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ABSTRACT

Modern JIT compilers often employ multi-level recompila-
tion strategies as a means of ensuring the most used code
is also the most highly optimized, balancing optimization
costs and expected future performance. Accurate selection
of code to compile and level of optimization to apply is
thus important to performance. In this paper we investi-
gate the effect of an improved recompilation strategy for a
Java virtual machine. Our design makes use of a lightweight,
low-level profiling mechanism to detect high-level, variable
length phases in program execution. Phases are then used
to guide adaptive recompilation choices, improving perfor-
mance. We develop both an offline implementation based on
trace data and a self-contained online version. Our offline
study shows an average speedup of 8.7% and up to 21%,
and our online system achieves an average speedup of 4.4%,
up to 18%. We subject our results to extensive analysis and
show that our design achieves good overall performance with
high consistency despite the existence of many complex and
interacting factors in such an environment.

Categories and Subject Descriptors: D.3.4 Processors:
Optimization, Run-time environments, Compilers

General Terms: Design, Languages, Measurement, Per-
formance

Keywords: Virtual machine, Java, adaptive optimization,
runtime technique, hardware counters

1. INTRODUCTION

Many of today’s Java Virtual Machines (JVMs) [28] em-
ploy dynamic recompilation techniques as a means of im-
proving performance in Java programs. At runtime the dy-
namic Just-in-Time (JIT) compiler locates a “hot set” of
important code regions and applies different optimizations,
balancing the overhead costs of optimized (re)compilation
with expected gains in runtime performance. Heuristically,
the earlier the method is compiled to it’s “optimal” opti-
mization level the better. Naively assuming optimal means
more optimizations, the potential for such improvements is
illustrated schematically in Figure 1. In each of the 4 cases
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shown the z-axis is samples (normalized time), and the y-
axis is optimization level; more time in a method at higher
optimization levels heuristically means better performance,
and so greater area under each curve indicates improved
performance. The top left image shows a typical method
history, compiled initially at a low level, and progressively
recompiled to higher optimization levels. Better prediction
of future behaviour allows a method to move more quickly
between these steps (top right image), or to skip intermedi-
ate steps (bottom left image). In the bottom right graph a
method is compiled to its highest optimization level imme-
diately; this roughly represents an upper limit for the po-
tential performance gains, at least assuming simple models
of method execution and optimization impact.
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Figure 1: Sources of optimization due to improved
recompilation decisions for a given method. Note
that even in the “ideal” case of skipping all interme-
diate recompilation steps (bottom right) at least 1
sample is required to identify the hot method.

One of the key factors involved in improving or finding
optimal recompilation choices for a given method is method
lifetime. Method lifetime is an estimate of how much future
execution will be spent in a given method based on current
and past behaviour; techniques for estimating method life-
time are critical in making online recompilation decisions.
A straightforward solution used in the Jikes RVM [1, 3, 2]
adaptive recompilation component is to assume that the rel-
ative proportion of total execution time that will be spent
in a given method is the same as its existing proportion: the
ratio of future lifetime to past lifetime for every method is



assumed to be 1.0. This is a generally effective heuristic,

but as an extremely simple predictor of future method exe-

cution time it is not necessarily the best general choice for
all programs or at all points in a program’s execution.

Our work aims at investigating and improving the predic-
tion of future method execution times in order to improve
adaptive optimization decisions. To achieve better predic-
tions we divide Java program execution into coarse phases;
different phases imply different recompilation strategies, and
by detecting or predicting phase changes we can appropri-
ately alter recompilation behaviour. We perform an offline
analysis of the practical “head space” available to such an
optimization that depends on a post mortem analysis of pro-
gram traces, allowing the method recompilation system to
perform as in the bottom right graph of Figure 1. We also
develop an online analysis that is more practical and dy-
namically gathers and analyzes phase information. To keep
our online system lightweight, we base our phase analysis on
hardware counter information available in most modern pro-
cessors, recovering high-level phase data from low-level event
data. Based on our Jikes RVM implementations we observe
an average of 8.7% and up to 21% speed improvement in our
benchmark suite using the offline approach, and an average
of 4.4% and up to 18% speedup in our benchmarks using
our online system, including all runtime overhead.

Although these results demonstrate significant potential,
changes to the dynamic recompilation system introduce feed-
back in the sense that different compilation times and choices
perturb future recompilation decisions. There are also many
potential parameters of our design, and different kinds of
benchmarks can respond quite differently to adaptive re-
compilation—programs with small, core method execution
sets and long execution times can be well-optimized with-
out an adaptive recompilation strategy, while programs with
larger working sets and more variable behaviour should per-
form better with adaptive recompilation. We consider a
number of confounding factors and include a detailed in-
vestigation of the source and extent of improvement in our
benchmarks, including potential variability due to choice of
recompilation algorithm. Our results show that our phase
based optimization provides greater benefits in terms of per-
formance, stability, and consistency than current designs or
simpler optimizations.

Contributions of this work include:

e We demonstrate a lightweight system for obtaining high-
level, variable length and coarse grained phase information
for Java programs. Other phase analyses concentrate on
finding fixed length and/or fine-grain periods of stability.

e We give the results of an offline study of the head space
for optimization in the selection of hot-method recompi-
lation points based on our phase information. In the case
of repeated or allowed “warm up” executions our study
represents an effective optimization by itself.

e We present a new dynamic, phase-based hot-method re-
compilation strategy. Our implementation incorporates
online data gathering and phase analysis to dynamically
and adaptively improve recompilation choices and thus
overall program performance.

e We provide non-trivial experimental data, comparative re-
sults, and detailed analysis to show our design achieves
significant and general improvement. Potential variation,
identification of influences, and consideration of the precise

source of improvements and degradations are important
for optimizations to complex runtime services in modern
virtual machines.

The remainder of this paper is organized as follows. In
Section 2 we discuss related work on hot method set iden-
tification, profiling techniques, phase detection/prediction,
and hardware counters. Our main data gathering system
and phase prediction systems are described in Sections 3
and 4 respectively. Performance results and analytical mea-
surements are reported in Section 5, and Section 6 provides
detailed data analysis and discussion. Finally, we conclude
and provide directions for future work in Section 7.

2. RELATED WORK

In a compiler based JVM (JIT), bytecode is compiled
into native code immediately before it executes. However,
the JIT strategy introduces compilation overhead before any
code can execute. This can impose a heavy burden if com-
plex optimization actions are employed during the course of
compilation. JIT compilers thus typically attempt to iden-
tify a smaller hot set on which to concentrate optimization
efforts. This kind of adaptive optimization allows sophisti-
cated optimizations to be applied selectively, and has been
widely explored in the community [23, 31, 3]. Most of this
work focuses on methods as a basic compilation unit, but
other choices are possible; For instance, Hansen’s AF re-
compiled basic blocks and single-entry regions with loops se-
lectively [19]. Whaley presents an approach to determining
important intra-method code regions from dynamic profile
data [40]. On the other hand, Chambers and Ungar apply
optimizations across method boundaries via inlining [11].

Modern virtual execution environments often have a com-
piler with more than one optimization level. In general,
code compiled at a higher optimization level provides faster
speed as a trade-off for heavier compilation overhead. In a
system with multiple optimization levels, only recompiling
the most important (hot) code to a higher level is common
sense, t.e., making selective optimization. In a system such
as in SELF-93 [21], all methods are first compiled at a non-
optimizing level, with the optimizing compiler invoked only
for frequently executed methods. SELF-93 uses method in-
vocation counts to determine hot methods, the counts de-
caying over time. Detlef and Agesenuse use a fast JIT com-
piler and a slow “traditional” compiler adaptively [14]. They
found that a combination of the fast JIT and judicious use
of the slow JIT on the longest running methods showed the
best results on their benchmark suite. Sun’s HotSpot Server
JVM [31] uses a technique similar to the one in SELF-93.
The IBM Mixed-mode interpreter system also relies on in-
vocation counts to determine recompilation decisions [37].
In addition to a counter-based selective optimization heuris-
tics, Intel’'s ORP JVM [13] also uses a count-down scheme
to identify hot methods.

All these counter-based policies rely on various heuristic
tuning values. Recently, more theoretically involved poli-
cies have received more and more attention. Kistler et al.
consider a sophisticated online decision for driving compi-
lation in the Oberon virtual machine [24]. Each compiler
phase estimates its own speedup based on a rich set of pro-
file data. Arnold et al. use call stack sampling to support
a model-driven optimization policy in Jikes RVM, relying
on a cost-benefit model [3]. Krintz also provides a dynamic



compilation system based on Jikes RVM [25]. Offline pro-
filing results for the top hottest methods are annotated and
works as a suggestion for a compilation task to the adap-
tive engine. Our offline mechanism follows a similar style,
but stores all recompilation history from multiple runs and
makes a summary trace from the traces of these multiple
executions. More recently, Buytaert et al. present an HPM-
Sampling mechanism which is more effective in finding op-
timization candidates for dynamic compilation than sample
or counter based sampling mechanisms [9].

In all these efforts, recompilation overhead is reduced by
avoiding compiling and optimizing rarely used code, based
on either the assumption that “future = past,” or by using
simple counter-based schemes to determine relative execu-
tion frequency. Our work here augments these approaches
by concentrating on the specific problem of providing ad-
ditional predictive information to the adaptive engine of a
JVM in order to improve optimization decisions, rather than
providing the concrete adaptive optimization framework it-
self.

Program phase information can be used to locate sta-
ble or repetitive periods of execution at runtime, and has
been incorporated into various adaptive optimizations and
designs for dynamic system reconfiguration [5, 12, 15, 22,
34]. Nagpurkar et al. present a flexible scheme to reduce
network-based profiling overhead based on repetitive phase
information gathered from remote programs [30]. Their
phase tracker is implemented using the SimpleScalar hard-
ware simulator [8]. Data for phase analysis may in general
be gathered through offline analysis of program traces, or
through online techniques. Nagpurkar et al. present an on-
line phase detection algorithm that detects stable, flat peri-
ods in program execution as useful phases [29], and further
provides a set of accuracy scoring metrics to measure the
stability and length of the detected phases. Phases based
on various statistics are of course also possible, and many
different data measurements have been considered for phase
analysis work. Dhodapkar et al. make a comparison between
several detection techniques based on basic block vectors, in-
struction working sets and conditional branch counts [16].
Phase data is also often employed for high level program
understanding [36, 17].

Most phase analysis techniques are based on fixed-length
intervals, aiming to detect stable periods of program execu-
tion [5, 35, 20]. For programs with complex control flow,
such as Java and other object-oriented programs, at the lev-
els of granularity useful for optimization there may be no
actual flat and stable phases, even if there is obvious peri-
odicity. For such situations the majority of techniques and
associated quality metrics are not sufficient to capture or
accurately present program phases. Basic problems with
phase granularity are starting to be considered; Lau et al.
point out the intrinsic problem of fixed interval designs being
“out of synchronization” with the actual periodicity of the
execution, and graphically show that it is necessary to study
variable length intervals [26]. Here we use actual hardware
data to detect coarse, variable length, recurrent phases in
a program and use it to give useful advice to the adaptive
engine of a JVM.

To actually gather hardware data we make use of the spe-
cialized hardware performance counters available in mod-
ern processors. Hardware counters can provide important
micro-architectural performance information that is diffi-

cult or impossible to derive from software techniques alone.
These data allows the program behaviour to be more directly
understood from the viewpoint of the underlying hardware
platform, and although low level, this information can be
used for guiding higher level adaptive behaviour. Barnes et
al. use hardware profiling to detect hot code regions and ap-
ply code optimizations efficiently [6]. Schneider and Gross
present a runtime compiler framework using instruction level
information provided by hardware counters to detect hot
spots and bottlenecks [33]. Their work provides a platform
to study the relation between dynamic compiler decisions
and hardware specific properties. Kistler and Franz describe
the Oberon system that performs continuous program opti-
mization [24]. They describe the benefits of using hardware
counters in addition to software based techniques as crucial
components of their profiling system. Hardware informa-
tion obtained from hardware counters can also be used to
improve static compilers; Cavazos et al. use performance
counters to as a means of determining good compiler op-
timization settings [10]. Other works based on hardware
event information can be found in [32, 38, 18]. Many soft-
ware applications and libraries are available to access these
counters, including VTune, PMAPI, PCL and PAPI [7]. In
this work, we use the PAPI library.

3. BASIC SYSTEM

Our system design is based on an extension to the cur-
rent recompilation system in Jikes RVM. Figure 2 shows
the overall structure and components of our base system,
and how it integrates with Jikes RVM. Raw hardware event
data is obtained through the hardware performance moni-
tor (HPM), a pre-existing component in Jikes RVM. The
pattern analysis model detects “patterns” in the hardware
data. Through comparison with previous patterns stored in
the pattern database, the pattern analysis model determines
the current phase of an executing program. Phase infor-
mation is then used to give advice on the program phase
to the adaptive recompilation engine, and also to control
the behaviour of the runtime measurement component. By
taking phase advice into account, the adaptive recompila-
tion engine is able to make better adaptive recompilation
decisions, as we show in our experimental data. Below we
provide more detailed descriptions of the core components
of our implementation design and environment.

3.1 Hardware Performance Data

Hardware performance data is acquired by reading hard-
ware-specific performance counters. Fundamentally, the hard-
ware counters in modern processors are a set of registers.
Values in these registers can represent a variety of hard-
ware events, such as machine cycles, instruction and data
L1/L2 cache misses, TLB misses, and branch predictor hit-
s/misses. Counter data reflects the performance of the un-
derlying hardware directly and collecting it imposes little
overhead.

Critically, although hardware counter data is low level it
can be related to high level aspects of program behaviour.
Lau et al. show there is a strong relation between hardware
performance and code signatures or instruction working sets
[27].

Our implementation mainly samples the “L1 instruction
cache miss” event, an event known to correlate well with
method execution behaviour. Although this is only one of
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Figure 2: The cooperation among hardware performance monitor, pattern analysis model and adaptive

optimization components.

many possible choices, Gu and Verbrugge have previously
shown the importance of “Li1 instruction cache miss” on JVM
performance [18]. Of course the L1 I-cache is a global re-
source, subject to potential pollution by other processes. We
minimize external “noise” by stopping inessential processes
for testing. On the other hand, any program optimization
should be effective in a real life system; necessary system
processes produce unavoidable impacts, and as we will show
our system is quite robust.

The HPM component of Jikes RVM is used to gather our
raw hardware event data. To ensure a lightweight design our
system samples events only at each process context switch
point; in a typical benchmark this produces several thousand
sample points per benchmark run.

3.2 Hardware Pattern Construction

To detect coarse grained and variable length phases the
input hardware event data is inspected for patterns. Our
pattern analysis model discovers simple patterns by observ-
ing how event density changes over time, and looking for
distinct sequences of change. There are many parameters
possible in such a design, and here we provide an overview
of an approach optimized for accuracy, generality, and sim-
plicity.

Our technique operates by summarizing low-level behaviour
with short bit-vectors that encode the overall pattern of
variation. We make use of a “second order” approach that
considers variation in hardware event counts rather than
absolute counts themselves as the basic unit to focus the
technique on detecting changes in behaviour, heuristically
important for identifying phases. The actual algorithm for
translating hardware event data to bit-vector patterns in-
volves first coarsening the (variation in) data into discrete
levels, and then building a corresponding bit-vector shape
representation. The final combined shape and level struc-
ture is a pattern, which can be stored and tested for repeti-
tion. In our experiments we discretized variation in I-cache
miss density into 4 levels, higher level indicated greater im-
portance. Shape construction is more complex and proceeds
as follows; a helpful full example of pattern construction is
shown in Figure 3.

Shapes are simply sequences of bits observing the direction
of change, positive or negative, between consecutive event
data. Complexity in shape construction is mainly driven
by determining when a shape begins or ends; we use the
discrete level of the data that initiated the shape, with data
level functioning as a heuristic indicator of pattern strength.

Each shape construction is represented by a pair (p, ),
where p is the level associated with the beginning of the
shape, and 7 is a bit-vector encoding the sign (positive, neg-
ative) of successive changes in event density. Given a new

event e with level p., if there is no shape under construction
a new construction begins with an empty vector: (pe,[ ]).
Otherwise, there must be a shape under construction (g, @).
If ¢ = pe, or we have seen gy > pe less than n times in a
row, then the shape is assumed to continue; a bit indicating
whether the current variation difference is positive or not is
added to the end of w.

The following conditions terminate a shape construction.

1. If we find g5 < pe we consider the current shape build-
ing complete and begin construction of (pe,[ ]). In-
creases in level are indicative of a significant change in
program behavior.

2. If we find g5 > pe to occur n times in a row the current
shape is considered to have “died out,” and the pattern
is also completed. In our experiments we have found
n = 2 is sufficient for good performance.

3. If in (gs, ) we find |7] has reached a predefined maxi-
mum length we also report the current construction as
complete. In our experiments we use a maximum of
10 bits as a tradeoff of storage cost and expressiveness
in patterns.

\—‘ 0.5
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Figure 3: Pattern construction example. (1) Ac-
quire the raw hardware data. (2) Calculate the vari-
ation between consecutive points. (3) Coarsen the
variation into different levels; the triangles inside
each circle show the direction (negative/positive) of
variation. (4) The final pattern construction results;
the arrow on the y-axis indicates that we obtain a
level 2 pattern; the number above each circle shows
the 2-bit code for each variation. The four trailing
zeros are omitted (the pattern has died out), and
the final pattern code is 010001.

Once terminated a shape becomes a full pattern available
for use in pattern analysis. Of course the same or a similar



pattern construction strategy can be applied to any hard-
ware event counter, and in general any scalar event data. As
mentioned, in our actual system we make use of the instruc-
tion cache miss density as a hardware event, found useful by
others and confirmed effective in our own experiments. Sec-
tion 6 discusses this issue further, but a deeper investigation
of different events and event combinations is left for future
work.

3.3 Adaptive Recompilation in Jikes RVM

The adaptive recompilation system [3] of Jikes RVM in-
volves three main subsystems. A runtime measurement com-
ponent is responsible for gathering method samples. An
analytic model reads this data and makes the decision on
whether to recompile a method and the appropriate opti-
mization level. The recompilation plan is fed to the recompi-
lation subsystem which carries out the actual recompilation.

The crucial point is the decision-making strategy of the
analytic model. This selects between different optimization
levels, based on an estimate of the potential benefit of each
level. The specific optimizations applied in each level can
be found in [3]. For each optimization level ¢ (0 < i < N),
Jikes RVM gives an estimate of the execution speed Sp, of
a method m. The value of N can be different for different
platforms; in our system, N = 3. A recompilation decision
is then made based on the following computations [3]:

e T,: The time of the program already spent in m. It is
computed as T, = SampleNumber x TPS TPS stands for
“time per sample,” a constant value in Jikes RVM.

e T;: The expected time of m at level i, if it is not recom-
piled. In the original implementation, the system assumes:
T, =T,

e (;: The cost of recompiling method m at level j, for i <
j<N.

e T: The expected time the program will spend in m in the
el s . L O,
future, if it is recompiled at level j: T; =T S,
The analytic model chooses the level j that minimizes the
value of C; + T}, the compile time overhead and expected
future time in m. If C; +T; < T}, then m will be recompiled
to level j.

4. PHASE ANALYSIS

Improvements to the prediction model used by the adap-
tive recompilation engine have the potential to improve per-
formance, executing highly optimized code more often and
decreasing the overhead of successive recompilations. We
investigate the improvement from two perspectives. The
first is an offline technique based on trace data; this mainly
serves to give a sense of the maximal benefit that could be
reached given optimal information. The second is a purely
online implementation, that uses our low-level profiling and
dynamic phase systems to improve predictions.

4.1 Offline Trace-Driven Mechanism

Recompiling a hot method to an ideal optimization level
at the earliest point in program execution will in general
maximize the benefit of executing optimized code, as well as
eliminate further potential compilation overhead from the
method. For a recompilation mechanism based on runtime
sampling data, knowledge of the final optimization level of a

method at the time when the first sample of it is taken rep-
resents ideal results with minimal profiling overhead. Op-
timality is bounded by the accuracy of the estimation, in-
cluding heuristic choices that balance optimization costs and
benefits. Here we implement an offline trace-driven opti-
mization technique to discover the approximate improve-
ment head space if optimal choices are made in the sense
of maximizing the heuristic benefit.

Implementation of the offline mechanism is straightfor-
ward. A set of traces from training runs is gathered, an-
alyzed, averaged, and used in a subsequent replays of the
program to select an appropriate optimization level for each
recompiled method. Note that this is not necessarily the
highest optimization level possible—as part of the cost/ben-
efit trade-off, not all methods will have been, or necessar-
ily should be recompiled to the highest level of optimiza-
tion. Use of multiple runs accommodates minor variations
in performance; sources of noise in recompilation data are
discussed more fully in Section 6.

Implementation details include that:

e First, training data is gathered; a Java program is executed
N times to produce trace files T;(1 < i < N).

e Each trace T; is composed of a set of pairs < M, L; >.
M is a particular method, and L; is the last and highest
optimization level of M in T;.

e A summary trace Ts is constructed, composed of pairs
< M,Ls >, where Ly, = Max(L1, Lo, ..., Ly) for a given
M.

e In the tested runs, Ts is loaded at the beginning of ex-
ecution. Each time a method sample M is taken, if we
can find a record < M, Ls > for it in Ts, we recompile M
to level L directly, and mark the recompilation as a final
decision. No further compilation will be applied to M.

e [t is possible that speed gains due to better adaptive re-
compilation allows a method not recompiled in any train-
ing run to be added to the hot set in an actual run. If we
cannot find a record for M in Ts, M is treated per Jikes
RVM’s original recompilation strategy. Note that in our
experiments such cases are rare and involved infrequently
executed methods; the impact of this divergence in hot set
identification is reasonably expected to be small.

Performance results from the offline strategy are given in
Section 5.1. On some benchmarks the benefit obtained is
quite significant, confirming both the potential available to
a more flexible online optimization, and the value of our
offline design as an optimization unto itself.

4.2 Online Mechanism

The success of an online recompilation system depends on
the accuracy of method lifetimes, or the future time spent
in a method, as well as other recompilation cost and benefit
estimates. Underestimating future method execution time
results in missed optimization opportunities, while overes-
timating runs the risk of being overly aggressive in compi-
lation, wasting time on unnecessary recompilations and/or
high optimization levels. This is particularly true early and
late in program executions, where code execution variabil-
ity is high and the expectation of continued behaviour is
lower. This can also occur when programs make major phase
changes, shifting into markedly different modes of execution.
The kernel of our online mechanism is thus a system that de-



tects coarse grained and variable length program phases and
uses this information to control the relative aggressiveness
of the recompilation subsystem in Jikes RVM. The result-
ing improved recompilation choices improve overall program
performance.

The existence of basic startup, core execution, and shut-
down phases are well known. Our phase identification is
based on identifying age, but further allows programs to
rejuvenate, as a means of allowing for the identification of
multiple major execution phases. These phases imply dis-
tinct patterns of control for recompilation, and are classified
as follows:

e Newborn: At startup a Java program tends to spend time
on a set of methods that perform initialization actions, and
these are often not executed after basic setup is complete.
When considering whether past behaviour is a good pre-
dictor of future behaviour we can heuristically expect that
the future execution time of a given method will be less
than the past: Future < Past.

e Young: After a period of time, the program comes into
the main application or kernel code and will spend a com-
paratively long time on the same set of methods. Methods
executed at this stage are likely to be executed even more
in the future: Future > Past.

e Mature: After the program works within its kernel code
for a while, we consider the program to be mature. In
this case, we assume the runtime profiling subsystem has
gathered enough samples to support the recompilation en-
gine in determining suitable optimization levels. Here the
original estimate that future and past performance will be
similar is most valid: Future ~ Past.

e Rejuvenated: Experience with coarse grained phase anal-
ysis of Java programs shows some programs will have dis-
tinct, kernel-based phases, and at runtime will have more
than one hot method set. When a program enters a new
hot set it thus transitions to the young phase again. Once
so rejuvenated as such, however, we have a slightly more
cautious estimate as to the future behaviour of the new
hot set: Future > Past.

Phase Hardv&tare Pattern Recompilation
Behaviour
Newborn || No recurrence Less aggressive
Young || Recurrences More aggressive
Mature Less new patterns Modera%tely
More old patterns aggressive
Rejuvenated || More new patterns More aggressive

Table 1: Program phase, hardware patterns, and
recompilation aggressiveness.

The second column of Table 1 describes how program
phases are heuristically determined from the underlying hard-
ware event data. Changes in how lower-level patterns are
identified in the data suggest corresponding changes in the
program code, and thus phase or age. At program startup a
wide variety of “execute-once” startup code is executed, and
few recurring low-level patterns are found. A young program
will start to show significant recurrences of new patterns as
it begins to execute its kernel code. The mature phase is de-
tected by noticing the balance tipping from discovery of new

patterns to recurrence of old patterns, and the rejuvenated
phase by a subsequent loss of old patterns and introduction
of new ones.

Understanding program phase allows for heuristic control
of the relative aggressiveness of the recompilation engine. In
cases where the future performance is not equal to the past
the expected execution time should be appropriately scaled.
The third column in Table 1 gives a summary of how age af-
fects the behaviour of the recompilation engine. A newborn
program is less likely to repeat its behaviour, and recompila-
tion should be more conservative. A young program enters
into its kernel; the new code is likely to be executed much
more than it has been in the past, and recompilation be-
comes aggressive. As the execution enters a mature phase
aggressiveness is decreased; in such a relatively stable envi-
ronment the recompilation engine is expected to have suffi-
cient past data for making good decisions. A program that
enters a new significant kernel of execution requires again
ramping up the aggressiveness of recompilation.

The aggressiveness of the adaptive recompilation engine
is controlled by using a scaling parameter in the estima-
tion of future execution times. We introduce a variable
futureEstimator and change the definition of T; from T; = T,
to: T; = Ty * futureEstimator. This is integrated with phase
analysis as follows. Each hardware pattern PAT has a field
occNum which remembers the number of occurrences. If
the adaptive recompilation model finds a recurring PAT,
such that, PAT.occNum is more than one, the estimated
“age” of a program (Prog.age) is increased. When Prog.age
is larger than a threshold youngThresh, the program has left
the newborn phase and become young. From then on, each
time there is a fresh pattern PAT such that the occurrence
number is less than a threshold mature Thresh, the value of
futureEstimatoris increased; otherwise its value is decreased.
A larger value of futureEstimator drives the adaptive re-
compilation model to make more aggressive recompilation
decisions, assuming methods will run for longer than cur-
rently estimated. Fixed upper and lower bounds protect the
futureEstimator value from diverging in cases of extended
bursts of fresh or mature patterns. Based on earlier experi-
ments we limit futureEstimator to the range [0.9,5.0].

5. EXPERIMENTAL RESULTS

Experimentally we evaluated the performance of both our
offline and online solutions. Our implementations are built
upon Jikes RVM 2.3.6 with an adaptive compiler, and runs
on an Athlon 1.4GHz workstation with 1GB memory, under
Debian Linux with a 2.6.9 kernel.

Benchmarks used in this work include the industry stan-
dard SPECJvMI8 suite benchmark ANTLR, BLOAT, FOP,
PMD and XALAN from the DACAPO suite and two larger ex-
amples, SOOT [39] and PSEUDOJBB (PJBB). SOOT is a Java
optimization framework which takes Java class files as input
and applies optimizations to the bytecode. In our experi-
ments, we run SOOT on the class file of benchmark JAVAC in
SPECJvM9I8 with the —app -0 options, which performs all
available optimizations on application classes. PSEUDOJBB
is a variant of SPECJIBB2000which executes a fixed number
of transactions in multiple warehouses. In these experiments
it executes from one to eight warehouses with 100 000 trans-
actions in each warehouse. For SPECIvM98 we use the S100
input size. For DACAPO benchmarks, we use the large input
size.



For performance evaluation we measured our benchmarks
quantitatively using a baseline (original), and using our of-
fline and online strategies. Overall execution time for the
online approach includes all overhead for phase analysis and
low-level profiling. In the case of the offline approach the
overall execution time includes the overhead of processing
the recompilation trace. Full results for our benchmarks in
absolute and relative terms are shown in Table 2.

5.1 Offline Mechanism

The results of our offline mechanism in absolute terms
as well as relative improvement over the original version are
given in the third and fourth columns of Table 2. The offline
version achieves significant improvements on many bench-
marks, and is positive for nearly all. On JESS, it improves
execution time by 21.3%. On JACK, JAVAC, MPEGAUDIO and
BLOAT the improvements are also quite large. On average,
the offline version saves 8.7% of the execution time. The ef-
fect, however, is not uniform, and for some benchmarks, such
as COMPRESS, DB and FOP, there is only marginal change.
Nevertheless, in an overall sense the results of our offline
mechanism confirm the potential for a comparatively large
benefit by improving the recompilation strategy. We will
discuss these benchmark-specific behaviours in more detail
in Section 6.

5.2 Online Mechanism

The execution time results for the online mechanism are
shown in the fifth and sixth columns of Table 2. For bench-
marks where the offline version shows a large improvement,
the online version also generally performs well. We obtain
up to nearly 18% improvement for JESS, quite close to the
21% improvement found for JESS offline. On average the
online version achieves a 4.4% improvement, about 51% of
the possible performance improvement demonstrated in the
offline version. For the 6 benchmarks that responded most
positively (> 10%) to the offline version, the improvement
online is on average 9.0%, or 65% of the offline result.

Measuring the impact of actual phase identification and
predictions choices beyond raw performance is more diffi-
cult. Experimentally, our thresholds and other heuristic pa-
rameters have been optimized within reasonable ranges on
a subset of benchmarks (SPECIJVM98, soOT and PSUEDO-
JBB); the fact that DACAPO benchmarks respond similarly
is encouraging. We further compare our design with sim-
ple approaches to changing recompilation aggressiveness in
Section 6.2.

5.3 Variance and Overhead

Figure 4 shows 99% confidence intervals for our original, of-
fline, and online data measurements. Our evaluation is ex-
perimentally quite stable and deterministic, with confidence
ranges for the three variations generally showing good sep-
aration. Note that the intervals for JACK are among the
largest and have clear overlap; the =~ 1% performance gain
for JACK online as opposed to offline could be attributed to
data variance and/or the intrinsic imprecision of simple op-
timization benefit/cost estimates. We discuss accuracy and
noise concerns in depth in the following section.

Overhead in profiling systems is always a major design
concern. In our case we make use of hardware counters that
are sampled at every process context switch; at a few tens of
machine cycles per read and only on the order of thousands

of context switches over a program’s lifetime this technique
is extremely cheap. Pattern construction and phase anal-
ysis provide the bulk of our actual overhead, and to mea-
sure total overhead costs we compared the original, base-
line Jikes RVM with an implementation of our online tech-
nique that computes phases as normal but does not actually
change the adaptive recompilation settings (futureEstima-
tor). The overhead column of Table 2 shows the computed
relative overhead. Overhead comes from sources such as
hardware monitoring, pattern construction, phase predic-
tion, and building control events for the recompilation com-
ponent. On average there is a 1.43% slowdown across these
benchmarks due to our data gathering and phase analysis
system. There is always room for improvement, but this
relatively small cost is in most cases greatly exceeded by
the benefit, and demonstrates the practical low overhead of
our technique; again, speedup and other experimental data
includes all overhead.

6. DISCUSSION

Initial recompilation choices necessarily affect later recom-
pilation choices, and there are many potential parameters
and choices in our, or any, recompilation design. A good un-
derstanding of potential variation and relative performance
gain is therefore important to making good, general selec-
tions of recompilation strategies. Here we discuss various
factors that can influence our performance, and present data
further validating the general stability and effectiveness of
our design. We first consider different benchmark character-
istics that are important in our approach. This is followed by
a comparison of our design with other simple optimizations
to the recompilation system, again showing the practicality
of our work and the generality of our good results.

6.1 Benchmark Characteristics

Benchmarks in our study demonstrate a wide range of
responses to our optimization. Several benchmark-specific
factors can be seen to influence whether and where perfor-
mance will be realized using our techniques. Benchmark
length, the stability of the hot set, as well as more general
sensitivity of the program to our profiling and optimization
systems can all affect the relative success.

In our benchmark suite, five benchmarks, BLOAT, PMD,
XALAN, soOT and PSEUDOJBB execute for an order of magni-
tude or so longer than the other shorter benchmarks. Longer
benchmarks recompile many more methods, providing more
opportunity for potential improvement in applying optimiza-
tions to the recompilation strategy. On the other hand,
longer running programs have more data to work with: there
simply are more sample points, and any reduction in speed
due to less optimal recompilation choices can be amortized
over a longer period of execution. From our experimental re-
sults, we find that a comparatively moderate improvement
is produced by both offline (on average 9.8%) and online (on
average 4.9%) strategies.

The performance of shorter benchmarks, however, varies
much more, mainly due to differences in of their method sets
and invocation orders. Our offline mechanism achieves an
on average 13.1% improvement on the five sensitive bench-
marks (JACK, JAVAC, JESS, MPEGAUDIO, and ANTLR) and
only a 3.26% on the five worst benchmarks (COMPRESS, DB,
JAVAC, JESS, MTRT, RAYTRACE, and FOP). Online the aver-
age improvement for these two groups are 8.7% and —0.4%.



Benchmark Original Offline Online Benchmark Prop.
Time (s) || Time (s) | Impr. (%) || Time (s) | Impr. (%) | Overhead (%) || Patterns | Opt.Methods
compress 15.75 15.55 1.3 15.73 0.1 2.02 157.9 17.6
db 37.97 37.22 2.0 37.72 0.6 1.39 450.5 25.3
jack 22.59 20.08 11.2 19.78 12.5 1.71 343.5 90.0
javac 11.78 10.72 9.4 11.10 5.7 1.13 193.9 36.9
jess 18.11 14.25 21.3 14.87 17.9 0.49 204.5 50.0
mpegaudio 20.24 17.81 12.1 19.79 2.3 1.76 103.6 58.9
mtrt 15.14 14.29 6.4 15.42 -1.8 0.82 58.8 36.4
raytrace 14.35 13.30 7.3 14.21 0.8 1.30 63.9 35.3
antlr 47.29 41.99 11.2 44.95 4.9 2.12 236.4 134.5
bloat 262.88 219.03 16.9 230.47 12.5 1.65 1891.6 232.5
fop 22.37 22.51 -0.7 22.80 -1.9 1.69 132.6 57.8
pmd 290.85 258.15 11.2 281.34 3.3 1.70 893.8 218.1
xalan 804.56 750.49 6.7 783.63 2.5 1.07 3432.7 359.4
soot 303.12 278.45 8.1 291.28 3.9 1.85 2542.3 408.2
PseudoJbb 753.95 705.90 6.4 735.62 2.5 0.77 7832.8 331.8
| Average || - I - | 8.7 | - | 4.4 | 1.43 | - | - |

Table 2: Execution results, number of patterns created in the online version, and number of methods opti-
mized. Values are the arithmetic average of the middle 11 out of 15 runs. The Impr. (Improvement) columns
show the percentage change in performance over the original.
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Figure 4: Normalized execution time with 99% confidence interval errorbars for each of our three test

scenarios: original, online and offline.

An unfortunate side effect of our optimization for detect-
ing rejuvenation, or variations in the hot set is a certain
overzealousness of optimization toward the end of execu-
tion. Termination tends to look like any other phase change
or rejuvenation with our current pattern analysis and data,
and optimized recompilation may be overused, recompiling
and optimizing methods that will only be used in the final
fraction of program execution. Solutions based on incorpo-
rating extra, high level information such as knowledge of
termination-specific methods may be possible. In practice,
these sub-optimal online decisions at termination time do
not have an overly large impact; termination time does not
dominate execution for our benchmarks and so we leave re-
ducing this “tail” problem to future work.

It is interesting that low level events can expose high level
behaviour, even for complex, object-oriented programs with
non-trivial control flow. We have successfully used the I-
cache miss rate as a base event, but other choices and event
combinations are of course possible and desirable. RAY-
TRACE, MPEGAUDIO and FOP, for instance, have a relatively
small instruction working set. Thus we observe only slight
changes in I-cache performance, and as can be seen from
the 2nd-last column in Table 2 our pattern creator finds sig-

nificantly fewer patterns in these cases. This provides less
information to the recompilation engine, and thus recom-
pilation choices are not much better than in the original
version: RAYTRACE and MPEGAUDIO show very marginally
positive improvements, while FOP shows a 1.9% reduction.
The fact that performance even in this situation is close to
the original and not significantly degraded is evidence of the
low overhead of our implementation design in general, and
sample-based hardware monitoring specifically.

Other benchmarks have instruction working-sets large enough

to produce significant misses as different code paths are exer-
cised, allowing our online solution to identify patterns easily.
The performance difference resulting from the improved in-
formation is evident in benchmarks such as JACK, JESS, and
JAVAC. JESS’ impressive performance may also be partially
due to its extremely low overhead. Some benchmarks, how-
ever, exhibit cache performance changes, but the actual hot
method set remains quite small. If a small set of methods
are called frequently, as for COMPRESS and DB, the origi-
nal adaptive recompilation engine has a chance to gather
enough samples to recompile the important methods rela-
tively quickly. In these cases, the potential improvement
available by reducing the delay of recompilation is small.



The marginal benefit achieved by our offline solution can be
mainly attributed to reductions in optimization overhead
due to skipping redundant intermediate recompilations for
some methods.

Programs can also exhibit bias with respect to different
hardware events. Some programs like JESS and JACK are
highly “instruction cache sensitive”, meaning that from a
processor-level point of view the instruction cache perfor-
mance has a large impact on the execution time of the pro-
gram [18]. On the other hand, DB and especially COMPRESS
are highly data cache biased. There is obviously limited
room to improve performance from the code side if data
usage has a dominating impact. In these cases even the of-
fline version only obtains a small improvement. We expect
that programs with large memory requirements and hence
garbage collection overhead, heavy I/0O, and so forth will
also respond less well to our design, as in general programs
that are dominated by other costs than code execution speed
will receive reduced benefits from adaptive code optimiza-
tion techniques.

The above discussion suggests that monitoring different
or multiple hardware events may be a route to further opti-
mization. We have explored a few hybrid forms of pattern-
building based on combinations of I-cache miss rate, D-cache
miss rate, branch instruction counts, and brand prediction
miss rates. So far, these designs have not shown useful im-
provement above that of one based on a simple I-cache miss
rate; further exploring this space is, however, potentially
fruitful future work.

6.2 Stability and Comparisons

Understanding which benchmarks can work well is impor-
tant, but differentiating them online may be non-trivial, and
a good recompilation system should perform reasonably well
over a range of benchmarks. For our adaptive system to be
useful it is also important to know that the adaptivity is
effective. Both our online and offline strategies generally in-
crease the aggressiveness of recompilation choices, and we
must consider that similar effects could be achieved by sim-
ply making the the Jikes RVM estimator more aggressive
without adaptation.

Testing the effects of trivial, constant increases in recom-
piler aggressiveness provides a baseline that shows both the
variability of performance of different recompilation strate-
gies and in comparison with our online approach, the actual
impact of adapting to program phases. We evaluate sev-
eral versions of Jikes RVM with no hardware monitoring or
phase analysis, but incorporating our scaled time estimate
formula, T; = T} * futureEstimator, with futureEstimator
set to different fixed, constant factors to increase recompiler
aggressiveness. Table 3 shows the normalized overall execu-
tion time for our benchmarks when the future time estimate
of methods is increased by values between 1.5x and 3.0x;
this represents the range of average increase in aggressive-
ness used by our online system for benchmarks in our suite
(Table 3, last column).

The data in Table 3 shows that there is certainly no one
fixed setting that is optimal for all benchmarks; benchmarks
respond differently, and simply increasing aggressiveness over-
all is not a generally effective strategy. Some benchmarks
have a large variance in performance as the futureEstimator
parameter changes, and some are relatively unaffected. For
all benchmarks except MPEGAUDIO and FOP, our online ver-

sion is optimal or within variance of optimal. In comparison
with simple approaches, our online design provides stable
and good results overall, significantly more so than the base
version or any of the constant aggressiveness settings. Our
approach is expected to bring benefit to all VMs with more
than one optimization level, by pushing the optimization
point(s) earlier.

7. CONCLUSIONS AND FUTURE WORK

For many programs, sub-optimal choices in recompilation
can result in reduced performance. We have shown how im-
provements to recompilation strategy can result in better
performance, and provided a design using coarse grained,
variable length phase prediction to adaptively improve re-
compilation choices. Using offline trace data for prediction
provides an experimental high performance watermark for
such a technique, and functions as a useful optimization
when program executions are repeated exactly. Our fully
online implementation makes choices based on dynamically
acquired data, and exhibits both low overhead and good
overall performance.

Multiple factors influence performance in a recompilation
system, and to show meaningful improvement a close eval-
uation of performance under different scenarios and with
different levels of detail is important. We have explored our
optimization in terms of execution time from a variety of
perspectives, and provided comparative evaluations of our
designs where possible. Detailed examination of benchmark
behaviour reveals that benchmarks respond in different ways
to the relative aggression of a recompilation engine, further
complicating the optimization space. We consider a wide va-
riety of benchmark-specific factors, including high level con-
siderations such as overall runtime and low level influences
such as the density of hardware event data. Under these
highly variable and “noisy” conditions our adaptive online
system achieves a significantly improved performance.

It is important to note that our design and choice of moni-
toring [-cache misses applies to and reflects the performance
of the entire JVM, and not any specific component. Mea-
suring the impact on specific subsystems is not practical due
to the overhead introduced and potential further perturba-
tion of results. Thus while a complete breakdown of impact
on varying JVM components or specific optimizing actions
such as an individual recompilations would be ideal, our ex-
perimental results reflect the real difficulty in separating the
impact on different JVM components or subsystems.

There exist a large number of possible extensions to this
work. The success of our approach, like most adaptive on-
line systems, depends on the extent of variability in runtime
execution data. We have expended a great deal of effort
to understand and experimentally validate potentially criti-
cal factors, ensuring our approach is a generally robust op-
timization. Further understanding and detection of bench-
mark characteristics may improve our design, and could also
be used to help select benchmark-specific responses by the
adaptive optimization system. Profile repositories, aggre-
gating profile data from multiple executions may be a useful
way of moving online performance closer to that of offline
performance [4]. Mixing profile data from multiple runs or
using offline /online hybrid data might also help with the “tail
problem” of predicting the termination phase of a program.

Different and finer grain phase categorizations are possi-
ble of course. We intentionally exploit coarse grained phase



Benchmark FutureEstimator Setting Online

1.5x | 2.0x | 2.5x | 3.0x | Online || Aggressiveness

compress || 0.997 | 0.970 | 1.018 | 1.019 | 0.998 3.05

db || 0.991 | 1.008 | 1.022 | 1.025 0.993 1.98

jack || 0.987 | 1.041 | 1.063 | 1.080 | 0.876 2.16

javac || 0.970 | 0.955 | 0.975 | 0.991 0.942 2.40

jess || 0.924 | 0.879 | 0.856 | 0.852 0.821 2.34

mpegaudio || 0.960 | 0.924 | 0.925 | 0.948 | 0.978 2.44

mtrt || 1.017 | 1.039 | 1.127 | 1.151 1.018 2.22

raytrace || 0.983 | 1.010 | 1.057 | 1.053 | 0.990 1.99

antlr || 0.954 | 1.019 | 1.030 | 1.075 0.951 1.86

bloat [| 0.915 | 0.972 | 0.899 | 0.902 0.877 1.87

fop || 0.997 | 1.084 | 1.068 | 1.065 1.019 1.81

pmd || 0.985 | 1.008 | 1.006 | 1.013 | 0.970 1.71

xalan || 0.990 | 0.981 | 0.985 | 1.001 0.974 1.91

soot || 0.966 | 0.950 | 0.945 | 0.969 | 0.961 1.35

PseudoJbb || 0.991 | 0.978 | 0.975 | 1.025 0.976 1.09

Table 3: Fixed setting of futureEstimator versus the online version. Values are normalized execution times
(smaller is better), except for the last column. The “online aggressiveness” column shows the average fu-
tureEstimator value used in the online version, weighted proportionally over program execution.

information to allow complex optimizations time to act and
improve performance. Startup phases are well-known, but
the use of high level and variable length phase information,
when cheaply gathered, is also obviously of value. Detecting
major phase changes may be useful for scheduling garbage
collection, heap data reorganization or any other design for
larger scale adaptive execution. Additional or different hard-
ware event data may be useful for more “data-centric” ap-
plications, and part of our current investigations include the
use of multiple and hybrid hardware event sources. A po-
tentially very fruitful direction for future work is in directly
associating software level units with the major hardware per-
formance variations. There are many possible approaches,
but among other benefits this would enable better identifi-
cation of hot methods for recompilation.
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