Optimizing Non-Monotonic Interconnect using
Functional Simulation and Logic Restructuring

Stephen M. Plaza

University of Michigan
EECS Department
Ann Arbor, Ml 48109

splaza@umich.edu

Igor L. Markov

University of Michigan
EECS Department
Ann Arbor, Ml 48109

imarkov@umich.edu

Valeria Bertacco

University of Michigan
EECS Department
Ann Arbor, Ml 48109
valeria@umich.edu

National Taiwan University
EE Department
Taipei, Taiwan 106

ABSTRACT

The relatively poor scaling of interconnect in modern d@ibitir-
cuits necessitates a number of design optimizations, wimakt
typically be iterated several times to meet the specifietbpmance
objectives. Such iterations are often due to the difficuftgarly
delay estimation, especially before placement. Theregifective
logic restructuring to reduce interconnect delay has besmajar
challenge in physical synthesis, a phase during which meca-a
rate delay estimates can be finally gathered. In this workdeve
velop a new approach to this problem that enhances modeln hig
performance logic synthesis techniques with flexibilityd accu-
racy in the physical domain. This approach is based on (1yalno
criterion based on path monotonicity, that identifies tHasercon-
nects amenable to optimization through logic restrucguand (2)

a synthesis algorithm relying on logic simulation and piaeat
information to identify placed subcircuits that hold premifor
interconnect reduction. Experiments indicate that ouhnéeues
find optimization opportunities and improve interconneelag by
11.7% on average at less thaff, wirelength and area overhead.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: Computer-Aided Design

General TermsaAlgorithms, Design, Performance
1. INTRODUCTION

As interconnect plays a more significant factor in overattuwit
delay, the focus of design methodology is shifting from togp-
timization to interconnect optimization. While this trétien has
been occurring for over a decade, meeting performance tdlgec
is becoming more and more difficult. Inrecent years, a fewess-
ful methodologies achieved timing closure by combininglisiet
level minimization in logic synthesis with post-placemphysical
optimizations. This family of solutions is known as physisgn-
thesis. Related strategies, including interconnect buffe[19],
gate sizing [17], and relocation [1], successfully imprbdelay.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

1SPD’ 08, April 13-16, 2008, Portland, Oregon, USA.

Copyright 2008 ACM 978-1-60558-048-7/08/04 ...$5.00.

In [8, 11, 28], post-placement resynthesis achieved detgyave-
ment with limited placement perturbation, but these teghes are
limited to simple signal substitution transformations. the major
portion of the critical delay is shifting into interconng8®], poor
design choices during synthesis cannot be easily corréstéich-
ited scale post-placement optimizations. Therefore, raoceirate
delay models have been developed to guide logic synthésis:
load models that estimate delay by considering the capacite lo
of each net were effective until wire capacitance and rasts be-
came predominant. Further knowledge of the impact of plargm
on wirelength was consequently needed by synthesis digusit

To meet the challenge of performance optimization at thend80
technology node and beyond, the traditional design flonsfamed
from several discrete optimization phases (such as logithsgis
followed by place-and-route) into a more holistic stratelgy[14]
wirelength estimation was incorporated in logic synthésison-
structing a highly placeable netlist with the goal of redgcivire
detours. In addition, topographical information has beseduto
guide current synthesis tools [34]. Due to the importancEianer-
ent difficulty of estimating the impact of placement and nogiton
interconnect, researchers suggested the idea of maimjaaniom-
panion placement estimate throughout the logic synthesisegs
[10, 15, 24]. However, interconnect-aware logic transfations
are still limited by the accuracy of the estimates availabl&ther-
more, guiding logic synthesis by conservative delay edgsyas in
[14], can lead to transformations that do not improve aitjgath
delay but increase area and power consumption.

While performing aggressive logic restructuring usingbglloin-
formation is desired to exploit better estimates later & design
flow, such accounts have eluded published literature. Ortecpa
ular complication is that the limited amount of flexibilitpdnd
in combinational circuits must be combined with physicglexts
of performance optimization. In this paper, we introduceoatp
placement solution that enables aggressive optimizattolewnin-
imizing changes to the physical netlist. We consider a waee
of changes to the circuit structure while also trackingrtimpact
on physical parameters of the circuit.

Our contributions are as follows:

1. Anovel metric for efficiently identifyingion-monotonic paths
in the circuit, that locates regions where restructuring- pr
vides the greatest gains. This metric generalizes the mono-
tonicity metric in [4] and considers longer paths.

2. Ageneric and powerful technique for discovering logas-
formations using functional simulation, which also faeites
fast re-evaluation of physical parameters. Our techniqes d

not require local equivalence between the optimized subcir
cuit and the original, but uses simulation and satisfighitt
ensure that the circuit’s functionality is unmodified.

3. A suite of powerful algorithms that efficiently exploit a-c
cuit’'s don’t-cares and avoid heavy-weight techniguesitrad
tionally used in logic synthesis, while allowing tighteten
gration with placement and a more realistic delay calcoihati

In our methodology, we first identify long wires that lie oritier

cal paths. We then generate different candidate topoldbgasm-
prove circuit delay. The next step enables efficient seanctofic
transformations. Through logic simulation, we partialhacacter-
ize the behavior of each node in the subcircuit witkignature
[8, 7, 25]. We then use these signatures to efficiently determ
whether a logic transformation generating the desiredltmyois
possible. In the example of Figure 1, we show that by applying
our technique, a subcircuit with a long critical path can faag-
formed to a functionally-equivalent subcircuit with snealtritical
path delay. Unlike most techniques from logic synthesis, iu
cuit restructuring can work directly on mapped circuitshagom-
plex standard cells. Another novel feature is our extensse of
circuit flexibility due to signal masking by downstream logalso
known as observability don't-cares (ODC). Additionallyraap-
proach uses controllability don't-cares (CDC#, circuit flexibil-
ity due to upstream logic. Compared to work in [30], our ajggio
exploits global don't cares to enhance logic restructuring

Shortened
critical path and
more routable

layout

Resynthesis }

Figure 1: The resynthesis of a nhon-monotone path can produce

much shorter critical paths and improve routability.
Our experiments indicate that large circuits often contaany

long critical paths that can be effectively targeted with @struc-
turing. Improving these paths results in consistent detgyrove-
ments of11.7% on average with minimal degradation to other per-
formance parameters. Our techniques are fast and scalgécde-
signs, whereas completely characterizing node functiynadth
BDDs would require a prohibitive memory footprint.

In Section 2, we cover background on the use of simulation
to guide logic optimization and review state-of-the-arhthesis
strategies. In Section 3, we introduce our interconnednopa-
tion strategy. In Section 4, we propose a metric for finding ci
cuit paths that require restructuring. Section 5 introdugeovel
physically-aware synthesis approach that uses simulagompir-
ical validation is presented in Section 6, and we summarize o
work in Section 7.

2. BACKGROUND

This section describes how functional simulation can bel tise
characterize the behavior of internal nodes in the cirauit guide
logic optimization. We then discuss a state-of-the-arraagh for
logic synthesis, currently limited to the logic domain thabvides
essential components for our physical synthesis algosthm

2.1 Simulation and Satisfiability

A node F' in a Boolean network can be viewed as a function of
primary inputs. Such a node can be characterized kggtature,
Sr, for K input vectorsX; - - - Xk.

F=(AC)B)D F = (AD)(BC)

DEFINITION 1. SF = {F(X1),...,F(Xk)}where F(X;) =
{0, 1} indicates the output of F' for a given input vector.

A carefully-designed testbench or constrained-randonulsitor
can be used to generate vectdfsand derive signatures for each
node in a circuit. For a network witN nodes, the time complexity
of generating signatures for the whole networlJ§N K). The
functional non-equivalence of two nodes can be determinatid
following: Sr # Sq¢ = F # G.

120 101

Fand G’s
signatures
equivalent up
to don’t cares

001

fanout cone
simulation-guided

optimization
100, 10 /

circuit
simplified

001

111

011
001

011

G’s fanout

Figure 2: Optimization by merging equivalent nodes in the
presence of don’t-cares. 3-bit signatures are shown at theut-
put of each gate.

Signatures can be efficiently created and manipulated bggak
advantage of bit parallel-operations. Therefore, equaiatires
can be used to efficiently identify potential node equivaémnin
a circuit by deriving a hash index for each signature [18]nc8i
Sr = S does not imply thaf” = G, this potential equivalence
must be verifiede.g., using a SAT solver, as explained below.

The signature is partial characterization of a node’s function-
ality. Furthermore, the signature encodes all of the no@&€s
under the input vectors applied. The signature’s partiatatteri-
zation enables fast and aggressive optimizations withemyutiring a
fully specified truth table. However, unlike traditionagreect-by-
construction optimizations, these speculative transéions must
be validated by a formal proof mechanism. Hence, the effigien
[18, 21] depends on the underlying engines which formallyfye
the equivalence of nodes with identical signatures.

Recent advances in SAT solveeg., learning, non-chronological
backtracking, and watched literals [22, 27] have made SADeem
scalable alternative to BDDs for equivalence checking. &dnav-
alence of two nodeg;” andG, in a network can be determined by
constructing anX O R-based miter [5] between them and asserting
the output tal as shown in the following formula:

(F=G)< (Vi F(X;) ® G(X;) #1)
where(J, X; is the set of all possible input vectors.
In [18], input vectors are generated dynamically from ceunt
examples returned by SAT checks proviAg# G. The dynamic

input vectors improve the quality of the signatures by lingtsitu-
ations whereSr = S despiteF’ # G.

2.2 Logic Optimizations with Signatures

Simulation is an effective means for quickly identifyingnciix
dates for optimization. In [25, 31], signatures were usedddi-
tionally encode ODCs to enable circuit simplification antofza-
tion by merging equivalent nodes. Consider the examplednrei
2 which shows a circuit where logic simulation produces ftige s
natures shown. Notice that through efficient don't-care pota-
tion using a fast linear-time simulation [25] of downstreaodes,

@

don’t-care values can be determined for some of the sigelatpo-
sitions. In the example, these don't-cares suggest a paltemtuit
simplification by merging two nodes. The optimization wided
to be verified by a formal proof engine.

Despite these advantages, signature-based optimizatietisn-
ited, and general synthesis algorithms have not been dmelA
key contribution of this work is the application of signasito en-
able logic restructuring while relying on available doodre com-
putation algorithms.

2.3 Logic Rewriting

Figure 3: Two examples of AIG rewriting. With structural
hashing, it is possible in the second example to reuse ext&in
nodes and minimize the subgraph.

Performing scalable logic optimization requires efficiaptlist
manipulation, typically involving only a small set of gatemi-
tives. Given a set of Boolean expressions that describecaitir
the goal of synthesis optimization is to minimize the numiddit-
erals in the expressions along with the number of logic Ev8kv-
eral drawbacks of these techniques are discussed in [20]dimg
limited scalability. To this end, the authors of [20] intramtd an
efficient synthesis strategy calleglvriting. Logic rewriting is per-
formed over a netlist representation called an And-InveBraph
(AIG) [18], where each node represents an AND gate and cemple
mented (dotted) edges represent inverters. In logic regrithe
quality of different functionally-equivalent implemetitans for a
small logic block in a circuit is assessed. In Figure 3, tligttans-
formation leads to a reduction in area. By using a technigliec
structural hashing [18], nodes in other parts of the circuit can be
reused. In the right example, there is a global reductiorréa ay
reusing available gates.

The increasing significance of wire delay is addressed by pro
viding more accurate delay models to logic synthesis, fremgi
wire-load models to maintaining companion placements.[I0f
delay model is used to modify the literal reduction objezto that
transformations or rewrites that improve the delay aceaydd the
model are favored. However, delay estimation is becomingemo
inaccurate before detailed placement and routing as thelack
terconnect routes become more important. This trend steytest
new synthesis algorithms should be applied after placeraedt
routing because speculative optimizations can actuatiyease de-
lay while negatively impacting other performance metriks brea.

3. OUR APPROACH

In this paper, we introduce a new synthesis approach that ac-
counts for physical aspects of performance optimizatioa.ilfs-
trate our approach in Figure 4. Starting from a fully placeduit,
we identify critical paths using static timing analysis. Y&en ap-
ply a novel metric introduced in Section 4 that finds subdiscu
for which restructuring could provide the greatest improeats.
Next, we perform logic simulation using an even distribntad in-
put vectors and generate signatures that encode don%-taih-
tain a partial characterization of the functional behawbthe cir-
cuit. Using this functional information encoded in sigmratialong
with the physical constraints, we efficiently derive a tampl that

is logically equivalent to the original subcircuit but ekitis better
performance. Finally, we legalize the altered placemedtgtate
the timing information in the circuit. As a result, we taitmur path-
monotonicity metric to find portions of the critical path uéisg in

the greatest delay improvements. In addition, our teclesqran
target other objectives as well.

Using signatures for restructuring is advantageous bedagg:
simulation provides a more scalable functional represiemtahan
BDDs. Furthermore, signatures can characterize interodes
for netlists mapped to standard cells as well as for teclyyslo
independent netlists. In contrast, the logic rewritingt&gy in [20]
does not operate on technology-mapped circuits and dodsakeot
physical information into account. Our strategy also inposo-
lution quality by considering more don't-cares while bedigectly
guided by physical constraints.

IDENTIFYING NON-MONOTONE PATHS

To maximize the effectiveness of our post-placement ogami
tions, we target timing critical parts of the design thatarenable
to restructuring. In this section, we introduce our fast &yic Pro-
gramming (DP) algorithm for finding paths in logic that aman-
monotone, or paths that are not optimally short. Unlike the work
in [4], we consider paths of arbitrary lengths and scale teyma
more segments in practice. We propose two models for comgputi
path monotonicity: (1) wirelength-based and (2) delayebafNon-
monotonic paths indicate regions where interconnect ar#iay
may be reduced by post-placement optimization.

4.1 Path Monotonicity

First, static timing analysis is performed to enable ouragel
based monotonicity calculation and identify critical amdrcritical
paths. We use a timing analyzer whose interconnect delayleal
tion is based on Steiner-tree topologies produced by FLUDE |
and the D2M delay metric [2] that is known to be more accurate
than Elmore delay. Before focusing on critical paths, we de-
scribe a general approach that examines the monotonicayesfy
path. We define th@on-monotone factor (NMF) for the path
{z1, ..., zx } with respect to a given cost metric (such as wirelength
or delay) as follows:

4.

k—1

!) Z c(Tn, Tnt1)

Cideal(xh Tk i

NMF =)
wherec(a, b) defines the actuatost betweena andb and c;geal
defines an optimal cost. Whe¥iM F' = 1, the path is monotone
under the cost metric. We explore two definitions for cost on
based on rectilinear distance and another on delay.

For the rectilinear case(a, b) is the rectilinear distance between
cell a andb while ¢;q4eq: (a, b) is the optimal rectilinear distance as-
suming a monotonic path. For the delay-based definition,b) is
the AT'(b) — AT (a), where AT is arrival time. We defin@;qeca:
as the delay of an optimally buffered path betweeandb as de-
scribed by [23] and given by the following formula:

Cidwl(a, b) = dist(a, b)(Rbqu + RCyuy ++/ 2R;,qubufRC)
(3)

whereR andC are the wire resistance and capacitance respectively
and Ry, s and Cy, s are the intrinsic resistance and input capaci-
tance of the buffersdist(a, b) is the rectilinear distance between
andb. Unlike the distance calculation where the ideal path llengt
betweern: andb can be equal to the actual path length, the optimal
buffered wire between andb has delay< AT (b) — AT (a). We

only attempt to optimize paths with large NMFs.

Timing-driven Steiner trees can be easily used instead [3].

logic

find non-

montonic

detailed signature

placement

simulation/

/ﬁse signatures and \
// physical constraints \'\

to find optimal \\ \\
|

topologies \
|
o0
/ -
/

——\ L-
\
AN /
N e

N -

reduced critical

/) path delay
7

|

|

\

\

Figure 4: Our approach to optimizing interconnect. First, we identify non-monotonic critical path interconnect, and then we re-
structure these paths to improve delay. Such netlist trangfrmations include gate cloning, but are substantially moregeneral. They
do not require that the subcircuits in question be equivalet Instead, they use simulation and satisfiability to ensurehat the entire

circuit remains equivalent to the original.

4.2 Calculating Non-monotone Factors

We now present our algorithm for calculating the NMF of/all
hop paths in a circuit, for a givela > 2. Our experiments indicate
that the greatest NMFs are often observed on relativelyt pladins,
and optimizing such paths brings greatest benefits.

inputs
Nodes: netlist
Dist: length of paths considered
output
NMF: NMF between each node
void gen_NMF(Nodes nodes, Dist K) {
levelize(nodes);
for_eachnodel in nodes
for_eachnode2 in range(nodel+1, nodel+K)
c_ideal_array[nodel,node2] = c_ideal(nodel, nodep);
for_eachnodel in nodes
subtot[] = 0;
for_eachnode? in range(nodel_succ, nodel_succ+K)
subtothodel,node2] = max(subtothodel,node2_pred]
+ c(node2_pred, node2));
factor = subtot / c_ideal_arrayjdel,node2];
NMF[nodel,node2] = factor;

—

}

Figure 5: Generating non-monotone factors for ak-hop paths.

K=3,

Figure 6: Calculating the non-monotone factor for path{d, h}.
The matrix shows sub-computations that are performed while
executing the algorithm in Figure 5.

The non-monotone factor can be efficiently computed foryever
path using aO(nk)-time algorithm forn nodes in the circuit, as
shown in Figure 5. First, the circuit is levelized. Thefycq: is
computed for node pairings with a connecting path<of hops,
and the values are storeddéni deal _array. All pairs are tra-
versed again, and tleubt ot is generated by computing the max-
imum cost fromnodel to node2 through a recurrence relation. The
NMF is computed for the subpathnodel, mnode2}, by dividing

the total costsubt ot , byc_i deal [nodel, node2] .

In Figure 6, we illustrate a sub-circuit being traversedhgghe
gen_NMF function wherek = 3 and the currentodel is d. The
matrix indicates the NMFs already computed with #, and ndgles
ing on the same path witR. Because we traverse the graph in lev-
elized orderg, b, c have already been examined. Notice, that nodes
that are farther thakh hops away are not examined (indicatediy
in the matrix). For nodel, the non-monotone factor is computed
for pathd — h by determining all the incoming sub-paths/idirst.

In this exampled — h has the highest NMF if rectilinear distance
is the cost function.

5. PHYSICALLY-AWARE
LOGIC RESTRUCTURING

We optimize the subcircuits that are identified by the pathoao
tonicity metric as illustrated in Figure 7. After extradia subcir-
cuit, we clone the logic for the subcircuit’'s outputs tha aot on
the critical path. We then optimize only this non-monotorigaal
path, which can result in global area reduction because upé-d
cated logic required is often small. Our techniques useasigas to
find topologies which are logically equivalent to the orajimple-
mentation but also improve physical parameters. This toams-
tion is then formally verified by performing SAT-based e@lénce
checking between the original and new netlists.

Previous work on improving path monotonicity used logiclirep
cation [16]. However, that technique is restricted to theotogy
of the extracted subcircuit and does not consider its fonetity.
Furthermore, as observed in [16], gate relocation somstgaenot
improve path monotonicity. In the following, we introdudetthe-
oretical framework of using signatures to checklibgcal feasibil-
ity of a topology. We then introduce an algorithm for constinggti
subcircuits using signatures and physical constraints.

5.1 Determining Logical Feasibility
with Signatures

Given an extracted subcircuit with inputs and outputF’ to
resynthesize, we express a candidate restructuring asetetir
graphT’» with 2 incoming edges, one outgoing edfeandn in-
ternal vertices. We would like to determine whether thegerisap-
ping G* of gatesg € G to then vertices such thak’ is logically
equivalent to the subcircuifr- that implements’» with respect
to the outputs of the circuit. We define tlogjical feasibility of the
graphTr as:

DEFINITION 2. Tr islogically feasible iff
Jg+onset(Tpe) = onset(F)

whereonset represents where the subcircuitlifor an input com-
bination. This definition can be relaxed by considering teiation

2-hop non-
monotonic path .
AT(A) > AT(B), AT(C) resynthesize F

A .
Find
0011 001 0011 optimal 0001
1001 BlE topology
e ::>' 1001
fanout 1011 fanout
Clo11 011 0011

duplicate logic for other

outputs in subcircuit

construct topology with signatures
and physical constraints

reduced critical
path delay

0001

signatures indicate
functional correctness

0001

Az Am
0011 0011} oo
B D
1001

0011

Figure 7: Our flow for restructuring non-monotonic intercon nect. We extract a subcircuit determined by our non-monotoic metric
and find topologies that are logically equivalent using simlation. This new implementation is then verified by equivalece checking

with an incremental SAT solver.

within the care-set which could be considerably smallenta
due to controllability and observability don’t-cares.

In the following, we introduce an algorithm for determinilog-
ical feasibility on fanout-free circuits, which can be merhed with
aO(K xn?)-time algorithm using signatures. A candidate restruc-
turing is fanout-free if each nodein T» has exactly two incoming
edges and one outgoing edge. Although our techniques cap-be a
plied efficiently on an arbitrar{'», the advantage of our approach
in the fanout-free case is particularly clear. We also atersihe set
of available gate&/ as implementing all the 2-input logic functions
(16 distinct gates).

A naive algorithm for determining the logical feasibility @’
requires that every possible mappi6§ is tried. Forn vertices,
this requires checking!! (in this casen'®) mappings. Further-
more, performing equivalence checking betw@én and F' is an
NP-complete problem. Below, we discuss how signatures ean b
used to determine a minimal set of inputs that implementsyengi
function and how this can be extended to quickly determigetd
feasibility up to the signature approximation.

Pairs of bits to be distinguished: In [7], it was observed that
a set of input signatureS,, ...S, can implement a target signature
S¢, if and only if, every pair of different bits it$'y is distinguished
by at least one,.

DEFINITION 3. A pair of bits to be distinguished (PBD) is a
pair {4, j} such that Sy (i) # Sr(j).

DEFINITION 4. Acandidate signature, S,. distinguishesa PBD
in Sy if S (i) # S=(j) where {i, j} € S&.” where ;" is f's
set of PBDs.

Example 1. Assume a target signd&; = {0,0, 1,1} and candi-
datesS: = {0,0,0,1}, S2 = {0,1,0,1}, andSs = {0,1,1,1}.
The PBDs ofS; are{0, 2}, {0, 3},{1, 2}, {1, 3} that need to be
distinguished. Note that; and .S: together cannot implement
Sr because they do not distinguigl, 2}. However, if all S,
are used, there exists a function that givgs In this example
Sf =83 (518S52). O

Determining logical feasibility with PBDs: We define a PBD
that is distinguished by only on®; as aressential PBD for S;. We
associate a signature to each inputf 7. These signatures im-
plicitly handle controllability don’t-cares as imposshhput com-
binations which will never occur in the signatures. By siating
downstream nodes as in [25], observability don’t-caredareved
and Sy is reduced to include only care values. If we assume that
eachS; under our logic simulation distinguishes at least one essen
tial PBD, we prove the following:

THEOREM 1. The logical feasibility of an z-input T can be
determined in O(K * z2) timefor K simulation vectors.

Proof. Any cut throughT'» gives a set of inputs that implements
F. Therefore, theSEBP must be distinguished by each cut in
Ty for a feasible topology. Proceeding in topological ordeg w
apply each 2-input transformation (where we ignore the teeja
case sinc&® P(a,b) and!OP(a,b) distinguish the same number
of bits). For a feasible implementation, the operation leemvany
two intermediate nodeS; and S, must produce a signature that
contains all ofS; and.S>’s essential PBDs to uphold the previously
stated invariant. Through proof by perfect induction, ¢edthere,
only two Boolean functions (ignoring the negated case) edisfg
this condition. In the worst case, every combination oftthe dif-
ferent 2-input gates must be applied to each vertex in thehgfa

Our approach is easily extended to arbitrary topologiesr@xers-
ing a subcircuit in topological order, we determine that jpote
ogy is infeasible for the 2-input transformations alreadysid-
ered. This occurs when an operation cannot preserve thetiedse
PBDs determined by the current cut through the topologyerAfte
determine logical feasibility of a topology, we call a forinpaoof
engine to check for equivalence. By using simulation, thenfd
proof engine is used in situations where equivalence is tikady.

5.2 Physically-guided Topology Construction

In addition to efficientlydetermining the logical feasibility of
various topologies, we propose an algorithm that uses PBiOs a
physical constraints to efficienttpnstruct logically feasible topolo-
gies. In this paper, we guide our approach using delay ansiqdly
proximity. In the example shown in Figure 8, we try to find an
optimal restructuring to implement the target functiBrwith the
inputsa, b, ande, using signatures. The functionality of the orig-
inal circuit is represented by signatures. The figure alsovsha
table associated with each signal showing the PBDs thatiafe d
tinguished. The non-essential PBDs for each input sigeatave
light-gray background.

The example shows that the arrival time fois the greatest,
followed bya, thenb. Therefore, we consider a topology wheie
value is required later. We also consider the proximity efglgnals
and therefore examine a topology where an operation between
andb is performed. Notice that if all possibizinput operations
are tried, the essential PBDs are not preserved and heisds tiot
a feasible topology. We then consider another topology &her
can be consumed later. For this topology, we see thaX &R-
gate will preserve the essential PBDs. We then easily déterm
that anOR gate is needed to implement

Algorithm: We introduce the pseudo-code of our algorithm for
restructuring non-monotonic interconnect in Figure 9.eAfdenti-
fying the non-monotonic path€pt i m ze_I nt er connect re-
structures a portion of the critical path. We first simpliftsigna-

AT(c) > AT(a) > AT(b)

check logic feasibility
of a topology with OP(a,b)

not possible for
all 2-input gates

check logic feasibility
of a topology with OP(b,c)

F
[

10,2}
1,2

possible with N

XOR gate

c
[}

topology and implementation
consistent with functional simulation

Figure 8: Signatures and topology constraints guide logice-
structuring to improve critical path delay. The figure shows
the signatures for the inputs of the topology to be derived ang
with the output. Each table represents the PBDs of the output
F that are distinguished. The topology that appliesz and b is
infeasible because it does not preserve essential PBDsacfnd
b. A feasible topology use$é and c, followed by a.

tures bysi npl i f y_si gnat ur es by noting that the size of the
signaturd S| can be reduced to the number of different input com-
binations that occur acrods, ...S;}. Thus, only a subset of the
signature is needed for restructuring because the smatirsulis
considered have a maximum 2f possible different input combi-
nations, smaller than the number of simulation vectorsiagpl

We then add any timing or physical constraints, such as loca-
tions of the inputs and outputs of the subcircuit being testred.

In find_opt _t opol ogy, we find a topology that satisfies all
the physical constraints and optimizes delay. This topolsgon-
structed by a greedy algorithm where we apply operationsicesw
that will result in the earliest arrival time at the outpuhiFapprox-
imation gives an upper-bound on the best implementatiosiples
that contains the examined combination. If a topology cae't
found that satisfies the constraints, the function returns.

We then check the logical feasibility using PBDs and sigrestu
in check_| ogi cal _feasibility. If the topology is feasi-
ble, we associate the derived gates to each vertex and pilace t
subcircuit. Our placement routine considers only the iggef the
subcircuit (we call a placement legalizer later). In our rapagh,
we try to place each gate in optimal locations by iteratirrguigh
each of them and trying nearby locations, until legality apdi-
mality are achieved. For the typically small subcircuitagidered,
this requires little computational effort. If the topologynot log-
ically feasible, we add &unctional constraint that will prevent the
construction of similar topologies.

If Opti mi ze_I nt erconnect returns a subcircuit, we check

2In our experiments, we appB048 input vectors and restructure
subcircuits with< 10 inputs.

void Optimize_circuit(){
gen_NMF();
num_tries = X;
while(worst_nmf> 1)
if (nckt = Optimize_Interconnect(worst_nmf))
if (Icheck_equiv(nckt))
refine_signatures();
continue;
update_netlist();
legalize_placement();
update_NMF();

}
Subckt* Optimize_Interconnect(Subckt F){
simplify_signatures(F);
Constraints constrs;
while(find_opt_topology(constrs))
if (nckt = check_logical_feasibility())
(*nckt).opt_place();
return nckt;
constrs.add(nckt);

}

Figure 9: Restructuring non-monotonic interconnect.

the equivalence of the entire circuit using a SAT engine. him t
case where our candidate produces a functionally diffesiatit
(which is rare as shown in Section 6), we use the counter-pkeam
generated by SAT to refine our simulation hence improvingige
natures’ quality. If the resulting subcircuit passes vestfion, we
update the netlist and legalize the placement. We updatatirey
information and the NMFs if a new critical path is found, iniafn
case we select with the next highest NMF and restructure it.

5.3 Efficient Subcircuit Verification

Because we use signatures to limit verification of optinidrat
candidates that are most likely correct, equivalence dhgdlpi-
cally confirms the transformation. As in [9], we refine simida
using counterexamples found by failed equivalence chetkas to
reduces additional failed checks. We also minimize thdication
time due to equivalence checking by considering only théiquus
of logic that contributes to the don’t-cares used in thedfama-
tion. As explained in [25], several don't-cares can exighimi a
few levels of logic. We invoke a SAT engine so that it consid-
ers only these necessary levels of downstream logic. Aulditly,
we could restrict the equivalence checking to a window addthe
optimization location to further reduce verification timéile still
utilizing CDCs and ODCs in the circuit. However, in practioe
observe that the SAT-based equivalence checking requisetai
percentage of runtime compared to constructing optimabltmp
gies even for our larger circuit examples. Anecdotal evegeim-
dicates that the MiniSAT engine [13] we use outperforms isdve
SAT solvers developed by EDA companies internally. This may
partially explain low runtimes in our experiments.

6. EXPERIMENTS

We implemented and tested our algorithms with circuits from
the IWLS 2005 benchmark suite [33], with design utilizatgat to
70% to match recent practices in the industry. Our wire artd ga
characterizations are based on a @u8technology library. We
perform static timing analysis using the D2M delay metritda
Rectilinear Steiner Minimal Trees (RSMTSs) produced by FIEUT
[12]; here FLUTE can be easily replaced by a timing-driveh-su
routine, but we do not expect the overall trends in our expenits
to change significantly. Our netlist transformations anéfiesl us-
ing a modified version of MiniSAT [13] and placed using Capo
10 [6]. We have considered several different initial plaeets for
each circuit by varying a random seed in Capo and reporttsesul

as averages over these placements. Our netlist transfonaatre
legalized using the legalizer provided by GSRC Bookshédf.[3
Our delay improvements are achieved by executing the dhgori
in Figure 9. We applie@048 random simulation patterns initially
to generate the signatures. We considered paths of lessothan
equal to4 hops 6 nodes) using our delay-based metric which al-
lowed us to find many non-monotonic paths while minimizing th
size of the transformations considered. We conducted slevpti-
mization passes until no more gains were achieved.

6.1 Prevalence of Non-monotonic Interconnect

98.7%
98.1%
97.4%
96.8%
96.3%
91.2%

100

2-6 hops (wirelength-based
NMF calculation,

90 1

80 1

w70
% distribution of paths
M 4-hop (delay-based

60 L
£ NMF calculation) = 2-hop (11.6%)
©
S w —3-hop (143%) | |

==4-hop (18.8%)

5-hop (24.0%)

N4

6-hop (31.3%)

3:0 3:5 4:0 4:5
NMF

Figure 10: The above graph shows the % of paths whose NMF

is below a given value on the x-axis. Notice that longer paths

tend to be non-monotonic and at least 1% of paths are> 5

times the ideal minimal length.

2.0 25 5.0

Our experiments indicate that circuits often contain maog-n
monotonic paths. In Figure 10, we illustrate a cumulativerdi
bution of the percentage of paths whose NMFs is below theeorr
sponding value on the x-axis. We generated these averagealbv
the circuits in Table 1. Each line represents a different{i@ngth

examined, where we considered paths from 2 hops to 6 using the

wirelength-based NMF metric. We also show the cumulatige di
tribution for the 4-hop delay-based NMF calculation useduie
our delay-based restructuring. Of particular intereshésgercent-
age of monotonic pathge., paths with NMF = 1.

Notice that smaller paths of 2-hops are mostly monotonerease
the percentage of monotone paths decreas&s% when consid-
ering 6-hop paths. This indicates that focusing optimizations on
small paths only, as in [4], can miss several optimizatiopoofu-
nities. It is also interesting to note that there are patlts eonsid-
erably worse monotonicity having NMEs 5, indicating regions
where interconnect optimizations are needed. We obsemviéasi
trends using our delay-based metric. The inclusion of gel@ybn
these paths results in greater non-monotonicity when cosdp@
the wirelength-metric. Although not shown, each individtiecuit
exhibits similar trends.

6.2 Physically-aware Restructuring

We show the effectiveness of our delay-based optimization b
reporting the delay improvements achieved over sever@alits: In
Table 1, we provide the number of cells and nets for each bench
mark. In thePer f or mance columns, we give the %delay im-
provement, the runtime in seconds, and the percentage ivbéence-
checking calls where candidate subcircuits preserveduthetibn-
ality of the whole circuit. We also report the overhead of apr
proach with % wirelength increase and the % cell count irexea

Circuit Cell Net Performance Overhead

count | count |[%delay [time | %equi Y%wire | %cells
impr (s)

sasc 563 568 14.1 41 100 2.35 3.13
spi 3227 3277 10.9 949 82 4.53 0.73
des_area 4881 5122 12.3 503 93 1.09 0.31
tv80 7161 7179 9.1 | 1075 71 2.50 0.17
s$35932 7273 7599 27.5 476 100 2.14 0.19
systemcaeg 7959 8220 13.9 748 95 0.89 -0.07
s38417 8278 8309 11.7 481 84 0.68 -0.21
mem_ctrl 11440 | 11560 9.2 678 37 0.05 -0.02
ac97 11855 | 11948 6.3 245 100 0.44 0.02
ush 12808 | 12968 12.2 605 80 0.30 0.06
DMA 19118 | 19809 145 845 65 0.16 0.08
aes 20795 | 21055 6.4 603 100 0.13 0.01
ethernet 46771 | 46891 3.7 142 100 0.08 0.06
[average | [[11.7%] [85.1% [[1.20% [0.34% |

Table 1: Significant delay improvement is typically accompa
nied by a small wirelength increase.
_50% threshold

/
* / ¢ resynthesis try
/

504 /
estimated, ipper-bound

6.0

E . delayl jmprovement
£ 40 K
2 /
) Je ~74% of delay optimizations
£ .
£ o 7
] ’
£ 20 Y - e o
® o* .
o/ S * o
(i d) .

g

-
=
‘
o %4
¥ 3
.
.

"
*%ome S .

* o ®»
. >0

¢
Y A 0

4.0

0.0

0.0 2.0 6.0 8.0 10.0 12.0

%estimated potential delay improvement
Figure 11: The graph above illustrates that the largestactual
delay improvements occur at portions of the critical path wih
the largest estimated gain using our metric. The data points
are accumulated gains achieved by00 different resynthesis at-
tempts when optimizing the circuits in Table 1.

14.0 16.0

We observe improvements on every circuit and a high average
delay improvement of 1.7%. For some circuits, such a85932,
several don’t-care enhanced optimizations enabled eestegrde-
lay improvements. We make the following observations:

1. By optimizing only one output of a given subcircuit, weafte
reduce the arrival time of the critical output, while onligsitly
degrading performance of less critical outputs.

2. Through our efficient use of don’t-cares, severahput sub-
circuits could be restructured to require fewer thainputs.

3. Asaspecial case of the previous point, sometimes anfaput
the subcircuit was functionally equivalent to the outputthef
subcircuit when don’t-cares were considered, enablingydel
reduction along with removal of unnecessary logic. Signa-
tures are efficient in exploiting these opportunities.

4. The decomposition of large gates into smaller gate primi-
tives through our restructuring algorithm often produce be
ter topologies because we more precisely construct a topol-
ogy to meet the physical constraints.

5. We also expect gains due to the duplication and relocafion
some cells.

We believe that further gains would be enabled by combinirftgb
ing, relocation, and gate sizing strategies between otnuctaring
optimizations. The runtime of our algorithm scales well fange

circuits due to the use of logic simulation as the main optation
engine. Furthermore, the high % of equivalence checkinlg tzt
verified the equivalence of our transformations indicates sig-
natures are effective at finding functionally equivalemdidates.
The wirelength and cell-count overhead are minimal becange
a few restructurings are needed and the optimizations caplify
portions of logic. In some cases the number of cells is redluce

In Figure 11, we demonstrate that our delay-based NMF met-
ric is effective at guiding optimization. Each data poinpnesents
a different resynthesis try considering all of the circuitsTable
1. The x-axis shows the predicted % delay gain possible r(dete
mined by the optimal-buffered delay). The y-axis indicdtesac-
tual gain. Data points that lie on the x-axis indicate relsgais tries
that did not improve delay (a better topology could not benftju
The 50% threshold line divides the graph so that the number of
resynthesis attempts are equal on both sides. The diagneaht
dicates an upper-bound prediction for delay gain. Becanise of
our optimizations could reduce support, it is possible tone data
points to be above the line. Although the NMF and gain calcula
tions do not directly incorporate circuit functionality;4% of all
delay gains are found on the right half of the graph. The tatiosn
to our metric could be further improved by incorporating %hef
gain possible with respect to near-critical paths.

7. CONCLUSIONS

Interconnect delay is becoming a major obstacle for achgvi
timing closure, typically requiring numerous expensivsige it-
erations. Current logic synthesis strategies often seerifither
performance metrics to improve delay, requiring compatetily
expensive algorithms and companion placements. Desgite -
forts, extensive post-placement optimizations are s#ided, espe-
cially since buffers will represent a large fraction of stard cells
in future technologies [26].

We propose a solution that improves the quality of delay op-
timization without sacrificing other performance metricg this
end, we introduce a novel simulation-guided synthesisegiyethat
is more comprehensive than current restructuring teclesiqiVe
develop a path-monotonicity metric to focus our effortstominost
important parts of a design. Our optimizations lead /% delay
improvement on average over several different initial eraents,
while our delay-based monotonicity metric indicated th@s%
of the paths analyzed were non-monotonic. We further oleserv
delay improvements on placements initially optimized fetag,
which are consistent with our reported average improveméfe
believe that our approach offers an effective bridge betwae-
rent topological-based synthesis and lower-level physigathe-
sis approaches. It enables less conservative estimatgsretve
design flow to improve other performance metrics and redoee t
amount of buffering required by shortening critical patlfature
work will explore the benefits of using our technique in camgu
tion with other physical synthesis strategies such as binffe

8. REFERENCES

[1] A. Ajami and M. Pedram, “Post-layout timing-driven celacement
using an accurate net length model with movable steinetgoin
DAC '01, pp. 595-600.
C. Alpert, A. Devgan, and C. Kashyap, “RC delay metric for
performance optimization"TCAD '01, pp. 571-582.
C. Alpert, A. Kahng, C. Sze, and Q. Wang, “Timing-driveieiger
trees are (practically) freeDAC ' 06, pp. 389-392.
G. Beraudo and J. Lillis, “Timing optimization of FPGAgdlements
by logic replication”,DAC '03, pp. 541-548.
D. Brand, “Verification of large synthesized designsZCAD ’'93,
pp. 534-537.

(2]
(31
(4]
(5]

[6] A. Caldwell, A. Kahng, and I. Markov, “Can recursive bisien

alone produce routable placementd?AC’ 00, pp. 693-698.

K.-H. Chang, I. Markov, and V. Bertacco, “Fixing designm@s with

counterexamples and resynthesi®SP-DAC '07. pp. 944-949.

K.-H. Chang, I. Markov, and V. Bertacco, “Safe delay optiation

for physical synthesis’ASP-DAC ' 07. pp. 628-633.

K.-H Chang, D. Papa, |. Markov, and V. Bertacco, “InVees:

incremental verification system with circuit similarity tries and

error visualization”,|SQED '07. pp. 487-494.

S. Chatterjee and R. Brayton, “A new incremental plagetn

algorithm and its application to congestion-aware divisor

extraction”,ICCAD ' 04, pp. 541-548.

C.-W Chang, C.-K Cheng, P. Suaris, and M. Marek-Sadeyw4kast

post-placement rewiring using easily detectable funetion

symmetries” DAC '00, pp. 286-289.

C. Chu and Y.-C. Wong, “Fast and accurate rectilineainstr

minimal tree algorithm for VLSI design’,.SPD’ 05, pp. 28-35.

(http://class.ee.iastate.edu/cnchu/flute.html)

N. Een and N. Sorensson, “An extensible SAT-solv&AT ' 03,

(http://www.cs.chalmers.se/Cs/Research/FormalMestdihi Sat/)

[14] W. Gosti, A. Narayan, R. Brayton, and A. Sangiovanméntelli,
“Wireplanning in logic synthesis,CCAD ' 98, pp. 26-33.

[15] W. Gosti, S. Khatri, and A. Sangiovanni-VincentellAddressing the
timing closure problem by integrating logic optimizationda
placement”|CCAD '01, pp. 224-231.

[16] M. Hrkic, J. Lillis, and G. Beraudo, “An approach to
placement-coupled logic replicationDAC ' 04.

[17] L. Kannan, P. Suaris, and H. Fang, “A methodology andtigms
for post-placement delay optimizatiorDAC’ 94, pp. 327-332.

[18] A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai, “Robus

Boolean reasoning for equivalence checking and functipraperty

verification”, TCAD ' 02, pp. 1377-1394.

C. Li, C-K. Koh, and P. Madden, “Floorplan management:

incremental placement for gate sizing and buffer insefttion

ASP-DAC’ 05, pp. 349-354.

A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aavAIG

rewriting: a fresh look at combinational logic synthesiBAC ’ 06,

pp. 532-536.

A. Mishchenko, S. Chatterjee, R. Jiang, and R. BraytBRAIGs:

A unifying representation for logic synthesis and verifimat, ERL

Technical Report ' 05, Berkeley.

(http://www.eecs.berkeley.edualanmi/publications!)

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik

“Chaff: engineering an efficient SAT solveDAC '01, pp. 530-535.

R. Otten and R. Brayton. “Planning for performand@AC ' 98, pp.

122-127.

M. Pedram and N. Bhat. “Layout driven logic

restructuring/decompositionTCCAD '91, pp. 134-137.

S. Plaza, K.-H Chang, I. Markov, and V. Bertacco, “Nodergers in

the presence of don’t careRSP-DAC ' 06, pp. 414-419.

[26] P. Saxena, N. Menezes, P. Cocchini, and D. KirkpatfiBlepeater
scaling and its impact on CADTCAD ' 04, pp. 451-463.

[27] J. Marques-Silva and K. Sakallah, “GRASP: A search wilgm for

propositional satisfiability”] EEE Trans. Comp '99, pp. 506-521.

G. Stenz, B. Riess, B. Rohfleisch, and F. Johannes, figrdiiven

placement in interaction with netlist transformationsS?D ' 97, pp.

36-41.

L.P.P.P van Ginneken, “Buffer placement in distriltiRC-tree

networks for minimal Elmore delay1SCAS’ 90, pp. 865-868.

J. Werber, D. Rautenbach, and C. Szegedy, “Timing dpétion by

restructuring long combinatorial path$CCAD ’'07, pp. 536-543.

Q. Zhu, N. Kitchen, A. Kuehlmann, and A. Sangiovannidéntelli,

“SAT sweeping with local observability don’t careDAC ' 06, pp.

229-234.

The International Technology Roadmap for Semiconois;t2005

Edition, ITRS.

http://iws.org/iw s2005/ benchmarks. ht i .

Synopsys DesignCompilént t p: / / www. synopsys. com

UMICH Physical Design Tools,

http://vlsicad. eecs. um ch. edu/ BK/ PDt ool s/

(7]
(8]
El

[20]

[11]

[12]

[13]

[19]

[20]

[21]

[22]
(23]
[24]

[25]

[28]

[29]
(30]

(31]

(32]

(33]
[34]
[35]

