

Decision-Making Coordination in Collaborative

Product Configuration

Marcílio Mendonça
1
, Thiago Tonelli Bartolomei

2
, Donald Cowan

1

(1)
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, ON, Canada

{marcilio,dcowan}@csg.uwaterloo.ca

(2)
Department of Electrical and Computer Engineering

University of Waterloo
Waterloo, ON, Canada

ttonelli@uwaterloo.ca

ABSTRACT

In Software Product Lines (SPLs), product configuration is a

decision-making process in which a group of stakeholders choose

features for a product. Unfortunately, current configuration

technology is essentially single-user-based in which user

requirements are interpreted and translated into configuration

decisions by a single role commonly referred to as the product

manager. This process can be error-prone and time-consuming as

it commonly requires back-and-forth interactions between the

product manager and the stakeholders to cope with decision

conflicts. In this paper, we propose an approach to Collaborative

Product Configuration (CPC) that aims at providing effective

support for coordinating teamwork decision-making in the context

of product configuration. The approach builds on well-known

concepts in the SPL arena such as feature models. The

contributions of the paper include the CPC approach and the

illustration of its application in a real-world product line.

Categories and Subject Descriptors
[H.4] Information Systems Applications: Office Automation:Workflow

management.

General Terms
Experimentation, Human Factors, Languages, Verification.

Keywords
Software Product Lines, Collaborative Product Configuration, Feature

Models, Work Coordination, Workflows.

1. INTRODUCTION
In Software Product Lines (SPLs) [1], product configuration is a

decision-making process in which a group of stakeholders choose

features for a product. A feature model [2] is commonly used to

guide the configuration process since it breaks down the

variabilities and commonalities of product line members into a

hierarchy of features. Additionally, feature models encompass

constraints that prevent the derivation of inconsistent product

specifications, i.e., products containing incompatible features. The

widespread acceptance of feature models within the SPL

community led to a number of supporting approaches [2][4][6][5]

and tools [7][8][9].

Unfortunately, current configuration technology is essentially

single-user-based in which user requirements are interpreted and

translated into configuration decisions by a single role referred to

as the product manager. This process can be error-prone and time-

consuming as it commonly requires back-and-forth interactions

between the product manager and the stakeholders to cope with

decision conflicts. Moreover, stakeholders become passive in the

configuration process since the product manager is the only one

able to directly select features for the product. We claim that

single-user-based configuration is impractical especially when

large product lines are considered. For instance, as well pointed by

Batory et al. in [10], product lines in the automotive industry can

contain up to 10,000 features and involve tens of stakeholders. It is

hard to think of a product manager coping with such a large

number of decisions almost on its own.

Figure 1. Partial feature model for a web portal product line

In this paper, we propose an approach to Collaborative Product

Configuration (CPC) that aims at providing effective support for

coordinating teamwork decision-making in the context of product

configuration. Major CPC issues are discussed such as a strategy to

split the universe of configuration decisions into fine-grained

configuration units and means to analyze work coupling and

represent the configuration decision-making process as a valid

workflow-based arrangement. Finally, evidences of the feasibility

of the CPC approach are shown through an illustrative example

and by introducing a support tool.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SAC’08, March 16-20, 2008, Fortaleza, Ceará, Brazil.

Copyright 2008 ACM 978-1-59593-753-7/08/0003…$5.00.

108

Figure 2. Single-User-based (A) and collaborative (B) product configuration scenarios

The contributions of this paper are two-fold. First, it proposes an

approach to coordinate teamwork decision-making in collaborative

product configuration. Second, it provides an illustration of the

approach in a real-world scenario for a web portal product line.

This paper is organized as follows. Section 2 provides background

on feature models. The approach to collaborative product

configuration is presented in Section 3. Section 4 illustrates the

approach using a case on the web portal domain. A prototype tool

to support the CPC approach called CPC is discussed in section 5.

Section 6 covers related work and section 7 concludes the paper.

2. FEATURE MODELS
Feature models were originally proposed in a domain analysis

method called FODA (Feature-Oriented Domain Analysis) [2] as a

means to represent commonalities and variabilities of system

families. In practice, feature models are valuable tools to support

product configuration. Figure 1 shows a partial feature model of a

web portal product line. The root feature (diamond shaped) is

called the concept node. Rectangles represent features. White

circles on top of rectangles indicate optional features (e.g.

persistence, performance) while in mandatory feature rectangles

are decorated with black circles on top (e.g. feature web server).

Feature groups are represented by dashed rectangles enclosing two

or more features. Cardinalities with lower and upper bounds are

attached to feature groups to indicate mutual exclusion. Extra

relations can be attached to feature models to constrain feature

combinability. For instance, constraint (or → da) in Figure 1

enforces that a database must be available in the product if data

storage security is a requirement.

A product specification is produced by selecting features in the

feature model. For instance, a valid product specification S1 for the

partial web portal feature model in Figure 1 could be (using

abbreviated feature names): S1 = {pe, we, er, ec}. S2 = {pe, er, ec,

xm, da} is an example of an invalid specification since feature we

is mandatory but not included in the specification and features xm

and da are mutually exclusive but appear together in the

specification.

The use of propositional formulas as encodings for feature models

enabled the use of off-the-shelf tools such as SAT and CSP solvers

to reason on feature models and product configuration [3]. Binary

decision diagrams (BDDs) can also be used to represent feature

models for similar purposes. For instance, with the support of a

BDD it is possible to count the number of valid configurations, to

enumerate configurations, to enforce backtrack-freeness, and so

forth.

3. COLLABORATIVE CONFIGURATION
Figure 2 depicts two configuration scenarios. Scenario (A)

illustrates a traditional non-collaborative configuration process in

which stakeholders provide requirements to the product manager

who in turn interprets and translates them into configuration

decisions. The involvement of stakeholders in the configuration

process is passive (or indirect) considering that the project

manager is the only person allowed to make configuration

decisions. A feature model serves as input to the configuration

process and as a result a complete valid product specification is

produced. Tool support is normally provided to assist the project

manager with reasoning about his decisions and with automatically

propagating decisions throughout the feature model.

Scenario (B) describes our approach to coordinate collaborative

work in product configuration. The approach consists of two

phases. In phase-1 (scenario B1), the goal is to produce a plan to

coordinate configuration tasks. The product manager commonly

leads phase-1 as she has a privileged view of who should take part

in the configuration process (configuration actors), which groups

can work together and at which time, what the potential conflicting

situations are, and so forth. The first step in phase-1 is called

splitting. It aims at partitioning the universe of configuration

decisions in smaller units called configuration spaces based on a

particular criterion (e.g. knowledge domain). In addition, it is

necessary to identify who is to be responsible for which decisions.

There are some rules to constrain a splitting.

109

Figure 3. Feature model for a web portal product line decorated with configuration spaces (dashed lines)

For example, the union of all configuration spaces specified should

cover the entire feature model, i.e., the entire decision space. Once

the splitting step is validated, a step known as plan creation takes

place. The product manager devises a plan base on the previous

splitting of tasks, i.e., the configuration spaces and actors. The plan

specifies a set of configuration sessions and the order of their

execution. In a configuration session some configuration spaces

are grouped together allowing configuration actors to make

decisions on them as a team. The order in which configuration

sessions are arranged (e.g. in sequence, in parallel) is defined by

the product manager but is also subject to automatic validation.

Indeed, plan validation is a critical issue in collaborative

configuration as invalid plans can cause the production of incorrect

product specifications. Validating plans involves performing a

detailed dependency analysis to identify work coupling (e.g.

interdependent configuration sessions). Strong and weak

dependencies are differentiated to indicate sequential and

concurrent tasks. Since interdependent configuration sessions can

be carried out simultaneously, there is another kind of session

required to resolve decision conflicts, called merging sessions. A

merging session is only necessary if two or more parallel

interdependent sessions contain decisions that together violate

global configuration constraints. During the merge, configuration

actors in charge of those sessions reason about potential solutions

to the conflict properly supported by tools. The last step in phase-1

is plan generation in which an executable encode that represents

the CPC plan is generated, i.e., the high-level plan description is

converted into a machine-executable format (e.g. a workflow

described in XML).

Once the CPC plan is validated and generated, phase-2 (scenario

B2) can be started. Phase-2 represents the actual product

configuration process that, just like the single-user-based

configuration (scenario A), aims at configuring an initial feature

model and producing a valid product specification. The major

difference is that now multiple configuration actors are directly

involved in the process and consequently need to follow a

prescribed plan. Tool support is highly desirable in this phase to

assist the product manager and other configuration actors with

coordinating their tasks and enforcing that the plan is been

followed.

4. ILLUSTRATIVE EXAMPLE
This section illustrates phase-1 of the CPC approach using the web

portal product line depicted in Figure 3 as case study. Notice that

Figure 3 shows an expanded version of the feature model in Figure

1 in which constraint (or → da) was removed and several others

were included.

4.1 Splitting
The product manager role is responsible for the splitting phase

since she has a privileged view of the stakeholders and their

expertise. Additionally, the product manager can anticipate

potential conflicting situations and try to avoid them. Figure 3,

shows a possible splitting for the web portal product line. Nine

configuration spaces are depicted: Wp, St, Pe, Sc, Pf, Se, Ad, Ws,

and Pr. Each configuration space groups features based on a

particular criterion (e.g. knowledge domain). Notice that some

features appear in more than one configuration space (e.g. Ad

Server, Protocols) and are called junction points. Because a

junction point is also a feature it needs to be assigned to a

configuration actor. In fact, only a single configuration space

contains this feature as a leaf node and this space represents the

place in which the feature will be decided. For instance, feature pr

(Protocols) will be decided in configuration space Ws rather than

in configuration space Pr.

Notice that configuration spaces can be viewed as clusters of the

feature model and their arrangement respect the hierarchy of

features in the feature model. Hence, the concept of parent and

children configuration spaces is applicable (e.g. configuration

space Wp is parent of configuration space St). Two kinds of

110

configuration space dependencies are relevant: strong and weak

dependencies. A configuration space A is strongly dependent on a

configuration space B when a single decision in A can impact all

decisions in B. It can be easily observed that children configuration

spaces are always strongly dependent or their parent spaces. For

instance, child space St is strongly dependent on parent space Wp

because when feature si (Site Statistics) is set to false all features in

St are automatically falsified. Two configuration spaces A and B

are weakly dependent if some decisions in A can impact some

decisions in B, and vice-versa (e.g. Ws and Pe because of

constraint db → da). Weak dependencies are directly related to the

extra constraints attached to the feature model.

Figure 4: Merged view of strong and weak dependencies

Figure 4 shows a merged view of the strong and weak

dependencies among the configuration spaces of the web portal

product line. Arrows indicate strong dependencies and weak

dependencies are represented by dashed lines. For instance,

configuration spaces St, Se, Ad, Pe, Pf and Sc strongly depend on

configuration space Wp. In fact, Wp is the parent space of those

configuration spaces. The weak dependencies are found by

performing a detailed dependency analysis in the feature model. It

is out of the scope of this paper to discuss how such dependencies

are examined.

4.2 Plan Creation
Once the feature model is split into several hierarchical

configuration spaces a plan is specified to group configuration

spaces in configuration sessions and to arrange the sessions in

sequential and parallel flows. Notice that invalid plans are possible

thus validation rules are required to enforce the correctness of

plans. An invalid plan is one that leads to invalid product

specifications, i.e., that contains incompatible features. To validate

plans we will consider the following rules:

(1) Whenever a configuration space B is strongly dependent on a

configuration space A, A must precede B

(2) If two configuration spaces A and B are weakly dependent

they are to be arranged either in a sequence or in parallel but

immediately followed by a merging session

It is important to notice that rules (1) and (2) only apply to

configuration spaces placed in different configuration sessions.

That is, configuration spaces of the same session are configured by

the same team of configuration actors and eventual dependencies

among them are resolved together during the session.

The CPC plan is a workflow-like structure that groups

configuration spaces into configuration sessions and arranges

configuration sessions in sequence or parallel. Merging sessions

follow dependent configuration sessions, i.e., configuration

sessions that contain interdependent configuration spaces. Figure 5

depicts two plans A and B for the web portal product line based on

the splitting shown in Figure 3. Plan A is invalid because

configuration spaces Ws and Pr are placed in parallel configuration

sessions yet Pr is strongly dependent on Ws. Similarly,

configuration spaces Se and Ad are also placed in parallel sessions

but because they are weakly dependent on each other, a merging

session is required to enforce that eventual decision conflicts in

those spaces will be resolved.

Figure 5: Invalid (A) and valid (B) CPC plans for the web

portal product line

Plan B fixes the problems of Plan A by moving configuration space

Pr to a new configuration session that follows Ws’s configuration

session. Similarly, a merging session was added immediately after

the configuration sessions of configuration spaces Se and Ad.

Finally, note that configuration space St was moved to the same

configuration session as configuration space Ws for optimization

purposes since those spaces exhibit no dependencies on each other.

The same optimization strategy could have been applied to

configuration spaces Ws and Wp. It is up to the product manager to

accept or reject optimizations.

4.3 Plan Generation
The last step prior to the actual product configuration process is to

generate an executable representation for the CPC plan. Notice that

plan B in Figure 5 is indeed a compact representation for the

collaborative configuration process since many configuration

sessions are in fact optional as they dependent on decisions made

on previous sessions. For instance, even though configuration

space St follows configuration space Wp, St’s configuration session

will only be executed if feature si (Site Statistics) is selected during

Wp’s configuration session.

111

Figure 7. The CPC tool derives validation rules for CPC plans;

The web portal product line of Figure 3 is shown loaded in the tool

In fact, prior to the execution of any configuration session the

underlying workflow system needs to check whether at least one

root feature of one configuration space in the session is true,

otherwise the session is skipped. We say the CPC plan represents a

pessimistic view of the collaboration process in which all sessions

are executed and decision conflicts arise. In the actual

configuration process, many configuration and merge sessions may

be skipped as a consequence of previous decisions. We refer to the

expanded CPC workflow as the actual executable workflow

representation used to augment a CPC plan.

5. PROTOTYPE
Figure 7 depicts CPC, a prototype tool developed to support the

CPC approach. The feature tree is shown on the left-hand side

together with the extra constraints table on the bottom.

Configuration space Ad appears highlighted in the feature tree. The

tool allows the splitting of the feature tree into several

configuration spaces and the assignment of these configuration

spaces to configuration actors. Hypergraph-based techniques are

used to identify strong and weak dependencies among

configuration spaces and to produce validation rules for CPC plans

(see tables constraints hypergraph, conf. space hypergraph, and

conf. space dependencies). Dependency analysis operations such

as D(n), DT(n), and DF(n) support the analysis of feature

dependencies on the feature tree and work in conjunction with the

hypergraphs (see Feature Basic and Dependency Analysis in

Figure 7).

Another prototype tool called ExeCPC is under development that

will allow the development, validation and execution of CPC

plans. Plan validation takes into account the validation rules

produced by the CPC tool. A critical component of CPC plans is

the merging session. A manual merge allows configuration actors

to reason on different alternatives to resolve a conflict. Automatic

merging algorithms attempts to find a solution to a conflict based

on specific strategies. Currently, two strategies are possible. A

minimization of changes strategy attempts to find the solution that

least changes previous decisions. A priority-based strategy

specifies use priorities to decide which decisions should prevail

over the others. Automatic merging algorithms have been

implemented using a CSP tool for Java called Choco [16].

6. RELATED WORK
Product configuration has also been addressed as a Constraint

Satisfaction Problem (CSP) [11][12] in which configuration

knowledge is described in terms of a component-port

representation [13] that includes a set of constraints to restrict

components’ combinability. Constraints are usually written in

formal notation (e.g., propositional logic). Similarly, user

requirements are translated to a formal representation allowing the

configuration problem to be solved by automated systems known

as configurators. Alternative versions of the CSP approach support

the notion of distributed configuration [13]. In distributed

configuration the configuration problem is translated into a

distributed constraint satisfiability problem (DisCSP) [14] in

which the constraints and variables are fragmented over multiple

configuration environments. Each environment is controlled by an

intelligent software agent that works as a local configuration

system. DisCSP approaches build on distributed algorithms to

support agent communication (e.g., message passing mechanisms)

and coordination (e.g., constraint enforcement).

CSP and DisCSP focus on developing algorithms and machinery

support for solving constraint satisfaction problems. The

112

assumption is that machines can quickly process thousands of

instructions and perform efficient backtracking until a desirable

solution is found. The involvement of humans in the process is

limited to providing requirements to the configuration system in

terms of logic formulas. Instead, in our approach the major goal is

to support the coordination of human decision-making in product

configuration. Tool support is provided not as a means to solve the

problem but to provide assistance for humans to carry out their job.

Staged configuration [15] was an initial starting point for our work

as it pinpointed various scenarios in which product configuration

is carried out by multiple configuration actors in different stages.

The authors introduced two configuration techniques called

specialization and multi-level configuration to support the

progressive configuration of products. The CPC approach relates

to the notion of staged-configuration in two contexts. First, it

furthers the discussion on coordination of configuration actors in

collaborative configuration. Second, it provides effective tool

support based on efficient algorithms for dependency analysis and

formalizes the concepts in the approach.

7. CONCLUSION
In this paper we presented an approach to collaborative product

configuration that supports the splitting of the feature model into

smaller units called configuration spaces and the arrangement of

such spaces in a workflow-like plan. We showed that, because

CPC plans can contain errors that may cause invalid product

specifications to be produced, validation rules are required to

enforce the correctness of the plans. Finally, we illustrated the

approach in a real-world scenario of a web portal product line and

provided details of a prototype tool that supports the approach’s

ideas. The CPC approach furthers the understanding of how

collaborative configuration can be properly supported and

ultimately fosters the development of newer and better approaches

in the future. Future directions include the development of a

support tool for the execution of CPC plans, the conduction of

larger case studies, and the formalization of the approach.

8. ACKNOWLEDGEMENTS
The authors would like to thanks William Malyk for the fruitful

discussions on workflow systems.

9. REFERENCES
[1] Software Engineering Institute, Software Product Lines, Link:

http://www.sei.cmu.edu/productlines/

[2] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson: Feature-

oriented domain analysis (FODA) feasibility study, SEI,

CMU, Pittsburgh, PA, CMU/SEI-90-TR-21, Nov. 1990.

[3] D. Batory. Feature Models, Grammars, and Propositional

Formulas. SPLC 2005, Rennes, France.

[4] V. Cechticky, A. Pasetti, O. Rohlik, and W. Schaufelberger.

XML-based Feature Modelling. LNCS, Software Reuse:

Methods, Techniques and Tools: 8th ICSR 2004.

Proceedings, 3107:101–114, 2004.

[5] K. Czarnecki and U.W. Eisenecker. Generative Programming.

Addison Wesley, 2000. ISBN: 0201309777.

[6] K. Kang, K. Lee, and J. Lee. FOPLE - Feature Oriented

Product Line Software Engineering: Principles and

Guidelines. Pohang Univ. of Science and Technology, 2002.

[7] C. Krueger. BigLever GEARS tool, BigLever Software Inc.,

link: http://www.biglever.com/extras/ Gears_data_sheet.pdf

[8] Pure-systems GmbH. Variant Management with

Pure::Consul. Technical White Paper. Link: http://web.pure-

systems.com, 2003.

[9] M. Antkiewicz and K. Czarnecki, K. FeaturePlugin: Feature

modeling plug-in for Eclipse. In: OOPSLA’04 Eclipse

Technology eXchange (ETX) Workshop. (2004) Link:

http://www.swen.uwaterloo.ca/kczarnec/ etx04.pdf. Software

available from gp.uwaterloo.ca/fmp.

[10] D. Batory, D. Benavides, and Ruiz-Cortes, A. 2006.

Automated analysis of feature models: challenges ahead.

Communications of ACM 49, 12 (Dec. 2006), 45-47.

[11] E.P.K. Tsang. Foundations of Constraint Satisfaction.

Academic Press, London and San Diego, 1993 ISBN 0-12-

701610-4.

[12] V. Kumar. Algorithms for Constraint Satisfaction Problems: a
Survey. AI Msg. 13 (1) (1992) 32-44.

[13] A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker.

Towards Distributed Configuration. Proc. KI-2001, Joint

German/Austrian Conference on AI, Vienna, Austria, Lecture

Notes in AI, Springer Verlag.

[14] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The

Distributed Constraint Satisfaction Problem: Formalization

and Algorithms. IEEE Transactions on Knowledge and Data

Engineering, v.10 n.5, p.673-685, September 1998.

[15] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged

Configuration through Specialization and Multi-level

Configuration of Feature Models. Software Process

Improvement and Practice, 10(2), 2005.

[16] Choco CSP Java library: http://choco-solver.net/index.php

Marcilio Mendonca received the MSc degree in Computer

Science (1996) from the Pontifical Catholic University of Rio de

Janeiro (PUC-Rio), Brazil. He is currently a PhD student at the

David R. Cheriton School of Computer Science at the University

of Waterloo in Canada and the recipient of the prestigious

Cheriton Scholarship Award. Prior to the PhD he worked for 8

years in the industry as a software architect and project manager.

His research interests include software product lines, object-

oriented application frameworks, and web-based systems.

Thiago Tonelli Bartolomei is a PhD candidate at the Department

of Electrical and Computer Engineering at the University of

Waterloo in Canada. He is member of the Generative Software

Development Group and his research interests include software

product lines, model and code transformations, round-trip

engineering and aspect-oriented development.

Donald Cowan is Distinguished Professor Emeritus in the David

R. Cheriton School of Computer Science at the University of

Waterloo. He was the founding Chair of Computer Science at the

University of Waterloo and is currently Director of the Computer

Systems Group at the same University. His current research

interests include software engineering, software tools, web-based

systems for asset management and social networking, software

processes, and hypermedia documentation. Dr. Cowan is the

designer of forty unique web-based information portals.

113

