11th International Workshop on Software & Compilers for Eaitbed Systems (SCOPES) 2008

Communication between Nested L oop Programsvia Circular Buffersin an
Embedded M ultiprocessor System *

Tjerk Bijlsma', Marco Bekooif, Pierre Jansénand Gerard Smit
lUniversity of Twente, The Netherland$yXP Semiconductors Research, The Netherlands
t.bijlsma@utwente.nl

Abstract Processing tile 1 Processing tile 2
| Processorl || || Processor 2 |

AT Al

Multimedia applications, executed by embedded multi- SPM [= val
processor systems, can in some cases be represented as task

graphs, with the tasks containing nested loop programs.] : ‘_—

The nested loop programs communicate via arrays and can
be executed on different processors. Typically an array | Y
can be communicated via a circular buffer with a capac-

ity smaller than the array. For such buffers, the commu-

nicating nested loop programs have to synchronize and a
sufficient buffer capacity needs to be computed. In a cir-
cular buffer we use a write and a read window to support

rereading, out-of-order reading or writing, and skippin§ o

oo NoCJ

Figure 1. Multiprocessor system template

buffer can be used that typically is smaller than the array. |
is more likely that the smaller buffer fits into an SPM, but

Itcr:catlonlg. tA cycl?j stan(;: tdataflow tm%d(:fl IS denvg{d frctjrzn tthe buffer requires more synchronization and the computa-
€ application and used o compute bufler capacities thal ;. , ot e puffer capacity is a complex problem.

guarantee deadlock free execution. Our case-study applies If a task writes into two buffers, the capacity of one
circular buffers in a Digital Audio Broadcasting channelde buff d d h d and wri inth
coder application, where the frequency deinterleaver sead utier may depen gpont € read an vynte pattern in the
according to a noh-aﬁine seudo-random function. For this other buffer. Choosing the buffer capacity too small, may
raing P : result in a deadlock of the application. To compute suf-
application, buffer capacities are calculated that guates - o . .
ficient buffer capacities, the read and write patterns in all

deadlock free execution. arrays should be considered at once.
This paper presents an approach that uses circular buffers
(CBs) for the communication between the NLPs of the
1 Introduction tasks. In a CB, a read and a write window are used that sup-
port rereading, out-of-order reading or writing, and skip-

Multimedia application typically show streaming behav- Ping of locations. An NLP is extended with a few state-
ior and can be represented as task graphs. For performanc@€nts for the synchronization. The capacities of the CBs
reasons the tasks, from the task graph, are typically exe-2'® computed by considering the read and write patterns of
cuted on several processors in a embedded multiprocesso"i_‘" N_LPs, such that deadlock free execution of the apphca_—
systems. In the multiprocessor system that we consider, dion is guaranteed. The presented approach does not require

processing tile includes a processor and a scratch pad men2ffin€ index expressions.

ory (SPM), as depicted in Figure 1. Processing tiles are 1he extended NLP that writes in a CB, called the pro-
connected via a network on chip (NoC) that provides loss- dUcer, uses a write window, whereas the extended NLP that

less and in-order delivery of read and write operations. ~ éads froma CB, called the consumer, uses a read window.
Throughout this paper we consider a task to contain a The consumer or producer has mutually exclusive access to

nested loop program (NLP). NLPs communicate via arrays,th_e locations of_ the CB_ thqt are_in its Window._ For both
where one NLP writes in an array and the second NLP readsVindows, the window size is derived by analyzing the se-
from it. A straightforward approach is to store this array in dueénce of locations accessed by the NLP in the array. The

an SPM and synchronize on the entire array. In contrast, ampPlementation of a window in a CB is by two pointers. An
NLP is extended by adding a few conditional statements to

*(© 2008 by EDAA. update the pointers of a window, where the conditions are

33

11th International Workshop on Software & Compilers for Eaithed Systems (SCOPES) 2008

simple, i.e. comparing a counter variable with a constant3 Target applications
value. A cyclo static dataflow (CSDF) model [1] models the
window usage of the NLPs. With the CSDF model, capac- Throughout this paper we assume that each application
ities for the CBs can be computed that guarantee deadlocKs represented by a weakly connected directed acyclic task
free execution of the application. graphH = {T,S,A,a,p,0,0}. In a weakly connected

In the case-study, we show how to arrange the commu-graph, for every pair of verticesandy, there is a directed
nication in a Digital Audio Broadcasting (DAB) channel path fromz to y or fromy to x. The set of vertices i¥'.
decoder via CBs. We show that our approach is applica-Each vertex; € T represents a task, where the functional
ble to the pseudo-random function used for reading by thebehavior of a task is defined by an NLP. The set of arrays
frequency deinterleaver, which cannot be described withis A. Each array:; € A is declared in an NLP. The set of
an affine index expression. Sufficient buffer capacities aredirected edges i§. An edges; = (tx,t;), With s; € S, is
computed, such that deadlock free execution of the DAB from taskt, to taskt;, with ¢,,,¢; € T andt;, # t;. Each
channel decoder is guaranteed. edge represents a buffer. In a buffgrthe values of one cor-

This paper is organized as follows. In Section 2 related "€sponding array., are stored. Th_éth access of task; in
work is discussed. Section 3 discusses the characteristic§Taya;, accesses the array location with inde;, a;, 1),
of the applications that we consider. In Section 4, we ex- Witha : T'x AxN — N. The functiorp(t) is the total num-
plain our approach that realizes communication via CBs andb?r of accesses performed ij“ng one execution of attask
calculates sufficient CB capacities. Section 5 discusges th With p : T — N. The size, in number of locations, of the

case-study. In Section 6 we present the conclusions. arraya; is given byo(a;), with o : A — N. The capacity
of buffers; is 6(s;) locations, withd : S — N.

The code of an NLP is single assignment code, this
2 Redated work means that a location in an array is assigned a value at most
once per execution of the task. We describe an NLP us-

ing the C-syntax. Figure 2 depicts a task graph together

The methods presented in [4] and [5] use buffers for ar- with the NLPs. To execute the application, the tasks of the
rays that are accessed in one affine NLP that is executed ofjirected acyclic task graph are topologically sorted. The
a single processor. In [4] for a read and a write access to anasks are executed an infinite number of times, according
array, Integer Linear Programming is used to determine ato the schedule that results from the topological sort. The
window size that serves as the required capacity for the cir-NLP of a task contains statements to declare the arrays fol-
cular buffer. In [5] for a dependency between two accessesjowed by nested for-loops. The arrays written and read in
to an array, the window size is determined that serves asthe NLPs are global variables and are declared in the NLPs
buffer capacity. In a cache that is used as an SPM, buffersthat write them. The shorthand notation used for a for-loop
are allocated for some of the windows. In comparison, ourjs for i : [: u, wherei is the iterator of the for-loop],
approach considers parallel execution of tasks and therefo the lower bound and the upper bound. The iterator is in-
uses two windows in a circular buffer. cremented with one after each iteration of the for-loop. In

With the method presented in [8] a Kahn Process Net- this paper we assume that the lower-bound and the upper-
work (KPN) is derived from a parameterized affine NLP. In bound are constant values. The innermost for-loop contains
the KPN the communication between NLPs is arranged viathe loop-body. The loop-body contains one or more state-
first-in-first-out (FIFO) buffers. When the consuming NLP ments. In a statement one or more arrays are read and only
has to read a location in an array multiple times, or read theone array is written. In the loop-body an arrayis either
locations of an array out-of-order, the consumer stores theread or written once. The index of a location in an array
values in an additional buffer. Complex if-statements are is determined with an index expression that can only have
used to write only the values to be read in a FIFO buffer. the iterators of the nested for-loops as variables. Thexinde
Instead of FIFO buffers we use CBs with windows. In a expression is not limited to be affine, but it has to produce
window we have random access and non-destructive readsthe same sequence of indices for every execution of its task.
therefore there is no need to copy values in an additionalThe symbok-, used in some statements in Figure 2, denotes
buffer. code fragments that are omitted for clarity.

In [6] an approach is presented to use a read and a write Two tasks communicate by writing and reading in the
window. A window supports reading locations multiple Same array:;. The functiona gives the consumption or
times, reading or writing the locations out-of-order, oipsk ~ production pattern of an array. For example, the production
ping locations. No analysis to determine window or buffer and consumption patterns in arrayby taskt; andt, from
sizes is proposed in [6]. Compared to their approach, weFigure 2 are:
derive the read and write window size, given the access pat- |/ [0]1]2]3]4]5]6]7]8]9]10][11]12[13]
terns of the NLPs and we determine sufficiently large buffer a(ti,a,,1)]|1/0(3|2|5|4|7|6/9|8|11]|10
capacities such that deadlock free execution is guaranteed [«a(t2,a,,1)]|0[1]2|3]4[5|6|5[6]7| 8] 9]10[11

34

11th International Workshop on Software & Compilers for Eaitbed Systems (SCOPES) 2008

ing tile that is executing the consuming task. This is called
sender initiated communication [3].
The communication between tasks is performed at a

int X[12]; word-level granularity. For most access patterns a buffer
int Y[12]; int Z[14]; smaller than a complete array is sufficient. Smaller buffers
for i9:0:5 for jp:0:1 for kq:0:3 . .
for4;:0:1{ for j1:0:6 { for k1:0:2 { require less memory in an SPM.
%@o—aiﬂm; Z[ngfrg;:l_:] ~ :>Z<[[§;»9;k£—]k11; The communication and synchronization are performed
10-1 =~ ; ~ = ;
y o poo oT via a shared memory, which is in this case the SPM of the
_ - processing tile that executes the consuming task. In case
Figure 2. Task graph with its NLPs of shared memory communication, a memory consistency

model defines the ordering in which the read and write op-

) . _ . erations performed by a processor become visible to other
Threelnteres_tlr?g_ access p_attgrns are identified: outadro processors. This ordering between read and write opera-
access, multiplicity and skipping [8, 6]. _ tions defines how the synchronization between tasks exe-

The out-of-order access pattern occurs if a producer or - ,ted on the processors can be implemented.
consumer accesses non-consecutive locations in an array. \we yse the streaming memory consistency model [2],
An example of out-of-order production is present in the \yhere acquire and release statements provide the synchro-
access pattern for the NLP of in arraya,. In this pat- hization. In this memory consistency model a location in a
tern the location with index one is written in iteration zero p ffer has to be acquired before it is accessed and released
a(t1,ay,0) =1, and the location with index zero is written 4ier it has been written or read for the last time. The key ad-
in iteration oneq(t1, a,,1) = 0. o vantage of the streaming memory consistency model is that

The multiplicity pattern occurs if a location is accessed i supports posted writes. A posted write is a write operatio
more than once. Only the access pattern for the con-hat allows the producer to continue execution, instead of
sumption may contain multiplicity, since we consider sin- ajting until the value to be written is stored into the mem-

gle assignment code. For example, the NLPigfin ory. A posted write is sent via the NoC to the buffer, where
array a, consumes the location with index five twice, the write operations can be pipelined in the NoC, such that
afta, ay,5) = aft, ay, 7) = 5. _ a next write request can be accepted by the NoC before the
If the skipping pattern occurs, locations from an array previous write requests have been stored in the memory.
are not accessed. The NLP#gf from Figure 2, skips the A circular buffer (CB) is used for the communication
locations with index 12 and 13 in array. between tasks, because it can handle the multiplicity-skip
ping, and out-of-order access pattern. A CB can be imple-
4 Communication viacircular buffers mented with a write and a read pointer. The synchronization

of the write and read pointer, between the producing and the
consuming task requires no additional hardware, because
the C-HEAP [7] protocol is used.
In a CB, the producer has random write access in all lo-
locations. Next, the NLPs are extended with a few state- cations between the write and the read pointer Of the CB,
whereas the consumer has random read access in all loca-

ments for synchronization. Finally, a method to compute . . :
> : tions between the read and the write pointer. The producer
the capacities of the CBs is presented, such that deadlock . .)
. makes values available to the consumer by increasing the
free execution of the task graph can be guaranteed.

write pointer. The consumer increases its read pointer when
L the value at the location of the read pointer will not be read
4.1 Communication between tasks anymore. The pointers may not overtake each other. Typ-
ically both pointers start at the same location and the first
The communication between two tasks is performed via pointer to be increased is the write pointer. When a pointer
a buffer. This section focuses at the location of the buffer, reaches the end of the CB, it wraps around to the begin of
the granularity of the communication between the tasks, thethe CB. Hence, both the producer and the consumer have
synchronization between the two tasks, and the buffer usedmutually exclusive access to their part of the buffer.
for the communication. The values of the arrays in Figure 2 will be communi-
By locating the buffer in the SPM of the processing tile cated via CBs in combination with streaming memory con-
that is executing the consuming task, as depicted in Fig-sistency. This combination requires that a location in a CB
ure 1, this task always has local memory accesses. The lowhas to be acquired before it is accessed and released later
latency access to the SPM minimizes the stall time of theon. An NLP has to be extended with acquire and release
processor that executes the consuming task. The producingtatements and statements to update either the read or write
task sends its values to the buffer in the SPM of the process{ointer of the CB.

This section describes the usage of CBs by the NLPs
of tasks. In the CBs windows are introduced that support
rereading, out-of-order reading or writing, and skippirig o

35

11th International Workshop on Software & Compilers for Eaithed Systems (SCOPES) 2008

Read pointer Write pointer for the array of CBs,, that is written by NLP¥;, from Fig-
d 2 d 2 ure 2, is given in Figure 4. The upper sequence gives the
Read Window Write Window] indices of the locations acquired by the producer and the
Buffer size lower sequence provides the indices of the locations that
are written. By shifting the lower sequence right we guar-
Figure 3. The read and write window in a CB antee that every location is acquired before it is written. |

Figure 4, a lead-in of one location is found.

We introduce aread windowfor the consumer and a 1 0,1,2, 3,4, 5...11 Location acquired
write windowfor the producer. As depicted in Figure 3, _T11T0T372151 11110Location written(a(t1, ay, 1))
both windows contain a sequence of consecutive Iocations.a_;: 1

For the write window only the index of the first location has
to be stored. The index of the last location in the write win- Figure 4. Lead-in d;(t1, s,), for Figure 2
dow equals the write pointer. An acquire statementifor
locations, adds the locations immediately in front of the Itis possible to give an expression for the lead-inin a CB.
first location of the write W|_ndovx{, to the window. Wher_1 @ | ett, be the considered task; the CB and the iteration.
release statement for locations is executed for the write
window, then locations consecutive to the write pointer are .
released from the window, followed by incrementing the LemMmal A lead-in di(ti,s;) = maxi(a(ti, a;,1) = 1),
write pointer for these: locations. For the read window With 0 <1 < p(t;), is the minimal number of locations ac-
the acquire and release statements are executed in the sanfit/ired before the nested for-loops, such that if each itera-
way, they add locations to and remove locations from the ti0n Of the loop-body acquires one location, it is ensured
read window and increment the read pointer. that every location is acquired before it is read or written.
We try to minimize the computational overhead as
caused by adding statements to an NLP, in order to commu- Proof: lterationr, with 0 < r < p(t;), accesses
nicate an array via a CB. A conditional acquire statement for location a(t;, a;,), so at leastu(t;, a;,7) + 1 locations
one location is added at the beginning of the loop-body andshould be acquired in the CB. Note that each iteration of
a conditional release statement for one location at the endhe loop-body accesses one location in the £B Each
of the loop-body. The conditions are kept simple, i.e. they iteration of the loop-body also acquires one location, so
compare a counter variable with a constant value. Startinginitially a(t;,a;,r) + 1 — (r + 1) locations should be ac-
from the first iteration, the conditional acquire statenamt ~ quired, ifa(t;,a;,7) > r. In casen(t;, aj,) < r, location
quires one location per iteration, until for each locatiohs «(ti,a;,r) is already acquired in iteration of the loop-
the array an acquire has been performed in the CB. Sincebody. To guarantee that in each iteration of the loop-body
every iteration acquires one location, it may be necessary t the accessed location is acquired, the minimal and sufficien
acquiren locations before the nested for-loops, to guaranteenumber of initial acquired locationg, (¢;, s;) is found by
that each iteration of the loop-body can access its location max;(a(t;, aj, 1) — 1), with 0 < I < p(t;). O
Furthermore, possibly an initial number of iterations o th No location should be released from a window until for
loop-body should not execute the release statement for oneeach remaining iteration of the loop-body it can be guar-
location, to guarantee that a location is not released béfor anteed that the released location will not be read or written
has been accessed for the last time. The conditional acquir@nymore in a succeeding iteration. The number of iterations
of one location at the beginning of a loop-body and the con- without a release for the NLP of in a CB s; is called the
ditional release of one location at the end of a loop-body, lead-outds(¢;, s;), withds : T x S — N.

make the windowsliding windows The intuition to determine the lead-odif(¢;, s;), for ¢4
in CB s, is given in Figure 5. The upper sequence gives
4.2 Window size the indices of the written locations and the lower sequence

provides the indices of the released locations. The lower
The read or write window size, is determined using the sequence is shifted right to guarantee that no locatiortis re
access pattern of the NLP. To guarantee that the locatioleased before it is written. In Figure 5 a lead-out of one
to be accessed is acquired, it may be necessary to acquiréeration is found.
an initial number of locations before the first read or write

access of an NLP. The number of initially acquired locations | 1,0,3,2,5,4,...,10 Location writter{cv(t1, ay, 1))
by the NLP oft; in the CBs; is called thdead-ind; (¢, s,), IE’I 0 '11' 213141, .11011Location released
with d; : T x S — N. In the following, the location with 2-
index 0 is the first location to be acquired in a CB. . .
The intuition on how to determine the leaddn(t;, s;), Figure 5. Lead-out da(t1, s,), from Figure 2

36

11th International Workshop on Software & Compilers for Eaitbed Systems (SCOPES) 2008

As for the lead-in, an expression to determine the lead- INLP | &2 | ta [ts |
out can be given. Lef; be the considered task; the CB, CB |l sy | sz |8y | s-1|5:]| s
and! the iteration of the NLP. dq 11100 0|11
Lemma2 A lead-outds(t, s;) = maxy(l — a(ti, a;,1)), | 111121010 11
with 0 <1 < p(¢;), is the minimal number of initial itera- wl 38|31]1]12
tions of the loop-body of the NLP of without a release, o||12)12]12]14] 14|12

such that in the remaining iterations one location can be re-
leased, without releasing a location before it is written or
read for the last time.

Table 1. The lead-in, lead-out, window size, and
array size for the NLPs in Figure 2

Proof: After an initial number of iterationgx(¢;, s;)
each iteration of the loop-body releases one location in CB
s;j. To guarantee that the location with indei;, a;,r) is
still acquired in iteration:, with 0 < r < p(¢;), at least the
first r — a(t;, a;,7) iterations should release no location,
if »>a(t;,aj,7). Incaser < a(t;,a;,r), if at the end
of every iteration of the loop-body one location is released
the location with indexx(t;, a;, r) is released later than the) X
~th iteration. To make sure that in each iteration the read ©f their array. Due to the out-of-order reading pattern ef th

or written location is not released yet, minimally the first NLP of t3, a _read wmdo_w O.f 12 locations is required for
max (I — a(t;, a;,1)) iterations, withd < I < p(t;), of the QB S quthls communication pattern, the whole aragy
loop-body should not release a location. O is stored in CBs,.

It is possible that a negative lead-out is found, this hap- _
pens ifVl : 1 — a(t;, s;,1) < 0. In this case one or more 4.3 Extendingthe NLPs
locations at the beginning of the array are skipped. In this
case the window should be slided over the skipped locations This section discusses the statements that need to be
before executing the nested for-loops. Then the skipped lo-added to the NLPs of the tasks, to let them communicate
cations are not included in the window size. via CBs using sliding windows.

The lead-in, lead-out, and the location ac- Figure 7 depicts the task graph from Figure 2, where the
quired at the beginning of the loop-body of the NLPs are extended to communicate arrays via CBs, using
NLP of #; in CB s;, build up a window with size sliding windows. For every accessed araayy task;, the
w(t;, s;) = min(dy (t;, s;) + da(ti, sj) + 1,0(a;)). The NLP of t; is extended according to the template shown in
window contains at most the whole array, therefore if Figure 6. In the template the structure is presented to ex-
di(ti,s5) +da(ti, sj) +1 > o(a;) the window has the size tend the C-code of the NLP, with acquire and release state-
of the arrayo(a;), as depicted in Table 1 for the window of ments in the initial phase, the processing phase, and the fi-
taskts in CB s,. nal phase. In thénitial phaselead-ind, (t;, s;) locations
Theorem 1 For the NLP oft; in CB s, with a lead- are acr(]ql_Jired,_to ghualrantee thatbduring the grocessin%phzla_se
in di(t,s;) and a lead-outds(t;,s;), a window size in each iteration the location to be accessed containsd vali

n value in case of reading, or can be overwritten in case of
w(ti, Sj) = mln(d1 (ti, Sj) + dg(ti, Sj) +1, U(Gj)) guar- . . . L
antees that the accessed location is in the window. writing. During th_eprocessmg phaset the beglnnlng_ of
the loop-body an if-statement checks, whether there is a lo-

Proof: Lemmas 1 and 2 state that the locations cation in the CB left to acquire. At the end of the loop-
to be accessed will be acquired and not yet re- body, an if-statement checks whether leadut;, s;) it-
leased. Lemma 1 states that the lead-in is determinederations have passed, to determine if a location in the CB
such thatd;(¢;,s;) > a(ti,a;,l) — 1, this is equal to can be released. In tHmal phasethe remaining acquired
a(ti,a;,l) < di(t;,sj) + 1. Lemma 2 states that the lead- locations in the CB are released. For every accessed array
outis determined such théi(t;, s;) > I — a(t;, a;, 1), this a;, intotalo(a;) locations are acquired and released in the
is equal tol — da(t;, sj) < a(ti,a;,1l). The combination corresponding CB;, during the initial, processing, and fi-
of both ensures that the accessed location is always innal phase. Within the initial phase, processing phase, and
the window, | — da(ti, s5) < a(ti,a;,1) <1+ di(t,s;). final phase, the C-code can be partitioned in sections that
The window size is defined by the difference be- can perform an acquire or release statementin aCBe
tween the upper bound and the lower bound plus one,will call them synchronization sections. In the templale, t
I+ di(t;,s;) — (I — da(ti, s5)) + 1. One additional loca- dummy counter variable contains the index number of the
tion is required, because the conditional acquire is per-current synchronization section, that can perform an aequi
formed at the beginning of the loop-body and the release ator release operation in C8.

the end. Since at most all locations of the array are acquired

in CB s;, the maximum window size is(a;). O
Table 1 contains the lead-ind;(t;,s;), lead-

outds(t;, s;), window sizew(t;, s;), and array sizer(a;)

for the NLPs of the tasks in Figure 2. The table depicts that

the windows for the CBs,, ands are smaller than the size

37

11th International Workshop on Software & Compilers for Eaithed Systems (SCOPES) 2008

intp=1;
acquire(t, s;),s;);
pt;
for (i:1:p(¢)){
if (i > p(t) + da(t, s;)){
acquire(ls;);
release(ls;);

Initial phase

P

}

intc=1;
(nested for-loops)
if(c<o(a;)—di(t,s;))
acquire(ls;);
(statements)
if (¢> da(t, s;5))
release(ls;);
ct+; ptt;

Processing phase

for (i:1:p(¢)){
it < ola;) — p(t) —da(t, s;))
acquire(ls;);
release(ls;); Final phase

P

r}eleasefc(t, 55):55);

Figure 6. Template to extend an NLP to communi-
cate an array a; viaaCB s;

During theinitial phaseof the NLP oft, di(t, s;) loca-
tions are acquired, in every CB adjacent to task. The

checks whether an acquire should be performed. For CB
s; this if-statement checks if the iteration counter is snmalle
or equal too(a;) — di(t, s;), this is the case if there are
locations left in the CB to acquire. The access to the array
a; is replaced by a read or a write operations in GBAfter
performing the statements in the loop-body, an if-statedmen
checks if a location should be released in the &B For

CB s;, one location can be released if the iteration counter
is larger thanix(t, s;), so after the number of iterations for
the lead-out.

In the final phaseof the NLP of a task, the remaining
locations in the adjacent CBs are released. In the template
in Figure 6 the final phase starts with a for-loop. When not
all locations in the CBs; have been acquired, the for-loop
performss(a;) —p(t) — dl(t s;) iterations that acquire and
release alocation in the CB. The last release statemer# in th
final phase, releases the locations that are still acquirieel.
number of locations to be released is given by the function
x(t, s5), with:

(f)(gpit)() (Z S(J)))
N Mo(aj) < p(t) + dilt, s;
x(t,s5) = o(a;) = (p(t) — dz(tlsg))

— (o(az) = p(t) -

The number of locations in CB; left to release depends

di(t,s;)), otherwise

template, as depicted in Figure 6, contains an initial phaseupon the number of release statements executed in the for-

for a CBs;. First an acquire statement acquires the whole
or a part of the lead-id; (¢, s;) in the CBs;. The number
of acquired locations is given lay(t, s,), with:

((ts5) = {jigj

The for-loop succeeding the acquire statement, acquire
and releases-ds(t, s;) locations in CBs;, if the lead-
outds(t, s;) is negative. The lead-out can be negative when
the first locations in an array are skipped.

In the extended NLP of task the for-loop in the initial

Sj) + dz(t, Sj), if dg(t, Sj)
s;), otherwise

<0

phase may perform acquires and releases for multiple CBs.

The number of iterations(t) of the initial for-loop in the
NLP of a taskt, is the number of acquire and release oper-
ations required by the CB with the smallest lead-out, with
p: T — N. Wherep(t;) of taskt; is given by:
p(ti) = max{—dy(t;, s;)|
S5 = (tk,tl) cSA (tk =t; Vi = tl)}

During theprocessing phasdor all adjacent CBs of a
taskt, at the beginning of an iteration at most one location

loop of the final phase. If the for-loop did not release lo-
cations in CBs;, so o(a;) < p(t) +di(t,s;), there are
o(aj) — p(t) + da(t, s;) locations left to release. Other-
wise the number of releases performed by the for-loop have
to be subtracted from this number.

The for-loop in the final phase may contain acquire and
release statements for multiple CBs. Therefore the num-

Soer of iterations(¢) performed by the for-loop in the final

phase of the NLP of task is the maximum number of ac-
quire and release operations to be performed for a CB, with
p: T — N. Wherep(t;) for the NLP of task; is given by:

p(ti) = max{o(a;) — p(t;) — di(ti, 55)|
s; = (tk,tl) ESNt,=1t; V1 :ti}

Figure 7 depicts the task graph with the extended
NLPs from Figure 2. The access pattern of the NLP
of taskts in CB s, contains skipping, therefore not all
locations are acquired during the processing phase,
o(ay) — p(ts) —di(ts,s;) =14 —12—-0> 0. The for-
loop in the final phase performgts) = 2 iterations that
acquire and release one location per iteration in thesCB

i.e.

is acquired and at the end of an iteration at most one location
is released. In the template in Figure 6, a counter variable4.4 Buffer capacity per edge

c is used in the loop-body of the NLP of a tasko count
the number of performed iterations of the loop-body. At the
beginning of the loop-body, an if-statement is inserted tha

38

In this section the buffer capacities are determined per
edge, followed by an example that illustrates that the found

11th International Workshop on Software & Compilers for Eaitbed Systems (SCOPES) 2008

Sz

tl t3
Sy S,
while(1){ while(1){ while(1){
intcl=1, intc2=1, intc3=1,;
acquire(1s,); acquire(11s,);
acquire(ls,);
for i:0:5 for jo:0:1 forkg:0:3
fori1:0:1{ for 71:0:6 { for k1:0:2 {
if(cl < 11) if(c2 < 12) if(c3< 1)
acquire(s.); acquire(Ls,); acquire(1s,);
if(cl < 11) acquire(ls.); acquire(ls.);
acquire(Ls,); write(7jo+j1,5z2, ~ =read(11-&¢-k1,5.);
write(2io-11+1,54,~); read(§o+j1,sy)); ~ =read(Fo+ki,s.);
write(2ig-11+1,s,,~); if(c2 > 2) if(c3 > 11)
iflcl>1) release(k,,); release(ls;);
release(ls,); release(ls,); release(ls,);
if(cl > 1) C2++; Cc3++;
release(ls,); } }
cl++;
}
release(ls,); release(ls,); for k3:1:2 {
release(lsy); } acquire(ls,);

release(ls.);

Eelease(lhz);}

Figure 7. Task graph from Figure 2, extended to
communicate via CBs

only acquire and release one location in €8 The NLP

of t3 cannot perform an iteration, in which it acquires and
releases the location in CB,, since it first has to acquire
12 locations in CBs,,. Sincets waits forty, t; waits forts,
andts waits forts, there is deadlock.

The deadlock is the consequence of the dependency be-
tween the acquire operations in GB and the acquire op-
eration CBs,. Instead of computing the CB capacities per
edge, the CB capacities should be calculated considering
the dependencies between the acquire and release opera-
tions of all the NLPs at once. In the next section we present
the derivation of a CSDF model from a task graph. This
CSDF model is used to compute the buffer capacities that
guarantee deadlock free execution of the task graph.

45 Buffer capacitiesfor thetask graph

We model the periodic acquire and release operations of
the tasks in a task graph, in a cyclo static dataflow (CSDF)
model [1, 9]. A CSDF model consists of a weakly directed
graphG = (V, E,d,m,~, ¢), with V the set of actors and
E the set of directed edges. An edge = (v;,v;), with
ei; € B, is from actory; to actorv;, with v;,v; € V. An
edge represents an unbounded FIFO queue. Actors com-
municate tokens over edges. There&g;) initial tokens

buffer capacities can be insufficient to guarantee deadlockon an edge;;, with § : £ — N. The period of an acta;

free execution of the task graph. In section 4.5 an alteraati

containsg(v;) phases, withy : V- — N. An actor is en-

approach is described where all CBs are considered at onceabled if all its input edges contain the number of tokens that

The minimal buffer capacity of a CB; = (t3,t;) in

isolation:(s;), is:

u(sj) = w(tn,sj) +w(t;,s;) —1

The found buffer capacity is minimal for a CB in isolation.

Consider the NLPs of the two tasks andt¢; that commu-

nicate via array:;, correspondingto CB; = (5, t;). Task

t,, requires a window withw (¢, s;) locations and task;

a window withw(t;, s;) locations. If the buffer contains

w(tn, s;) +w(t;, s;) — 1 locations, either the NLP af, or

t; can execute its loop-body by acquiring one location, fol-

lowed by reading or writing in the CB and releasing one

location, next the other NLP can execute its loop-body.
The minimum per edge buffer capacities for the CBs in

Figure 7 are(s,) = 12, «(s,) = 5, and(s,) = 1. That

will be consumed during the next firing. At the moment
actorv; is fired for thec” time, it atomically consumes
v(€ij, (¢ —1) mod ¢(v;)) + 1) tokens from every input
edgee;;, with v : £ x N — N. On finishing firingc, actor

v; atomically producesr(ej;, ((¢ —1) mod ¢(v;)) + 1)
tokens on its output edgs;.

A CSDF model can be constructed from a task graph
with extended NLPs. Every task in the task graph is
modeled by an actov;. An edges;; = (t;,t;) repre-
senting the buffer between two tasks, is modeled by an
edgee;; = (v;,v;) and a back edge;; = (vj,v;). Ini-
tially, edgee;; containsi(ej;) tokens, which is equal to the
buffer capacityd(s;;) of the corresponding CB;;. Edge
e;; contains no initial tokens. The template in Figure 6 con-
tains the dummy counter variaklg¢hat represents the num-
ber of the synchronization section, in the NLP of a task.

these capacities are too small to guarantee deadlock free exThe number of phases(v;) of an actory; is equal to the
ecution of the tasks, can be seen as follows. In the tasknumber of synchronization sections of the NLPtgfwith
graph, the NLP of3 can execute if 12 locations can be ac- ¢(v;) = p(t;) + 1 + p(t;) + p(t;) + 1.

quired in CBs,.. To provide these locations, the NLPfqf
should perform 12 iterations. If the NLP of performs an
iteration it acquires locations in both GB and CBs,,. Af-
ter four iterations of the NLP af;, the task cannot continue
with writing in CB s, before additional locations become
available in CBs,. The NLP oft, has to perform two it-
erations before it starts releasing locations in £B Since
the determined buffer capacity of GB is one, NLPt, can

The production on and consumption from an edge ad-
jacent to an actov; in the CSDF model, is derived from
the number of acquired and released locations in the corre-
sponding CB adjacent to tagk An acquire statement for
n locations in a CB in the NLP of;, corresponds to the
consumption of, tokens from an edge by an actqrin the
CSDF model. The same holds for a release statement for
locations in a CB in the NLP of; that corresponds to the

11th International Workshop on Software & Compilers for Eaithed Systems (SCOPES) 2008

(1,1,10¢1,0,0 (0,0,10¢0,1,11,0,0
(0,0,10¢1,1,1) (11,1,10¢0,0,00,9

production ofn tokens on an edge by actoy. For an edge
pair e;; ande;; in the CSDF model that correspond to the
CB sy, in the task graph, the total number of tokens con-
sumed frome;; or produced on edge; during a period of (0,0,10x1,1,) (0, 12><1000m<o 14x1,0) (0,12x1,01,3
actoruv;, equals the size of the arrayay) of CB sy,. (1110100 (000, 13<10M(\0 14x10) _ (012x10,L9
The number of consumed tokens in phadey an actor -
v; on an edge; is derived from the acquire statement exe- Figure 8. The CSDF model derived from the task-
cuted in synchronization sectigrin the CBsj, by the NLP
of ¢t;, with ej; either the edge or the back edge modeling CB
sp. For an actow; on edgee;; in phasep, the number of
consumed tokensg(ej;, p) is given by:

graph in Figure 7

third, fourth, and fifth condition, correspond to the condi-

C(ti,sn),ifp=1 . A . .
0,if2 <p < pty) + 1 Ada(ti,sn) >0 tional release operation in the for-loop in the final phase of
0f2< < p(t;) + da(t;, + 1 Ada(t;, <0 . I i i
R B8 1ot dp((I)Sh)2(2§5p)< o)2+(iron) the NLP oft,. If there are no locations left to acquire in
v(eji,p) = Ads(ti,sn) < 0 CB sy, zero tokens are produced in the phases correspond-
Lifp(t:) +2 < p < p(t:) + —da(ti,sn) +1 i . i i iti
o,nEEtiﬁ 12ers 25(278:)(1@ - pli St ing to the for-loop of the final phase. The sixth condition
B(t:) + p(ts) + plts) + 2 producesy(t;, s,) tokens, this corresponds to the number
1) of locations to be released in the last statement of the final

The first four conditions in this function cover the synchro- Phase. _ _
nization sections in the initial phase of an NLP. The first ~ Figure 8 depicts the CSDF model derived from the task

phase of an actor consumé§;, s;) tokens. If the lead- graph in Figure 7. The Equations 1 and 2 are used to con-
outds(t;, s;,) of arrayay, is positive, the phases of actor struct the production and consumption sequences for the
corresponding to the iterations of the for-loop in the aliti ©dges. For example for acter, the production on edge
phase of the NLP of; consume no tokens. In case of a €13 1S {m(€13,1).. .., m(e13, (v1))) = (0,0,10 x 1,1, 1).
negative lead-out, the phases of the actdhat correspond [N this notation,10 x 1 means that ten consecutive phases
to the last—ds(t;, s1,) iterations of the for-loop in the ini- ~ Produce one token each. Furthermore, the edges with the
tial phase of the NLP of;, consume one token. Condition black dotare the back edges that contain a number of initial
five and six cover the synchronization sections in the pro- available tokens. _ o
cessing phase and the final phase of the NLR.oActor v; To compute the required number of initial tokens on an
consumes one token from edgg in the phases that corre- €dge to avoid deadlock in a CSDF model, a conservative
spond to the synchronization sections of the NLR,ahat ~ @pproximation algorithm [9] is used. In [9] it is also shown
acquire one location in the CB, until all o(a;,) locations that the computed number of initial tokens for the edges in
have been acquired. Remaining phases of agtoonsume @ CSDF model, can be used as the buffer capacities for the
zero tokens. buffers in the task graph, resulting in deadlock free execu-
The number of produced tokens by an actpron an tion of the task graph. The computational complexity of this
edgee;; in phasep is derived from the release state- algorithm is linear in the number of edges times the maxi-
ments executed in synchronization sectjprin the CB mum number of phases of an actor in the CSDF model, i.e.
sn by NLP t;, with ¢;; either the edge or back edge O(V|+ |E|- max;(¢(vi))).
modeling CBs,. We make use of an additional func- Sufficient initial tokens for the edges in the CSDF model
tionw(t;, sn) = o(an) — p(t;) — di(ts, sp,) that returns the in Figure 8 were computed in less than 0.1 seconds. Ac-
number of values in array, that are left to be skipped, af- cording to this algorithm the number of initial tokens stbul
ter performing the initial and processing phase of the NLP be,d(e31) = 14, §(e21) = 5, andd(es2) = 13. Therefore,
of ¢;. For an actow; on an edge;; during phase, the deadlock free execution of the application is guaranteed by
number of produced tokenge;;, p) is: choosing the buffer capacities a6s,) = 14, 6(s,) = 5,
andd(s,) = 13.

0,if 1 < p < p(ts) 4+ da(ti, sn) +1
Lif p(ts) +da(ti,sn) +2 < p < p(ti) + p(ts) + 1

Lif plti) + p(t:) +2< p < 5 Case-study
A(ti) + p(ts) + w(tis sp) + LA w(ti,sp) >0
m(eij,p) = { 00f p(t) + p(t:) + w(ts, sn) +2 < p <
0 nEthtJr) i(tp()ﬁ) A1 Dt =0 In this section, we compute the buffer capacities for a
p(ti) + p(ti) + p(ti) + 1 Aw(ti,sn) <0 part of a task graph of a DAB channel decoder that oper-
X(tey5n), 1 p = p(t) + p(ts) + p(ts) +2 ates in decoding mode I. Figure 9 depicts the part of the

@) task graph with the corresponding NLPs. The demapper
In this equation, the first two conditions cover the synchro- (DM) task contains the differential demodulator and the de-
nization sections of the initial and processing phase. Thequantizer. The DM writes a symbol, which consists of 2048

40

11th International Workshop on Software & Compilers for Eaitbed Systems (SCOPES) 2008

int x[2048]; int y[1536]; while(1){ while(1){ while(1){
for i(:0:20474 for j:0:1535{ for ko:0:1535{ for i(:0:20474 intc2=1; forko:0:1535{
X[i0] = ~; yljol = X[F(j0)]; ~ =yl[kol; acquire(ls,); acquire(1713,); acquire(Ls,);
} } } write(sz,i0,~); for j¢:0:1535{ write(~,~ read6,,ko));
release(ls;); if (c2 < 335) release(k,);
Figure 9. Task graph fragment of a DAB channel }} aigﬂ?’rg?gz’)c;);)
decoder, containing the demapper, the frequency write(sy jo,
deinterleaver, and the time deinterleaver readéa, F(o));

if (c2 > 1235)
release(ls,);
release(lsy);

int F(int index){ c2+;

int counter=0,value=511;
while (counter< index){
value = ((value * 13) + 511)%2048;
if ((value > 256) A (values 1024)A (value< 1792)) . .
counter++; Figure 11. Task graph from Figure 9, extended to

communicate via CBs

}
release(1748,.);

return value;

}

Figure 10. Pseudo-random function used for read-
ing, by the frequency deinterleaver actorsvg, vy, anduv,, respectively. Computing the num-
ber of initial tokens for the back edges in the CSDF model,
using the algorithm from [9], required 0.2 seconds and re-
sulted ind(erq) = 3464 andd(ers) = 388. Therefore,
pairs of 4 bit metrics, in array,. The frequency deinter- deadlock free execution of the task graph in Figure 9 is
leaver (FDI) reads a symbol from array.. Index 1024 guaranteed, when the capacity of GBis 0(s,) = 3464
and the indices below 256 or above 1792 in aragyare locations and the capacity of CB, is 0(s,) = 388 loca-
skipped by the FDI. The metric pairs read by the FDI are tions.
reordered according to the pseudo-random fund&@hin
Figure 10. The FDI writes 1536 metric pairs in-order in ar-
ray a,. The time deinterleaver (TDI) reads the 1536 metric
pairs in-order from array,,.
Table 2 depicts the lead-ify (t;, s;), lead-outds (t;, s), We have presented an approach to arrange the commu-
window sizew(t;, s,), and array size (a;) for the NLPs of nication between the nested loop programs (NLPs) of the
the tasks in Figure 9. These results show that only the out-tasks of an application via circular buffers (CBs).

6 Conclusions

of-order consumption pattern of the FDI in ariayrequires In a CB, a read and a write window with random ac-
a read window with the size of a symbol, which is 2048 cess are used that support rereading, out-of-order reading
locations. or writing and skipping of locations. The CB with windows

The extended NLPs for the task graph in Figure 9, are handles the out-of-order and the multiplicity pattern with
depicted in Figure 11. The NLPs of the DM and TDI tasks, Out copying values into an additional buffer. The size of a
are extended with only one acquire and one release statewindow is derived from the sequence of accessed locations
ment, since they have an in-order access pattern withou®y an NLP in an array.
the skipping and multiplicity pattern. Figure 12 depicts th Each NLP is extended with only a few conditional ac-
CSDF model constructed from the extended task graph inquire and release statements that guarantee mutually-exclu
Figure 11. The tasks DM, FDI, and TDI correspond to the Sive access in a window. A cyclo static dataflow (CSDF)

model is derived from the task graph with these extended

NLPs. Sufficient buffer capacities can be computed with
| NLP || DM | FDI | TDI | the CSDF model, such that deadlock free execution can be
CB || s Sz Sy Sy
dy 0 1713] O 0
dao 0 1235| O 0
w 1 2048| 1 1

(0,2048¢1,0) (1713,335¢1,1201x0,0) (0,1536x1,0) (0,1536x1,0)

o 2048 | 2048 | 1536 | 1536 (0,2048<1,0) * (0,1236x0,300x 1,174 (0,1536x1,0) = (0,1536x 1,0)
Table 2. The lead-in, lead-out, window size, and Figure 12. CSDF model of the task graph in Fig-
array size for the NLPs in Figure 9 ure 11

41

11th International Workshop on Software & Compilers for Eaithed Systems (SCOPES) 2008

guaranteed.

The approach is demonstrated on a fragment of a Dig-
ital Audio Broadcasting channel decoder that includes the
frequency deinterleaver. The frequency deinterleaves use
a pseudo-random function for reading that cannot be de-
scribed with an affine expression. We have extended the ap-
plication to use CBs with windows, furthermore sufficient
buffer capacities have been determined to guarantee dead-
lock free execution.

References

[1] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete
Cyclo-static dataflow.|EEE Transactions on Signal Process-
ing, 44[2]:397-408, 1996.

[2] J. W. v. d. Brand and M. Bekooij. Streaming consistency: a
model for efficient MPSoC design. Rroc. Euromicro Sym-
posium on Digital System Desigmages 27-34, 2007.

[3] D. Culler, A. Gupta, and J. SinghParallel Computer Archi-
tecture: A Hardware/Software ApproacMorgan Kaufmann,
1999.

[4] E. de Greef, F. Catthoor, and H. de Man. Memory size reduc-
tion through storage order optimization for embedded felral
multimedia applicationsInt’l Journal of Parallel Computing
23[12]:1811-1837, 1997.

[5] D.Gannon, W. Jalby, and K. Gallivan. Strategies for @ahd
local memory management by global program transformation.
Int’l Journal of Parallel and Distributed Computing[5]:587—
616, 1988.

[6] K. Huang, D. Griinert, and L. Thiele. Windowed FIFOs for
FPGA-based multiprocessor systems.Phoc. Int'l Conf. on
Application-Specific Systems, Architectures, and Prarsss
(ASAP) pages 3642, 2007.

[7] A.Nieuwland, J. Kang, O. Gangwal, R. Sethuraman, N.&8us’
K. Goossens, R. Peset Llopis, and P. Lippens. C-HEAP: A
heterogeneous multi-processor architecture templateeald
able and flexible protocol for the design of embedded signal
processing systems. Rroc. Design Automation Conference
(DAC), pages 233-270, 2002.

[8] A. Turjan, B. Kienhuis, and E. Deprettere. An integereian
programming approach to classify the communication in pro-
cess networks. IRroc. Int’l Workshop on Software and Com-
pilers for Embedded Systems (SCORpajes 62-76, 2004.

[9] M. Wiggers, M. Bekooij, P. Jansen, and G. Smit. Effi-
cient computation of buffer capacities for cyclo-statialréme
systems with back-pressure. Rroc. IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS)
pages 281-292, April 2007.

42

