.
If the subtree of g2 is searched and no synteny blocks are
found, then, for any gene g3 and the correspondence gene g′3
such that g1 · · · g2 · · · g3 (g3 · · · g2 · · · g1) and g′1 · · · g′2 · · · g′3
(g′3 · · · g′2 · · · g′1) appear in W (g1g3) and W (g′1g

′
3), respec-

tively, it is impossible to have a synteny block containing
g1g3, since such a block, if exists at all, can be extended by
g2 to form a larger block. This contradicts with the precon-
dition that there is no synteny block having {g1, g2}.

The above mining procedure is run recursively until the
depth-first search is completed. Limited by space, we omit
the implementation details. The OrthoCluster is publicly
available. Further details can be found in the technical doc-
ument comes with the software.

Comparing to the straightforward method, the core al-
gorithm in the OrthoCluster can prune the search space
substantially. It uses the lmax constraint to focus on only
the genes which can form synteny blocks. It further prunes
search branches using the synteny blocks found before. Our
empirical study and the case studies show that OrthoClus-
ter is efficient for large genome (e.g., containing thousands
of genes). The straightforward method cannot run on those
large genome since the set enumeration tree on all genes is
too huge and there are too many nodes to search.

2.3 Extensions for Various Constraints
In this section, we discuss how to extend the core algo-

rithm to handle various constraints.

2.3.1 Minimum Length Constraint lmin

If the minimum synteny block length constraint is speci-
fied, it can be incorporated into the core algorithm.

First, we do not output any synteny blocks that fail the
minimum length constraint. Second, when a node X in the
set enumeration tree is searched, if |X|+ |Tail(X)| < lmin,
then the node and its subtree can be pruned since it cannot
satisfy the minimum length constraint.

2.3.2 Strandedness-aware Constraint
When the strandedness-aware constraint presents, the core

algorithm is revised as follows.
When an in-map gene g1 is met, we consider all corre-

spondences of g1. For a correspondence g′1 of g1 such that
g1 and g′1 have the same direction, we use the consistent
strandedness to map fragments in W (g1) and W (g′1). On
the other hand, if g′1 has a direction different from g1, then
we simply use the reversed strandedness to map fragments
in W (g1) and W (g′1).

2.3.3 Order-preserving Constraint
Meeting an order-preserving constraint is a little more

complicated.
When a gene g1 is met, we cannot determine the order

yet. However, when we search a child node of the root in
the set enumeration tree of Tail(g1), the order (i.e., either
consistent order or inverted order) can be determine.

Suppose g2 ∈ Tail(g1) is searched whose correspondence
is g′2. If g1 · · · g2 (g2 · · · g1) and g′1 · · · g′2 (g′2 · · · g′1) appear
in W (g1) and W (g′1), respectively, then the consistent order
should be used in the matching in the subtree of g1g2. Oth-
erwise, i.e., g1 · · · g2 (g2 · · · g1) and g′2 · · · g′1 (g′1 · · · g′2) appear
in W (g1) and W (g′1), respectively, then the inverted order
should be used.

Moreover, when searching a child X ∪{g} of node X, i.e.,
a new gene g ∈ Tail(X) is added into X, consider a gene
gi ∈ Tail(X ∪ {g}). Let g′ and g′i be the correspondence of
g and gi, respectively. If g′i appears in a side of g′ different
from gi appears to g, then gi and g′i can be removed from
Tail(X ∪ {g}) if consistent order is used, since they violate
the order. Symmetrically, we have a pruning rule for the
inverted order.

2.4 Genome Rearrangements Identification
OrthoCluster also integrates the functionalities for identi-

fying genome rearrangements including reciprocal transloca-
tion, transposition, inversion and insertion/deletion. Here
we briefly describe their definitions and the operations Or-
thoCluster performs to identify them. These definitions are
consistent to those described previously [10, 34].

Reciprocal translocation. Two nonhomologous chro-
mosomes that exchange chunks of DNA by recombinations
are called reciprocal translocations. For detecting recipro-
cal translocations, people usually merge synteny blocks such
that they cannot be further merged to form longer blocks
that have only been fractured by duplications, inversions, or
transpositions [10, 27]. OrthoCluster provides users with
the functions to achieve that goal.

Transposition. A transposition is a chunk of DNA that
is excised from one chromosome and inserted into a nonho-
mologous chromosome. For each adjacent pair of blocks CLa

and CLb in the reference genome, OrthoCluster searches the
region between their corresponding fragments in the other

660

genome, CL′a and CL′b. If a fragment of less than 50 genes is
found between CL′a and CL′b, then a transposition is iden-
tified.

Inversion. An inversion is a DNA segment inverted in
the genome. For each synteny block in the reference genome,
if the order of genes in the corresponding fragment of the
other genome is reversed, then an inversion is identified.

Insertion/deletion. An insertion/deletion is a DNA
segment that is inserted into or deleted from a genomic re-
gion. For every two adjacent synteny blocks in the reference
genome, if the out-map genes are found between the two
blocks, then an insertion/deletion is reported.

3. CASE STUDIES AND EMPIRICAL EVAL-
UATION

In this section, we present three cases studies of biologi-
cally meaningful findings using OrthoCluster. We also eval-
uate the data mining techniques in OrthoCluster using real
data sets.

3.1 Data Preparation
The datasets used for case studies and other analysis are

obtained from WormBase (http://www.wormbase.org/), an
integrated biological and genomics database for the model
organism nematode C. elegans [8], which is the first mul-
tiple cellular organism whose genome was subject to whole
genome sequencing [11]. We apply OrthoCluster to identify
synteny blocks in the genomes of C. elegans and its sister
species C. briggsae [34], two species split in evolution about
100 million years ago (MYA), for the following reasons. 1)
The C. elegans genome is the only multiple cellular organ-
ism whose genome sequence is complete, with no remaining
gaps. 2) The C. elegans genome is the most extensively
curated genome and the C. briggsae genome has been well
curated as well. 3) Some synteny blocks have been identified
in previous studies [34, 10]. The results of these studies will
be compared against the results produced by OrthoCluster.

Four datasets have been prepared for testing the perfor-
mance of OrthoCluster and case studies: (1) C. elegans
genes ordered according to their genomic coordinates, (2)
ordered C. briggsae genes, (3) a C. elegans-C.briggsae gene
mapping file, and (4) a file listing duplicated genes in the
C. elegans genome. To obtain these datasets, we installed a
local WormBase mirror site, which hosts a WormBase stable
release WS170, according to the mirror installation proce-
dure available at WormBase. A series Perl scripts, which use
Perl modules in BioPerl [33] and gbrowse [35], were written
to extract ordered genes in both C. elegans and C. briggsae
genomes.

There are approximately the same numbers of genes (∼
20, 000) in these two genomes. The C. elegans-C. briggsae
mapping file was based on the orthologous relationships be-
tween genes in these two genomes. Genes from different
species are orthologous if these genes share common ances-
tors. Three types of orthologous relationships are consid-
ered here. The one-to-one relationship represents a relation
that a gene in one species (e.g., C. elegans) has only one
orthologous gene in another species (e.g., C. briggsae). The
one-to-many and the many-to-one relationships represent re-
lations that a gene in one species has multiple orthologous
genes in another species and vice versa. This happens when
a gene is duplicated in one genome, while the same gene in

0

300

600

900

1200

1500

1800

2100

2400

2700

3000

3300

3600

3900

4200

4500

1 2 3 4 5 6 7 8 9 10 >10

SIZE

F
R
E
Q

C. elegans C. briggsae

0

2

4

6

8

10

12

14

16

18

20

11 12 13 14 15 16 17 18 20 21 24 28

Figure 4: Size distribution of perfectly conserved
non-nested blocks, obtained by OrthoCluster pre-
serving order and strandedness (rs), lmax = 1000.

the other species remains as a single copy. The orthologous
relationships were produced using a widely used program
InParanoid [24] and gene sets from WormBase WS170. The
file listing duplicated genes in C. elegans was generated by
carrying out all-against-all BLAST [2] searches for all C. el-
egans genes. Perl scripts were used to parse the BLAST
results. Two genes are regarded to be duplicated genes if
they show certain level of identity.

3.2 Case Studies
We report three interesting case studies conducted by

working biologists using OrthoCluster.

3.2.1 Perfectly conserved synteny blocks
Genomes of different species may show little similarity

in an obvious way – they may have different genome sizes,
different number of chromosomes, and different number of
protein-coding genes-because of extensive genome rearrange-
ment events in evolution. Nevertheless, genome segments
perfectly conserved among these species can be found and
these segments may play essential role. Additionally, genes
within these conserved blocks may be co-regulated due to
some locus control regions (LCR), which are regulatory ge-
nomic sequences that control the expression of a group of
genes, in contrast to many other regulatory genomics se-
quences that control the expression of single genes. Iden-
tification of these blocks, especially an extreme class of so
called perfectly conserved synteny blocks (defined as blocks
of genes that share exactly same order, strandedness and
contain no mismatches) may therefore provide insights into
the function and regulation of genes.

Before the completion of the C. briggsae genome and using
ad hoc programs, [10] estimates 5, 816 perfectly conserved
blocks between the genomes of C. elegans and C. briggsae.
These segments contain a variable number of genes, ranging
from 1 to 19 genes.

Using OrthoCluster and a complete genome of C. brig-
gsae, we have identified 6, 690 perfectly conserved synteny
blocks (shown in Figure 4), comparable to the estimated
number by Coghlan and Wolfe [10]. However, the largest
perfectly conserved synteny blocks identified by OrthoClus-

661

ter are much larger than those identified in the previous
project, partly due to the availability of only 13% of the
C. briggsae genome sequence to the previous project. The
largest perfectly conserved block identified using OrthoClus-
ter contains 28 genes, in comparison to 19 genes identified
previously. The chromosome that contains the largest num-
ber and the highest density of perfectly conserved synteny
blocks in C. elegans is chromosome V (0.077 blocks/kb) and
the chromosome that contains the least number and the low-
est density of perfectly conserved synteny blocks is X (0.036
blocks/kb). Interestingly, the largest synteny blocks reside
in these two chromosomes as well, with the largest synteny
block (containing 28 genes) in chromosome V and a synteny
block of size 24 in chromosome X. The significance of these
blocks and their existence on these two chromosomes will be
subject of further biological analysis.

Figure 4 shows the size distribution of perfectly conserved
blocks. The number of blocks decreases as the size of blocks
become larger, which is explained by the fact that smaller
blocks accomplishing the constraints imposed by the param-
eters of preserving order and strandedness (rs) are easier to
find. In the same figure, a zoom for the size distribution of
the largest blocks is shown. A few considerably large blocks
are found, which should be subject of biological scrutiny in
order to detect functionality associated to the blocks.

3.2.2 Inversions
Inversion is a type of common genome rearrangement event,

in which the corresponding synteny blocks of two genomes
reside on opposite genome strands. Since most of the exist-
ing synteny block identifying programs (Table 2 in Section 4)
do not take into account gene strandedness, those programs
are not appropriate for identifying inversions.

Using OrthoCluster, we have identified 1, 837 perfectly
conserved inverted synteny blocks between the genomes of
C. elegans and C. briggsae. These inverted synteny blocks
contain no insertions or deletions and do not contain any
mismatches. The number of genes in these synteny blocks
varies from 2 to 24. About 75% of these blocks contain 3
or less genes. The results are consistent with [10], which in-
dicates that the majority of the inversions are shorter than
25 kb. The largest perfectly conserved inverted segments
correspond to three blocks containing 18, 21 and 24 genes
in chromosome X and one block of 21 genes in chromosome
V.

When we allow some mismatches (5% in-map mismatches
and 20% out-map mismatches), we identified 1265 inverted
synteny blocks composed of two or more genes. The num-
ber is similar compared to the number of inverted synteny
blocks reported before (938 by [10] and 1, 384 by [34]) using
ad hoc methods, both allowing mismatches in inverted syn-
teny blocks. The blocks allowing mismatches, however, are
much larger compared to those perfectly conserved inverted
blocks. About 44% of these blocks contain 3 or more genes.
The largest corresponding inverted synteny block contains
134 genes in C. elegans and 116 genes in C. briggsae. Again,
these numbers are much larger than the largest inverted syn-
teny blocks in C. elegans and C. briggsae genomes [10]. The
effective identification of inverted synteny blocks will facili-
tate analysis of inversion breakpoints.

3.2.3 Segmental duplications
Segmental duplication, which is defined as low-copy re-

peats of DNA segments, has been proposed to be impor-
tant in genome organization and evolution [25]. Genome
analysis has revealed large range segmental duplications in
species ranging from yeast to human. However, segmental
duplications have not been extensively investigated in the
C. elegans genome. Previous studies produced only a lim-
ited number of small (three) segmental duplications (called
”regional duplications”) [30]. Each of these predicted seg-
mental duplications contains only three genes.

Using OrthoCluster, we have found many large segmental
duplications, in which each gene in one segment shows at
least 90% identity at the protein sequence level to its corre-
sponding gene in the duplicated segment, in the C. elegans
genome. There are 44 duplicated segments that each con-
tains three or more genes, with the largest duplicated seg-
ment containing 9 genes. About 880 (approximately 4.4%
of all genes in the C. elegans genome) genes are contained
in these duplicated segments. If we relax the protein level
identity requirement from 90% to 80%, 75 duplicated seg-
ments that contain three or more genes can be identified,
with the largest block containing 16 genes. The number of
duplicated segments with three or more genes increases to
123 with the largest one containing 26 genes when the iden-
tity requirement is further relaxed to 70%. The number of
duplicated segments that contain three or more genes and
the maximum size reaches a plateau when the protein iden-
tity requirement is relaxed to below 70%.

These duplicated segments are as “perfectly conserved”
ones since no mismatches were allowed in the predictions.
The largest duplicated segments, each contains a surpris-
ing large number of 26 genes, are located on chromosome
V (Figure 5). Two genome segments are adjacent on chro-
mosome V. Each segment is 109 Kb long and contains 26
genes. In the figure, the numbers indicate genome coordi-
nates. Each glyph in the “Gene Models”” track represents
a single gene. Within each gene, the boxes represent ex-
ons and the lines represent introns. The genes on the posi-
tive strand are shown in purple, while genes on the negative
strand are shown in blue. These images are taken from
WormBase. These two segments, which are in tandem, may
be recently duplicated because of the perfect conservation of
orders. The structure and the function of these duplicated
blocks warrant further detailed experimental analysis.

3.3 Performance Evaluation
OrthoCluster is implemented using C++ with STL sup-

port. The source code is publicly available. We conducted
extensive empirical evaluations of OrthoCluster on various
genome data sets. Here we report some selected results.

All experiments were conducted on a PC computer run-
ning the Fedora Core 6 operating system, with a 1.6 GHz
Pentium 4 CPU, 512 MB main memory, and a 60 GB hard
disk. The programs were compiled using gcc/g++.

3.3.1 Parameters
Table 1 lists the important parameters of OrthoCluster.

By setting the r (or s) option, a user can find order-preserving
(or strandedness-preserving) synteny blocks. Additionally,
the rs option can be used if a user is interested in find-
ing only those blocks with consistent order and consistent
strandedness, and with inverted order and reversed strand-
edness.

The similarity thresholds α, β and γ can be set by com-

662

2460k 2470k 2480k 2490k 2500k 2510k 2520k 2530k 2540k 2550k 2560k

VV

Gene Models

2350k 2360k 2370k 2380k 2390k 2400k 2410k 2420k 2430k 2440k 2450k

VV

Gene Models

Figure 5: The largest duplicated segments in the C. elegans genome

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80

R
u
n
ti
m

e
(s

e
c
o
n
d
s
)

ip(%)

Runtime (op=10%, lmax=1000)

None
-r
-s

-r -s
-rs

(a)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80

R
u
n
ti
m

e
(s

e
c
o
n
d
s
)

op(%)

Runtime (ip=10%, lmax=1000)

None
-r
-s

-r -s
-rs

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 200 400 600 800 1000 1200

R
u
n
ti
m

e
(s

e
c
o
n
d
s
)

Maximum Cluster Size(lmax)

Runtime (ip=op=10%)

None
-r
-s

-r -s
-rs

(c)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 200 400 600 800 1000 1200

R
u
n
ti
m

e
(s

e
c
o
n
d
s
)

Maximum Cluster Size(lmax)

Runtime (ip=op=20%)

None
-r
-s

-r -s
-rs

(d)

 0.01

 0.1

 1

 10

 100

 2 4 6 8 10 12

R
u
n
ti
m

e
(s

e
c
o
n
d
s
)

orthologs(x1000)

Runtime comparison(OrthoCluster and TEAM)

Ortho_EB
TEAM_EB
Ortho_HM
TEAM_HM

(e)

Figure 6: The runtime of OrthoCluster on C. elegans and C. briggsae data set with respect to ip, op and lmax,
and runtime comparison with TEAM.

bining parameters ip, op, s and r. In particular, ip is the
maximal percentage of mismatched in-map genes allowed in
a synteny block, and op is the maximal percentage of out-
map genes allowed in a synteny block. By setting ip (or op),
a user can control the number of genes involved in transpo-
sitions (or insertions/deletions) in a synteny block. Thus, if
a user wants to find synteny blocks with set similarity ≥ α
but does not care about the order and the strandedness, s/he
can set ip and op such that ip + op = 1 − α. Similarly, if a
user is interested in synteny blocks with Strandedness-ware
similarity≥ β, s/he can set ip and op such that ip+op = 1−β
and choose the s option at the same time.

For large synteny blocks consisting of dozens of genes,
the parameters ip and op work well. To find small synteny
blocks with many mismatched (either in-map or out-map)
genes, however, setting ip and op to high values is not a good
idea since many large synteny blocks with low similarity may
also be identified. To overcome this problem, OrthoCluster
provides two parameters, i and o, which specify the absolute
number of in-map and out-map mismatches allowed. A set
of genes is still a valid synteny block as long as it satisfies the
i(or o) constraint even if it violates the ip (or op) constraint.

3.3.2 Runtime
Figure 6 shows the runtime of OrthoCluster on two

genomes: C. elegans and C. briggsae. Please note that
the runtime reported here includes the time for loading and
cleaning the data sets, mining all clusters, detecting genome

Parameter Functionality

lmax the upper bound on the number of genes
in each cluster

lmin the lower bound on the number of genes in
each cluste

ip maximal percentage of mismatched in-map
genes allowed

i maximal number of mismatched in-map
genes allowed

op maximal percentage of out-map genes al-
lowed

o maximal number of out-map genes allowed
r find order-preserving clusters
s find strandedness-preserving clusters
rs find order and strandedness preserving

blocks

Table 1: Parameters of OrthoCluster.

rearrangements and writing the final output.
We run OrthoCluster with four conservation levels: non-

order and non-strandedness preserving (none), order pre-
serving (-r), strandedness preserving (-s), both order and
strandedness preserving (-r -s), and consistent order and
consistent strandedness or inverted order and reversed strand-
edness (-rs). On each pair of genomes, we first set the pa-

663

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0 20 40 60 80 100 0
 20

 40
 60

 80
 100

 0

 2000

 4000

 6000

 8000

FREQUENCY

a)

ip

op

 10
 20
 30
 40
 50
 60
 70
 80

 40
 60

 80
 100 40

 50
 60

 70
 80

 90
 100

 0

 15

 30

 45

 60

 75

 90

b)

ip

op

FREQUENCY

Figure 7: Number of synteny blocks with respect to ip and op.

 0 20 40 60 80 100 0
 5

 10
 15

 20
 25

 30
 35

 0

 200

 400

 600

 800

 1000

 1200

a)

ip
SIZE

FREQUENCY

 0 20 40 60 80 100 0
 200

 400
 600

 800
 1000

 1200

 0

 200

 400

 600

 800

 1000

 1200

b)

ip
SIZE

FREQUENCY

 0 20 40 60 80 100 0
 300

 600
 900

 1200
 1500

 1800

 0

 200

 400

 600

 800

 1000

 1200

c)

ip
SIZE

FREQUENCY

 0 20 40 60 80 100 0
 300

 600
 900

 1200
 1500

 1800

 0

 200

 400

 600

 800

 1000

 1200

d)

ip
SIZE

FREQUENCY

 0 20 40 60 80 100 0
 300

 600
 900

 1200
 1500

 1800

 0

 200

 400

 600

 800

 1000

 1200

e)

ip
SIZE

FREQUENCY

 0 20 40 60 80 100 0
 300

 600
 900

 1200
 1500

 1800

 0

 200

 400

 600

 800

 1000

 1200

f)

ip
SIZE

FREQUENCY

Figure 8: The distribution of synteny block size with respect to ip. lmax = 1000. (a) op = 0, (b) op = 20, (c)
op = 40, (d) op = 60, (e) op = 80, (f) op = 99. Synteny blocks of size one are not plotted for clarity.

rameter ip = 10% and vary the parameter op, then we set
op = 10% and vary the parameter ip. Figures 6(a) and (b)
show that, in a wide range of parameter settings, Ortho-
Cluster finishes within less than 4 seconds.

It is worth mentioning that the runtime for different con-
servation levels does not show significant differences, though
non-order and non-strandedness option typically takes less
time, while the order-preserving option takes relatively longer
time. The figure also shows that relaxing out-map mis-
matches op and in-map mismatches ip does not necessarily
increase the search time.

The above observations may seem to be counter-intuitive,
since the larger op or ip, or the looser the conservation is,
the more genes would be included in the tail, thus the size of
the search tree increases. However, it should also be noted
that relaxing ip and op can increase the sizes of the synteny
blocks, and thus more search sub-trees can be pruned by our
techniques using those synteny blocks already found.

Figures 6(c) and (d) show the runtime of OrthoCluster on
the C. elegans and C. briggsae data sets when the maximal
synteny block size lmax varies. In Figure 6(c), both ip and
op are set to 10% while, in Figure 6(d), both are set to 20%.
The trend in the two figures shows that the runtime increases
as lmax increases, but the increase is mild: the runtime is
still less than 4 seconds when lmax is set to more than 1, 000.
This figure shows the effectiveness of our pruning techniques.
Again, for different conservation levels, the runtime does not
differ significantly, as observed in Figure 6.

Figure 6(e) shows the runtime comparison between Ortho-
Cluster and another tool TEAM [21]. The functionalities of
OthoCluster and TEAM are quit different and the differ-
ences are discussed in Section 4. They produce the same re-
sults only when OrthoCluster runs with i = o = ip = op = 0

and TEAM runs with the maximal number of genes in the
gap allowed equals to 0. In the experiment we range the
number of orthologs, and run both tools using the above
settings on two pairs of genomes: C. elegans and C. briggsae
(EB), and Human and Monkey(HM). Figure 6(e) shows that
both OrthoCluster and TEAM scale well when the num-
ber of ortholog increases, and OrthoCluster takes more time
than TEAM. The reason for the runtime difference is that,
to handle one to many mapping, the input data of Ortho-
Cluster is split into three files, while the input of TEAM can
be presented in one file. Thus OrthoCluster needs more IO
cost than TEAM. In addition, with three input files, Ortho-
Cluster needs more preprocessing time. Third, OrthoCluster
is implemented in a recursive fashion. The cost of recursive
calls also contributes to the runtime difference. Neverthe-
less, as both tools can finish in a reasonable amount of time
(less than 5 seconds), to the users they do not make big
difference.

We also conducted experiments on other data sets such
as Human and Chimp, Human and Monkey. Similar trends
were observed. Limited by space, we omit the details here.

3.3.3 Sensitivity analysis
To evaluate the robustness and the consistency of the out-

put from OrthoCluster, we conducted sensitivity analysis by
running OrthoCluster using various parameters. The num-
ber of synteny blocks decreases when more mismatches are
allowed within a block (Figure 7), but the blocks are larger.
In Figure 7, lmax = 1000.

In addition, the distribution of the size of synteny blocks
tends to be composed of fewer and larger synteny blocks
when ip increases and op is fixed (Figure 8), and when op
increases and ip is fixed (Figure 9).

664

 0 20 40 60 80 100 0
 20

 40
 60

 80
 100

 120

 0

 200

 400

 600

 800

 1000

 1200

a)

op
SIZE

FREQUENCY

 0 20 40 60 80 100 0
 200

 400
 600

 800

 0

 200

 400

 600

 800

 1000

 1200

b)

op

SIZE

FREQUENCY

 0 20 40 60 80 100 0
 300

 600
 900

 1200

 0

 200

 400

 600

 800

 1000

 1200

c)

op

SIZE

FREQUENCY

 0 20 40 60 80 100 0
 300

 600
 900

 1200
 1500

 0

 200

 400

 600

 800

 1000

 1200

d)

op

SIZE

FREQUENCY

 0 20 40 60 80 100 0
 300

 600
 900

 1200
 1500

 1800

 0

 200

 400

 600

 800

 1000

 1200

e)

op
SIZE

FREQUENCY

 0 20 40 60 80 100 0
 300

 600
 900

 1200
 1500

 1800

 0

 200

 400

 600

 800

 1000

 1200

f)

op

SIZE

FREQUENCY

Figure 9: The distribution of synteny block size with respect to op. lmax = 1000. (a) ip = 0, (b) ip = 20, (c)
ip = 40, (d) ip = 60, (e) ip = 80, (f) ip = 99. Synteny blocks of size one are not plotted for clarity.

 0
 500
 1000
 1500
 2000
 2500
 3000
 3500

 0 20 40 60 80 100 0
 20

 40
 60

 80
 100

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

FREQUENCY

RECIPROCAL TRANSLOCATION

a)

ip

op

FREQUENCY

 0
 100
 200
 300
 400
 500
 600
 700

 0 20 40 60 80 100 0
 20

 40
 60

 80
 100

 0
 100
 200
 300
 400
 500
 600
 700

FREQUENCY

INSERTION

b)

ip

op

FREQUENCY

 0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 0
 20 40 60 80 100 0

 20
 40

 60
 80

 100

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

FREQUENCY

INVERSION

c)

ip

op

FREQUENCY

 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600

 0 20 40 60 80 100
 0

 20
 40

 60
 80

 100

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

FREQUENCY

TRANSPOSITION

d)

ip

op

FREQUENCY

Figure 10: Number of rearrangements with respect to ip and op. lmax = 1000.

Software Order Strandedness Flexibler r/s Mismatches Duplications Multi-genomes

Cinteny YES YES NO YES NO YES
FISH NO NO NO YES YES NO

TEAM NO NO NO YES NO YES
DAGchainer YES NO NO YES NO NO

ADHoRe YES YES NO YES YES NO
OrthoCluster YES YES YES YES YES YES

Table 2: Criteria applied on different tools for comparison.

The number of rearrangements between genomes decreases
when more mismatches are allowed within a synteny block
(Figure 10). Allowing more mismatches produces fewer and
larger blocks, hence reduces the possibility of all types of re-
arrangements being detected. In the case of insertions, the
value of ip is stable when op = 0. This is expected since the
variation of the number of in-map mismatches should have
no effect on such type of rearrangement when no out-map
mismatch occur.

Figure 10(a) shows the frequency of reciprocal transloca-
tions with respect to the number of mismatches. The num-
ber of reciprocal translocations decreases when more mis-
matches are allowed. An increasing number of mismatches
implies fewer and larger blocks. Figure 10(b) shows the
frequency of insertions with respect to the number of mis-
matches. The number of insertions decreases when more
mismatches are allowed. An increasing number of mismatches
implies fewer synteny blocks, which are larger and hence
are composed by more out-map mismatches. Figure 10(c)
shows the frequency of inversions with respect to the num-
ber of mismatches. The number of inversions decreases when
more mismatches are allowed. An increasing number of mis-
matches implies larger synteny blocks. Figure 10(d) shows

the frequency of transpositions as a function of mismatches.
The number of transpositions decreases when more mis-
matches are allowed. An increasing number of mismatches
implies fewer blocks, which are larger and hence are com-
posed by more in-map mismatches.

4. COMPARISON WITH OTHER TOOLS
In this section we compare several programs for identifying

synteny blocks with OrthoCluster. The tools presented here
cover a wide range of different approaches for finding synteny
blocks, and are currently widely used. Table 2 summarizes
the comparison.

Many existing synteny block identification tools like
FISH [6], SyMAP [32], ADHoRe [37] and DiagHunter [7]
represent homology between two genomes in a matrix or
dot plot, where a non-zero value is assigned to a pair of
markers that are homolog with each other, and a zero is
assigned otherwise. By doing so, synteny blocks are visu-
alized as diagonals in the matrix, and the purpose of the
algorithms is to automatically detect those diagonals in a
way that allows for some deviations from collinearity, such
as duplications (represented by horizontal or vertical line
in the matrix), and rearrangements such as insertions and

665

deletions. A distance measure (typically a Manhattan or
Manhattan-like distance) may be defined and used to detect
diagonal elements, and a dynamic programming algorithm
is applied in order to detect synteny blocks. Those tools
share a few important weaknesses. First, those tools work
well with pairwise genome analysis, but they are incapable of
identifying synteny blocks among more than two genomes.
Second, none of those methods handles one-to-many rela-
tionships between genes properly. Third, they are unaware
of strandedness and therefore they cannot resolve inversions
properly. In particular, the program SyMAP is specifically
designed for aligning physical map to genomics sequences.
In sequel, some parameters have been predefined for this
purpose. Hence, it is not ready for general synteny block
detection.

Other programs, like Cinteny [31] or TEAM [21], define
different frameworks for detecting synteny blocks.

Also, some other programs have been developed specifi-
cally to understand the set and the number of rearrange-
ments that occurred between two genomes since their diver-
gences from a common ancestor species. For example, in
GRIMM [36], genomes are represented as signed permuta-
tions, i.e., one or more vectors of signed numbers, with each
number representing a gene. The algorithm computes the
minimum number of rearrangement steps to transform one
genome to the other. No insertions or deletions are allowed.

Although these comparative genomics programs can be
used to identify synteny blocks and some genome rearrange-
ment events in many cases, they suffer from some important
limitations. For example, most of these programs cannot
handle the strandedness of genes. Therefore, they cannot be
used to identify genes inversions. Neither can they resolve
one-to-many relationships on genes where gene duplications
happen in some genomes but not others. In addition, most
of those programs cannot work on more than two genomes.
Finally, most of the programs are hard to use, and their
output are hard to interpret.

The criteria used to compared the software were the fol-
lowing when searching for synteny blocks: whether order
preserving, whether strandedness-aware, whether flexible with
respect to the handling of order (r) and strandedness (s),
whether allowing mismatches, whether duplications between
genomes can be handled, and whether multiple genomes can
be handled.

Cinteny [31] represents genes in a tree structure in which
each node is a character that conforms the official symbol of
each gene. At the leaves of the tree, the homologous groups
can be found vertically and the linear order in which each
gene is located on each chromosome can be found horizon-
tally, for each species. Hence, blocks can be obtained by
“walking” horizontally through the leaves. Even though this
program can handle multiple genomes and considers order
and strandedness when generating synteny blocks, it does
not allow the user to vary these two last properties to its
convenience. Unlike OrthoCluster, this program allows for
mismatches by means of a parameter that corresponds to
a maximum gap measured in kb, rather than number or
percentage of genes within blocks. In addition, it does not
identify transposition and skips small scale rearrangement
events. Finally, this program allows the user to handle du-
plications (paralogs) between genomes with different strate-
gies, but all of them are such that consider only one instance
of the duplicate and discard the rest, or remove all of them.

FISH [6] (Fast Identification of Segmental Homology) is a
program conceived to detect highly diverged synteny blocks.
For each pair of contigs, a matrix is built. Each cell of each
matrix is a “1” when features are homologs, and a “0” oth-
erwise. In this way, blocks can be seen on each matrix as a
clump of closely spaced points (“1s”) in a roughly diagonal
line. The objective is to discern when a clump of closely
spaced points is unlikely to have occurred by chance. To
achieve this, they define a null model for homologies among
individual features in the absence of segmental homology
and compute a p-value of observing a clump of size k. Given
the focus of this program on highly diverged sequences, it
does not consider order or strandedness when finding syn-
teny blocks. Also, it fails in handling multiple genomes and,
even though it allows for mismatches, the parameter for
achieving this feature corresponds to a probability, which
makes it quite indirect as method of control of mismatches
within blocks.

TEAM [21] focuses on finding all gene sets that are placed
closely in all the input genomes regardless the order and
strandedness of each gene. In each genome, this set of genes
can be separated by gaps, but the size of the maximal gap
should not exceed a user-defined parameter δ. Like Ortho-
Cluster, TEAM can work on multiple genomes. The func-
tionality of TEAM is also similar to OrthoCluster when or-
der and strandedness are not enforced. However, there are
several critical differences between TEAM and OrthoClus-
ter. First, unlike OrthoCluster, users of TEAM have little
control over the compactness of the set of genes found: even
δ is set to 1, the number of genes in the gap can be almost as
large as the number of genes in the block itself. In addition,
TEAM is unable to find order-preserving or strandedness-
preserving sets of genes. Third, limited by its two previous
disadvantages, TEAM cannot detect inversion, transposi-
tion and deletion. Finally, TEAM cannot handle duplicate
genes.

DAGchainer [15] identifies chains of genes sharing con-
served order in all the input genomes. It works by construct-
ing a directed acyclic graph (DAG) and then extracting the
path having highest scores using a dynamic programming
approach. Compared with OrthoCluster, it can only work
on two genomes and it does not allow part of the block to be
inverted, thus it is unable to find highly diverged blocks. It
does not take care of the strandedness of genes; neither does
it provide the transposition and insertion/deletion detection
functionalities.

ADHoRe [37] (Automatic Detection of Homologous Re-
gions) is a tool that detects genomic regions with statistically
significant conserved gene content and order. It represents
homologies in a matrix and consists of three main steps:
1) Preprocessing of the data, in which irrelevant points are
removed and tandem duplications are remapped, 2) Cluster-
ing of genes and blocks of genes, in which blocks are found
separately for pairs of genes with the same orientation and
pairs of genes with opposite orientation, and 3) postprocess-
ing, in which the blocks obtained are tested for statistical
significance and the results for the 2 classes of orientation
are combined. This program is not flexible about the inclu-
sion/exclusion of strandedness and order by the user, even
though it considers these properties when finding synteny
blocks. It handles duplicates to some extent by collapsing
all tandem duplications of a gene with the same orientation
and within a certain distance when preprocessing data, thus

666

making easier the search for diagonals in the matrix. Finally,
it fails to handle multiple genomes.

5. CONCLUSIONS
In this paper, we present the major technical ideas and

some interesting findings of a novel data mining tool Or-
thoCluster for comparative genomics analysis. OrthoClus-
ter addresses several important challenges that the previous
synteny block finding tools cannot handle. OrthoCluster
has been adopted by working biologists and bioinformatics
researchers.

As the next step, the web-based version of OrthoCluster
will be released in the near future, which will also serve as
a public database of synteny blocks. Moreover, the next
version of OrthoCluster is in plan which can incorporate
domain knowledge and known patterns about synteny blocks
in finding new blocks.

Acknowledgement
We are grateful to the anonymous reviewers for their con-
structive comments.

X. Zeng and J. Pei were supported in part by an NSERC
Discovery grant, an SFU CTEF grant, and an IBM Fac-
ulty Award. N. Chen was supported in part by an NSERC
Discovery grant and an SFU CTEF grant. N. Chen is an
MSFHR Scholar. K. Wang was supported in part by an
NSERC Discovery grant. All opinions, findings, conclusions
and recommendations in this paper are those of the authors
and do not necessarily reflect the views of the funding agen-
cies.

6. REFERENCES
[1] M. D. Adams, et al. The genome sequence of drosophila

melanogaster. Science, 287(5461):2185–95, 2000.
[2] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang,

Z. Zhang, W. Miller, and D. J. Lipman. Gapped blast and
psi-blast: a new generation of protein database search
programs. Nucleic acids research, 25:3389–3402, 1997.

[3] G. Bejerano, et al. Ultraconserved elements in the human
genome. Science, 304(5675):1321–5, 2004.

[4] E. Birney, et al. Identification and analysis of functional
elements in 1genome by the encode pilot project. Nature,
447(7146):799–816, 2007.

[5] T. Blumenthal. Operons in eukaryotes. Brief Funct
Genomic Proteomic, 3(3):199–211, 2004.

[6] P. P. Calabrese, S. Chakravarty, and T. J. Vision. Fast
identification and statistical evaluation of segmental
homologies in comparative maps. Bioinformatics,
19(Supplement 1):i74–80, 2003.

[7] S. B. Cannon, et al. Diaghunter and genopix2d: programs
for genomic comparisons, large-scale homology discovery
and visualization. Genome Biology, 4(10):R68, 2003.

[8] N. Chen, T. W. Harris, I. Antoshechkin, C. Bastiani,
T. Bieri, D. Blasiar, K. Bradnam, P. Canaran, and J. Chan
C. K. Chen, et al. Wormbase: a comprehensive data
resource for caenorhabditis biology and genomics. Nucleic
acids research, 33:D383–389, 2005.

[9] N. Chen and L.D. Stein. Conservation and functional
significance of gene topology in the genome of
caenorhabditis elegans. Genome Res, 16(5):606–17, 2006.

[10] A. Coghlan and K. H. Wolfe. Fourfold faster rate of genome
rearrangement in nematodes than in drosophila. Genome
research, 12:857–867, 2002.

[11] Consortium. Genome sequence of the nematode c. elegans:
a platform for investigating biology. Science,
282(5396):2012–8, 1998.

[12] J. Couzin. Human genome. hapmap launched with pledges
of $100 million. Science, 298(5595):941–2, 2002.

[13] R.D. Fleischmann, et al. Whole-genome random sequencing
and assembly of haemophilus influenzae rd. Science,
269(5223):496–512, 1995.

[14] A. Goffeau, et al. Life with 6000 genes. Science,
274(5287):546, 563–7, 1996.

[15] B. J. Haas, A. L. Delcher, J. R. Wortman, and S. L.
Salzberg. DAGchainer: a tool for mining segmental genome
duplications and synteny. Bioinformatics, 20(18):3643–6,
2004.

[16] R. C. Hardison. Comparative genomics. PLoS Biol,
1(2):E58, 2003.

[17] L. D. Hurst, C. Pal, and M.J. Lercher. The evolutionary
dynamics of eukaryotic gene order. Nat Rev Genet,
5(4):299–310, 2004.

[18] F. Jacob, et al. Operon: a group of genes with the
expression coordinated by an operator. C R Hebd Seances
Acad Sci, 250:1727–9, 1960.

[19] E. S. Lander, et al. Initial sequencing and analysis of the
human genome. Nature, 409(6822):860–921, 2001.

[20] S. Levy, et al. The diploid genome sequence of an
individual human. PLoS Biol, 5(10):e254, 2007.

[21] N. Luc, et al. Gene teams: a new formalization of gene
clusters for comparative genomics. Computational Biology
and Chemistry, 27(1):59–67, 2003.

[22] W. Miller, et al. Comparative genomics. Annu Rev
Genomics Hum Genet, 5:15–56, 2004.

[23] E. W. Myers, et al. A whole-genome assembly of
drosophila. Science, 287(5461):2196–204, 2000.

[24] K. P. O’Brien, M. Remm, and E. L. Sonnhammer.
Inparanoid: a comprehensive database of eukaryotic
orthologs. Nucleic acids research, 33:D476–480, 2005.

[25] S. Ohno. Evolution by Gene Duplication. Springer-Verlag,
New York, 1970.

[26] R. Rymon. Search through systematic set enumeration. In
Proc. 1992 Int. Conf. Principle of Knowledge
Representation and Reasoning (KR’92), pages 539–550,
Cambridge, MA, 1992.

[27] D. Sankoff. Comparative mapping and genome
rearrangement. From Jay Lush to genomics: Visions for
animal breeding andgenetics, pages 124–134, 1999.

[28] J. Sebat. Major changes in our dna lead to major changes
in our thinking. Nat Genet, 39(7 Suppl):S3–5, 2007.

[29] J. Sebat, et al. Strong association of de novo copy number
mutations with autism. Science, 316(5823):445–9, 2007.

[30] C. Semple and K.H. Wolfe. Gene duplication and gene
conversion in the caenorhabditis elegans genome. Journal
of molecular evolution, 48:555–564, 1999.

[31] A. U. Sinha and J. Meller. Cinteny: flexible analysis and
visualization of synteny and genome rearrangements in
multiple organisms. BMC Bioinformatics, 8, 2007.

[32] C. Soderlund, et al. Symap: A system for discovering and
viewing syntenic regions of fpc maps. Genome Research,
16(9):1159–68, 2006.

[33] J. E. Stajich, D. Block, K. Boulez, S. E. Brenner, S. A.
Chervitz, C. Dagdigian, G. Fuellen, J. G. Gilbert, I. Korf,
and H. Lapp, et al. The bioperl toolkit: Perl modules for
the life sciences. Genome research, 12:1611–1618, 2002.

[34] L. D. Stein, Z. Bao, D. Blasiar, T. Blumenthal, M. R.
Brent, N. Chen, A. Chinwalla, L. Clarke, C. Clee, and
A. Coghlan, et al. The genome sequence of caenorhabditis
briggsae: a platform for comparative genomics. PLoS Biol,
1:E45, 2003.

[35] L. D. Stein, C. Mungall, S. Shu, M. Caudy, M. Mangone,
A. Day, E. Nickerson, J. E. Stajich, T. W. Harris, and
A. Arva, et al. The generic genome browser: a building
block for a model organism system database. Genome
research, 12:1599–1610, 2002.

[36] G. Tesler. GRIMM: genome rearrangements web server.
Bioinformatics, 18(3):492–493, 2002.

[37] K. Vandepoele, et al. The automatic detection of
homologous regions (adhore) and its application to
microcolinearity between arabidopsis and rice. Genome
Research, 12(11):1792–1801, 2002.

[38] J. C. Venter, et al. The sequence of the human genome.
Science, 291(5507):1304–51, 2001.

[39] X. Xie, et al. Systematic discovery of regulatory motifs in
conserved regions of the human genome, including
thousands of ctcf insulator sites. Proc Natl Acad Sci U S A,
104(17):7145–50, 2007.

667

