
Optimizing Non-Monotonic Interconnect using
Functional Simulation and Logic Restructuring

Stephen M. Plaza
University of Michigan

EECS Department
Ann Arbor, MI 48109

splaza@umich.edu

Igor L. Markov
University of Michigan

EECS Department
Ann Arbor, MI 48109

imarkov@umich.edu

National Taiwan University
EE Department

Taipei, Taiwan 106

Valeria Bertacco
University of Michigan

EECS Department
Ann Arbor, MI 48109

valeria@umich.edu

ABSTRACT
The relatively poor scaling of interconnect in modern digital cir-
cuits necessitates a number of design optimizations, whichmust
typically be iterated several times to meet the specified performance
objectives. Such iterations are often due to the difficulty of early
delay estimation, especially before placement. Therefore, effective
logic restructuring to reduce interconnect delay has been amajor
challenge in physical synthesis, a phase during which more accu-
rate delay estimates can be finally gathered. In this work, wede-
velop a new approach to this problem that enhances modern high-
performance logic synthesis techniques with flexibility and accu-
racy in the physical domain. This approach is based on (1) a novel
criterion based on path monotonicity, that identifies thoseintercon-
nects amenable to optimization through logic restructuring and (2)
a synthesis algorithm relying on logic simulation and placement
information to identify placed subcircuits that hold promise for
interconnect reduction. Experiments indicate that our techniques
find optimization opportunities and improve interconnect delay by
11.7% on average at less than2% wirelength and area overhead.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: Computer-Aided Design

General TermsAlgorithms, Design, Performance

1. INTRODUCTION
As interconnect plays a more significant factor in overall circuit

delay, the focus of design methodology is shifting from logic op-
timization to interconnect optimization. While this transition has
been occurring for over a decade, meeting performance objectives
is becoming more and more difficult. In recent years, a few success-
ful methodologies achieved timing closure by combining netlist
level minimization in logic synthesis with post-placementphysical
optimizations. This family of solutions is known as physical syn-
thesis. Related strategies, including interconnect buffering [19],
gate sizing [17], and relocation [1], successfully improved delay.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’08, April 13–16, 2008, Portland, Oregon, USA.
Copyright 2008 ACM 978-1-60558-048-7/08/04 ...$5.00.

In [8, 11, 28], post-placement resynthesis achieved delay improve-
ment with limited placement perturbation, but these techniques are
limited to simple signal substitution transformations. Asthe major
portion of the critical delay is shifting into interconnect[32], poor
design choices during synthesis cannot be easily correctedby lim-
ited scale post-placement optimizations. Therefore, moreaccurate
delay models have been developed to guide logic synthesis.Wire-
load models that estimate delay by considering the capacitive load
of each net were effective until wire capacitance and resistance be-
came predominant. Further knowledge of the impact of placement
on wirelength was consequently needed by synthesis algorithms.

To meet the challenge of performance optimization at the 130nm
technology node and beyond, the traditional design flow transformed
from several discrete optimization phases (such as logic synthesis
followed by place-and-route) into a more holistic strategy. In [14]
wirelength estimation was incorporated in logic synthesisby con-
structing a highly placeable netlist with the goal of reducing wire
detours. In addition, topographical information has been used to
guide current synthesis tools [34]. Due to the importance and inher-
ent difficulty of estimating the impact of placement and routing on
interconnect, researchers suggested the idea of maintaining a com-
panion placement estimate throughout the logic synthesis process
[10, 15, 24]. However, interconnect-aware logic transformations
are still limited by the accuracy of the estimates available. Further-
more, guiding logic synthesis by conservative delay estimates, as in
[14], can lead to transformations that do not improve critical path
delay but increase area and power consumption.

While performing aggressive logic restructuring using global in-
formation is desired to exploit better estimates later in the design
flow, such accounts have eluded published literature. One partic-
ular complication is that the limited amount of flexibility found
in combinational circuits must be combined with physical aspects
of performance optimization. In this paper, we introduce a post-
placement solution that enables aggressive optimization while min-
imizing changes to the physical netlist. We consider a wide range
of changes to the circuit structure while also tracking their impact
on physical parameters of the circuit.

Our contributions are as follows:

1. A novel metric for efficiently identifyingnon-monotonic paths
in the circuit, that locates regions where restructuring pro-
vides the greatest gains. This metric generalizes the mono-
tonicity metric in [4] and considers longer paths.

2. A generic and powerful technique for discovering logic trans-
formations using functional simulation, which also facilitates
fast re-evaluation of physical parameters. Our technique does

not require local equivalence between the optimized subcir-
cuit and the original, but uses simulation and satisfiability to
ensure that the circuit’s functionality is unmodified.

3. A suite of powerful algorithms that efficiently exploit a cir-
cuit’s don’t-cares and avoid heavy-weight techniques tradi-
tionally used in logic synthesis, while allowing tighter inte-
gration with placement and a more realistic delay calculation.

In our methodology, we first identify long wires that lie on criti-
cal paths. We then generate different candidate topologiesthat im-
prove circuit delay. The next step enables efficient search for logic
transformations. Through logic simulation, we partially character-
ize the behavior of each node in the subcircuit with asignature
[8, 7, 25]. We then use these signatures to efficiently determine
whether a logic transformation generating the desired topology is
possible. In the example of Figure 1, we show that by applying
our technique, a subcircuit with a long critical path can be trans-
formed to a functionally-equivalent subcircuit with smaller critical
path delay. Unlike most techniques from logic synthesis, our cir-
cuit restructuring can work directly on mapped circuits with com-
plex standard cells. Another novel feature is our extensiveuse of
circuit flexibility due to signal masking by downstream logic, also
known as observability don’t-cares (ODC). Additionally, our ap-
proach uses controllability don’t-cares (CDC),i.e., circuit flexibil-
ity due to upstream logic. Compared to work in [30], our approach
exploits global don’t cares to enhance logic restructuring.

Figure 1: The resynthesis of a non-monotone path can produce
much shorter critical paths and improve routability.

Our experiments indicate that large circuits often containmany
long critical paths that can be effectively targeted with our restruc-
turing. Improving these paths results in consistent delay improve-
ments of11.7% on average with minimal degradation to other per-
formance parameters. Our techniques are fast and scale to large de-
signs, whereas completely characterizing node functionality with
BDDs would require a prohibitive memory footprint.

In Section 2, we cover background on the use of simulation
to guide logic optimization and review state-of-the-art synthesis
strategies. In Section 3, we introduce our interconnect optimiza-
tion strategy. In Section 4, we propose a metric for finding cir-
cuit paths that require restructuring. Section 5 introduces a novel
physically-aware synthesis approach that uses simulation. Empir-
ical validation is presented in Section 6, and we summarize our
work in Section 7.

2. BACKGROUND
This section describes how functional simulation can be used to

characterize the behavior of internal nodes in the circuit and guide
logic optimization. We then discuss a state-of-the-art approach for
logic synthesis, currently limited to the logic domain thatprovides
essential components for our physical synthesis algorithms.

2.1 Simulation and Satisfiability
A nodeF in a Boolean network can be viewed as a function of

primary inputs. Such a node can be characterized by itssignature,
SF , for K input vectorsX1 · · ·XK .

DEFINITION 1. SF = {F (X1), . . . , F (XK)}where F (Xi) =
{0, 1} indicates the output of F for a given input vector.

A carefully-designed testbench or constrained-random simulator
can be used to generate vectorsXi and derive signatures for each
node in a circuit. For a network withN nodes, the time complexity
of generating signatures for the whole network isO(NK). The
functional non-equivalence of two nodes can be determined by the
following: SF 6= SG ⇒ F 6= G.

Figure 2: Optimization by merging equivalent nodes in the
presence of don’t-cares. 3-bit signatures are shown at the out-
put of each gate.

Signatures can be efficiently created and manipulated by taking
advantage of bit parallel-operations. Therefore, equal signatures
can be used to efficiently identify potential node equivalences in
a circuit by deriving a hash index for each signature [18]. Since
SF = SG does not imply thatF = G, this potential equivalence
must be verified,e.g., using a SAT solver, as explained below.

The signature is apartial characterization of a node’s function-
ality. Furthermore, the signature encodes all of the node’sCDCs
under the input vectors applied. The signature’s partial characteri-
zation enables fast and aggressive optimizations without requiring a
fully specified truth table. However, unlike traditional, correct-by-
construction optimizations, these speculative transformations must
be validated by a formal proof mechanism. Hence, the efficiency of
[18, 21] depends on the underlying engines which formally verify
the equivalence of nodes with identical signatures.

Recent advances in SAT solvers,e.g., learning, non-chronological
backtracking, and watched literals [22, 27] have made SAT a more
scalable alternative to BDDs for equivalence checking. Theequiv-
alence of two nodes,F andG, in a network can be determined by
constructing anXOR-based miter [5] between them and asserting
the output to1 as shown in the following formula:

(F = G) ⇔ (∀i F (Xi) ⊕ G(Xi) 6= 1) (1)

where
S

i
Xi is the set of all possible input vectors.

In [18], input vectors are generated dynamically from counter-
examples returned by SAT checks provingF 6= G. The dynamic
input vectors improve the quality of the signatures by limiting situ-
ations whereSF = SG despiteF 6= G.

2.2 Logic Optimizations with Signatures
Simulation is an effective means for quickly identifying candi-

dates for optimization. In [25, 31], signatures were used toaddi-
tionally encode ODCs to enable circuit simplification and optimiza-
tion by merging equivalent nodes. Consider the example in Figure
2 which shows a circuit where logic simulation produces the sig-
natures shown. Notice that through efficient don’t-care computa-
tion using a fast linear-time simulation [25] of downstreamnodes,

don’t-care values can be determined for some of the signature’s po-
sitions. In the example, these don’t-cares suggest a potential circuit
simplification by merging two nodes. The optimization will need
to be verified by a formal proof engine.

Despite these advantages, signature-based optimizationsare lim-
ited, and general synthesis algorithms have not been developed. A
key contribution of this work is the application of signatures to en-
able logic restructuring while relying on available don’t-care com-
putation algorithms.

2.3 Logic Rewriting

Figure 3: Two examples of AIG rewriting. With structural
hashing, it is possible in the second example to reuse external
nodes and minimize the subgraph.

Performing scalable logic optimization requires efficientnetlist
manipulation, typically involving only a small set of gate primi-
tives. Given a set of Boolean expressions that describe a circuit,
the goal of synthesis optimization is to minimize the numberof lit-
erals in the expressions along with the number of logic levels. Sev-
eral drawbacks of these techniques are discussed in [20], including
limited scalability. To this end, the authors of [20] introduced an
efficient synthesis strategy calledrewriting. Logic rewriting is per-
formed over a netlist representation called an And-Inverter Graph
(AIG) [18], where each node represents an AND gate and comple-
mented (dotted) edges represent inverters. In logic rewriting, the
quality of different functionally-equivalent implementations for a
small logic block in a circuit is assessed. In Figure 3, the left trans-
formation leads to a reduction in area. By using a technique called
structural hashing [18], nodes in other parts of the circuit can be
reused. In the right example, there is a global reduction in area by
reusing available gates.

The increasing significance of wire delay is addressed by pro-
viding more accurate delay models to logic synthesis, from using
wire-load models to maintaining companion placements [10]. The
delay model is used to modify the literal reduction objective so that
transformations or rewrites that improve the delay according to the
model are favored. However, delay estimation is becoming more
inaccurate before detailed placement and routing as the actual in-
terconnect routes become more important. This trend suggests that
new synthesis algorithms should be applied after placementand
routing because speculative optimizations can actually increase de-
lay while negatively impacting other performance metrics like area.

3. OUR APPROACH
In this paper, we introduce a new synthesis approach that ac-

counts for physical aspects of performance optimization. We illus-
trate our approach in Figure 4. Starting from a fully placed circuit,
we identify critical paths using static timing analysis. Wethen ap-
ply a novel metric introduced in Section 4 that finds subcircuits
for which restructuring could provide the greatest improvements.
Next, we perform logic simulation using an even distribution of in-
put vectors and generate signatures that encode don’t-cares to ob-
tain a partial characterization of the functional behaviorof the cir-
cuit. Using this functional information encoded in signatures along
with the physical constraints, we efficiently derive a topology that

is logically equivalent to the original subcircuit but exhibits better
performance. Finally, we legalize the altered placement and update
the timing information in the circuit. As a result, we tailorour path-
monotonicity metric to find portions of the critical path resulting in
the greatest delay improvements. In addition, our techniques can
target other objectives as well.

Using signatures for restructuring is advantageous because logic
simulation provides a more scalable functional representation than
BDDs. Furthermore, signatures can characterize internal nodes
for netlists mapped to standard cells as well as for technology-
independent netlists. In contrast, the logic rewriting strategy in [20]
does not operate on technology-mapped circuits and does nottake
physical information into account. Our strategy also improves so-
lution quality by considering more don’t-cares while beingdirectly
guided by physical constraints.

4. IDENTIFYING NON-MONOTONE PATHS
To maximize the effectiveness of our post-placement optimiza-

tions, we target timing critical parts of the design that areamenable
to restructuring. In this section, we introduce our fast Dynamic Pro-
gramming (DP) algorithm for finding paths in logic that arenon-
monotone, or paths that are not optimally short. Unlike the work
in [4], we consider paths of arbitrary lengths and scale to many
more segments in practice. We propose two models for computing
path monotonicity: (1) wirelength-based and (2) delay-based. Non-
monotonic paths indicate regions where interconnect and/or delay
may be reduced by post-placement optimization.

4.1 Path Monotonicity
First, static timing analysis is performed to enable our delay-

based monotonicity calculation and identify critical and near-critical
paths. We use a timing analyzer whose interconnect delay calcula-
tion is based on Steiner-tree topologies produced by FLUTE [12]1

and the D2M delay metric [2] that is known to be more accurate
than Elmore delay. Before focusing on critical paths, we will de-
scribe a general approach that examines the monotonicity ofevery
path. We define thenon-monotone factor (NMF) for the path
{x1, ..., xk} with respect to a given cost metric (such as wirelength
or delay) as follows:

NMF =
1

cideal(x1, xk)

k−1
X

n=1

c(xn, xn+1) (2)

wherec(a, b) defines the actualcost betweena and b and cideal

defines an optimal cost. WhenNMF = 1, the path is monotone
under the cost metric. We explore two definitions for cost, one
based on rectilinear distance and another on delay.

For the rectilinear case,c(a, b) is the rectilinear distance between
cell a andb while cideal(a, b) is the optimal rectilinear distance as-
suming a monotonic path. For the delay-based definition,c(a, b) is
theAT (b) − AT (a), whereAT is arrival time. We definecideal

as the delay of an optimally buffered path betweena andb as de-
scribed by [23] and given by the following formula:

cideal(a, b) = dist(a, b)(RbufC + RCbuf +
p

2RbufCbufRC)
(3)

whereR andC are the wire resistance and capacitance respectively
andRbuf andCbuf are the intrinsic resistance and input capaci-
tance of the buffers.dist(a, b) is the rectilinear distance betweena
andb. Unlike the distance calculation where the ideal path length
betweena andb can be equal to the actual path length, the optimal
buffered wire betweena andb has delay≤ AT (b) − AT (a). We
only attempt to optimize paths with large NMFs.
1Timing-driven Steiner trees can be easily used instead [3].

Figure 4: Our approach to optimizing interconnect. First, we identify non-monotonic critical path interconnect, and then we re-
structure these paths to improve delay. Such netlist transformations include gate cloning, but are substantially moregeneral. They
do not require that the subcircuits in question be equivalent. Instead, they use simulation and satisfiability to ensurethat the entire
circuit remains equivalent to the original.

4.2 Calculating Non-monotone Factors
We now present our algorithm for calculating the NMF of allk-

hop paths in a circuit, for a givenk ≥ 2. Our experiments indicate
that the greatest NMFs are often observed on relatively short paths,
and optimizing such paths brings greatest benefits.

inputs
Nodes: netlist
Dist: length of paths considered

output
NMF: NMF between each node

void gen_NMF(Nodes nodes, Dist K) {
levelize(nodes);
for_eachnode1 in nodes

for_eachnode2 in range(node1+1, node1+K)
c_ideal_array[node1,node2] = c_ideal(node1, node2);

for_eachnode1 in nodes
subtot[] = 0;
for_eachnode2 in range(node1_succ, node1_succ+K)

subtot[node1,node2] = max(subtot[node1,node2_pred]
+ c(node2_pred, node2));

factor = subtot / c_ideal_array[node1,node2];
NMF[node1,node2] = factor;

}

Figure 5: Generating non-monotone factors for ak-hop paths.

K=3 a

b

c

d e

g

hf

X

X

#

#

#

#

#

#

#

#

K

K

0

-

X

0

0

-

X

0

X

#

#

#

#

#

#

?

-

-

-

-

-

-

-

-

0

-

X

0

?

?

?

?

-

-

-

-

-

-

-

-

-

-

-

-

0

-

?

0

-

-

-

-

a b c d e f g h

h

g

f

e

d

c

b

a

Figure 6: Calculating the non-monotone factor for path{d, h}.
The matrix shows sub-computations that are performed while
executing the algorithm in Figure 5.

The non-monotone factor can be efficiently computed for every
path using aO(nk)-time algorithm forn nodes in the circuit, as
shown in Figure 5. First, the circuit is levelized. Then,cideal is
computed for node pairings with a connecting path of≤ k hops,
and the values are stored inc_ideal_array. All pairs are tra-
versed again, and thesubtot is generated by computing the max-
imum cost fromnode1 to node2 through a recurrence relation. The
NMF is computed for the subpath,{node1, node2}, by dividing

the total cost,subtot, byc_ideal[node1,node2].
In Figure 6, we illustrate a sub-circuit being traversed using the

gen_NMF function wherek = 3 and the currentnode1 is d. The
matrix indicates the NMFs already computed with #, and nodesly-
ing on the same path withX. Because we traverse the graph in lev-
elized order,a, b, c have already been examined. Notice, that nodes
that are farther thank hops away are not examined (indicated byK
in the matrix). For noded, the non-monotone factor is computed
for pathd − h by determining all the incoming sub-paths toh first.
In this example,d − h has the highest NMF if rectilinear distance
is the cost function.

5. PHYSICALLY-AWARE
LOGIC RESTRUCTURING

We optimize the subcircuits that are identified by the path mono-
tonicity metric as illustrated in Figure 7. After extracting a subcir-
cuit, we clone the logic for the subcircuit’s outputs that are not on
the critical path. We then optimize only this non-monotone critical
path, which can result in global area reduction because the dupli-
cated logic required is often small. Our techniques use signatures to
find topologies which are logically equivalent to the original imple-
mentation but also improve physical parameters. This transforma-
tion is then formally verified by performing SAT-based equivalence
checking between the original and new netlists.

Previous work on improving path monotonicity used logic repli-
cation [16]. However, that technique is restricted to the topology
of the extracted subcircuit and does not consider its functionality.
Furthermore, as observed in [16], gate relocation sometimes cannot
improve path monotonicity. In the following, we introduce the the-
oretical framework of using signatures to check thelogical feasibil-
ity of a topology. We then introduce an algorithm for constructing
subcircuits using signatures and physical constraints.

5.1 Determining Logical Feasibility
with Signatures

Given an extracted subcircuit withx inputs and outputF to
resynthesize, we express a candidate restructuring as a directed
graphTF with x incoming edges, one outgoing edgeF , andn in-
ternal vertices. We would like to determine whether there isa map-
ping G∗ of gatesg ∈ G to then vertices such thatF is logically
equivalent to the subcircuitTF c that implementsTF with respect
to the outputs of the circuit. We define thelogical feasibility of the
graphTF as:

DEFINITION 2. TF is logically feasible iff
∃G∗onset(TF c) = onset(F)

whereonset represents where the subcircuit is1 for an input com-
bination. This definition can be relaxed by considering thisrelation

Figure 7: Our flow for restructuring non-monotonic intercon nect. We extract a subcircuit determined by our non-monotonic metric
and find topologies that are logically equivalent using simulation. This new implementation is then verified by equivalence checking
with an incremental SAT solver.

within the care-set which could be considerably smaller than 2x

due to controllability and observability don’t-cares.
In the following, we introduce an algorithm for determininglog-

ical feasibility on fanout-free circuits, which can be performed with
aO(K ∗n2)-time algorithm using signatures. A candidate restruc-
turing is fanout-free if each noden in TF has exactly two incoming
edges and one outgoing edge. Although our techniques can be ap-
plied efficiently on an arbitraryTF , the advantage of our approach
in the fanout-free case is particularly clear. We also consider the set
of available gatesG as implementing all the 2-input logic functions
(16 distinct gates).

A naive algorithm for determining the logical feasibility of TF

requires that every possible mappingG∗ is tried. Forn vertices,
this requires checkingn|G| (in this casen16) mappings. Further-
more, performing equivalence checking betweenTF c andF is an
NP-complete problem. Below, we discuss how signatures can be
used to determine a minimal set of inputs that implements a given
function and how this can be extended to quickly determine logical
feasibility up to the signature approximation.

Pairs of bits to be distinguished: In [7], it was observed that
a set of input signaturesS1, ...Sx can implement a target signature
Sf , if and only if, every pair of different bits inSf is distinguished
by at least oneSx.

DEFINITION 3. A pair of bits to be distinguished (PBD) is a
pair {i, j} such that Sf (i) 6= Sf (j).

DEFINITION 4. A candidate signature, Sx distinguishes a PBD
in Sf if Sx(i) 6= Sx(j) where {i, j} ∈ SPBD

F where SPBD
f is f ’s

set of PBDs.

Example 1. Assume a target signalSf = {0, 0, 1, 1} and candi-
datesS1 = {0, 0, 0, 1}, S2 = {0, 1, 0, 1}, andS3 = {0, 1, 1, 1}.
The PBDs ofSf are{0, 2}, {0, 3}, {1, 2}, {1, 3} that need to be
distinguished. Note thatS1 and S2 together cannot implement
SF because they do not distinguish{0, 2}. However, if all Sx

are used, there exists a function that givesSf . In this example
Sf = S3 · (S1⊕̄S2). 2

Determining logical feasibility with PBDs: We define a PBD
that is distinguished by only oneSi as anessential PBD forSi. We
associate a signature to each inputx of TF . These signatures im-
plicitly handle controllability don’t-cares as impossible input com-
binations which will never occur in the signatures. By simulating
downstream nodes as in [25], observability don’t-cares arederived
andSf is reduced to include only care values. If we assume that
eachSi under our logic simulation distinguishes at least one essen-
tial PBD, we prove the following:

THEOREM 1. The logical feasibility of an x-input TF can be
determined in O(K ∗ x2) time for K simulation vectors.

Proof. Any cut throughTF gives a set of inputs that implements
F . Therefore, theSPBD

F must be distinguished by each cut in
T c

F for a feasible topology. Proceeding in topological order, we
apply each 2-input transformation (where we ignore the negated
case sinceOP (a, b) and !OP (a, b) distinguish the same number
of bits). For a feasible implementation, the operation between any
two intermediate nodesS1 andS2 must produce a signature that
contains all ofS1 andS2’s essential PBDs to uphold the previously
stated invariant. Through proof by perfect induction, omitted here,
only two Boolean functions (ignoring the negated case) can satisfy
this condition. In the worst case, every combination of thetwo dif-
ferent 2-input gates must be applied to each vertex in the graph. �

Our approach is easily extended to arbitrary topologies. Bytravers-
ing a subcircuit in topological order, we determine that a topol-
ogy is infeasible for the 2-input transformations already consid-
ered. This occurs when an operation cannot preserve the essential
PBDs determined by the current cut through the topology. After we
determine logical feasibility of a topology, we call a formal proof
engine to check for equivalence. By using simulation, the formal
proof engine is used in situations where equivalence is mostlikely.

5.2 Physically-guided Topology Construction
In addition to efficientlydetermining the logical feasibility of

various topologies, we propose an algorithm that uses PBDs and
physical constraints to efficientlyconstruct logically feasible topolo-
gies. In this paper, we guide our approach using delay and physical
proximity. In the example shown in Figure 8, we try to find an
optimal restructuring to implement the target functionF with the
inputsa, b, andc, using signatures. The functionality of the orig-
inal circuit is represented by signatures. The figure also shows a
table associated with each signal showing the PBDs that are dis-
tinguished. The non-essential PBDs for each input signature have
light-gray background.

The example shows that the arrival time forc is the greatest,
followed bya, thenb. Therefore, we consider a topology wherec’s
value is required later. We also consider the proximity of the signals
and therefore examine a topology where an operation betweena
andb is performed. Notice that if all possible2-input operations
are tried, the essential PBDs are not preserved and hence this is not
a feasible topology. We then consider another topology where a

can be consumed later. For this topology, we see that anXOR-
gate will preserve the essential PBDs. We then easily determine
that anOR gate is needed to implementF .

Algorithm: We introduce the pseudo-code of our algorithm for
restructuring non-monotonic interconnect in Figure 9. After identi-
fying the non-monotonic paths,Optimize_Interconnect re-
structures a portion of the critical path. We first simplify the signa-

Figure 8: Signatures and topology constraints guide logic re-
structuring to improve critical path delay. The figure shows
the signatures for the inputs of the topology to be derived along
with the output. Each table represents the PBDs of the output
F that are distinguished. The topology that appliesa and b is
infeasible because it does not preserve essential PBDs ofa and
b. A feasible topology usesb and c, followed bya.

tures bysimplify_signatures by noting that the size of the
signature|SF | can be reduced to the number of different input com-
binations that occur across{S1, ...Si}. Thus, only a subset of the
signature is needed for restructuring because the small subcircuits
considered have a maximum of2i possible different input combi-
nations, smaller than the number of simulation vectors applied.2

We then add any timing or physical constraints, such as loca-
tions of the inputs and outputs of the subcircuit being restructured.
In find_opt_topology, we find a topology that satisfies all
the physical constraints and optimizes delay. This topology is con-
structed by a greedy algorithm where we apply operations on wires
that will result in the earliest arrival time at the output. This approx-
imation gives an upper-bound on the best implementation possible
that contains the examined combination. If a topology can’tbe
found that satisfies the constraints, the function returns.

We then check the logical feasibility using PBDs and signatures
in check_logical_feasibility. If the topology is feasi-
ble, we associate the derived gates to each vertex and place the
subcircuit. Our placement routine considers only the legality of the
subcircuit (we call a placement legalizer later). In our approach,
we try to place each gate in optimal locations by iterating through
each of them and trying nearby locations, until legality andopti-
mality are achieved. For the typically small subcircuits considered,
this requires little computational effort. If the topologyis not log-
ically feasible, we add afunctional constraint that will prevent the
construction of similar topologies.

If Optimize_Interconnect returns a subcircuit, we check

2In our experiments, we apply2048 input vectors and restructure
subcircuits with< 10 inputs.

void Optimize_circuit() {
gen_NMF();
num_tries = X;
while(worst_nmf> 1)

if (nckt = Optimize_Interconnect(worst_nmf))
if (!check_equiv(nckt))

refine_signatures();
continue;

update_netlist();
legalize_placement();
update_NMF();

}
Subckt* Optimize_Interconnect(Subckt F){

simplify_signatures(F);
Constraints constrs;
while(find_opt_topology(constrs))

if (nckt = check_logical_feasibility())
(*nckt).opt_place();
return nckt;

constrs.add(nckt);
}

Figure 9: Restructuring non-monotonic interconnect.

the equivalence of the entire circuit using a SAT engine. In the
case where our candidate produces a functionally differentcircuit
(which is rare as shown in Section 6), we use the counter-example
generated by SAT to refine our simulation hence improving thesig-
natures’ quality. If the resulting subcircuit passes verification, we
update the netlist and legalize the placement. We update thetiming
information and the NMFs if a new critical path is found, in which
case we select with the next highest NMF and restructure it.

5.3 Efficient Subcircuit Verification
Because we use signatures to limit verification of optimization

candidates that are most likely correct, equivalence checking typi-
cally confirms the transformation. As in [9], we refine simulation
using counterexamples found by failed equivalence checks,so as to
reduces additional failed checks. We also minimize the verification
time due to equivalence checking by considering only the portions
of logic that contributes to the don’t-cares used in the transforma-
tion. As explained in [25], several don’t-cares can exist within a
few levels of logic. We invoke a SAT engine so that it consid-
ers only these necessary levels of downstream logic. Additionally,
we could restrict the equivalence checking to a window around the
optimization location to further reduce verification time while still
utilizing CDCs and ODCs in the circuit. However, in practice, we
observe that the SAT-based equivalence checking requires asmall
percentage of runtime compared to constructing optimal topolo-
gies even for our larger circuit examples. Anecdotal evidence in-
dicates that the MiniSAT engine [13] we use outperforms several
SAT solvers developed by EDA companies internally. This may
partially explain low runtimes in our experiments.

6. EXPERIMENTS
We implemented and tested our algorithms with circuits from

the IWLS 2005 benchmark suite [33], with design utilizationset to
70% to match recent practices in the industry. Our wire and gate
characterizations are based on a 0.18µm technology library. We
perform static timing analysis using the D2M delay metric [2] on
Rectilinear Steiner Minimal Trees (RSMTs) produced by FLUTE
[12]; here FLUTE can be easily replaced by a timing-driven sub-
routine, but we do not expect the overall trends in our experiments
to change significantly. Our netlist transformations are verified us-
ing a modified version of MiniSAT [13] and placed using Capo
10 [6]. We have considered several different initial placements for
each circuit by varying a random seed in Capo and report results

as averages over these placements. Our netlist transformations are
legalized using the legalizer provided by GSRC Bookshelf [35].

Our delay improvements are achieved by executing the algorithm
in Figure 9. We applied2048 random simulation patterns initially
to generate the signatures. We considered paths of less thanor
equal to4 hops (5 nodes) using our delay-based metric which al-
lowed us to find many non-monotonic paths while minimizing the
size of the transformations considered. We conducted several opti-
mization passes until no more gains were achieved.

6.1 Prevalence of Non-monotonic Interconnect

Figure 10: The above graph shows the % of paths whose NMF
is below a given value on the x-axis. Notice that longer paths
tend to be non-monotonic and at least 1% of paths are> 5
times the ideal minimal length.

Our experiments indicate that circuits often contain many non-
monotonic paths. In Figure 10, we illustrate a cumulative distri-
bution of the percentage of paths whose NMFs is below the corre-
sponding value on the x-axis. We generated these averages over all
the circuits in Table 1. Each line represents a different path-length
examined, where we considered paths from 2 hops to 6 using the
wirelength-based NMF metric. We also show the cumulative dis-
tribution for the 4-hop delay-based NMF calculation used toguide
our delay-based restructuring. Of particular interest is the percent-
age of monotonic paths,i.e., paths with NMF = 1.

Notice that smaller paths of 2-hops are mostly monotone, whereas
the percentage of monotone paths decreases to23% when consid-
ering 6-hop paths. This indicates that focusing optimizations on
small paths only, as in [4], can miss several optimization opportu-
nities. It is also interesting to note that there are paths with consid-
erably worse monotonicity having NMFs> 5, indicating regions
where interconnect optimizations are needed. We observe similar
trends using our delay-based metric. The inclusion of gate delay on
these paths results in greater non-monotonicity when compared to
the wirelength-metric. Although not shown, each individual circuit
exhibits similar trends.

6.2 Physically-aware Restructuring
We show the effectiveness of our delay-based optimization by

reporting the delay improvements achieved over several circuits. In
Table 1, we provide the number of cells and nets for each bench-
mark. In thePerformance columns, we give the %delay im-
provement, the runtime in seconds, and the percentage of equivalence-
checking calls where candidate subcircuits preserved the function-
ality of the whole circuit. We also report the overhead of ourap-
proach with % wirelength increase and the % cell count increase.

Circuit Cell Net Performance Overhead
count count %delay time %equi %wire %cells

impr (s)
sasc 563 568 14.1 41 100 2.35 3.13
spi 3227 3277 10.9 949 82 4.53 0.73
des_area 4881 5122 12.3 503 93 1.09 0.31
tv80 7161 7179 9.1 1075 71 2.50 0.17
s35932 7273 7599 27.5 476 100 2.14 0.19
systemcaes 7959 8220 13.9 748 95 0.89 -0.07
s38417 8278 8309 11.7 481 84 0.68 -0.21
mem_ctrl 11440 11560 9.2 678 37 0.05 -0.02
ac97 11855 11948 6.3 245 100 0.44 0.02
usb 12808 12968 12.2 605 80 0.30 0.06
DMA 19118 19809 14.5 845 65 0.16 0.08
aes 20795 21055 6.4 603 100 0.13 0.01
ethernet 46771 46891 3.7 142 100 0.08 0.06

average 11.7% 85.1% 1.20% 0.34%

Table 1: Significant delay improvement is typically accompa-
nied by a small wirelength increase.

Figure 11: The graph above illustrates that the largestactual
delay improvements occur at portions of the critical path with
the largest estimated gain using our metric. The data points
are accumulated gains achieved by400 different resynthesis at-
tempts when optimizing the circuits in Table 1.

We observe improvements on every circuit and a high average
delay improvement of11.7%. For some circuits, such ass35932,
several don’t-care enhanced optimizations enabled even greater de-
lay improvements. We make the following observations:

1. By optimizing only one output of a given subcircuit, we greatly
reduce the arrival time of the critical output, while only slightly
degrading performance of less critical outputs.

2. Through our efficient use of don’t-cares, severalx-input sub-
circuits could be restructured to require fewer thanx inputs.

3. As a special case of the previous point, sometimes an inputto
the subcircuit was functionally equivalent to the output ofthe
subcircuit when don’t-cares were considered, enabling delay
reduction along with removal of unnecessary logic. Signa-
tures are efficient in exploiting these opportunities.

4. The decomposition of large gates into smaller gate primi-
tives through our restructuring algorithm often produce bet-
ter topologies because we more precisely construct a topol-
ogy to meet the physical constraints.

5. We also expect gains due to the duplication and relocationof
some cells.

We believe that further gains would be enabled by combining buffer-
ing, relocation, and gate sizing strategies between our restructuring
optimizations. The runtime of our algorithm scales well forlarge

circuits due to the use of logic simulation as the main optimization
engine. Furthermore, the high % of equivalence checking calls that
verified the equivalence of our transformations indicates that sig-
natures are effective at finding functionally equivalent candidates.
The wirelength and cell-count overhead are minimal becauseonly
a few restructurings are needed and the optimizations can simplify
portions of logic. In some cases the number of cells is reduced.

In Figure 11, we demonstrate that our delay-based NMF met-
ric is effective at guiding optimization. Each data point represents
a different resynthesis try considering all of the circuitsin Table
1. The x-axis shows the predicted % delay gain possible (deter-
mined by the optimal-buffered delay). The y-axis indicatesthe ac-
tual gain. Data points that lie on the x-axis indicate resynthesis tries
that did not improve delay (a better topology could not be found).
The 50% threshold line divides the graph so that the number of
resynthesis attempts are equal on both sides. The diagonal line in-
dicates an upper-bound prediction for delay gain. Because some of
our optimizations could reduce support, it is possible for some data
points to be above the line. Although the NMF and gain calcula-
tions do not directly incorporate circuit functionality,74% of all
delay gains are found on the right half of the graph. The correlation
to our metric could be further improved by incorporating the% of
gain possible with respect to near-critical paths.

7. CONCLUSIONS
Interconnect delay is becoming a major obstacle for achieving

timing closure, typically requiring numerous expensive design it-
erations. Current logic synthesis strategies often sacrifice other
performance metrics to improve delay, requiring computationally
expensive algorithms and companion placements. Despite these ef-
forts, extensive post-placement optimizations are still needed, espe-
cially since buffers will represent a large fraction of standard cells
in future technologies [26].

We propose a solution that improves the quality of delay op-
timization without sacrificing other performance metrics.To this
end, we introduce a novel simulation-guided synthesis strategy that
is more comprehensive than current restructuring techniques. We
develop a path-monotonicity metric to focus our efforts on the most
important parts of a design. Our optimizations lead to11.7% delay
improvement on average over several different initial placements,
while our delay-based monotonicity metric indicated that65%
of the paths analyzed were non-monotonic. We further observe
delay improvements on placements initially optimized for delay,
which are consistent with our reported average improvement. We
believe that our approach offers an effective bridge between cur-
rent topological-based synthesis and lower-level physical synthe-
sis approaches. It enables less conservative estimates early in the
design flow to improve other performance metrics and reduce the
amount of buffering required by shortening critical paths.Future
work will explore the benefits of using our technique in conjunc-
tion with other physical synthesis strategies such as buffering.

8. REFERENCES
[1] A. Ajami and M. Pedram, “Post-layout timing-driven cellplacement

using an accurate net length model with movable steiner points”,
DAC ’01, pp. 595-600.

[2] C. Alpert, A. Devgan, and C. Kashyap, “RC delay metric for
performance optimization”,TCAD ’01, pp. 571-582.

[3] C. Alpert, A. Kahng, C. Sze, and Q. Wang, “Timing-driven steiner
trees are (practically) free”,DAC ’06, pp. 389-392.

[4] G. Beraudo and J. Lillis, “Timing optimization of FPGA placements
by logic replication”,DAC ’03, pp. 541-548.

[5] D. Brand, “Verification of large synthesized designs”,ICCAD ’93,
pp. 534-537.

[6] A. Caldwell, A. Kahng, and I. Markov, “Can recursive bisection
alone produce routable placements?”,DAC’00, pp. 693-698.

[7] K.-H. Chang, I. Markov, and V. Bertacco, “Fixing design errors with
counterexamples and resynthesis”,ASP-DAC ’07. pp. 944-949.

[8] K.-H. Chang, I. Markov, and V. Bertacco, “Safe delay optimization
for physical synthesis”,ASP-DAC ’07. pp. 628-633.

[9] K.-H Chang, D. Papa, I. Markov, and V. Bertacco, “InVerS:an
incremental verification system with circuit similarity metrics and
error visualization”,ISQED ’07. pp. 487-494.

[10] S. Chatterjee and R. Brayton, “A new incremental placement
algorithm and its application to congestion-aware divisor
extraction”,ICCAD ’04, pp. 541-548.

[11] C.-W Chang, C.-K Cheng, P. Suaris, and M. Marek-Sadowska, “Fast
post-placement rewiring using easily detectable functional
symmetries”,DAC ’00, pp. 286-289.

[12] C. Chu and Y.-C. Wong, “Fast and accurate rectilinear steiner
minimal tree algorithm for VLSI design”,ISPD’05, pp. 28-35.
(http://class.ee.iastate.edu/cnchu/flute.html)

[13] N. Een and N. Sorensson, “An extensible SAT-solver”,SAT ’03,
(http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/).

[14] W. Gosti, A. Narayan, R. Brayton, and A. Sangiovanni-Vincentelli,
“Wireplanning in logic synthesis”,ICCAD ’98, pp. 26-33.

[15] W. Gosti, S. Khatri, and A. Sangiovanni-Vincentelli, “Addressing the
timing closure problem by integrating logic optimization and
placement”,ICCAD ’01, pp. 224-231.

[16] M. Hrkic, J. Lillis, and G. Beraudo, “An approach to
placement-coupled logic replication”,DAC ’04.

[17] L. Kannan, P. Suaris, and H. Fang, “A methodology and algorithms
for post-placement delay optimization”,DAC’94, pp. 327-332.

[18] A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai, “Robust
Boolean reasoning for equivalence checking and functionalproperty
verification”, TCAD ’02, pp. 1377-1394.

[19] C. Li, C-K. Koh, and P. Madden, “Floorplan management:
incremental placement for gate sizing and buffer insertion”,
ASP-DAC’05, pp. 349-354.

[20] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG
rewriting: a fresh look at combinational logic synthesis”,DAC ’06,
pp. 532-536.

[21] A. Mishchenko, S. Chatterjee, R. Jiang, and R. Brayton,“FRAIGs:
A unifying representation for logic synthesis and verification”, ERL
Technical Report ’05, Berkeley.
(http://www.eecs.berkeley.edu/∼alanmi/publications/).

[22] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: engineering an efficient SAT solver”,DAC ’01, pp. 530-535.

[23] R. Otten and R. Brayton. “Planning for performance”,DAC ’98, pp.
122-127.

[24] M. Pedram and N. Bhat. “Layout driven logic
restructuring/decomposition”,ICCAD ’91, pp. 134-137.

[25] S. Plaza, K.-H Chang, I. Markov, and V. Bertacco, “Node mergers in
the presence of don’t cares”,ASP-DAC ’06, pp. 414-419.

[26] P. Saxena, N. Menezes, P. Cocchini, and D. Kirkpatrick,“Repeater
scaling and its impact on CAD”,TCAD ’04, pp. 451-463.

[27] J. Marques-Silva and K. Sakallah, “GRASP: A search algorithm for
propositional satisfiability”,IEEE Trans. Comp ’99, pp. 506-521.

[28] G. Stenz, B. Riess, B. Rohfleisch, and F. Johannes, “Timing driven
placement in interaction with netlist transformations”,ISPD ’97, pp.
36-41.

[29] L.P.P.P van Ginneken, “Buffer placement in distributed RC-tree
networks for minimal Elmore delay”,ISCAS ’90, pp. 865-868.

[30] J. Werber, D. Rautenbach, and C. Szegedy, “Timing optimization by
restructuring long combinatorial paths”,ICCAD ’07, pp. 536-543.

[31] Q. Zhu, N. Kitchen, A. Kuehlmann, and A. Sangiovanni-Vincentelli,
“SAT sweeping with local observability don’t cares”,DAC ’06, pp.
229-234.

[32] The International Technology Roadmap for Semiconductors, 2005
Edition, ITRS.

[33] http://iwls.org/iwls2005/benchmarks.html.
[34] Synopsys DesignCompiler.http://www.synopsys.com.
[35] UMICH Physical Design Tools,

http://vlsicad.eecs.umich.edu/BK/PDtools/

