
   

Impact of Screen Size on Performance, Awareness, and 
User Satisfaction With Adaptive Graphical User Interfaces 

Leah Findlater and Joanna McGrenere 

Department of Computer Science 
University of British Columbia, Vancouver, Canada 

{lkf, joanna}@cs.ubc.ca 
 

ABSTRACT 

Adaptive personalization, where the system adapts the 
interface to a user’s needs, has the potential for significant 
performance benefits on small screen devices. However, 
research on adaptive interfaces has almost exclusively 
focused on desktop displays. To explore how well previous 
findings generalize to small screen devices, we conducted a 
study with 36 subjects to compare adaptive interfaces for 
small and desktop-sized screens. Results show that high 
accuracy adaptive menus have an even larger positive 
impact on performance and satisfaction when screen real 
estate is constrained. The drawback of the high accuracy 
menus, however, is that they reduce the user’s awareness of 
the full set of items in the interface, potentially making it 
more difficult for users to learn about new features.  
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INTRODUCTION 

With the proliferation of mobile phones and PDAs, small 
screen devices are now pervasive, but smaller screens can 
make even basic tasks such as reading and web browsing 
more difficult [9,19]. The reduced screen size means that, 
even with high resolution screens, designers must choose 
only the most important features to display. Additionally, 
users tend to use mobile devices in contexts where their 
attention is limited in comparison to traditional 
environments [24], which may make it more difficult to 
navigate a complex interface. To address the limitations of 
small screen devices, several researchers have proposed that 
adaptive interfaces, where the system tailors the interface to 
an individual user’s needs, may be beneficial [2,19].  

Despite the potential theoretical benefits, research on 
adaptation for small screens has focused largely on adaptive 
web content (e.g., [19,28]) rather than on adaptive graphical 
user interface (GUI) control structures. GUI control 
structures, such as menus, present unique challenges in 
comparison to adaptation of content, for example, a higher 
user expectation for consistency [5]. In the context of 
mobile devices, there has been a small amount of work on 
adaptive menu structures for phones [3,25], but evaluations 
have been informal. The bulk of adaptive GUI research, 
rather, has been conducted on desktop-sized displays, 
where evaluations have been inconclusive: in some cases, 
adaptive menus or toolbars have been faster and preferred 
to their static counterparts [13,15], whereas other research 
has shown the opposite [10,22,23]. As a result, adaptive 
GUIs have been conceptually controversial and very few 
have appeared in commercial applications. If the benefit of 
adaptivity is more evident for small screens than large 
screens, adaptivity may be less controversial in this context 
and should be reconsidered as a viable design alternative. 

The main goal of the work reported here was to investigate 
the impact of an adaptive GUI on small screen displays 
relative to desktop-sized displays. The results should shed 
light on the degree to which prior findings directly apply to 
smaller displays: for instance, an adaptive algorithm that 
was less efficient than a static counterpart may no longer be 
so when the two are used on a smaller screen. We also 
sought to extend prior work [13,29] by assessing the 
potential interaction between adaptive accuracy and screen 
size. We conducted an experiment with 36 users, comparing 
adaptive split menus [26] on a desktop screen to a PDA-
sized screen. Since adaptive accuracy can affect 
performance and use of adaptive predictions [13,29], we 
included two levels of accuracy (50% and 78%) and a static 
control condition. Further, we specifically accounted for the 
predictability and consistency within our two accuracy 
levels, something that has not been done before.  

Our study shows that high accuracy adaptive menus have a 
larger positive impact on user performance and satisfaction 
in small screens compared to large screens. This suggests 
that the potential of adaptive interfaces may be best realized 
in situations where screen real estate is constrained. We had 
thought this performance and satisfaction differential would 
be due to reduced navigation (i.e., scrolling) in small 
screens, but, interestingly, screen size also impacts user 
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behavior: people are more likely to take advantage of the 
adaptive predictions in a small screen. As expected, a low 
accuracy interface performs poorly regardless of screen 
size, which reinforces that research findings on adaptivity 
must be understood in the context of accuracy levels.  

A secondary goal of our work was to measure the impact of 
screen size and adaptive accuracy on awareness. Recently 
introduced [11], awareness quantifies the degree to which 
the user is aware of the full feature set of an application, 
and provides insight into the potential performance tradeoff 
of working in a personalized interface. For example, an 
adaptive menu may focus the user’s attention on a small set 
of frequently used features, with the drawback that the user 
may not see and thus learn about additional features. Our 
study shows that despite the performance benefits of a high 
accuracy adaptive interface, it can result in reduced 
awareness. It also suggests that awareness is impacted more 
negatively in small screens than in large screens, an 
important tradeoff that designers will need to consider. 

The primary contribution of this paper is empirical evidence 
demonstrating the relative benefits of adaptive GUIs for 
small displays in comparison to large displays. A secondary 
contribution is to show that this benefit is not purely due to 
a reduction in the amount of navigation needed to access 
features, but that screen size also impacts user behaviour. 
Finally, the measurement of awareness provides a richer 
understanding of the impact of working in adaptive 
interfaces. Combined, our findings motivate the need to 
revisit previous adaptive research in the context of small 
screen devices, especially for those studies with negative 
outcomes for adaptive approaches. 

RELATED WORK 

A large body of work exists on usability of non-adaptive 
small screen interfaces, generally showing that tasks are 
more difficult on small screens. For example, in comparison 
to a large screen, reading text requires more navigation [9], 
and searching the Internet is slower [19].  

Adaptive Interfaces for Small Screens 

Approaches to adaptation can be broadly grouped into two 
categories: content and GUI control structures; our focus is 
on the latter. Research in this area has largely been done on 
desktop displays. One exception is SUPPLE, which 
automatically adapts interfaces based on device constraints 
and usage, but evaluations have been small and informal 
[12]. In other work, Bridle and McCreath compared a static 
mobile phone menu structure to six approaches that 
adaptively predicted a single shortcut item [3]. Simulation 
on logged user data suggested that some of the adaptive 
approaches would be more efficient than the static one, but 
no formal user evaluation was reported. Bridle and 
McCreath stress that stability should be considered in 
adaptive interface evaluations, which we did for the 
adaptive menus in our study (note: we call this consistency). 

Adaptation of content has been applied more widely to 
small screens. For example, Smyth et al. have used adaptive 

hypermedia to personalize web portals for mobile devices, 
showing that personalization can reduce navigation to 
access content [27]; follow-up large-scale deployment 
showed that the approach increased customer satisfaction 
[28]. Adaptation of content, however, may present different 
challenges than adaptation of control structures [5]. Users 
may not expect the same degree of consistency from 
content as from control structures, and, compounding this, 
consistency can impact motor memory, one aspect of 
performance with control structures.  

General Evaluations of Adaptive Interfaces 

Several studies have compared adaptive control structures 
to static and/or adaptable (user-controlled) counterparts 
with mixed results. Early research by Greenberg and Witten 
showed that an adaptive menu structure, which provided a 
shorter search path to the most frequent items, was faster 
than a static structure [15]. Conversely, Mitchell and 
Shneiderman compared static to adaptive menus that 
reordered during usage based on frequency, finding the 
static menus were faster and preferred [23]. 

Since being introduced in the form of split menus by Sears 
and Shneiderman [26], split interfaces have received a 
relatively large amount of research attention. An adaptive 
split interface separates adaptive and static sections of the 
interface. The original work showed that predetermined 
split menus, where items were moved to the adaptive top 
section of the menu, were at least as fast, or faster, than 
traditional static menus [26]. More recently, Gajos et al. 
showed that users had a strong preference for an adaptive 
split interface, which replicated items in the adaptive 
section, in comparison to a static counterpart [13]. Findlater 
and McGrenere have shown that adaptive split menus 
(where items were moved above the split) were slower than 
both static and adaptable split menus, except, in the case of 
the latter, when adaptable appeared first in order of 
experimental presentation [10]. We chose adaptive split 
menus for our study because they have been widely studied 
in the literature, and they appear in commercial 
applications, such as recency-based font selection menus. 

Exploring Adaptive Characteristics 

Commonly cited issues with adaptive interfaces include 
lack of control, predictability, transparency, privacy, and 
trust [18]. Recently, researchers have begun to explore how 
these and other qualities may impact the success of an 
adaptive GUI. For example, several researchers have 
evaluated personalization approaches that use different 
degrees of user control [4,8,22]. More directly related to our 
study, Tsandilas and schraefel compared two approaches 
for adaptive highlighting of item lists and varied the level of 
prediction accuracy (100%, 80%, and 60%), finding that the 
lower accuracy conditions were slower [28]. Results also 
showed that lower accuracy increased errors for one of the 
adaptive approaches (Shrink, a fisheye-type distortion), 
which suggests that the effectiveness of adaptive designs 
may interact with accuracy.  



   

Gajos, Czerwinski, Tan and Weld compared two adaptive 
toolbars to a static counterpart within two levels of adaptive 
accuracy [13]. The two adaptive toolbars were implemented 
as split interfaces, either moving adaptively suggested items 
to the adaptive section of the toolbar, or replicating the 
items there. The accuracy levels were achieved by creating 
two different tasks for which the algorithms were either 
30% or 70% accurate. Results of a controlled experiment 
showed that the split interface that replicated items was 
significantly faster than the static toolbar. Both of the 
adaptive interfaces were faster with the higher accuracy 
condition, and participants took advantage of the adaptive 
suggestions more often in that condition. 

Cockburn, Gutwin and Greenberg developed a model of 
menu performance that applies to both static and adaptive 
designs [6]. The model incorporates Hick-Hyman Law and 
Fitts’ Law, and takes stability of an adaptive menu design 
into account. Results showed the model could accurately 
predict performance for four types of menus: frequency-
based and recency-based split menus, traditional menus, 
and morphing menus (where items are resized according to 
frequency). While the model has potential for comparing 
designs theoretically, it cannot be applied directly to our 
study because it does not account for scrolling menus, 
which are used in the small screen condition. 

EXPERIMENT METHODOLOGY 

To compare the impact of adaptive menus on a small screen 
versus a desktop-sized display, we conducted a controlled 
lab study with 36 subjects. An obvious drawback of 
designing for a small screen is that not all items can be 
shown at once, which results in an added navigation cost 
for accessing the items that are not immediately available. 
Our hypothesis was that, by reducing this cost, adaptive 
interfaces should be relatively more beneficial for a small 
screen than a large screen. Even so, given that previous 
results for adaptive GUIs on large screens have been mixed, 

it was not clear how an adaptive interface for a small screen 
would compare to a static one. We compared two adaptive 
menus (with 50% and 78% accuracy) and a static menu; the 
main task was to select a series of menu items. Support for 
our hypotheses would underscore the need for designers to 
revisit adaptive approaches in the context of small screens, 
where they may be more useful. 

Conditions 

Figure 1 shows the layout of the experimental conditions. 

Screen Size 

To simulate two distinct screen sizes, the window 
containing the experimental application was either 800x600 
pixels (Large screen) or 240x320 pixels (Small screen). For 
the Large screen, this was big enough to display a full-
length menu for our experimental task. The Small screen 
condition, which was the size of many Pocket PC PDAs, 
was only big enough to display a subset of menu items at 
once. To access all items in the Small screen, the user had 
to hover or click on scroll widgets that appeared at the top 
and bottom of the menu (similar to menus in Windows 
Mobile 6). Based on pilot testing with 4 subjects, scroll 
speed was set at 1 item per 75 ms. This was reported to be 
the best compromise between efficiency and ease of reading 
item labels; with faster scrolling speeds pilot subjects often 
overshot their target and would have to recover by scrolling 
back. We controlled for input device and display 
characteristics by using a mouse for both conditions, and 
simulating the screen sizes on an 18” LCD flat panel 
monitor with 1280x1024 resolution. 

Menu Type 

We included a Static control condition, and High and Low 
accuracy adaptive conditions. The menus in the Static 
condition were traditional pull-down menus, while the High 
and Low adaptive conditions were adaptive split menus. 
With the split menus, adaptively chosen items were 
replicated, rather than moved, above the split (as preferred 

Figure 1. Screenshots of Small screen (left) and Large screen (right) experimental setups with adaptive menus open, showing task 

prompt, adaptive top section, and scroll widgets for the Small screen. The High and Low adaptive conditions looked identical; the 

Static menus did not have an adaptive top section. 
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by users in [12]); this necessarily made the split menus 
slightly longer than the Static menus. The bottom section 
was identical to the Static menus, while the top section 
contained three items (as suggested by [6,26]).   

For each condition, the menu bar contained three individual 
menus, each with 24 items. The 24 items were further 
separated into semantically related groups of 4 items. (The 
length and group size were based on averages from four 
desktop applications, Firefox 2.0, Microsoft Excel 2003, 
Adobe Reader 7.0, and Eclipse 3.2, including both top-level 
and cascading submenus.) 

Adaptive algorithm detail. To achieve two levels of 
accuracy, Tsandilas and schraefel changed the set of 
adaptive predictions for each trial, either including the item 
to be selected or not [29]. As acknowledged by the authors, 
this approach would result in a high level of 
unpredictability. Gajos et al. took another approach, using 
two different experimental tasks that resulted in different 
levels of accuracy for the same interface [13], which makes 
it difficult to directly compare performance. To address 
these limitations, we used an identical underlying set of 
selections for each condition, and determined the adaptive 
predictions in advance using a two-step process: 

1. Apply base algorithm. Using a simple base algorithm 
(shown in Figure 2), we pre-calculated the items to 
appear in the adaptive top. This algorithm incorporated 
both recently and frequently used items, as suggested by 
the literature [10,14] and is commonly used in 
commercial adaptive user interfaces such as Microsoft 
Office 2003’s adaptive menus. For the randomly 
generated selection streams in our study (described later), 
this resulted in 64.2% accuracy on average (SD = 1.7). 

2. Adjust accuracy. To adjust accuracy, we then randomly 
selected 14% of trials (18 per block, as discussed later) 
that could be manipulated to increase accuracy (i.e., by 
swapping the item to be selected into the adaptive top) 
and 14% that could be manipulated to decrease accuracy 
(i.e., by swapping the item to be selected out of the 
adaptive top). This resulted in 50% and 78% accurate 
adaptive conditions, two somewhat arbitrarily chosen 
levels of accuracy, as we cover in the Discussion. We 
also enforced several constraints on this manipulation in 
an effort to maintain consistency and predictability (e.g., 
the most recently selected item always had to appear in 
the adaptive top).  

Consistency and predictability of the menus. We chose the 
above approach because we wanted the adaptive interfaces 
to behave as similarly as possible in aspects other than 
accuracy. We considered: (1) consistency, which we 
defined as the percentage of total trials where no items 
changed in the adaptive top (similar to [3]), and (2) 
predictability, which we defined as the percentage of trials 
where the adaptive top contained the item to be selected, 
and this could be predicted because that item had been in 
the adaptive top for the previous trial as well. The accuracy, 
predictability, and consistency of the Low and High 
conditions is summarized in Table 1. Note that the Low 
condition had both lower accuracy and lower consistency 
than the High condition. While it would have been ideal to 
achieve the same level of consistency for both High and 
Low, this compromise at least paired high consistency with 
high accuracy, and vice versa. The relative importance of 
these factors is covered in the Discussion section. 

Task 

The main experimental task was a sequence of menu 
selections. As shown in the task prompt in Figure 1, the 
system displayed the name of a menu item for each trial but 
did not specify which menu should be used. Only once a 
subject had correctly selected the item, the next one would 
be displayed. To mitigate the impact of any particular set of 
selections (i.e., item locations), a new set was randomly 
generated for each subject. However, this underlying set of 
selections was used for all of an individual subject’s 
conditions, and different menu masks (or item labels) were 
applied in each condition to reduce learning effects, similar 
to previous work [10,29]. For example, if item 3 on menu 1 
was selected first, this was the case for each condition. The 
menu masks for each subject were created by randomly 
assigning 54 semantically related groups of 4 item labels, 
such that each group appeared once and only once per 
subject (as in [6]). For example, “diamond, topaz, emerald, 
sapphire,” represented the precious stones group. All menu 
item labels were single words, 5-10 letters long. 

Previous work has shown both that users only use a small 
subset of items (for Microsoft Word: 8.7% [20] to 21.5% 
[21] of items), and that usage can often be modeled by a 
Zipf distribution [16,17]. Following the approach of 
Cockburn, Gutwin and Greenberg [6], we simulated this 
type of selection pattern: we generated a Zipf distribution 
(Zipfian R2=.99) across only 8 randomly chosen items out 
of the 24 items in a menu (with respective frequencies of: 
15, 8, 5, 4, 3, 3, 2, 2). The final selection stream was also 
randomized, for a total of 126 trials per task block (42 trials 
in each of 3 menus). Each subject completed the same task 
block twice per condition. 

 Accuracy Predictability Consistency 

 M (%) SD (%) M (%) SD (%) M (%) SD (%) 
Low 50.0 1.7 94.1 2.3 19.7 2.6 
High 78.5 1.7 94.4 2.0 36.5 3.9 

Table 1. Accuracy, predictability, and consistency of adaptive 

conditions. Since task selection streams were randomly 

generated, values were not identical for each subject (N = 36). 

1.  set top section to the most recently selected item and the two 
most frequently selected items (as pre-calculated from the 
selection stream) 

2.  if there is overlap among these three slots or if this is the first 
selection in the stream (i.e., no recently selected item exists) 

then the third most frequently selected item is included so 
that 3 unique items appear in the top 

3.  order top items in the same relative order as they appear in 
the bottom section of the menu 

Figure 2. Base adaptive algorithm 



   

Quantitative and Qualitative Measures 

Performance. Speed was measured as time to complete 
both task blocks per condition. Error rate was also recorded, 
although there was an implicit penalty for errors since 
subjects had to correctly complete a trial before advancing. 

Awareness. Awareness is a measure of the secondary, 
incidental learning that may occur as the user performs a 
primary task [11]. Subjects were given an awareness-
recognition test, similar to that used by Findlater and 
McGrenere [11], for each menu condition. This test listed 
12 randomly chosen items that were found in the menus for 
each condition, but were not selected in the tasks. It also 
included 6 items randomly chosen from a set of distractor 
items; the full distractor set contained 1 item for each group 
of 4 items used in the menus, such that the item was related 
to that group (e.g., distractor for the group “soccer, 
basketball, baseball, football” was “rugby”). Valid and 
distractor items were chosen evenly across menus. 

For each item, subjects were asked to note if they definitely 
remembered it. From this, we calculate awareness as the 
corrected recognition rate of the recognition test score. This 
is a commonly applied method in psychology to account for 
individual variation in the amount of caution a subject 
applies when responding to a memory test; it is simply the 
percentage of valid targets correctly remembered minus the 
percentage of distractors incorrectly chosen [1].  

Subjective measures. Finally, after each menu condition 
subjects were asked to rank the condition along several 7-
point Likert scales: difficulty, efficiency and satisfaction. 
Additionally, consistency and predictability were also asked 
for the two adaptive conditions. Lastly, we asked subjects 
for their overall preference of the three menu conditions. 

Design 

A 2-factor mixed design was used: screen size (Small or 
Large) was a between-subjects factor, while menu type 
(High, Low or Static) was within-subjects. Presentation 
order of menu type was fully counterbalanced. 

Subjects 

Thirty-six subjects (19 females) between the ages of 19-49 
were randomly assigned to either the Small or Large screen 
condition and to a presentation order for menu type. 
Subjects were recruited through campus advertising and 
were screened so that they were not novice computer users 
(i.e., used a computer for at least 3-5 hours per week). Each 
subject was paid $15 to participate. 

Apparatus 

The experiment used a 2.0 GHz Pentium M laptop with 1.5 
GB of RAM, running Microsoft Windows XP, and 
connected to an 18” LCD monitor at 1280x1024 resolution. 
The application was coded in Java 1.5. Figure 1 shows a 
screenshot of the application: instructions were given one at 
a time at the top of the screen. The system recorded all 
timing and error data. 

Procedure 

The experiment was designed to fit in a 1.5 hour session. 
Subjects were first given a background questionnaire. Then, 
to introduce the format of an awareness-recognition test, 
subjects completed a 5-minute paper-based search task on a 
list of words, followed by an awareness test of words that 
appeared on the list but were not included in the task. This 
was so subjects would be prepared for a similar test after 
each menu condition. 

Following this, the three menu conditions were presented, 
with 5-minute breaks and paper-based distractor tasks 
between each. For each condition, the subject completed a 
short practice block of 15 selections, followed by the same 
task block repeated twice. To reduce fatigue, 30-second 
breaks in the middle of each task block and a 1-minute 
break between blocks were enforced. After the second task 
block the awareness recognition test was administered. At 
the end of all three conditions, a preference questionnaire 
asked for comparative ratings of the three menu types. 

Subjects were not told about the different accuracy levels 
for the conditions. For the first adaptive condition they were 
simply told that the items in the top section of the menu 
would change as they performed the task, and for the 
second adaptive condition that the behaviour of the top 
section was slightly different from the previous condition.  

Hypotheses 

We summarize our main hypotheses: 

H1. Higher adaptive accuracy is faster than lower. The 
difference between High and Low would replicate previous 
findings [13,29]. Previous results of comparing adaptive 
menus to static ones have been conflicting [10,15,23,26], so 
it was unclear how the static menu would fare. 

H2. Small screen is slower than Large screen. Previous 
research has shown that tasks such as text reading and 
content retrieval are slower on small screens (e.g., [9,19]), 
so this should be the case for accessing menu items, 
especially considering the additional scrolling needed. 

H3. Effect of adaptive accuracy on speed is greater in 

Small screen than Large screen. The relative benefit of the 
adaptive interfaces should be higher for the small screen, 
largely because they will reduce the amount of scrolling. 

H4. Higher adaptive accuracy results in lower awareness, 

and Static has the highest awareness. The higher the 
adaptive accuracy, the fewer menu items that users will 
need to navigate through to complete their task blocks. 
Thus, higher accuracy should result in reduced awareness. 

H5. Small screen results in lower awareness than Large 

screen. Since at least half of the menu items are hidden 
from view at any given time with the Small screen 
condition, it should result in lower awareness than the 
Large screen condition. 

H6. Effect of adaptive accuracy on awareness is greater in 

Small screen than in Large screen. Combining the 



 

 

arguments from H4 and H5, we would expect the 
differences in awareness due to accuracy to be even more 
pronounced in the Small condition. 

RESULTS 

A 2x3x2x6 (screen size x menu type x task block x 
presentation order) repeated measures (RM) ANOVA 
showed no significant main or interaction effects of 
presentation order on the main dependent variable of speed, 
and showed a main, learning effect of block. Since both of 
these were expected, we simplify our results by examining 
only effects of screen size and menu type, collapsing across 
block. All pairwise comparisons were protected against 
Type I error using a Bonferroni adjustment. Where df is not 
an integer, this is because we have applied a Greenhouse-
Geisser adjustment for non-spherical data. We report 
measures which were significant (p < .05) or represent a 
possible trend (p < .10). Along with statistical significance, 
we report partial eta-squared (η2), a measure of effect size. 
To interpret this value, .01 is a small effect size, .06 is 
medium, and .14 is large [7]. 

Two subjects (1 Large screen and 1 Small screen) were 
removed from the analyses for each having at least one 
performance measure more than 3 standard deviations away 
from the mean. Thus, we report on the data of 34 subjects. 

Speed 

We present the speed results first, followed by secondary 
analysis to understand some of the specific behaviours that 
may have contributed to the differences in speed (i.e., 
scrolling and use of adaptive predictions).  

Primary Speed Results 

On average, subjects took 877 seconds to complete both 
selection blocks in each condition (SD = 189). The results 
are summarized in Figure 3. A 2x3 RM ANOVA for speed 
(screen size x menu type) showed that the combination of 
menu type and screen had a significant impact on speed 
(i.e., an interaction effect F(2,64) = 9.201, p < .001, η2 = 
.456). To understand the reason for this we conducted 
pairwise comparisons, as shown in Table 2.  

High accuracy menus are faster than Low ones, but 

outperform Static menus only in Small screens. As 
predicted by H1, High was faster than Low in both screen 
conditions, showing that a higher accuracy interface is more 
efficient independent of screen size. Support for H3 is also 

shown in the pairwise comparisons by looking at the 
relative performance of Static to the adaptive menus for 
each screen size. High was no different than Static in the 
Large condition, whereas it was significantly faster than 
Static in the Small condition. The Low accuracy menu did 
not perform better than Static in either condition; in fact, it 
performed worse than Static in the Large screen. Thus, 
from a performance standpoint, our results show that there 
was a benefit to adaptive menus, relative to status quo 
Static menus, only when they have High accuracy and only 
in Small screens. Low accuracy is at best no worse than 
Static (for Small screens) and at worst, it degrades 
performance relative to Static (for Large screens). 

Small screen slower than Large screen. As predicted by 
H2, subjects were significantly slower using the Small 
screen, taking 938 seconds on average to complete both 
task blocks in that condition, compared with 821 seconds in 
the Large condition (a main effect of screen, F(1,32) = 
20.923, p < .001, η2 = .395).  

Secondary Analyses: Scrolling and Adaptive Predictions 

High accuracy reduces scrolling. One of the expected 
benefits of the adaptive menus in the Small screen was that 
they would reduce the amount of scrolling (there was no 
scrolling in the Large condition). We counted scrolling as 
the number of items scrolled upward or downward. The 
mean items scrolled in High, Low, and Static were 1019, 
1750, and 1867 respectively. High indeed resulted in 
significantly less scrolling than the other two menus, which 
mirrors the speed results. (A single factor (menu type) RM 
ANOVA on the Small screen data showed a main effect of 
menu type on scrolling, F(2,32) = 31.715, p < .001, η2 = 
.665, and p < .001 for both the High-Low and High-Static 
comparisons.)  

Small screen increases use of adaptive predictions. 

Previous work has suggested that lower accuracy adaptive 
interfaces will result in lower user trust in the adaptive 
predictions [29], and that users will be less likely to make 
use of those predictions [13]. To explore this behaviour for 
the two adaptive menu conditions, we ran a 2x2 (menu type 
x screen size) RM ANOVA on the percentage of trials 
where subjects did not use the top section of the menu to 
make a selection that had been correctly predicted by the 
adaptive menu. We call these non-strategic selections. 
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 Figure 3. Speed (N = 34). 

Menu (i) Menu (j) 

Mean 

Difference (i-j) Std. Error Sig.a 

Small screen 

High Low -213.394* 31.178 <.001 
High Static -152.359* 30.561 <.001 
Static Low -61.035 35.339 .281 

Large screen 

High Low -119.856* 31.178 .002 
High Static 24.387 30.561 1.000 
Static Low -144.243* 35.339 .001 

a. Adjusted for multiple comparisons using Bonferroni. 

* The mean difference is significant at the .05 level. 

Table 2. Pairwise comparisons for speed, in seconds (N=34). 



   

Subjects in the Large screen condition made significantly 
more non-strategic selections than subjects in the Small 
screen condition, 22.7% vs. 9.7% (main effect of screen 
size, F(1,32) = 5.706, p = .023, η2 = .151). This result 
suggests that subjects perceived the adaptive predictions to 
be more useful in the Small screen condition, which may at 
least partially explain why the High accuracy menus were 
faster than Static menus for Small screens but no different 
for Large screens. Also, as expected, subjects made 
significantly more non-strategic selections in Low (18.9%) 
than in High (11.4%) (a main effect of menu, F(1,32) = 
7.657, p = .009, η2 = .193).  

Awareness 

After efficiency, we were most interested in how the menu 
conditions and screen sizes would impact the user’s overall 
awareness of menu items. Figure 4 shows the overall 
corrected awareness test scores. A 2x3 (screen size x menu 
type) RM ANOVA showed that the menu type did 
significantly impact users’ awareness (main effect of menu 
type on awareness, F(2,64) = 6.547, p = .003, η2 = .170).  

High accuracy results in the lowest awareness. We found 
partial support for H4. As expected, High had the lowest 
awareness, with an average score of 19% on the awareness 
test, in comparison to both Low (30%) and Static (31%) 
(pairwise comparisons were p = .006 and p = .009, 
respectively). However, there was no significant difference 
found between Low and Static. 

Small screens seem to impact awareness more negatively 

than Large screens. We found trend level support for H5. 
The Large screen subjects scored on average 31% on the 
awareness test, while the Small subjects scored only 22% 
on average, a difference that was marginally significant 
(main effect of screen on awareness, F(2,32) = 3.392, p = 
.075, η2 = .096). However, we did not find any support for 
H6; the different accuracy levels did not have a greater 
impact on awareness in the Small screen condition relative 
to the Large condition (there was no significant interaction 
effect between screen size and menu type, F(2,64) = 1.134, 
p = .328, η2 = .034). 

High accuracy fastest for selecting frequent items, but 

slower than Static for infrequent items. As a possible 
indirect effect of awareness on performance, we wanted to 
know if subjects had more difficulty selecting infrequently 

accessed items in conditions with lower awareness. To do 
this, we blocked on frequency of item, grouping the 12 
items that had been selected only 2 or 3 times per task block 
separately from the remaining 12 items (i.e., the frequent 
items) and calculated each subject’s average speed for these 
two groups. This is shown in Figure 5. A 2x3x2 (screen size 
x menu type x frequency block) RM ANOVA on the speed 
averages did show that the type of menu differentially 
impacted both the time it took to select infrequent items as 
well as frequent items (a significant interaction effect 
between menu type and frequency block, F(2,64) = 30.365, 
p < .001, η2 = .487). For frequently selected items, High 
was faster than Static and Low (p < .001 for both). 
However, for the infrequently selected items, Static was 
faster than both Low and High (p < .001 for both). This 
shows that High made it very efficient to access a small 
number of features, but the drawback was that it took 
longer to access the less frequently used features. While this 
effect may be partly due to the additional visual search time 
required to process the additional three items in the 
adaptive conditions, the higher awareness afforded by the 
Static menus likely made it easier to learn all the item 
locations more evenly. 

Errors 

A 2x3 (screen size x menu type) RM ANOVA showed no 
significant differences for error rate. Errors were uniformly 
low in all conditions (M = 2.2, SD = 1.8 per condition). 

Subjective measures 

High accuracy most satisfying menu in Small screen 

condition: A reliability test showed that our subjective 
measures of difficulty, efficiency, and satisfaction measured 
the same internal construct (Cronbach’s alpha = .858), so 
we collapsed these into a single overall satisfaction 

measure. A 2x3 (screen size x menu type) RM ANOVA 
showed that overall satisfaction was significantly impacted 
by a combination of the menu used and the screen size (an 
interaction effect, F(1.711,58.189) = 3.489, p = .044, η2 = 
.093). Pairwise comparisons showed that there were no 
differences in satisfaction for the Large screen. For the 
Small screen, however, subjects were significantly more 
satisfied with High than they were with Low (p = .008) and 
Static (p <.001). This pattern reflects the speed results and 
is evident from the data in Figure 6. 
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Figure 4. Awareness recognition test scores (N = 34). 
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Subjects perceived High to be more consistent and 

predictable than Low: Our theoretical calculations for 
consistency and predictability of the menus aligned with 
subjects’ perceptions. A 2x2 (screen size x menu type) RM 
ANOVA for the High and Low conditions showed that 
subjects felt that High was more consistent than Low 
(F(2,32) = 7.493, p = .010, η2 = .190) and a trend suggested 
that subjects felt that High was also more predictable than 
Low (F(2,32) = 3.868, p = .058, η2 = .108). 

High accuracy preferred in Small screens, whereas more 

even split between High and Static in Large screens: As 
summarized in Figure 7, the majority of subjects (12/17) in 
the Small screen condition chose High as their preferred 
menu type. In contrast, preference of Large screen subjects 
was more evenly split between High and Static (8 and 6, 
respectively). Three subjects in the Small screen condition 
chose Low even though their speed results showed they 
were faster with High; when asked afterward to explain 
their reasoning, they had chosen Low because they found it 
more predictable. For the Large screen, 3 subjects could not 
distinguish between Low and High; their speed, order of 
presentation, and non-strategic selections did not provide an 
obvious explanation for this. 

Summary 

We summarize our results with respect to our hypotheses. 

H1. Higher adaptive accuracy is faster than lower. 
Supported. However, performance of Static relative to High 
and Low depended on screen size. 

H2. Small screen is slower than Large screen. Supported. 

H3. Effect of adaptive accuracy on speed is greater in 

Small screen than Large screen. Supported. 

H4. Higher adaptive accuracy results in lower awareness, 

and Static has the highest awareness. Partially supported. 
High had reduced awareness in comparison to Low and 
Static, but there were no differences between the latter two. 

H5. Small screen has lower awareness than Large screen. 

A trend shows this may be supported with more data. 

H6. Effect of adaptive accuracy on awareness will be 

greater in Small screen than Large screen. Not supported. 
We found no interaction between screen size and menu 
condition (accuracy level). 

DISCUSSION 

Adaptive interface is more beneficial when screen real 

estate is constrained. Strong evidence shows that the 
adaptive accuracy conditions fared better in the small 
screen. The high accuracy adaptive menus were 
significantly faster and more satisfying than the static 
menus for the small screen, but these differences 
disappeared for the large screen. Secondary analyses 
showed that this was likely due to a combination of the high 
accuracy condition reducing navigation (i.e., scrolling), and 
the increased use of adaptive predictions for the small 
screen. The latter behaviour suggests that users implicitly 
recognize the added benefit of the adaptive interfaces when 
screen real estate is constrained. These findings indicate 
that previous work on adaptive GUIs conducted with 
desktop-sized applications does not adequately generalize 
to small screens. Because of the increased potential benefit, 
researchers and designers should revisit adaptive 
approaches in the context of reduced screen size.  

Adaptive interfaces are low risk for small screens. From a 
design standpoint, given that it is likely difficult to predict 
the accuracy of an adaptive interface at design time, our 
results suggest that there is little performance risk of using 
adaptive menus in a small screen (for our menu design, as 
long as the accuracy is at least 50%). For the small screen, 
the low accuracy adaptive menus were no worse than the 
static ones, and, if there is potential for them to exhibit 
higher than 50% accuracy, then from a performance 
perspective they should be beneficial. For large screens the 
risk is much higher: accuracy of 80% provided no 
performance gain relative to static menus, and 50% 
degraded performance. As a result, for the adaptive menus 
to be beneficial on the large screen, the accuracy level 
would theoretically need to be very high (above 80%). This 
analysis only considers performance, but subjective 
measures would need to be considered as well. 

Higher accuracy results in reduced awareness. Extending 
previous work on awareness [11] to an adaptive interface, 
our results show that the higher accuracy condition resulted 
in reduced awareness. Perhaps most interesting is that the 
high accuracy condition had reduced awareness in 
comparison to the static condition, but it was not faster for 
the large screen, indicating that it provided no real benefit. 
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Figure 6. Subjective satisfaction (N = 34). 



   

This suggests that a static interface may be optimal for the 
large screen, at least for these two measures. However, for 
the small screen, the high accuracy condition was 
significantly faster the static one, so it may be a better 
overall choice for the reduced screen size. The differences 
in awareness also suggest that the designer needs to 
consider what the goals are for an interface: for example, if 
the goal is to have the user ultimately become an expert 
with knowledge of a wide range of features, an interface 
that affords higher awareness may be preferred. Alternately, 
if expertise in a small number of features is sought, then 
awareness may be less of an issue. 

Sensitivity of awareness measure needs improvement. We 
had hypothesized that the smaller screen would result in 
even stronger differences in awareness between the menu 
conditions. That this did not significantly affect the 
outcome could be due to a floor effect: the measure may not 
have been sensitive enough to detect differences in the 
small screen condition where awareness scores were low.  

Accuracy, consistency, and predictability require more 

research. In initial pilot testing, 2 out of 4 users commented 
that our original low accuracy menus were more predictable 
than the high accuracy menus. Previous work has not 
studied the relative impacts of consistency, predictability, 
and accuracy on performance and user satisfaction, so we 
had planned to eliminate a possible confound by creating 
two accuracy conditions that had similar consistency and 
predictability in the full study. However, given that we 
required the same task for each condition and had other 
constraints, such as using a Zipf distribution over items, this 
was not a straightforward problem. The compromise was to 
pair higher accuracy with higher consistency and lower 
accuracy with lower consistency. As a result, it is unclear 
whether the poor performance of the low accuracy 
condition is attributable to accuracy, low consistency, or, 
most likely, to a combination of the two.  

While recent work has highlighted the need to report 
accuracy [13,29] and consistency (alternatively called 
stability) [3,6] in addition to efficiency, our findings stress 
the importance of all three in combination, as well as 
predictability. Since the distinction between consistency 
and accuracy has not been addressed in previous accuracy 
research [13,29], further work will be needed to understand 
how much these two factors separately contribute to 
performance and satisfaction. For example, a study with 
fewer task constraints than the one reported here could be 
designed to include both consistency and accuracy as 
independent variables. The exact accuracy levels in our 
study were based on a need to have two reasonable levels 
that were distinct enough to impact results, but beyond that, 
they were based on artificial manipulations (similar to 
[13,29]). Further work is needed to understand how similar 
the findings would be for other levels of accuracy. 

Adaptive menu models should account for differential usage 

of adaptive predictions. Cockburn et al. have provided 

compelling results for modeling adaptive menus [6]. 
However, their model for adaptive split menus assumes that 
users will select from the top, adaptive section if the item is 
there; both our results and those of Gajos et al. [13] show 
this is not always the case. In addition, Cockburn et al. 
acknowledge that their model does not incorporate 
incidental learning (which we measured as awareness). 
Since an adaptive interface can impact awareness, an 
obvious extension of the model would be to incorporate it. 

Generalizability of the results to other GUI control 

structures. Although further work is needed, the speed and 
awareness differences between the small and large screens 
should be equally applicable to other types of GUI control 
structures, such as toolbars and the MS Office 2007 
Ribbon. It is also possible that the particular visual display 
of features provided in toolbars and the Ribbon will result 
in similar awareness of the number of features available, 
but lower awareness of the specific actions that may be 
carried out by those features, since the images may not as 
directly convey this information to users as menu labels do.  

Limitations of the Experiment 

Replication in realistic task context. For a task consisting of 
only menu item selections, such as the one included in our 
study, users may be more likely to utilize the adaptive 
component of the menu because they will value efficiency 
over other aspects of the interaction. It will be interesting to 
replicate this work in a more realistic setting where the 
user’s cognitive resources for any given task are divided, 
and menu selection is but one part of the task. For example, 
6/17 subjects preferred the static menus in the large screen 
condition, but in a more realistic setting this may increase. 
It will also be interesting to study the long-term impact of 
differences in awareness, such as on an experienced user’s 
ability to complete a new task. 

Task appropriate for small screen devices. Further work is 
needed to understand how our results will apply to tasks 
specific to mobile computing with small screen devices, 
and to replicate the work on a mobile device, using pen or 
stylus input, instead of the simulation we used. Even if 
mobile application interfaces are simpler than desktop ones, 
the relative benefit of an adaptive interface may be greater 
since the user’s attention is more fragmented in a mobile 
context than in a more standard computing context [24].  

CONCLUSION 

Through a controlled lab study, we have provided empirical 
evidence to show that high accuracy adaptive menus may 
have a larger positive benefit on small screen displays than 
regular desktop-sized displays. Not only was this shown 
through direct performance and user satisfaction measures, 
but we also found that screen size impacts user behaviour: 
subjects were more likely to make use of the adaptive 
predictions in the small screen condition than the large 
screen one. We also found that high adaptive accuracy 
menus negatively impacted the user’s overall awareness of 
features in the interface, which may be important for 
longer-term performance and satisfaction. Finally, our 



 

 

results highlight the importance of considering adaptive 
performance in the context of accuracy, since the lower and 
higher accuracy adaptive menus performed differently in 
relation to their static counterpart when screen size varied. 

Overall, these findings stress the need to revisit previous 
adaptive research in the context of small screen devices. 
Approaches which may not have been shown to be 
beneficial on larger screens may be more advantageous in a 
small screen context. Further work is needed to understand 
how well our results will generalize in the field, where user 
tasks are more complex and there are many more demands 
on the user’s attention. Nonetheless, the study presented 
here provides encouraging evidence that GUI adaptation is 
a viable design direction for small screen devices. 
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