
The Weakest Failure Detector for Solving Consensus*

Tushar Deepak Chandrat~ Vassos Hadzilacos$ Sam Toueg~

Abstract

We determine what information about failures

is necessary and sufficient to solve Consensus in

asynchronous distributed systems subject to crash

failures. In [CT91], we proved that OVV, a failure

detector that provides surprisingly little informa-

tion about which processes have crashed, is suffi-

cient to solve Consensus in asynchronous systems

with a majority of correct processes. In this paper,

we prove that to solve Consensus, any failure de-

tector has to provide at least as much information

as OVV. Thus, OVV is indeed the weakest failure

detector for solving Consensus in asynchronous

systems with a majority of correct processes.

1 Introduction

1.1 Background

The asynchronous model of distributed comput-

ing has been extensively studied. Informally, an

*Research supported by NSF grants CCR-8901780 and

CCR-9102231, DARPA/NASA Ames grant NAG-2-593,

grants from the IBM Endicott Programming Laboratory

and Siemens Corp, and a grant from the Natural Sciences

and Engineering Research Council of Canada.

+Also supported by an IBM graduate fellowship.

: Computer Systems Research Institute, University of

Toronto, 6 King’s College Road, Toronto, Ontario M5S lA1

SDept. of Computer Science, Upson Hall, Cornell Uni-

versity, Ithaca, NY 14853

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and ita date appear, and notice is given
that cc.pyin~ is by permission of the Association for Computin~

Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
PoDC ‘92-81921B.C.
01992 ACM 0-89791 -496-1 192/0008/0147...$1 .50

asynchronous distvibzded system is one in which

message transmission times and relative processor

speeds are both unbounded. Thus an algorithm

designed for an asynchronous system does not rely

on such bounds for its correctness. In practice,

asynchrony is introduced by unpredictable loads

on the system.

Although the asynchronous model of computa-

tion is attractive for the reasons outlined above,

it is well-known that many fundamental problems

of fault-tolerant distributed computing that are

solvable in synchronous systems, are unsolvable in

asynchronous systems. In particular, it is well-

known that Consensus, and several forms of reli-

able broadcast, including Atomic Broadcast, can-

not be solved deterministically in an asynchronous

system that is subject to even a single crash failure

[FLP85, DDS87]. Essentially, these impossibility

results stem from the inherent difficulty of deter-

mining whether a process has actually crashed or

is only “very slow”.

To circumvent these impossibility results, pre-

vious research focused on the use of randomiza-

tion techniques [CD89], the definition of some

weaker problems and their solutions [DLP+86,

ABND+87, BW87], or the study of several mod-

els of partial synchrony [DDS87, DLS88]. How-

ever, the impossibility of deterministic solutions

to many agreement problems (such as Consensus

and Atomic Broadcast) remains a major obstacle

to the use of the asynchronous model of computa-

tion for fault-tolerant distributed computing.

An alternative approach to circumvent such im-

possibility results is to augment the asynchronous

model of computation with a failure detector. b-

formally, a failure detector is a distributed oracle

that gives (possibly

processes may have

147

incorrect) hints about which

crashed so far: Each process

http://crossmark.crossref.org/dialog/?doi=10.1145%2F135419.135451&domain=pdf&date_stamp=1992-10-01

has access to a local failure detector module that

monitors other processes in the system, and main-

tains a list of those that it currently suspects to

have crashed. Each process periodically consults

its failure detector module, and uses the list of

suspects returned in solving Consensus.

A failure detector module can make mistakes by

erroneously adding processes to its list of suspects:
.
I.e., it can suspect that a process p has crashed

even though p is still running. If it later believes

that suspecting p was a mistake, it can remove p

from its list. Thus, each module may repeatedly

add and remove processes from its list of suspects.

Furthermore, at any given time the failure detec-

tor modules at two different processes may have

different lists of suspects.

It is important to note that the mistakes made

by a failure detector should not prevent any cor-

rect process from behaving according to specifi-

cation. For example, consider an algorithm that

uses a failure detector to solve Atomic Broadcast

in an asynchronous system. Suppose all the fail-

ure detector modules wrongly (and permanently)

suspect that a correct process p has crashed. The

Atomic Broadcast algorithm must still ensure that

p delivers the same set of messages, in the same

order, as all the other correct processes. Further-

more, if p broadcasts a message m, all correct pro-

cesses must deliver m. 1

In [CT91], we showed that a surprisingly weak

failure detector is sufficient to solve Consensus and

Atomic Broadcast in asynchronous systems with a

majority of correct processes. This failure det ec-

tor, called the eventually weak failure detector and

denoted W here, satisfies only the following two

properties:2

1.

2.

There is a time after which every process that

crashes is always suspected by some correct

process.

There is a time after which some correct pro-

cess is never suspected by any correct process.

1A different approach was taken in [RB91]: a correct

process that is wrongly suspected to have crashed, volun-

tarily leaves the system. It may later rejoin the system by

assuming a new identity.

‘In [CT91], this was denoted OW.

Note that, at any given time t,processes can-

not use W to determine the identity of a cor-

rect process. Furthermore, they cannot determine

whether there is a correct process that will not be

suspected after time t.

The failure detector W can make an infinite

number of mistakes. In fact, it can forever add and

then remove some correct processes from the lists

of suspects (this reflects the inherent difficulty of

determining whether a process is just slow or has

crashed). Moreover, some correct processes may

be erroneously suspected to have crashed by all

the other processes throughout the entire execu-

tion.

The two properties of W state that eventually

something must hold forever; this may appear too

strong a requirement to implement in practice.

However, when solving a problem that “termi-

nat es” , such as Consensus, it is not really required

that the properties hold ~orever, but merely that

they hold for a suficientiy long time, i.e., long

enough for the algorithm that uses the failure de-

tector to achieve its goal. For instance, in practice

the algorithm of [CT91] that solves Consensus us-

ing W only needs the two properties of W to hold

for a relatively short period of time.3 However, in

an asynchronous system it is not possible to quan-

tify “sufficiently long” , since even a single process

step or a single message transmission is allowed to

take an arbitrarily long amount of time. Thus it

is convenient to state the properties of W in the

stronger form given above.

1.2 The problem

The failure detection properties of W are suficient

to solve Consensus in asynchronous systems. But

are they necessary? For example, consider failure

detector A that satisfies Property 1 of W and the

following weakening of Property 2:

There is a time after which some cor-

rect process is never suspected by at least

99% of the correct processes.

3In that algorithm processes are cyclically elected as

“coordinators”. Consensus is achieved as soon as a cor-

rect coordinator is reached, and no process suspects it to

have crashed while this coordinator is trying to enforce

consensus.

148

A is clearly weaker than W. Is it possible to solve

Consensus using d? Indeed what is the weakest

failure detector .@icieni to solve Consensus in

asynchronous systems? In trying to answer this

fundamental question we run into a problem. Con-

sider failure detector 2? that satisfies the following

two

1.

2.

properties:

There is a time after which every process that

crashes is always suspected by all correct pro-

cesses.

There is a time after which some correct pro-

cess is never suspected by a majority of the

processes.

It seems that 23 and W are incomparable: B’s

first property is stronger than W’s, and 23’s sec-

ond property is weaker than VV’s. Is it possible to

solve Consensus in an asynchronous system using

B? The answer turns out to be “yes” (provided

that this asynchronous system has a majority of

correct processes, as W also requires). Since W

and 2? appear to be incomparable, one may be

tempted to conclude that W cannot be the “weak-

est” failure detector with which Consensus is solv-

able. Even worse, it raises the possibility that no

such “weakest” failure detector exists.

However, a closer examination reveals that B

and W are indeed comparable in a natural way:

There is a distributed algorithm T’B+w that can

transform B into a failure detector with the Prop-

erties 1 and 2 of W. !Z’~+W works for any asyn-

chronous system that has a majority of correct

processes. We say that W is reducible to Bin such

a system. Since T’+W is able to transform B into

W in an asynchronous system, B must provide at

least as much information about process failures

as W does. Intuitively, 23 is at least as strong as

w.

1.3 The result

In [CT91], we showed that W is sufficient to solve

Consensus in asynchronous systems if and only if

n > 2f (where n is the total number of processes,

and ~ is the maximum number of processes that

may crash). In this paper, we prove that W is re-

ducible to any failure detector D that can be used

to solve Consensus (this result holds for any asyn-

chronous system). We show this reduction by giv-

ing a distributed algorithm TD+W that transforms

any such D into W. Therefore, W is indeed the

weakest failure detector that can be used to solve

Consensus in asynchronous systems with n > 2~.

Furthermore, if n < 2~, any failure detector that

can be used to solve Consensus must be strictly

stronger than W.

The task of transforming any given failure de-

tector D (that can be used to solve Consensus)

into W runs into a serious technical difficulty for

the following reasons:

●

●

To strengthen our result, we do not restrict

the output of D to lists of suspects. Instead,

this output can be any value that encodes

some information about failures. For exam-

ple, a failure detector D should be allowed to

output any boolean formula, such as “(not p)

and (q or ~)” (i.e., p is up and either q or r has

crashed)—or any encoding of such a formula,

Indeed, the output of D could be an arbitrar-

ily complex (and unknown) encoding of fail-

ure information. Our transformation from D

into W must be able to decode this informa-

tion.

Even if the failure information provided by D

is not encoded, it is not clear how to extract

from it the failure detection properties of W.

Consequently, if D is given in isolation, the

task of transforming it into W may not be

possible.

Fortunately, since D can be used to solve

Consensus, there is a corresponding algorithm,

C07W7WUSD, that is somehow able to “decode”

the information about failures provided by D, and

knows how to use it to solve Consensus. Our re-

duction algorithm, TD_+w uses 6’onsen.?UsD to ex-

tract this information from D and transforms it

into the properties of W.

2 The model

We describe a model of asynchronous computation

with failure detection patterned after the one in

[FLP85].

149

2.1 Failure Detectors

We assume the existence of a discrete global clock

to simplify the presentation. This is merely a fic-

tional device: the processes do not have access to

it. We take the range T of the clock’s ticks to be

the set of naturil numbers.

The system consists of a set of n processes,

II = {pi, p2, P.} that may fail by crashing.

A failure pattern F is a function from T to 2H,

where F(t) denotes the set of processes that have

crashed through time t. Once a process crashes, it

does not “recover”, i.e., Vt : F(t) < F(i! + 1). We

define crashed(F) = &T F(t) and correct(F) =

II – crashed(F). Ifp c crashed(F) we say p crashes

in F and if p G correct(F) we say p is correct in

F.

Associated with each failure detector is a range

73 of values output by that failure detector. A

failure detector history H with range 7? is a func-

tion from II x T to 7?,. H(p, t) is the value of

the failure detector module of process p at time

t. A failure detector D is a function that maps

each failure pattern F to a set of failure detector

histories with range RD (where RD denotes the

range of failure detector outputs of D), D(F) de-

notes the set of possible failure detector histories

permitted by D for the failure pattern F.

For example, consider the failure detector W

mentioned in the introduction. Each failure det ec-

tor module of W outputs a set of processes that are

suspected to have crashed: in this case RW = 2H.

For each failure pattern F, W(F) is the set of all

failure detector histories Hw with range Rw that

satisfy the following properties:

1.

2.

There is a time after which every process that

crashes in F is always suspected by some pro-

cess that is correct in F:

3 G T, Vp c crashed(F), ~q c correct(F),

‘v’t’ > t :p~ HW(q, t’)

There is a time after which some process that

is correct in F is never suspected by any pro-

cess that is correct in F:

367, dp E correct(F), Vq c correct(F),

Vt’ ~ t :p@HW(q, t’)

Note that we specify a failure detector D as a

function of the failure pattern F of an execution.

However, this does not preclude an implementa-

tion of D from using other aspects of the execu-

tion such as when messages are received. Thus,

executions with the same failure pattern F may

still have different failure detector histories. It is

for this reason that we allow D(F) to be a set

of failure detector histories from which the actual

failure detector history for a particular execution

is selected non-deterministically.

2.2 Algorithms

We model the asynchronous communication chan-

nels as a message lwfler which contains messages

of the form (p, data, q) indicating that process p

has sent data addressed to process q and q has

not yet received that message. An aigorithm A

is a collection of n (possibly infinite state) deter-

ministic automata, one for each of the processes.

A(p) denotes the automaton running on process

p. Computation proceeds in steps of the given al-

gorithm A. In each step of A, process p performs

atomically the following three phases:

Receive phase: p receives a single message of

the form (q, data, p) from the message buffer,

or a ‘(null” message, denoted A, meaning that

no message is received by p during this step.

Failure detector query phase: p queries and

receives a value from its failure detector mod-

ule. We say that p sees a value d when the

value returned by p’s failure detector module

is d.

Send phase: p changes its state and sends a mes-

sage to all the processes according to the au-

tomaton A(p), based on its state at the be-

ginning of the step, the message received in

the receive phase, and the value that p sees in

the failure detector query phase.4

41n the send phase, p sends a message to all the processes

atomically. As was shown in [FLP85], the ability to do

so is not sufficient for solving Consensus. An alternative

formulation of a step could restrict a process to sending a

message to a single process in the send phase. We can show

that both formulations are equivalent for our purposes.

150

The message actually received by the process p in

the receive phase is chosen non-detemrzinistically

from amongst the messages in the message buffer

destined to p, and the null message X The null

message may be received even if there are mes-

sages in the message buffer that are destined to

p: the fact that m is in the message buffer merely

indicates that m was sent to p. Since ours will

be a model of asynchronous systems, where mes-

sages may experience arbitrary (but finite) delays,

the amount of time m may remain in the message

bufFer before it is received is unbounded. Though

message delays are arbitrary, we also want them to

be finite. We model this by introducing a liveness

assumption: every message sent will eventually be

received, provided its recipient makes ‘{sufficiently

many” attempts to receive messages. All this will

be made more precise later.

To keep things simple we assume that a process

p sends a message m to q at most once. This

allows us to speak of the contents of the message

buffer as a set, rather than a multiset. We can

easily enforce this by adding a counter to each

message sent by p to q — so this assumption does

not darnage generality.

2.3 Configurations, Runs and Environ-

ments

A configuration is a pair (s, M), where s is a func-

tion mapping each process p to its local state, and

M is a set of triples of the form (q, data, p) rep-

resenting the messages presently in the message

buffer. An initial configuration of an algorithm A

is a configuration (s, M), where s(p) is an initial

state of A(p) and M = 0. A step of a given aJgo-

rithm A transforms one configuration to another.

A step of A is uniquely determined by the identity

of the process p that takes the step, the message

m received by p during that step, and the failure

detector value d seen by p during the step. Thus,

we identify a step of A with a tuple (p, m, d, A)

(m= A when the null message is received). We say

that a step e = (p, m, d, A) is applicable to a con-

figuration C = (s, M) if and only if m G AI U {A}.

We write e(C) to denote the unique configuration

that results when e is applied to C.

A schedule S of algorithm A is a (possibly finite)

sequence of steps of A. SL denotes the empty

schedule. We say that a schedule S of an algorithm

A is applicable to a configuration C if and only if

(a) S = Sl, or (b) S[1] is applicable to C, S[2]

is applicable to S[1] (C), etc.5 If S is a finite

schedule applicable to C, S(C) denotes the unique

configuration that results from applying S to C.

Note Sl (C) = C for all configurations C.

A partial run of algorithm A using a failure de-

tector D is a tuple l? = (J’, HD, 1, S, 2’) where F’

is a failure pattern, HD E D(F) is a failure de-

tector history, 1 is an initial configuration of A, S

is a jinite schedule of A, and T is a finite list of

increasing time values (indicating when each step

in S occurred) such that IS I = IZ’[, S is applica-

ble to 1, and for all i < IS[, if S[i] is of the form

(p, m, d, A) then:

● p has not crashed by time T[i], i.e., p @

F(T[i])

● d is the value of the failure detector module

ofp at time T[i], i.e., d = H~(p, T[i])

Informally, a partial run of A using D represents

a finite point of some execution of A using D.

A run of an algorithm A using a failure detector

D is a tuple 1? = (F, HD, I, S,5!’) where F is a

failure pattern, H~ E D(F) is a failure detector

history, 1 is an initial configuration of A, S is an

infinite schedule of A, and T is an infinite list of

increasing time values indicating when each step

in S occurred. In addition to satisfying the above

properties of a partial run, a run must also satisfy

the following properties:

●

●

Every correct process takes an infinite num-

ber of steps in S.

Every message sent to a correct process is

eventually received.

In [CT91], we proved that any algorithm that

uses W to solve Consensus requires n >2 f. With

other failure detectors the requirements may be

different. For example, there is a failure detector

that can be used to solve Consensus only if pl and

p2 do not both crash. b

sWe denote by v[i] the Ah

general whether a given

element of a sequence v.

151

failure detector can be used to solve Consensus

depends upon assumptions about the underlying

“environment”. Formally, an environment & (of

an asynchronous system) is set of possible failure

m

D

patterns.

3 The Consensus problem

In the Consensus problem, each process p has an

initial value, O or 1, and must reach an irrevocable

decision on one of these values.

We say that algorithm A uses failure detectov D

to solve Consensus in environment & if every run

1? = (F, -HD,l, S,T) of A using D where F’ ~ &

satisfies:

Termination: Each correct process eventually

decides.

Validity: Each correct process decides on the ini-

tial value of some process.

Agreement: No two correct processes decide dif-

ferently.

4 Reducibility y

We now define what it means for an algorithm

TD+D, to transform a failure detector D into an-

other failure detect or D’ in an environment &.

Algorithm TD+D1 uses D to maintain a variable

outputP at every process p. This variable, reflected

in the local state of p, emulates the output of D’

at p. Let OR be the history of all the output

variables in run l?, i.e., OR(p, t) is the value of

outpu$ at time t in run R. Algorithm TD+DJ

transforms D into D’ in E if and only if for ev-

ery run 1? = (F’, .HD, 1, S, T) of TD+D, using D,

where F’ 66, OR < D’(F).

Given TD+DI, anything that can be done us-

ing D’ in &, can be done using D instead. To see

this, suppose a given algorithm B requires failure

detector D’ (when it executes in E), but only D

is available. We can still execute B as follows.

Concurrently with B, we run TD+D! to transform

D into D’. We now modify the failure detector

query phase of each step of B at process p: p reads

the current value of outputP (which is concurrently

wTD+DI

Algorithm B uses D’

Figure 1: Transforming D into D’

maintained by TD+D,) instead of querying its fail-

ure detector module. This is illustrated in Fig. 1.

Intuitively, since TD+D, is able to use D to em-

ulate D’, D provides at least as much information

about process failures in & as D’ does. Thus, if

there is an algorithm TD4D, that transforms D

into D’ in E, we write D ~& D’ and say that D’ is

reducible to D in &; we also say that D’ is weaker

than D in &.

5 An outline of the result

In [CT91] we showed that W can be used to solve

Consensus in any environment in which n > 2~.

We now show that W is weaker than any failure

detector that can be used to solve Consensus. This

result holds for any environment &. Together with

[CT91], this implies that W is indeed the weakest

failure detector that can be used to solve Consen-

sus in any environment in which n > 2~.

To prove our result, we first define a new failure

detector, denoted Q, that is at least as strong as

W. We then show that any failure detector D that

can be used to solve Consensus is at least as strong

as $2. Thus, D is at least as strong as W.

The output of the failure detector module of $2

at a process p is a single process, q, that p currently

152

considers to be correct we say that p trusts q, in

this case, 730 = IL For each failure pattern F,

Q(F) is the set of all failure detector histories .HQ

with range Rn that satisfy the following property:

● There is a time after which all the correct pro-

cesses always trust the same correct process:

3t E 7, 3q < comect(F), Vp C comet,

Vi? ~ t : Hn(p, t’) = q

As with W, the output of the failure detector mod-

ule of !2 at a process p may change with time, i.e.,

p may trust different processes at different times.

Furthermore, at any given time t,processes p and

q may trust different processes.

Theorem 1: For all environments ~, Q ?t W.

Proofi [Sketch] The reduction algorithm !Z’W.+W

that transforms Q into W is as follows. Each pro-

cess p, periodically sets outputP + II – {q}, where

q is the process that p currently trusts according

to Cl. It is easy to see that (in any environment E)

this output satisfies the two properties of W. •l

Theorem 2: For all environments &, if a failure

detector D can be used to solve Consensus in &,

then D ~t Q.

Proofi The reduction algorithm TD.+Q is shown

in Section 6. It is the core of our result. •1

Corollary 3: For all environments ~, if a failure

detector D can be used to solve Consensus in &,

then D zf W,

In [CT91] we proved that, for all environments&in

which n > 2~, W can be used to solve Consensus.

Together with Corollary 3, this shows that:

Corollary 4: For all environments & in which

n > 2~, W is the weakest failure detector that

can be used to solve Consensus in &.

6 The reduction algorithm

Let & be an environment, D be a failure detec-

tor that can be used to solve Consensus in &, and

c07tWeTWUSD be the Consensus algorithm that uses

D. We describe an algorithm TD_+n that trans-

forms D into !2 in &. Intuitively, this algorithm

works as follows. Fix an arbitrary run of TD+Q

using D in t, with failure pattern F 6 &, and

failure detector history HD G D(F). We shall

first construct an infinite directed acyclic graph,

denoted G, whose vertices are some of the failure

detector values that occur in HD, and whose edges

are consistent with the time at which these values

occur. We then show that G induces a simulation

forest T’ that encodes an infinite set of possible

runs of Consensus. Finally, we show how to ex-

tract from ‘T the identity of a process p* that is

correct in F.

The induced simulation forest is infinite and

thus it cannot be computed by any process. How-

ever, the information needed to extract p* is

present in a jinite subgraph of the forest. It will

be sufficient for each correct process p to construct

ever increasing finite approximations of the simu-

lation forest ‘Y’ that will eventually include this

crucial finite subgraph. At all times, p uses its

present approximation of T to select the identity

of some process: once p’s approximation of ‘T in-

cludes the crucial finite subgraph, the selected pro-

cess will be p* (forever). Thus, there is a time after

which all correct processes trust the same correct

process, p“—which is exactly what $2 requires.

We say that a process is correct (crashes) if it

is correct (crashes) in F. For simplicity, we as-

sume that a process p sees a value d at most once

(this can be enforced by tagging a counter to each

value seen). For the rest of this paper, whenever

We refer to a rUn Of cOn$ensU5D, we mean a run Of

C07LW7M7USD using D. Furthermore, we only con-

sider schedules of 6’On$ensU$D, and therefore we

write (p, m, d) instead of (p, m, d, C07M6?7WUSD) to

denote a step.

6.1 A DAG and a forest

Given the failure pattern F’ and the correspond-

ing failure detector history HD c D(F) that were

fixed above, let G be any infinite directed acyclic

graph with the following properties:

1. The vertices of G are of the form ~, d] where

d = HD (p, t) for some time t.

153

2. If [ql, dl] + [q2, d2] is an edge of G and dl =

~~(ql, -tl) and d2 = lZD(q2, t2) then -tI < t2.

3. G is transitively closed.

4. Let p be any correct process and V be a finite

subset of vertices of G. There is a failure de-

tector value d such that for al vertices ~, d’]

in V, ~,d’] + ~,d] is an edge of G.

Note that such a DAG represents only a “sam-

pling” of the failure detector values that occur in

HD. In particular, we do not require that it con-

tain all the values that occur in HD or that it

relate (with an edge) all the values according to

the time at which they occur.

Let g = [ql, all], [q2, d2],... be any (finite or

infinite) path of G. A schedule S is compati-

ble with g if it has the same length as g, and

S = (gl, ml, all), (~z, mz, dz),..., for some (Pos-
sibly null) messages ml, mz, . . .; S is compatible

with G if it is compatible with some path of G. S

is induced by g and an initial configuration I (of

Consensus~) if S is compatible with g and applica-

ble to I, S is induced by G and I if S is compatible

with G and applicable to 1. Note that each g and

1 induce several schedules, each corresponding to

a different sequence of messages received.

Lemma 5: Let S be any finite schedule

induced by G and some initial configuration

I of Consensus. There is a !2’ such that

(~, HD, I, S, T) is a partial run of CO%96W?ZMD,

Lemma 6: Let S be any infinite schedule induced

by G and some 1, such that every correct pro-

cess takes an infinite number of steps and every

message sent to a correct process is eventually re-

ceived. There is a T such that (1’, HD, 1, S, 2’) is

a run of COnsensUsD.

The set of schedules that are induced by G and

some particular 1, can be organized as a tree, the

simulation tree T& induced by G and I. These

schedules are the vertices of the tree, with (the

empty schedule) Sl at the root. There is an edge

from S to S’ if and only if S’ = S” e for a step e.

Lemma 7: Let S be any vertex of T~ and p be

any correct process. Let m be a message in the

message buffer of S(l) addressed to p or the RUII

message. T: has a vertex S s (p, m, d) for some d.

Lemma 8: Let S, S1, S2,. . . . sk be vertices of T&.

There is a schedule l? containing only steps of cor-

rect processes such that:

1. S*.E is a vertex of T& and all correct processes

have decided in S . J!?(1).

2. S; . E (1 < i ~ k) is compatible with G.

Note that E! may not be applicable to Si(l), and

thus Si oE is not necessarily a vertex of ‘Y’&,

Let Ii, O < i ~ n denote the initial configura-

tion of C07ZSHWUSD in which the initial values of

P1. . .pi are 1, and the initizd values of p;+l . . .pn

are O. We define the simulation forest induced by

G to be the set of n + 1 simulation trees induced

by G and these initial configurations.

6.2 Tagging the simulation forest

We assign a set of tags to each vertex of each tree

T: in the simulation forest induced by G. Vertex

S of T~ receives tag k if and only if it has a descen-

dent S’ such that some correct process has decided

k in S’ (Ii). Hereafter, T; denotes the tagged tree

T:, and T denotes the tagged simulation forest.

Lemma 9: Each vertex of Ti has at least one tag.

A vertex of Ti is monovalent if it has only one

tag, and bivalent if it has both tags, O and 1. A

vertex is tl-valent if it is monovalent and is tagged

O; l-valent is similarly defined.

Lemma 10: The ancestors of a bivalent vertex

are bivalent. The descendants of a k-valent vertex

are k-valent.

Lemma 11: If S is a bivalent vertex of Ti then

no correct process has decided in S(li).

Recall that in 1° all processes have initial value O,

while in In they all have initial value 1.

Lemma 12: The root of To is O-valent and the

root of P is l-valent.

154

If the root of Ti is bivalent, then i is bivalent crit-

ical. If the root of Ti–l is O-valent but the root of

‘Ti is l-valent, then i is monovalent critical. Index

i is critical if it is monovalent or bivalent critical.

Lemma 18: There is a critical i, O < i ~ n.

The critical index i is the key to extracting the

identity of a correct process. In fact, if z is monova-

lent critical, we shall prove that pi must be correct

(Lemma 15). If i is bivalent critical, the correct

process will be found by focusing on the tree Ti,

as explained in the following section.

6.3 Of hooks and forks

We describe two types of finite subtrees of T; re-

ferred to as decision gadgets of Ti. Each type of

decision gadget is rooted at Sl and has exactly

two leaves: one O-valent and one l-valent. The

least common ancestor of these leaves is called the

pivot. The pivot is clearly bivalent.

The first type of decision gadget is called a fork,

and is shown in Figure 2. The two leaves are chil-

dren of the pivot, obtained by applying different

steps of the same process p. Process p is the decid-

ing process of the fork, because its step after the

pivot determines the decision of correct processes.

The second type of decision gadget is called a

hook, and is shown in Figure 3. Let S be the pivot

of the hook. There is a step e such that S oe is

one leaf, and the other leaf is S “ (p, m, d) “ e for

some p, m, d. Process p is the deciding process of

the hook, because the decision of correct processes

is determined by whether p takes the step (p, m, d)

before e.

We shall prove that the deciding process p of a

gadget must be correct (Lemma 16). Intuitively,

this is because if p crashes no process can figure

out whether p has taken the step that determines

the decision value. The existence of such a criti-

cal “hidden” step is also at the core of many im-

possibility proofs starting with [FLP85]. In our

case, the “hiding” is more difficult because now

processes have recourse to the failure detector D,

Despite this, the hiding of the step of the deciding

process of a gadget is still possible. The key to

proving this is Lemma 8.

{o}
() S.(p, rn, d)

Root {o,1}

/
o “ “ ‘a

s~
\(P:vot)

O S . (p, m’, d’)

{1}

Figure 2: A fork—p is the deciding process

{o}

Os”e

Root {o,1}

/
0“ ““a

s~
,;votho/O;”e

S’=S”(p, m,d)

Figure 3: A hook—p is the deciding process

Lemma 14: If i is

at least one decision

process).

bivalent critical then Y’i has

gadget (and hence a deciding

6.4 Extracting the correct process

By Lemma 13, there is a critical index i. If i is

monovalent critical, Lemma 15 below shows how

to extract a correct process. If i is bivalent crit-

ical, a correct process can be found by applying

Lemmata 14 and 16,

Lemma 15: If i is monovalent critical then p; is

correct.

Lemma 16: The deciding process of a decision

gadget is correct.

There may be several critical indices and several

155

{Build and tag simulation forest T induced by G}

fOrit O,l,..., n:

Ti t- simulation tree induced by G and Ii

for every vertex S of Ti

if S has a descendent S’ such that

a correct process has decided k in S’ (l;)

then add tag k to S

{Select a process from tagged simulation forest T}
i +- smflest critical index

if i is monovalent critical then return p;

else ret urn deciding process

of the smallest gadget in Ti

Figure 4: Selecting a correct process

decision gadgets in the simulation forest. Thus,

the above Lemmata may identify many correct

processes. Our selection rule wfi choose one of

these, as the failure detector Q requires, as fol-

lows. It first determines the smallest critical in-

dex i. If i is monovalent critical, it selects pi. If,

on the other hand, i is bivalent critical, it chooses

the “smallest” gadget in Ti according to some en-

coding of gadgets, and selects the corresponding

deciding process. It is easy to encode finite graphs

as natural numbers. Since a gadget is just a finite

graph, the selection rule can use any such encod-

ing. The selection rule is shown in Figure 4.

Lemma 17: Figure 4 selects a correct process.

6.5 The reduction algorithm TD+Q

The selection of a correct process described above

is not yet the distributed algorithm TD-+n that

we are seeking: it involved an infinite simulation

forest and it was “centralized”. To turn it into a

distributed algorithm, we will modify it as follows.

Each process will cooperate with other processes

to construct ever increasing finite approximations

of the simulation forest. Such approximations will

eventually contain the gadget and the other tag-

ging information necessary to extract the identity

of the same correct process chosen by the selection

method in Figure 4.

Note that the selection method in Figure 4 in-

volves three stages: The construction of G, a

graph representing samples of failure detector val-

ues and their temporal relationship, the construc-

tion and tagging of the simulation forest induced

by G, and finally, the selection of a correct process

using this forest.

Algorithm TD_+n consists of two components.

In the first component, each process repeatedly

queries its failure detector module and sends the

failure detector values it sees to the other pro-

cesses. This component enables processes to con-

struct ever increasing finite approximations of the

same G. Since all inter-process communication

occurs in this component, we cdl it the communi-

cation component of TD+n.

In the second component, each process repeat-

edly (a) constructs and tags the simulation forest

induced by its current approximation of G, and

(b) selects the identity of a process using its cur-

rent simulation forest. Since this component does

not require any communication, we call it the com-

putation component of TD-+Q.

6.5.1 The communication component

In this component processes cooperate to con-

struct ever increasing approximations of the same

G. Let GP denote p’s current approximation of G.

Roughly, each process p repeatedly executes: (i) If

p receives Gq for some q, it incorporates this infor-

mation by replacing GP with the union of Gp and

G~. (ii) Process p queries its own failure detector

module. Let d be the value that it sees and ~, o?]

be any vertex currently in GP. Clearly, p saw d af-

ter p’ saw d’. Thus p adds ~, d] to GP, with edges

from all other vertices of GP to ~, d]. Process p

then sends its updated GP to all other processes.

The communication component of TD+Q for p is

shown in Figure 5.

Recall that we are considering a fixed run of

TD+O, with failure pattern F’, and failure detector

history HD 6 D(F). The communication compo-

nent of TD+Q constructs graphs that satisfy the

following properties. Let GP(t) denote the value

of GP at time t.

Lemma 18: For any correct process p and t c ‘T:

1. The vertices of GP(t) are of the form ~, d’]

156

{Build -the directed acyclic graph GP}

Gp + empty graph

repeat forever

RECEIVE PHASE:

p receives m

FAILURE DETECTOR QUERY PHASE:

dp t query failure detector D

SEND PHASE:

if m is of the form (q, Gq, p) then

GP+GPUGq

add ~, dP] to GP and edges from all

other vertices of GP to ~, dP]

ouiputP + computation component {Fig. 6)

p sends (p, GP, q) to all q < II

Figure 5: Process p’s communication component

2.

3.

4.

5.

6.

where d’ = HD (p’, t’) for some time t’.

If [ql,dl] + [q2, d2] is an edge of GP(t) and

dl = HD (ql, tl) and d2 = HD(q2, t2) then

-tl < tz.

GP(t) is transitively closed.

There is a time t’ > t and a failure detec-

tor value d such that for all vertices ~, d’] of

GP(t), ~, d’] + ~, d] is an edge of GP(t’).

Gp(t) is a subgraph of GP(t + 1).

For all correct q, there is a time t’> t such

that GP(t) is a subgraph of G~(t’).

Property 5 of the above lemma allows us to define

G; = lJteT GP(t). From Property 6, we get:

Lemma 19: For

G; = G?.

Lemma 19 allows

any correct processes p and q,

us to define the limit graph G

to be G; for any correct process p. The first four

properties of Lemma 18 imply:

Lemma 20: The limit graph G satisfies the four

properties of the DAG defined in Section 6.1.

6.5.2 The computation component

Since the limit graph G has the four properties of

the DAG, we can apply the “centralized” selection

method of Figure 4 to identify a correct process.

This method involved:

. Constructing and tagging the infinite simula-

tion forest T induced by G.

. Applying a rule to T to select a particular

correct process p*.

In the computation component of TD~Q, each p

approximates the above method by repeatedly:

Constructing and tagging the finite simula-

tion forest TP induced by GP, its present finite

approximation of G.

Applying the same rule to TP to select a par-

ticular process.

Since the limit of TP over time is T, and the infor-

mation necessary to select p* is in a finite subgraph

of T, we can show that eventuaUy p will keep se-

lecting the correct process p*, forever.

Actually, p cannot quite use the tagging method

of Figure 4: that method requires knowing which

processes are correct! Instead, p assigns tag k to

a vertex S in T; if and only if S has a descendent

S’ such that p itself has decided k in S’(Ii). If

p is correct, this is eventually equivalent to the

tagging method of Figure 4. If p is faulty, we do

not care. Also, p cannot use exactly the same

selection method as that of Figure 4: its current

simulation forest T. may not get have a critical

index or contain an; deciding gadget (although it

eventually will!). In that case, p temporizes by

just selecting itself. The computation ~omponerit

of TD+Q is shown in Figure 6. Let TP (t)denote

TP at time t.

Lemma 21: For any correct p and any t E 7:

1. TP(-t) is a subgraph6 of T

2. TP(t) is a subgraph of Y’p(t+ 1)

3. Iillil’rp(t)= T

6The subgraph relation ignores the tags.

157

{Build and tag simulation forest TP induced by G,}

fori+O,l,..., n:
T~ - sim~ation tree induced by GP and Ii

fo; every vertex S of T:

{Select

if S has a descendent S’ such that

p has decided kin S’(Ii)

then add tag k to S

a process from tagged simulation forest TP}

if there is no critical index then return p -

else

i - smallest critical index

if i is monovalent critical then return pi

else if T; has no gadgets then return p

else ret urn deciding process

of the smallest gadget in T$

Figure 6: Process p’s computation component

Lemma 22: For any correct p and any vertex S

of Tp:

1. p never removes a tag from S.

2. There is a time after which the tags of S in

TP will always be the same as the tags of S

in T.

Theorem 23: For any correct process p, there is

a time after which outputP = p*, forever.

Theorem 2: For all environments &, if a failure

detector D can be used to solve Consensus in &,

then D && $2.

References

[ABND+87] Hagit Attiya, Amotz Bar-

Noy, Danny Dolev, Daphne Keller,

David Peleg, and Rudiger Reischuk.

Achievable cases in an asynchronous

environment. In Proceedings of the

Twenty-Eighth Symposium on Foun-

dations of Computer Science, pages

337–346. IEEE Computer Society

Press, October 1987.

[BW87] M. Bridgland and R. Watro. Fault-

tolerant decision making in totally

[CD89]

[CT91]

[DDS87]

[DLP+86]

[DLS88]

[FLP85]

[RB91]

asynchronous distributed systems. In

Proceedings of the Sixth ACM Sym-

posium on Principles of Distributed

Computing, pages 52–63, August

1987.

Benny Chor and Cynthia Dwork.

Randomization in byzantine agree-

ment. Advances in Computer Re-

search, 5:443–497, 1989.

Tushar Chandra and Sam Toueg.

Unreliable failure detectors for asyn-

chronous systems (preliminary ver-

sion). In Proceedings of the Tenth

ACM Symposium on Principles of

Distributed Computing, pages 325–

340. ACM Press, August 1991.

Danny Dolev, Cynthia Dwork, and

Larry Stockmeyer. On the minimal

synchronism needed for distributed

consensus. Journal of the ACM,

34(1):77-97, January 1987.

Danny Dolev, Nancy A. Lynch,

Shlomit S. Pinter, Eugene W. Stark,

and William E. Weibl. Reaching

approximate agreement in the pres-

ence of faults. Journal of the ACM,

33(3):499-516, hdy 1986.

Cynthia Dwork, Nancy A. Lynch,

and Larry Stockmeyer. Consensus

in the presence of partial synchrony.

Journal of the ACM, 35(2):288-323,

April 1988.

Michael J. Fischer, Nancy A. Lynch,

and Michael S. Paterson. Impossibil-

ity of distributed consensus with one

faulty process. Journal of the ACM,

32(2):374-382, April 1985.

Aleta Ricciardi and Ken Birman. Us-

ing process groups to implement fail-

ure detection in asynchronous en-

vironments. In P~oceedings of the

Tenth ACM Symposium on Princi-

ples of Distributed Computing, pages

341-351. ACM Press, August 1991.

158

