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Abstract

Multimedia applications, executed by embedded multi-
processor systems, can in some cases be represented as task
graphs, with the tasks containing nested loop programs.
The nested loop programs communicate via arrays and can
be executed on different processors. Typically an array
can be communicated via a circular buffer with a capac-
ity smaller than the array. For such buffers, the commu-
nicating nested loop programs have to synchronize and a
sufficient buffer capacity needs to be computed. In a cir-
cular buffer we use a write and a read window to support
rereading, out-of-order reading or writing, and skipping of
locations. A cyclo static dataflow model is derived from
the application and used to compute buffer capacities that
guarantee deadlock free execution. Our case-study applies
circular buffers in a Digital Audio Broadcasting channel de-
coder application, where the frequency deinterleaver reads
according to a non-affine pseudo-random function. For this
application, buffer capacities are calculated that guarantee
deadlock free execution.

1 Introduction

Multimedia application typically show streaming behav-
ior and can be represented as task graphs. For performance
reasons the tasks, from the task graph, are typically exe-
cuted on several processors in a embedded multiprocessor
systems. In the multiprocessor system that we consider, a
processing tile includes a processor and a scratch pad mem-
ory (SPM), as depicted in Figure 1. Processing tiles are
connected via a network on chip (NoC) that provides loss-
less and in-order delivery of read and write operations.

Throughout this paper we consider a task to contain a
nested loop program (NLP). NLPs communicate via arrays,
where one NLP writes in an array and the second NLP reads
from it. A straightforward approach is to store this array in
an SPM and synchronize on the entire array. In contrast, a
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Figure 1. Multiprocessor system template

buffer can be used that typically is smaller than the array. It
is more likely that the smaller buffer fits into an SPM, but
the buffer requires more synchronization and the computa-
tion of the buffer capacity is a complex problem.

If a task writes into two buffers, the capacity of one
buffer may depend upon the read and write pattern in the
other buffer. Choosing the buffer capacity too small, may
result in a deadlock of the application. To compute suf-
ficient buffer capacities, the read and write patterns in all
arrays should be considered at once.

This paper presents an approach that uses circular buffers
(CBs) for the communication between the NLPs of the
tasks. In a CB, a read and a write window are used that sup-
port rereading, out-of-order reading or writing, and skip-
ping of locations. An NLP is extended with a few state-
ments for the synchronization. The capacities of the CBs
are computed by considering the read and write patterns of
all NLPs, such that deadlock free execution of the applica-
tion is guaranteed. The presented approach does not require
affine index expressions.

The extended NLP that writes in a CB, called the pro-
ducer, uses a write window, whereas the extended NLP that
reads from a CB, called the consumer, uses a read window.
The consumer or producer has mutually exclusive access to
the locations of the CB that are in its window. For both
windows, the window size is derived by analyzing the se-
quence of locations accessed by the NLP in the array. The
implementation of a window in a CB is by two pointers. An
NLP is extended by adding a few conditional statements to
update the pointers of a window, where the conditions are
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simple, i.e. comparing a counter variable with a constant
value. A cyclo static dataflow (CSDF) model [1] models the
window usage of the NLPs. With the CSDF model, capac-
ities for the CBs can be computed that guarantee deadlock
free execution of the application.

In the case-study, we show how to arrange the commu-
nication in a Digital Audio Broadcasting (DAB) channel
decoder via CBs. We show that our approach is applica-
ble to the pseudo-random function used for reading by the
frequency deinterleaver, which cannot be described with
an affine index expression. Sufficient buffer capacities are
computed, such that deadlock free execution of the DAB
channel decoder is guaranteed.

This paper is organized as follows. In Section 2 related
work is discussed. Section 3 discusses the characteristics
of the applications that we consider. In Section 4, we ex-
plain our approach that realizes communication via CBs and
calculates sufficient CB capacities. Section 5 discusses the
case-study. In Section 6 we present the conclusions.

2 Related work

The methods presented in [4] and [5] use buffers for ar-
rays that are accessed in one affine NLP that is executed on
a single processor. In [4] for a read and a write access to an
array, Integer Linear Programming is used to determine a
window size that serves as the required capacity for the cir-
cular buffer. In [5] for a dependency between two accesses
to an array, the window size is determined that serves as
buffer capacity. In a cache that is used as an SPM, buffers
are allocated for some of the windows. In comparison, our
approach considers parallel execution of tasks and therefore
uses two windows in a circular buffer.

With the method presented in [8] a Kahn Process Net-
work (KPN) is derived from a parameterized affine NLP. In
the KPN the communication between NLPs is arranged via
first-in-first-out (FIFO) buffers. When the consuming NLP
has to read a location in an array multiple times, or read the
locations of an array out-of-order, the consumer stores the
values in an additional buffer. Complex if-statements are
used to write only the values to be read in a FIFO buffer.
Instead of FIFO buffers we use CBs with windows. In a
window we have random access and non-destructive reads,
therefore there is no need to copy values in an additional
buffer.

In [6] an approach is presented to use a read and a write
window. A window supports reading locations multiple
times, reading or writing the locations out-of-order, or skip-
ping locations. No analysis to determine window or buffer
sizes is proposed in [6]. Compared to their approach, we
derive the read and write window size, given the access pat-
terns of the NLPs and we determine sufficiently large buffer
capacities such that deadlock free execution is guaranteed.

3 Target applications

Throughout this paper we assume that each application
is represented by a weakly connected directed acyclic task
graphH = {T, S, A, α, ρ, σ, θ}. In a weakly connected
graph, for every pair of verticesx andy, there is a directed
path fromx to y or from y to x. The set of vertices isT .
Each vertexti ∈ T represents a task, where the functional
behavior of a task is defined by an NLP. The set of arrays
is A. Each arrayaj ∈ A is declared in an NLP. The set of
directed edges isS. An edgesj = (th, ti), with sj ∈ S, is
from taskth to taskti, with th, ti ∈ T andth 6= ti. Each
edge represents a buffer. In a buffersn the values of one cor-
responding arrayan are stored. Thelth access of taskti in
arrayaj , accesses the array location with indexα(ti, aj , l),
with α : T×A×N → N. The functionρ(t) is the total num-
ber of accesses performed during one execution of a taskt,
with ρ : T → N. The size, in number of locations, of the
arrayaj is given byσ(aj), with σ : A → N. The capacity
of buffersj is θ(sj) locations, withθ : S → N.

The code of an NLP is single assignment code, this
means that a location in an array is assigned a value at most
once per execution of the task. We describe an NLP us-
ing the C-syntax. Figure 2 depicts a task graph together
with the NLPs. To execute the application, the tasks of the
directed acyclic task graph are topologically sorted. The
tasks are executed an infinite number of times, according
to the schedule that results from the topological sort. The
NLP of a task contains statements to declare the arrays fol-
lowed by nested for-loops. The arrays written and read in
the NLPs are global variables and are declared in the NLPs
that write them. The shorthand notation used for a for-loop
is for i : l : u, wherei is the iterator of the for-loop,l
the lower bound andu the upper bound. The iterator is in-
cremented with one after each iteration of the for-loop. In
this paper we assume that the lower-bound and the upper-
bound are constant values. The innermost for-loop contains
the loop-body. The loop-body contains one or more state-
ments. In a statement one or more arrays are read and only
one array is written. In the loop-body an arrayai is either
read or written once. The index of a location in an array
is determined with an index expression that can only have
the iterators of the nested for-loops as variables. The index
expression is not limited to be affine, but it has to produce
the same sequence of indices for every execution of its task.
The symbol∼, used in some statements in Figure 2, denotes
code fragments that are omitted for clarity.

Two tasks communicate by writing and reading in the
same arrayai. The functionα gives the consumption or
production pattern of an array. For example, the production
and consumption patterns in arrayay by taskt1 andt2 from
Figure 2 are:

l 0 1 2 3 4 5 6 7 8 9 10 11 12 13

α(t1, ay, l) 1 0 3 2 5 4 7 6 9 8 11 10
α(t2, ay, l) 0 1 2 3 4 5 6 5 6 7 8 9 10 11
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int X[12];
int Y[12]; int Z[14];
for i0:0:5 forj0:0:1 fork0:0:3
for i1:0:1{ for j1:0:6{ for k1:0:2{
X[2i0-i1+1] = ∼; Z[7j0+j1] = ∼ = X[11-3k0-k1];
Y[2i0-i1+1] = ∼; Y[5j0+j1]; ∼ = Z[3k0+k1];
} } }

Figure 2. Task graph with its NLPs

Three interesting access patterns are identified: out-of-order
access, multiplicity and skipping [8, 6].

The out-of-order access pattern occurs if a producer or
consumer accesses non-consecutive locations in an array.
An example of out-of-order production is present in the
access pattern for the NLP oft1 in arrayay. In this pat-
tern the location with index one is written in iteration zero,
α(t1, ay, 0) = 1, and the location with index zero is written
in iteration one,α(t1, ay, 1) = 0.

The multiplicity pattern occurs if a location is accessed
more than once. Only the access pattern for the con-
sumption may contain multiplicity, since we consider sin-
gle assignment code. For example, the NLP oft2 in
array ay consumes the location with index five twice,
α(t2, ay, 5) = α(t2, ay, 7) = 5.

If the skipping pattern occurs, locations from an array
are not accessed. The NLP oft3, from Figure 2, skips the
locations with index 12 and 13 in arrayaz.

4 Communication via circular buffers

This section describes the usage of CBs by the NLPs
of tasks. In the CBs windows are introduced that support
rereading, out-of-order reading or writing, and skipping of
locations. Next, the NLPs are extended with a few state-
ments for synchronization. Finally, a method to compute
the capacities of the CBs is presented, such that deadlock
free execution of the task graph can be guaranteed.

4.1 Communication between tasks

The communication between two tasks is performed via
a buffer. This section focuses at the location of the buffer,
the granularity of the communication between the tasks, the
synchronization between the two tasks, and the buffer used
for the communication.

By locating the buffer in the SPM of the processing tile
that is executing the consuming task, as depicted in Fig-
ure 1, this task always has local memory accesses. The low
latency access to the SPM minimizes the stall time of the
processor that executes the consuming task. The producing
task sends its values to the buffer in the SPM of the process-

ing tile that is executing the consuming task. This is called
sender initiated communication [3].

The communication between tasks is performed at a
word-level granularity. For most access patterns a buffer
smaller than a complete array is sufficient. Smaller buffers
require less memory in an SPM.

The communication and synchronization are performed
via a shared memory, which is in this case the SPM of the
processing tile that executes the consuming task. In case
of shared memory communication, a memory consistency
model defines the ordering in which the read and write op-
erations performed by a processor become visible to other
processors. This ordering between read and write opera-
tions defines how the synchronization between tasks exe-
cuted on the processors can be implemented.

We use the streaming memory consistency model [2],
where acquire and release statements provide the synchro-
nization. In this memory consistency model a location in a
buffer has to be acquired before it is accessed and released
after it has been written or read for the last time. The key ad-
vantage of the streaming memory consistency model is that
it supports posted writes. A posted write is a write operation
that allows the producer to continue execution, instead of
waiting until the value to be written is stored into the mem-
ory. A posted write is sent via the NoC to the buffer, where
the write operations can be pipelined in the NoC, such that
a next write request can be accepted by the NoC before the
previous write requests have been stored in the memory.

A circular buffer (CB) is used for the communication
between tasks, because it can handle the multiplicity, skip-
ping, and out-of-order access pattern. A CB can be imple-
mented with a write and a read pointer. The synchronization
of the write and read pointer, between the producing and the
consuming task requires no additional hardware, because
the C-HEAP [7] protocol is used.

In a CB, the producer has random write access in all lo-
cations between the write and the read pointer of the CB,
whereas the consumer has random read access in all loca-
tions between the read and the write pointer. The producer
makes values available to the consumer by increasing the
write pointer. The consumer increases its read pointer when
the value at the location of the read pointer will not be read
anymore. The pointers may not overtake each other. Typ-
ically both pointers start at the same location and the first
pointer to be increased is the write pointer. When a pointer
reaches the end of the CB, it wraps around to the begin of
the CB. Hence, both the producer and the consumer have
mutually exclusive access to their part of the buffer.

The values of the arrays in Figure 2 will be communi-
cated via CBs in combination with streaming memory con-
sistency. This combination requires that a location in a CB
has to be acquired before it is accessed and released later
on. An NLP has to be extended with acquire and release
statements and statements to update either the read or write
pointer of the CB.
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Figure 3. The read and write window in a CB

We introduce aread windowfor the consumer and a
write window for the producer. As depicted in Figure 3,
both windows contain a sequence of consecutive locations.
For the write window only the index of the first location has
to be stored. The index of the last location in the write win-
dow equals the write pointer. An acquire statement forn

locations, adds then locations immediately in front of the
first location of the write window, to the window. When a
release statement forn locations is executed for the write
window, then locations consecutive to the write pointer are
released from the window, followed by incrementing the
write pointer for thesen locations. For the read window
the acquire and release statements are executed in the same
way, they add locations to and remove locations from the
read window and increment the read pointer.

We try to minimize the computational overhead as
caused by adding statements to an NLP, in order to commu-
nicate an array via a CB. A conditional acquire statement for
one location is added at the beginning of the loop-body and
a conditional release statement for one location at the end
of the loop-body. The conditions are kept simple, i.e. they
compare a counter variable with a constant value. Starting
from the first iteration, the conditional acquire statementac-
quires one location per iteration, until for each locationsof
the array an acquire has been performed in the CB. Since
every iteration acquires one location, it may be necessary to
acquiren locations before the nested for-loops, to guarantee
that each iteration of the loop-body can access its location.
Furthermore, possibly an initial number of iterations of the
loop-body should not execute the release statement for one
location, to guarantee that a location is not released before it
has been accessed for the last time. The conditional acquire
of one location at the beginning of a loop-body and the con-
ditional release of one location at the end of a loop-body,
make the windowssliding windows.

4.2 Window size

The read or write window size, is determined using the
access pattern of the NLP. To guarantee that the location
to be accessed is acquired, it may be necessary to acquire
an initial number of locations before the first read or write
access of an NLP. The number of initially acquired locations
by the NLP ofti in the CBsj is called thelead-ind1(ti, sj),
with d1 : T × S → N. In the following, the location with
index 0 is the first location to be acquired in a CB.

The intuition on how to determine the lead-ind1(ti, sj),

for the array of CBsy, that is written by NLPt1, from Fig-
ure 2, is given in Figure 4. The upper sequence gives the
indices of the locations acquired by the producer and the
lower sequence provides the indices of the locations that
are written. By shifting the lower sequence right we guar-
antee that every location is acquired before it is written. In
Figure 4, a lead-in of one location is found.

110 1 2 3 4 5
. . . 111052301 Location written(α(t1, ay, l))

Location acquired. . .

d1 = 1

Figure 4. Lead-in d1(t1, sy), for Figure 2

It is possible to give an expression for the lead-in in a CB.
Let ti be the considered task,sj the CB andl the iteration.

Lemma 1 A lead-in d1(ti, sj) = maxl(α(ti, aj , l) − l),
with 0 ≤ l < ρ(ti), is the minimal number of locations ac-
quired before the nested for-loops, such that if each itera-
tion of the loop-body acquires one location, it is ensured
that every location is acquired before it is read or written.

Proof: Iterationr, with 0 ≤ r < ρ(ti), accesses
location α(ti, aj , r), so at leastα(ti, aj , r) + 1 locations
should be acquired in the CB. Note that each iteration of
the loop-body accesses one location in the CBsj . Each
iteration of the loop-body also acquires one location, so
initially α(ti, aj , r) + 1 − (r + 1) locations should be ac-
quired, ifα(ti, aj , r) > r. In caseα(ti, aj , r) ≤ r, location
α(ti, aj , r) is already acquired in iterationr of the loop-
body. To guarantee that in each iteration of the loop-body
the accessed location is acquired, the minimal and sufficient
number of initial acquired locationsd1(ti, sj) is found by
maxl(α(ti, aj , l) − l), with 0 ≤ l < ρ(ti). �

No location should be released from a window until for
each remaining iteration of the loop-body it can be guar-
anteed that the released location will not be read or written
anymore in a succeeding iteration. The number of iterations
without a release for the NLP ofti in a CBsj is called the
lead-outd2(ti, sj), with d2 : T × S → N.

The intuition to determine the lead-outd2(ti, sj), for t1
in CB sy, is given in Figure 5. The upper sequence gives
the indices of the written locations and the lower sequence
provides the indices of the released locations. The lower
sequence is shifted right to guarantee that no location is re-
leased before it is written. In Figure 5 a lead-out of one
iteration is found.

1
0

3
1 2

2
3
5 4

4
10
1011Location released

0
. . .
. . .

d2 = 1

Location written(α(t1, ay, l))

Figure 5. Lead-out d2(t1, sy), from Figure 2
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As for the lead-in, an expression to determine the lead-
out can be given. Letti be the considered task,sj the CB,
andl the iteration of the NLP.

Lemma 2 A lead-out d2(ti, sj) = maxl(l − α(ti, aj , l)),
with 0 ≤ l < ρ(ti), is the minimal number of initial itera-
tions of the loop-body of the NLP ofti without a release,
such that in the remaining iterations one location can be re-
leased, without releasing a location before it is written or
read for the last time.

Proof: After an initial number of iterationsd2(ti, sj)
each iteration of the loop-body releases one location in CB
sj. To guarantee that the location with indexα(ti, aj , r) is
still acquired in iterationr, with 0 ≤ r < ρ(ti), at least the
first r − α(ti, aj, r) iterations should release no location,
if r ≥ α(ti, aj , r). In caser < α(ti, aj , r), if at the end
of every iteration of the loop-body one location is released,
the location with indexα(ti, aj , r) is released later than the
rth iteration. To make sure that in each iteration the read
or written location is not released yet, minimally the first
maxl(l − α(ti, aj , l)) iterations, with0 ≤ l < ρ(ti), of the
loop-body should not release a location. �

It is possible that a negative lead-out is found, this hap-
pens if∀l : l − α(ti, sj , l) < 0. In this case one or more
locations at the beginning of the array are skipped. In this
case the window should be slided over the skipped locations
before executing the nested for-loops. Then the skipped lo-
cations are not included in the window size.

The lead-in, lead-out, and the location ac-
quired at the beginning of the loop-body of the
NLP of ti in CB sj , build up a window with size
w(ti, sj) = min(d1(ti, sj) + d2(ti, sj) + 1, σ(aj)). The
window contains at most the whole array, therefore if
d1(ti, sj) + d2(ti, sj) + 1 > σ(aj) the window has the size
of the arrayσ(aj), as depicted in Table 1 for the window of
taskt3 in CB sx.

Theorem 1 For the NLP of ti in CB sj with a lead-
in d1(ti, sj) and a lead-outd2(ti, sj), a window size
w(ti, sj) = min(d1(ti, sj) + d2(ti, sj) + 1, σ(aj)) guar-
antees that the accessed location is in the window.

Proof: Lemmas 1 and 2 state that the locations
to be accessed will be acquired and not yet re-
leased. Lemma 1 states that the lead-in is determined
such that d1(ti, sj) ≥ α(ti, aj , l) − l, this is equal to
α(ti, aj , l) ≤ d1(ti, sj) + l. Lemma 2 states that the lead-
out is determined such thatd2(ti, sj) ≥ l − α(ti, aj, l), this
is equal tol − d2(ti, sj) ≤ α(ti, aj , l). The combination
of both ensures that the accessed location is always in
the window, l − d2(ti, sj) ≤ α(ti, aj , l) ≤ l + d1(ti, sj).
The window size is defined by the difference be-
tween the upper bound and the lower bound plus one,
l + d1(ti, sj) − (l − d2(ti, sj)) + 1. One additional loca-
tion is required, because the conditional acquire is per-
formed at the beginning of the loop-body and the release at

NLP t1 t2 t3

CB sy sx sy sz sz sx

d1 1 1 0 0 0 11
d2 1 1 2 0 0 11
w 3 3 3 1 1 12
σ 12 12 12 14 14 12

Table 1. The lead-in, lead-out, window size, and
array size for the NLPs in Figure 2

the end. Since at most all locations of the array are acquired
in CB sj , the maximum window size isσ(aj). �

Table 1 contains the lead-ind1(ti, sj), lead-
out d2(ti, sj), window sizew(ti, sj), and array sizeσ(aj)
for the NLPs of the tasks in Figure 2. The table depicts that
the windows for the CBssy andsz are smaller than the size
of their array. Due to the out-of-order reading pattern of the
NLP of t3, a read window of 12 locations is required for
CB sx. For this communication pattern, the whole arrayaj

is stored in CBsx.

4.3 Extending the NLPs

This section discusses the statements that need to be
added to the NLPs of the tasks, to let them communicate
via CBs using sliding windows.

Figure 7 depicts the task graph from Figure 2, where the
NLPs are extended to communicate arrays via CBs, using
sliding windows. For every accessed arrayaj by taskti, the
NLP of ti is extended according to the template shown in
Figure 6. In the template the structure is presented to ex-
tend the C-code of the NLP, with acquire and release state-
ments in the initial phase, the processing phase, and the fi-
nal phase. In theinitial phaselead-ind1(ti, sj) locations
are acquired, to guarantee that during the processing phase
in each iteration the location to be accessed contains a valid
value in case of reading, or can be overwritten in case of
writing. During theprocessing phase, at the beginning of
the loop-body an if-statement checks, whether there is a lo-
cation in the CB left to acquire. At the end of the loop-
body, an if-statement checks whether lead-outd2(ti, sj) it-
erations have passed, to determine if a location in the CB
can be released. In thefinal phase, the remaining acquired
locations in the CB are released. For every accessed array
aj , in totalσ(aj) locations are acquired and released in the
corresponding CBsj , during the initial, processing, and fi-
nal phase. Within the initial phase, processing phase, and
final phase, the C-code can be partitioned in sections that
can perform an acquire or release statement in a CBsj , we
will call them synchronization sections. In the template, the
dummy counter variablep contains the index number of the
current synchronization section, that can perform an acquire
or release operation in CBsj .
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int p = 1;
acquire(ζ(t, sj ),sj );
p++;
for (i:1:ρ̂(t)){
if (i > ρ̂(t) + d2(t, sj)){
acquire(1,sj );
release(1,sj);
}
p++;
}
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>

>

>

>

>

>

>

>
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>

>

>

>

>

>

>

>

>

>

;

Initial phase

int c = 1;
(nested for-loops){
if (c ≤ σ(aj) − d1(t, sj))
acquire(1,sj );

(statements)
if (c> d2(t, sj))
release(1,sj);

c++; p++;
}

9

>
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>

>

>

>

>

>

>

>

=

>
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>
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;

Processing phase

for (i:1:ρ̌(t)){
if (i ≤ σ(aj) − ρ(t) − d1(t, sj)){
acquire(1,sj );
release(1,sj);
}
p++;
}
release(χ(t, sj ),sj );

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

Final phase

Figure 6. Template to extend an NLP to communi-
cate an array aj via a CB sj

During theinitial phaseof the NLP oft, d1(t, sj) loca-
tions are acquired, in every CBsj adjacent to taskt. The
template, as depicted in Figure 6, contains an initial phase
for a CBsj . First an acquire statement acquires the whole
or a part of the lead-ind1(t, sj) in the CBsj . The number
of acquired locations is given byζ(t, sj), with:

ζ(t, sj) =

{

d1(t, sj) + d2(t, sj), if d2(t, sj) < 0
d1(t, sj), otherwise

The for-loop succeeding the acquire statement, acquires
and releases−d2(t, sj) locations in CBsj , if the lead-
outd2(t, sj) is negative. The lead-out can be negative when
the first locations in an array are skipped.

In the extended NLP of taskt, the for-loop in the initial
phase may perform acquires and releases for multiple CBs.
The number of iterationŝρ(t) of the initial for-loop in the
NLP of a taskt, is the number of acquire and release oper-
ations required by the CB with the smallest lead-out, with
ρ̂ : T → N. Whereρ̂(ti) of taskti is given by:

ρ̂(ti) = max{−d2(ti, sj)|

sj = (tk, tl) ∈ S ∧ (tk = ti ∨ tl = ti)}

During theprocessing phase, for all adjacent CBs of a
taskt, at the beginning of an iteration at most one location
is acquired and at the end of an iteration at most one location
is released. In the template in Figure 6, a counter variable
c is used in the loop-body of the NLP of a taskt, to count
the number of performed iterations of the loop-body. At the
beginning of the loop-body, an if-statement is inserted that

checks whether an acquire should be performed. For CB
sj this if-statement checks if the iteration counter is smaller
or equal toσ(aj) − d1(t, sj), this is the case if there are
locations left in the CB to acquire. The access to the array
aj is replaced by a read or a write operations in CBsj . After
performing the statements in the loop-body, an if-statement
checks if a location should be released in the CBsj . For
CB sj , one location can be released if the iteration counter
is larger thand2(t, sj), so after the number of iterations for
the lead-out.

In thefinal phaseof the NLP of a taskt, the remaining
locations in the adjacent CBs are released. In the template
in Figure 6 the final phase starts with a for-loop. When not
all locations in the CBsj have been acquired, the for-loop
performsσ(aj)−ρ(t)−d1(t, sj) iterations that acquire and
release a location in the CB. The last release statement in the
final phase, releases the locations that are still acquired.The
number of locations to be released is given by the function
χ(t, sj), with:

χ(t, sj) =











σ(aj) − (ρ(t) − d2(t, sj)),
if σ(aj) ≤ ρ(t) + d1(t, sj)

σ(aj) − (ρ(t) − d2(t, sj))
− (σ(aj) − ρ(t) − d1(t, sj)), otherwise

The number of locations in CBsj left to release depends
upon the number of release statements executed in the for-
loop of the final phase. If the for-loop did not release lo-
cations in CBsj , so σ(aj) ≤ ρ(t) + d1(t, sj), there are
σ(aj) − ρ(t) + d2(t, sj) locations left to release. Other-
wise the number of releases performed by the for-loop have
to be subtracted from this number.

The for-loop in the final phase may contain acquire and
release statements for multiple CBs. Therefore the num-
ber of iterationšρ(t) performed by the for-loop in the final
phase of the NLP of taskt, is the maximum number of ac-
quire and release operations to be performed for a CB, with
ρ̌ : T → N. Whereρ̌(ti) for the NLP of taskti is given by:

ρ̌(ti) = max{σ(aj) − ρ(ti) − d1(ti, sj)|

sj = (tk, tl) ∈ S ∧ tk = ti ∨ tl = ti}

Figure 7 depicts the task graph with the extended
NLPs from Figure 2. The access pattern of the NLP
of task t3 in CB sz contains skipping, therefore not all
locations are acquired during the processing phase, i.e.
σ(az) − ρ(t3) − d1(t3, sz) = 14 − 12 − 0 > 0. The for-
loop in the final phase performšρ(t3) = 2 iterations that
acquire and release one location per iteration in the CBsz.

4.4 Buffer capacity per edge

In this section the buffer capacities are determined per
edge, followed by an example that illustrates that the found
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t1

t2 sz

sx t3

sy

while(1){ while(1){ while(1){
int c1 = 1; int c2 = 1; int c3 = 1;
acquire(1,sx); acquire(11,sx);
acquire(1,sy );

for i0:0:5 for j0:0:1 fork0:0:3
for i1:0:1{ for j1:0:6{ for k1:0:2{
if(c1 ≤ 11) if(c2≤ 12) if(c3≤ 1)
acquire(1,sx); acquire(1,sy); acquire(1,sx);

if(c1 ≤ 11) acquire(1,sz); acquire(1,sz );
acquire(1,sy); write(7j0+j1,sz , ∼ = read(11-3k0-k1,sx);

write(2i0-i1+1,sx,∼); read(5j0+j1,sy)); ∼ = read(3k0+k1,sz);
write(2i0-i1+1,sy ,∼); if(c2 > 2) if(c3 > 11)
if(c1 > 1 ) release(1,sy); release(1,sx);
release(1,sx); release(1,sz); release(1,sz);

if(c1 > 1) c2++; c3++;
release(1,sy); } }

c1++;
}

release(1,sx); release(1,sy); for k3:1:2{
release(1,sy); } acquire(1,sz);
} release(1,sz);

}
release(11,sx);}

Figure 7. Task graph from Figure 2, extended to
communicate via CBs

buffer capacities can be insufficient to guarantee deadlock
free execution of the task graph. In section 4.5 an alternative
approach is described where all CBs are considered at once.

The minimal buffer capacity of a CBsj = (th, ti) in
isolationι(sj), is:

ι(sj) = w(th, sj) + w(ti, sj) − 1

The found buffer capacity is minimal for a CB in isolation.
Consider the NLPs of the two tasksth andti that commu-
nicate via arrayaj , corresponding to CBsj = (th, ti). Task
th requires a window withw(th, sj) locations and taskti
a window with w(ti, sj) locations. If the buffer contains
w(th, sj) + w(ti, sj) − 1 locations, either the NLP ofth or
ti can execute its loop-body by acquiring one location, fol-
lowed by reading or writing in the CB and releasing one
location, next the other NLP can execute its loop-body.

The minimum per edge buffer capacities for the CBs in
Figure 7 areι(sx) = 12, ι(sy) = 5, andι(sz) = 1. That
these capacities are too small to guarantee deadlock free ex-
ecution of the tasks, can be seen as follows. In the task
graph, the NLP oft3 can execute if 12 locations can be ac-
quired in CBsx. To provide these locations, the NLP oft1
should perform 12 iterations. If the NLP oft1 performs an
iteration it acquires locations in both CBsx and CBsy. Af-
ter four iterations of the NLP oft1, the task cannot continue
with writing in CB sy before additional locations become
available in CBsy. The NLP oft2 has to perform two it-
erations before it starts releasing locations in CBsy. Since
the determined buffer capacity of CBsz is one, NLPt2 can

only acquire and release one location in CBsz. The NLP
of t3 cannot perform an iteration, in which it acquires and
releases the location in CBsz, since it first has to acquire
12 locations in CBsx. Sincet3 waits fort1, t1 waits fort2,
andt2 waits fort3, there is deadlock.

The deadlock is the consequence of the dependency be-
tween the acquire operations in CBsz and the acquire op-
eration CBsx. Instead of computing the CB capacities per
edge, the CB capacities should be calculated considering
the dependencies between the acquire and release opera-
tions of all the NLPs at once. In the next section we present
the derivation of a CSDF model from a task graph. This
CSDF model is used to compute the buffer capacities that
guarantee deadlock free execution of the task graph.

4.5 Buffer capacities for the task graph

We model the periodic acquire and release operations of
the tasks in a task graph, in a cyclo static dataflow (CSDF)
model [1, 9]. A CSDF model consists of a weakly directed
graphG = (V, E, δ, π, γ, φ), with V the set of actors and
E the set of directed edges. An edgeeij = (vi, vj), with
eij ∈ E, is from actorvi to actorvj , with vi, vj ∈ V . An
edge represents an unbounded FIFO queue. Actors com-
municate tokens over edges. There areδ(eij) initial tokens
on an edgeeij , with δ : E → N. The period of an actorvi

containsφ(vi) phases, withφ : V → N. An actor is en-
abled if all its input edges contain the number of tokens that
will be consumed during the next firing. At the moment
actor vj is fired for thecth time, it atomically consumes
γ(eij , ((c − 1) mod φ(vj)) + 1) tokens from every input
edgeeij , with γ : E × N → N. On finishing firingc, actor
vj atomically producesπ(eji, ((c − 1) mod φ(vj)) + 1)
tokens on its output edgeeji.

A CSDF model can be constructed from a task graph
with extended NLPs. Every taskti in the task graph is
modeled by an actorvi. An edgesij = (ti, tj) repre-
senting the buffer between two tasks, is modeled by an
edgeeij = (vi, vj) and a back edgeeji = (vj , vi). Ini-
tially, edgeeji containsδ(eji) tokens, which is equal to the
buffer capacityθ(sij) of the corresponding CBsij . Edge
eij contains no initial tokens. The template in Figure 6 con-
tains the dummy counter variablep that represents the num-
ber of the synchronization section, in the NLP of a task.
The number of phasesφ(vi) of an actorvi is equal to the
number of synchronization sections of the NLP ofti, with
φ(vi) = ρ̂(ti) + 1 + ρ(ti) + ρ̌(ti) + 1.

The production on and consumption from an edge ad-
jacent to an actorvi in the CSDF model, is derived from
the number of acquired and released locations in the corre-
sponding CB adjacent to taskti. An acquire statement for
n locations in a CB in the NLP ofti, corresponds to the
consumption ofn tokens from an edge by an actorvi in the
CSDF model. The same holds for a release statement forn

locations in a CB in the NLP ofti that corresponds to the
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production ofn tokens on an edge by actorvi. For an edge
pair eij andeji in the CSDF model that correspond to the
CB sh in the task graph, the total number of tokens con-
sumed fromeji or produced on edgeeij during a period of
actorvi, equals the size of the arrayσ(ah) of CB sh.

The number of consumed tokens in phasep by an actor
vi on an edgeeji is derived from the acquire statement exe-
cuted in synchronization sectionp in the CBsh by the NLP
of ti, with eji either the edge or the back edge modeling CB
sh. For an actorvi on edgeeji in phasep, the number of
consumed tokensγ(eji, p) is given by:

γ(eji, p) =























ζ(ti, sh), if p = 1
0, if 2 ≤ p ≤ ρ̂(ti) + 1 ∧ d2(ti, sh) ≥ 0
0, if 2 ≤ p ≤ ρ̂(ti) + d2(ti, sh) + 1 ∧ d2(ti, sh) < 0
1, if ρ̂(ti) + d2(ti, sh) + 2 ≤ p ≤ ρ̂(ti) + 1

∧ d2(ti, sh) < 0
1, if ρ̂(ti) + 2 ≤ p ≤ ρ̂(ti) + σ(ah) − d1(ti, sh) + 1
0, if ρ̂(ti) + σ(sh) − d1(ti, sh) + 2 ≤ p ≤

ρ̂(ti) + ρ(ti) + ρ̌(ti) + 2

(1)

The first four conditions in this function cover the synchro-
nization sections in the initial phase of an NLP. The first
phase of an actor consumesζ(ti, sh) tokens. If the lead-
outd2(ti, sh) of arrayah is positive, the phases of actorvi

corresponding to the iterations of the for-loop in the initial
phase of the NLP ofti consume no tokens. In case of a
negative lead-out, the phases of the actorvi that correspond
to the last−d2(ti, sh) iterations of the for-loop in the ini-
tial phase of the NLP ofti, consume one token. Condition
five and six cover the synchronization sections in the pro-
cessing phase and the final phase of the NLP ofti. Actor vi

consumes one token from edgeeji in the phases that corre-
spond to the synchronization sections of the NLP ofti that
acquire one location in the CBsh until all σ(ah) locations
have been acquired. Remaining phases of actorvi consume
zero tokens.

The number of produced tokens by an actorvi on an
edge eij in phasep is derived from the release state-
ments executed in synchronization sectionp in the CB
sh by NLP ti, with eij either the edge or back edge
modeling CBsh. We make use of an additional func-
tion ω(ti, sh) = σ(ah) − ρ(ti) − d1(ti, sh) that returns the
number of values in arrayah that are left to be skipped, af-
ter performing the initial and processing phase of the NLP
of ti. For an actorvi on an edgeeij during phasep, the
number of produced tokensπ(eij , p) is:

π(eij , p) =



























0, if 1 ≤ p ≤ ρ̂(ti) + d2(ti, sh) + 1
1, if ρ̂(ti) + d2(ti, sh) + 2 ≤ p ≤ ρ̂(ti) + ρ(ti) + 1
1, if ρ̂(ti) + ρ(ti) + 2 ≤ p ≤

ρ̂(ti) + ρ(ti) + ω(ti, sh) + 1 ∧ ω(ti, sh) > 0
0, if ρ̂(ti) + ρ(ti) + ω(ti, sh) + 2 ≤ p ≤

ρ̂(ti) + ρ(ti) + ρ̌(ti) + 1 ∧ ω(ti, sh) > 0
0, if ρ̂(ti) + ρ(ti) + 2 ≤ p ≤

ρ̂(ti) + ρ(ti) + ρ̌(ti) + 1 ∧ ω(ti, sh) ≤ 0
χ(ti, sh), if p = ρ̂(ti) + ρ(ti) + ρ̌(ti) + 2

(2)

In this equation, the first two conditions cover the synchro-
nization sections of the initial and processing phase. The

v2
〈0,14×1,0〉

v1

〈0,0,10×1,1,1〉

〈1,1,10×1,0,0〉

v3

〈0,0,0,12×1,0〉

〈0,12×1,0,0,0〉 〈0,12×1,0,1,1〉

〈0,12×1,0,1,1〉〈0,14×1,0〉

〈0,0,10×1,1,1〉 〈11,1,10×0,0,0,0,0〉

〈0,0,10×0,1,11,0,0〉〈1,1,10×1,0,0〉

Figure 8. The CSDF model derived from the task-
graph in Figure 7

third, fourth, and fifth condition, correspond to the condi-
tional release operation in the for-loop in the final phase of
the NLP of ti. If there are no locations left to acquire in
CB sh, zero tokens are produced in the phases correspond-
ing to the for-loop of the final phase. The sixth condition
producesχ(ti, sh) tokens, this corresponds to the number
of locations to be released in the last statement of the final
phase.

Figure 8 depicts the CSDF model derived from the task
graph in Figure 7. The Equations 1 and 2 are used to con-
struct the production and consumption sequences for the
edges. For example for actorv1, the production on edge
e13 is 〈π(e13, 1), . . . , π(e13, φ(v1))〉 = 〈0, 0, 10× 1, 1, 1〉.
In this notation,10 × 1 means that ten consecutive phases
produce one token each. Furthermore, the edges with the
black dot are the back edges that contain a number of initial
available tokens.

To compute the required number of initial tokens on an
edge to avoid deadlock in a CSDF model, a conservative
approximation algorithm [9] is used. In [9] it is also shown
that the computed number of initial tokens for the edges in
a CSDF model, can be used as the buffer capacities for the
buffers in the task graph, resulting in deadlock free execu-
tion of the task graph. The computational complexity of this
algorithm is linear in the number of edges times the maxi-
mum number of phases of an actor in the CSDF model, i.e.
O(|V | + |E| · maxi(φ(vi))).

Sufficient initial tokens for the edges in the CSDF model
in Figure 8 were computed in less than 0.1 seconds. Ac-
cording to this algorithm the number of initial tokens should
be,δ(e31) = 14, δ(e21) = 5, andδ(e32) = 13. Therefore,
deadlock free execution of the application is guaranteed by
choosing the buffer capacities asθ(sx) = 14, θ(sy) = 5,
andθ(sz) = 13.

5 Case-study

In this section, we compute the buffer capacities for a
part of a task graph of a DAB channel decoder that oper-
ates in decoding mode I. Figure 9 depicts the part of the
task graph with the corresponding NLPs. The demapper
(DM) task contains the differential demodulator and the de-
quantizer. The DM writes a symbol, which consists of 2048
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DM TDIFDI
sx sy

int x[2048]; int y[1536];
for i0:0:2047{ for j0:0:1535{ for k0:0:1535{
x[i0] = ∼; y[j0] = x[F(j0)]; ∼ = y[k0];
} } }

Figure 9. Task graph fragment of a DAB channel
decoder, containing the demapper, the frequency
deinterleaver, and the time deinterleaver

int F(int index){
int counter=0,value=511;
while (counter< index){
value = ((value * 13) + 511)%2048;
if ((value≥ 256)∧ (value 6= 1024)∧ (value≤ 1792))
counter++;

}
return value;
}

Figure 10. Pseudo-random function used for read-
ing, by the frequency deinterleaver

pairs of 4 bit metrics, in arrayax. The frequency deinter-
leaver (FDI) reads a symbol from arrayax. Index 1024
and the indices below 256 or above 1792 in arrayax are
skipped by the FDI. The metric pairs read by the FDI are
reordered according to the pseudo-random functionF(i) in
Figure 10. The FDI writes 1536 metric pairs in-order in ar-
rayay. The time deinterleaver (TDI) reads the 1536 metric
pairs in-order from arrayay.

Table 2 depicts the lead-ind1(ti, sj), lead-outd2(ti, sj),
window sizew(ti, sj), and array sizeσ(aj) for the NLPs of
the tasks in Figure 9. These results show that only the out-
of-order consumption pattern of the FDI in arrayax requires
a read window with the size of a symbol, which is 2048
locations.

The extended NLPs for the task graph in Figure 9, are
depicted in Figure 11. The NLPs of the DM and TDI tasks,
are extended with only one acquire and one release state-
ment, since they have an in-order access pattern without
the skipping and multiplicity pattern. Figure 12 depicts the
CSDF model constructed from the extended task graph in
Figure 11. The tasks DM, FDI, and TDI correspond to the

NLP DM FDI TDI

CB sx sx sy sy

d1 0 1713 0 0
d2 0 1235 0 0
w 1 2048 1 1
σ 2048 2048 1536 1536

Table 2. The lead-in, lead-out, window size, and
array size for the NLPs in Figure 9

DM TDIFDI
sx sy

while(1){ while(1){ while(1){
for i0:0:2047{ int c2 = 1; fork0:0:1535{
acquire(1,sx); acquire(1713,sx); acquire(1,sy);
write(sx ,i0,∼); for j0:0:1535{ write(∼,∼,read(sy ,k0));
release(1,sx); if (c2 ≤ 335) release(1,sy);
} acquire(1,sx); }
} acquire(1,sy); }

write(sy ,j0,
read(sx ,F(j0));

if (c2 > 1235)
release(1,sx);

release(1,sy);
c2++;
}
release(1748,sx);
}

Figure 11. Task graph from Figure 9, extended to
communicate via CBs

actorsvd, vf , andvt, respectively. Computing the num-
ber of initial tokens for the back edges in the CSDF model,
using the algorithm from [9], required 0.2 seconds and re-
sulted inδ(efd) = 3464 and δ(etf ) = 388. Therefore,
deadlock free execution of the task graph in Figure 9 is
guaranteed, when the capacity of CBsx is θ(sx) = 3464
locations and the capacity of CBsy is θ(sy) = 388 loca-
tions.

6 Conclusions

We have presented an approach to arrange the commu-
nication between the nested loop programs (NLPs) of the
tasks of an application via circular buffers (CBs).

In a CB, a read and a write window with random ac-
cess are used that support rereading, out-of-order reading
or writing and skipping of locations. The CB with windows
handles the out-of-order and the multiplicity pattern with-
out copying values into an additional buffer. The size of a
window is derived from the sequence of accessed locations
by an NLP in an array.

Each NLP is extended with only a few conditional ac-
quire and release statements that guarantee mutually exclu-
sive access in a window. A cyclo static dataflow (CSDF)
model is derived from the task graph with these extended
NLPs. Sufficient buffer capacities can be computed with
the CSDF model, such that deadlock free execution can be

vf

〈0,1536×1,0〉

vd vt

〈0,1536×1,0〉

〈0,1536×1,0〉〈0,1536×1,0〉

〈0,2048×1,0〉 〈1713,335×1,1201×0,0〉

〈0,2048×1,0〉 〈0,1236×0,300×1,1748〉

Figure 12. CSDF model of the task graph in Fig-
ure 11
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guaranteed.
The approach is demonstrated on a fragment of a Dig-

ital Audio Broadcasting channel decoder that includes the
frequency deinterleaver. The frequency deinterleaver uses
a pseudo-random function for reading that cannot be de-
scribed with an affine expression. We have extended the ap-
plication to use CBs with windows, furthermore sufficient
buffer capacities have been determined to guarantee dead-
lock free execution.
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