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ABSTRACT

Within aspect-oriented programming, the quality of aspect
code depends on the readability and expressiveness of point-
cut languages. Readability is increased by using specialized,
declarative pointcut languages. For such languages, their ex-
pressiveness is increased if they offer an integration with the
base code language. As has previously been shown, offering
access to the past history of the base program also increases
pointcut expressiveness. A logical desire then is creating
pointcut languages that combine both features, but taken
to the extreme this is not implementable. We discuss the
unimplementable ideal model of declarative history-based
logic pointcut languages, and the possible approximations
that can be made that are still implementable and what
limits they impose on the ideal expressiveness.
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D.3.3 [Programming Languages|: Language Constructs
and Features
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1. INTRODUCTION

Examples of aspect languages which do not use a spe-
cialized pointcut language exist, but the use of specialized
languages is clearly motivated. One example of the former
is the AspectS extension for Smalltalk [11]: both advice and
pointcuts are written in Smalltalk. But even the archetyp-
ical example AspectJ [13] uses a specialized pointcut lan-
guage that is different from the underlying Java. This is
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motivated by the desire to make pointcuts easier to read by
using a declarative pointcut language. A declarative point-
cut language specifies which join points a pointcut should
match, but not how to compute this set of join points: com-
pare using an imperative language such as Java to using
SQL to query over a database. Many pointcut languages
therefore take the form of a declarative query language.

Besides readability, a pointcut language is of course also
defined by its expressiveness. This depends on a number of
factors, such as how many types of join points are available,
how much information is available about them to express
queries and the computational power of the language it is
based on. In earlier work we specifically proposed the use
of pointcut languages based on logic programming such as
Prolog, as this doesn’t put an a-priori limit on the latter
factor by not being Turing-complete (Prolog is), while offer-
ing other features such as unification and logic rules which
are useful in writing pointcuts [6]. The other factors de-
pend largely on the logic predicates made available to ex-
press pointcuts. Several logic-based pointcut languages now
exist [17, 8, 19, 3, 1, 2, 15].

Despite the advantages of having a specialized pointcut
language, it also introduces a problem of language integra-
tion. There is a need to be able to interact, from the pointcut
language, with the language used in the rest of the program.
For example, an advice which should be executed whenever
an instance of a class Article is accessed, but only if the ar-
ticle has a high price requires a way for the pointcut language
to determine this price. As, following good object-oriented
practice, the article object will encapsulate the price, this re-
quires a symbiosis between the pointcut and object-oriented
language to send a message to the object from the pointcut.
While a number of logic-based pointcut languages actually
support such a mechanism [6, 17], the effect of including
such a mechanism in a logic pointcut language hasn’t yet
been studied in detail.

A further study is also required of symbiosis in history-
based pointcut languages. Since the inception of event-based
AOP [4], several pointcut languages have been developed
that allow a pointcut to describe a set of join points based
on their relationships to past join points. An approach to
including this in a logic-based pointcut language was demon-
strated in the work on Alpha [17], but this did not include
a consideration of the impact of the history feature on the
language integration and only allows to make use of it at
the join point that is currently being matched.

In our own work on HALO [9], we have included a sym-
biosis feature in the language that allows sending base level
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Figure 1: Overview of the e-shop running example.

messages at different times in the pointcut. We have so far
mostly studied its applications [9] and implementation us-
ing a forward chaining logic [10]. The aim of this paper
is to focus on the relationship between HALO and other
efforts in integrating symbiosis in logic-based and particu-
larly history-based pointcut languages. We approach this
by constructing two unimplementable models of logic-based
pointcut languages, one without history and one with, and
consider the impact of different limitations and techniques
that allow linguistic symbiosis to be used to approximate
these models.

In the next section we introduce a simple application which
is used for the example pointcuts in the remainder of the
paper. The following section first discusses the relationship
between linguistic symbiosis and other features of a point-
cut language in the context of a non-history based pointcut
language, through a simple model of how such logic pointcut
languages work. In Section 4 we extend this to history-based
logic pointcut languages. Section 5 discusses related work
and the final section presents our conclusions and future
work.

2. RUNNING EXAMPLE

As a running example, we use an e-commerce applica-
tion, as shown in Figure 1. The classes Shop, User and
Article model the e-shop, its customers and the sold ar-
ticles respectively. A class Promotions simply maps articles
to a discount rate, which can be changed using the method
set-rate, and accessed with discount-rate-for. The method
singleton-instance is used to retrieve the Promotions class’
only instance.

The shop also needs to have a “discounting feature”, which
cuts across the methods in Figure 1. The idea is that when
a customer visits the homepage of the e-shop, promotional
campaigns are advertised by pop-up banners. One such ban-
ner could for example state “Happy Hour! Login in now,
and get a 5% discount!”. So if the customer responds to
the banner by logging in, he will get a 5% discount on the
total amount purchased when he checks out his basket. In
order to implement the discounting functionality we need to
extend the login method in Figure 1 to record whether the
user logs in while a promotional campaign is active. Next
we need to extend the checkout method to compute the
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appropriate discount. This shows that the “discount” func-
tionality gets scattered over different methods, breaking the
modularity of the e-commerce application. We can solve this
by implementing the feature as an aspect.

3. LOGIC-BASED POINTCUT LANGUAGES
3.1 SLAL: A Model

From the basic notion of Aspect-Oriented Programming
follows a simple mental model for how aspect languages with
a logic-based pointcut language work: while executing a base
program, the execution is interrupted at every join point. At
each such interruption the weaver generates a logic fact to
represent this join point and checks every pointcut to see
whether the join point fact matches its conditions. When a
pointcut matches, its associated advice code is executed.

As a concrete instantiation of this mental model, consider
a very simple aspect language with a logic-based pointcut
language (SLAL). We use the typical logic language Prolog
as the basis for this pointcut language'. The base programs
it works on are written in Lisp using the Common Lisp Ob-
ject System.

Figure 2 illustrates the mental model for SLAL: the black
boxes represent the different components of the weaver, whereas
the labeled boxes denote both the base program and the as-
pects. The flow between the different weaver components
shows that the execution of the base program is mapped onto
logic facts and deposited in a fact repository, and that this
fact base is queried to verify whether a pointcut is matched
by a join point fact; If so, a piece of advice is executed and
inserted in the program flow.

To keep SLAL simple it only intercepts a single kind of
join point: method calls. Each method call join point is
represented as a logic fact using the logic predicate call
that has an argument ?Receiver, ?Name and ?Arguments
referring to the receiver object, name and argument list of
a concrete method call join point?.

3.2 SLAL: Need for Symbiosis

The model of SLAL is sufficient to explain how logic point-
cut languages work, but it has of course also a very limited
pointcut language. One way to increase the expressiveness
of the pointcut language is to add new types of join points.
Most pointcut languages for example expose message sends,
variable accesses and changes of variables as additional join
points. A more important way of increasing the expres-
siveness of the language is to expose additional join point
context.

The need for symbiosis arises because it is also interest-
ing to consider information derived from the base program’s

!Note that in our examples, we use a slight deviation from
standard Prolog syntax: variables are written with a ques-
tion mark, as in ?var. Words beginning with a capital, like
Article, are atoms (strings) whereas they would be vari-
ables in standard Prolog. This change makes clearer when
logic variables are used in pieces of advice.

?Because Lisp uses multi-dispatch “generic functions” in-
stead of single-dispatch “methods”, the concept of a sin-
gle designated receiver object does not exist there. But we
adopt it here because of the familiarity of this concept to
programmers in other OO and aspect languages. Hence the
“receiver” is always the first argument of the generic func-
tion.



(defclass User () (name ""))

(defclass Article () (price 0))

(defmethod buy ((u User) (a Article)

) call(?User,'buy. ?Args)

(defmethod checkout ((u User)) ...)

(defun main ()

(let ((kris (make-instance 'User))
(cd (make-instance 'Article)))
(buy kris cd)))

runtime weaver

call(?User,'buy, ?Args)

call(<kris>,'buy, [<cd>]) w

aBuyCall(?User, ?Args) :- ‘

Figure 2: Mental model of how a simple logic aspect
language works.

methods as join point context data. In early aspect lan-
guages, and still some current ones, it is only possible to
do this via the advice language. For example, selecting a
method call join point where the bought article is of type
“cd” can then be done as follows:

before {
call (?User, buy,
}
do {
(if (article-kind-p ?Article ’cd)
(print ""s buys a CD" (get-name ?User)))
}

[7Article])

The solution of including the type test in the advice how-
ever has two problems. The first is conceptual, a pointcut
describes when to do some additional behavior and the ad-
vice contains the additional behavior. In the above example,
the purpose of the aspect is to do logging when someone buys
a CD. This is however not readily reflected in the pointcut,
which only expresses that the advice is executed whenever
someone buys an article, regardless of its kind.

The second problem with having to put the test in the
advice rather than the pointcut is a practical one. It im-
pedes using the reusable pointcuts mechanism of the point-
cut language. As was shown in CARMA [6] and other logic
pointcut languages [17], reusable pointcuts are written using
the logic rules mechanism. This should allow us to write a
rule expressing when an expensive article is bought, so that
this rule can be used in multiple pointcuts. This definitely
requires a mechanism to express the test in the pointcut
language rather than the advice language.

We can model this mechanism in SLAL by including result
facts in the fact base. The goal of these result facts is to
make available all of the join point context that is hidden
away in the computations performed by the base methods.
The result predicate has four arguments: a receiver object,
the name of a message, a message argument list and a result
object. Conceptually, the fact generator generates facts for
this predicate by executing every method in the base pro-
gram with every possible argument list and recording a fact
for each returned result (we ask the reader to keep in mind
we’re explaining a conceptual model of logic pointcut lan-
guages here, and to suspend disbelief of this last statement
for a moment).

We can now use this to write the pointcut to select method
call join points where the bought article is of type “cd” as
depicted below. The result condition matches when the
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“article-kind-p” test evaluates to “true” for a bought arti-
cle.

before{
call(?User, buy, [?Articlel),
result(?Article, article-kind-p, [’cd], true)
}
do{
(print ""s buys a CD" (get-name ?User))
}

3.3 Symbiosis Implementation

In the previous section, we’'ve explained the conceptual
model of SLAL in which result facts are generated by the
fact generator by executing every method with every possi-
ble argument list. It’s clear that to implement this would in
fact require the fact generator to rely on an oracle (similar
to a Turing oracle [18]) to do this, not to mention an infinite
amount of space to store the infinite number of facts. But
an approximation of this conceptual model can be made,
in which the facts are produced on demand, with certain
limitations.

If a Prolog engine is suitably integrated with the base
language, the result predicate can be defined as a prim-
itive predicate. This has been demonstrated in one form
or another in for example SOUL [20] (on which the logic
pointcut languages CARMA [6] and OReA [3] are based),
Alpha [17] and other works, a more extensive survey is
provided by D’Hondt [3]. In the primitive implementation
of the result(?rcvr, 7m, 7args, ?result) predicate, the
message 7m is simply sent to the object ?rcvr with the ar-
gument list 7args. Depending on whether a value is already
given for the result condition’s ?result argument, the re-
turned value is compared with the given value which makes
the logic proof either succeed or fail, or the ?result variable
is simply assigned the return value.

This implementation of result conditions requires all ar-
guments except for the ?result to be already given, thus
putting some limitations on SLAL in comparison with the
conceptual model. This does not mean that no variables can
be used as arguments for such conditions, but they must be
given a value by “earlier” parts of the pointcut. Understand-
ing what the “earlier” parts are and how this works exactly
requires some understanding of how the Prolog logic eval-
uation procedure works®. But simplified, a logic query is
proven to be true or false by starting with the first condi-
tion and so on, using facts or rules to prove the condition,
and as a side-effect constraining variables to have the value
given by a fact. I.e. if a condition call(?Rcvr, ?Name,
[35]) is proven by using a fact call(<cdl>, ’set-price,
[35]), the variables ?Rcvr and ?Name get the value <cdi>
and ’set-price respectively.

As an example of the limitations this puts on the language,
take the following examples:

result(?Article,
call(?User, buy,

get-price, [], ?Price),
[7Article])

[?Articlel),
get-price, [], ?Price)

call(?User, buy,
result(?Article,

[7Articlel),
?Name, ?Args, 35)

call(?User, buy,
result(?Article,

The first pointcut doesn’t work, because when proving the
first condition, 7Article will not yet have a value. The

3The Prolog proof procedure is known as SLD resolution.



—-

1:create(User, <kris>)
2:call(<kris>, 'buy', [<cd>])

Figure 3: The mental model for X-HALO.

second pointcut is declaratively entirely the same as the
first one, but it will work because the conditions have been
swapped so that 7Article will have a value before the result
condition is evaluated. The last pointcut won’t work, con-
sider what this pointcut expresses: “the pointcut should
match a call of buy with a certain article 7Article if for
some random method and random arguments list, invoking
the method on the article gives the result 35”.

4. HISTORY-BASED LOGIC POINTCUT
LANGUAGES

In the previous section, we considered some typical sym-
biosis implementation issues for the integration of logic and
object-oriented programming that also arise in aspect-oriented
pointcut languages. In this section we discuss the issues
that arise when this is extended to pointcut languages that
use a history of join points. To this end, we extend the
SLAL model to X-HALO?*, a straightforward extension of
the model in which the fact base is never cleared. From the
conceptual model follows equally straightforwardly that the
result facts are also never cleared, but this brings up new
symbiosis implementation issues.

4.1 X-HALO: A Model

The mental model of how X-HALO works is almost the
same as SLAL’s, the only difference is that information
about past join points is kept. In SLAL, the fact base is
cleared at every join point, thus only facts about the cur-
rent join point are available. To model history-based aspect
languages, in X-HALO the fact base is not cleared. To be
able to differentiate between the facts generated for differ-
ent join points, they are tagged with a timestamp, which is
simply given by a counter increased at every join point °.
This is illustrated in Figure 3. The facts in the fact base are
all notated in the notation number : fact®. We also include
instance creations as join points in this model, for which
facts of the form create(class, instance) are generated.
So for example, if we execute a base program:

1HALO stands for “History-based Aspects using LOgic”.
The name is taken from the pointcut language we discussed
in earlier work [9], but the prefix “X-” for “eXtreme” refers
to the unimplementability of the full conceptual model.
"We assume sequential program execution. A model of X-
HALO for parallel programming is left for future work.
5This can be done in standard Prolog, the expression
foo:bar is syntactic sugar for a fact :(foo,bar) for the
predicate “:”
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(defun main ()
(let ((kris (make-instance ’User))
(cd (make-instance ’Article)))
(buy kris cd)))

The following logic facts will be present in the fact base after
its execution:

1:create(User, <kris>).
2:create(Article, <cd>).
3:call(<kris>, buy, [<cd>]).

The timestamp notation is similarly used to pick out join
point facts in the conditions of a join point. Either a con-
crete value can be used, or a logic variable. For exam-
ple, a pointcut 1:call(?User, checkout, 7Args) will be
matched against the first join point ever recorded. The
pointcut ?T:call(?User, checkout, ?Args) will match any
method call join points where the method name is ’check-
out’.

Similarly, each user-defined predicate gets a time stamp.
As an example, consider the rule below. One should read
the rule as follows: “ a join point matches the condition
buy-article ([?Articlel]) at atime ?T when the join point
matches call (?User, buy, [7Article]) at that time ?7T”.

?T:buy-article (?User, [7Article]) :-
?T: call (?User, buy , [?Articlel).

A more interesting example where multiple join points are
referred:

?T: logBoughtArticles (7Article) :-
?T: checkout (?User),
?T2: buy-article (7User, [?Articlel),
?T2 < 7T.

?T: checkout (?User) :-
?T: call (?User, checkout).

The pointcut matches a join point time-stamped 7T if this
join point matches checkout (?User) and a join point time-
stamped ?T2 matches buy-article (?User, [?Articlel),
so that the latter join point was recorded before the other
(since ?T2 < ?T must hold).

A slight change is made to how pieces of advice are writ-
ten. Recall that at the point where the weaver processes a
pointcut-advice, the query engine will be used to resolve the
pointcut and the resulting bindings for free variables in the
pointcut are used to ground and then execute the piece of
advice code. Hence the semantics of X-HALO is such that
each pointcut-advice is processed in relation to the current
join point. The advice notation is extended so that one
timestamp variable is explicitly designated to be about the
current join point. This variable will be given the value of
the current join point’s timestamp. For example, if we have
a base program and pointcut-advice as in the following code
listing (logBoughtArticles defined as in previous example):

(defun main ()
(buy kris cd)
(checkout kris)
(buy kris dvd))

before 7T {
?T:logBoughtArticles(?User, ?7Article)
}
do{
(print ""s bought a "s" (get-name ?User)
(get-name ?Article))



At join point 2, ?T will be given the value 2 (when the sec-
ond statement in the main is executed) and the advice code
will be executed because the pointcut matches, resulting in
logging a message “Kris bought a cd”. At join point 3, 7T is
given the value 3 and the pointcut does not match. The ex-
tension of explicitly designating one timestamp variable to
be about the current join point is necessary because of the
following: if ?T had not been given a value, the condition
?T:checkout (?User) in the rule logBoughtArticles would
be matched against the checkout fact with timestamp 2,
meaning the pointcut as a whole would match at join point
3, which is clearly not the desired semantics.

4.2 X-HALO: Need for Temporal Symbiosis

As in SLAL, it would be beneficial to include result facts
in the fact base. We can start again with a conceptual
model in which these facts are simply magically generated
and recorded at every join point. Thus, like all other join
point facts they get a timestamp. This makes it possible to
write pointcut queries that refer to the result of sending a
message to an object in the past.

To elaborate on this, consider an implementation of the
“discounting” feature of the e-shop application. The dis-
counting feature consists of two aspects: popping up ban-
ners to advertise discounts for articles, and giving the actual
discount when a user makes a purchase. One strategy the
e-shop owner could follow, would be to promise customers
discounts if they login now, e.g. by displaying a banner “Dis-
count guaranteed if you login now!”. Hence if the customer
responds to the promotion by logging in, he’s guaranteed
to get a discount when he purchases an article, no matter
whether the promotion is switched off in between the login
and the purchase. In X-HALO, this can be implemented by
means of a pointcut that captures the “login” and the “buy”
method calls and exposes the discount rate at the time of
the “login”. This is for example done in the pointcut defini-
tion below, where ?T1 is used to quantify both the join point
condition matching the “login” and the result condition for
exposing the discount rate.

?T2:1logDiscountRate(?User, ?Article, ?Rate) :-
?T1:call(?User, login, [1),
?T1:result(Promotions, singelton-instance, [], ?Singleton),
?T1:result(?Singleton, discount-rate-for, [7Article], 7Rate),
?T2:call(?User, buy, [7Articlel),
?T2 < 7T1.

before 7T2 {
logDiscountRate(?User, 7Article, 7Rate)
}
do{
(print "“s gets a ~ % discount on “s" ?User ?7Rate 7Article)

}

For the program below, where the customer logs in at a
time there is a 5 % discount rate guaranteed for CD’s, this
means that the customer gets a 5 % discount on all the
CD’s he subsequently buys, even though in the meantime,
the discount rate for CD’s is switched to 0 %. Otherwise,
the customer might have felt cheated for not getting the
discount he was promised at login.

(defun main ()
(let ((kxris (make-instance ’User))
(cd (make-instance ’Article :amount 10)))
(set-rate (singleton-instance ’Promotions) ’cd 0.05)
(login kris)
(buy kris cd)
/* change the discount rate for cd’sx*/
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(set-rate (singleton-instance ’Promotions) ’cd 0.00)
(buy kris cd)))

However, the e-shop owner might follow another strategy
for giving discounts. He could decide to only guarantee a
discount if the customer buys the article right now, e.g. by
advertising “Guaranteed discount if you buy now!”. Again,
due to the fact that result conditions are timestamped,
this is easy to express in X-HALO. In order to implement
this discount strategy, one can reuse the pointcut definition
above, but one would have to change the timestamp of the
result condition, exposing the discount rate, to ?T2, which
coincides with the timestamp of the “buy” condition.

4.3 Implementing Temporal Symbiosis

As with SLAL, an implementation for the result predi-
cate in X-HALO should be provided that approximates the
conceptual model. This again implies that certain limita-
tions are put on the language in comparison to what is pos-
sible given the conceptual model. Several variations of X-
HALO are actually possible, and we discuss the way these
can be implemented and their limitations in this section.

4.3.1 Current results only

The mechanism of implementing result in SLAL, de-
scribed in Section 3.3, can also be used in X-HALO. But
this can only work for a severely limited version of X-HALO:
the limitation with respect to the conceptual model is that
the result facts are cleared from the fact base after every
join point, so that only the facts for the current join point
are available. This means that the example of Section 4.2 is
not a valid pointcut in this variation of X-HALO.

The limitation is necessary because the implementation of
Section 3.3 always gives result facts as if they are produced
at the current join point. The implementation executes the
method on-demand when the Prolog engine needs to prove
the existence of a result fact. Thus having the effect that
this will always give the result at the time of the current
join point. Suppose this implementation was adopted for
timestamped result facts in X-HALO, then consider the
effect on the example from Section 4.2. When the pointcut
matches the first "buy’ call (line 6 in the base program), the
advice will print a message: “Kris gets a 5% discount on c¢d”.
Using the semantics of result from the conceptual model,
we expect that when the second buy call (line 9) happens,
the same message is printed. But because the rate of CDs
was changed (line 8), the SLAL implementation of result
would result in a different message being printed: “Kris gets
a 0% discount on cd”.

4.3.2  Stratifying the use of result

One way of implementing temporal symbiosis involves split-
ting up the pointcut definitions. We split up the pointcut
definitions so that we get pointcuts where result conditions
are only quantified with the “current time stamp”. Hence
all of the latter “split up” conditions can be resolved us-
ing the on-demand strategy, discussed in Section 3.3. If we
cache these results, we can implement temporal symbiosis in
terms of matching the result conditions against the cached
results. We next elaborate on how pointcuts are split up
and we discuss the limitations of this approach when rule
abstraction, “future variables” and recursive rules are com-
bined with result conditions.



Splitting up pointcuts. The timestamp of a result condi-
tion must coincide with a condition matching a join point.
E.g. for the pointcut below, the result conditions have the
time stamp ?T2, which matches the “login” join point con-
dition’s time stamp. The latter expresses that the result
condition needs to hold at the same time a join point match-
ing the “login” join point condition occurs. Hence in the
example, the discount rate of the article must be the rate
active when the user logged in. When we split up a point-
cut, we must make sure that the result conditions end up
in the same pointcut as the join point condition with the
same time stamp.

?T2:logDiscountRate(?User, ?Article, ?Rate) :-
?T1:create(Article, 2Article),
?T2:call(?User, login, [1),
?T2:result (Promotions, singelton, [], ?Singleton),

?T2:result(?Singleton, discount-rate-for, [7Article], 7Rate),
?T1 < ?T2,

?T3:call(?User, buy, [?Articlel),

?T2 < 7T3.

More specifically, whenever we have a pointcut in which a
result condition occurs, we split it up, so that we have one
part consisting of the result condition and all conditions
where the time stamp is smaller than or equal to the result
condition’s time stamp, and another part which is simply
the rest of the pointcut. Determining whether a condition’s
time stamp is smaller or equal than the result condition’s
can be done by analyzing the time stamp constraints in the
pointcut definition.

Following this strategy, the pointcut above is split up in
the two pointcuts listed below. The first pointcut groups
the result conditions, the “login” condition, because it has
the same time stamp (namely ?T2), and the “create” con-
dition because its time stamp is smaller than the result
conditions’ (note ?T1 < ?T2). The other pointcut, named
logDiscountRate, consists of the rest of the pointcut above,
namely the “buy” condition and one extra condition. This
condition refers to the result to be cached when the first
pointcut is resolved.

?T2:calllogin(?User, ?Article):-
?T2:call(?User, login, [1),
?T1:create(Article, ?Article),
?T1 < ?T2,
?T2:result (Promotions, singleton-instance, [], ?Singleton),
?T2:result(?Singleton, discount-rate-for, [?Article], 7Rate).

?T2:logDiscountRate(?User, ?Article, ?7Rate) :-
?Tl:rate-at-login(?User, 7Article, 7Rate),
?T2:call(?User, buy, [7Articlel),

?T1 < 7T2.

The above splitting is done automatically. This is similar
to writing this manually using a version of X-HALO with
current result only. Below are two advices which do this.
The first one is triggered when a user logs into the shop and
asserts a fact for each article, mapping it to the current dis-
count rate. The second piece of advice is triggered when a
user buys an article and prints the discount rate, which was
computed at the time the customer logged in. Of course, the
advantage of doing this automatically is that the program-
mer does not need to write such boilerplate code himself.

before 7T {

?T:calllogin(?User, ?Article, ?Rate)
}
do{

(assert *fact-repository*
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(make-instance ’Fact :time :T :predicate ’rate-at-login
:arguments ’‘(,?User ,7Article ,?Rate)))

}

before 7T {

?T:logDiscountRate(?User, 7Article, 7Rate)
}
do{

(print "“s gets a ~ J discount on “s" (get-name 7User)

7Rate
(get-name 7Article))

The implementation strategy we just described can only
work if we put some restrictions on the use of result. A
first restriction is that all variables used in a result condi-
tion must be bound by conditions with a time stamp that is
“smaller” than the result condition’s own time stamp. An-
other restriction has to do with how to deal with (recursive)
rule definitions.

Future Variables. The result conditions must not refer-
ence variables that are only bound by a “future” join point
condition. By this we mean that all variables used in a
result condition should be bound by conditions matching
join points that happen before or at the same time the
result condition needs to hold. This is because the on-
demand implementation of linguistic symbiosis requires that
all variables are bound at the time a result condition is
evaluated (see Section 3.3). In Section 4.3.3, we discuss al-
ternative implementation strategies for linguistic symbiosis
predicates to allow “future variables” in result conditions.

Flattening rules & Recursion. Before we split up the
pointcut definitions, we need to flatten them. Flattening a
pointcut means that all conditions based on a user-defined
predicate are replaced by the defining rule’s right-hand side.
If there are multiple definitions for a particular predicate,
then flattened versions of the pointcuts will be created for
each of these definitions. Below we have depicted a rule, a
pointcut and its flattened version. Note that without the
flattening, the pointcut cannot be split up correctly because
there is no guarantee a result condition will be associated
with a join point condition. E.g. the rule below is not de-
fined in terms of a join point condition, and without the
flattening, the condition would never be evaluated, as de-
scribed in the previous paragraph. However an apparent
drawback of the flattening approach is that recursive defini-
tions containing a result are no longer allowed.

is-cd(?Article) :- /* rule */
result(?Article, is-article-kind-p, [cd], true).

logCdPurchase (?User) : - /* pointcut */
call(?User, buy, [?Article]),
is-cd(?Article).

logCdPurchase(?User) :- /* flattened pointcut */
call(?User, buy, [7Articlel),
result(?Article, is-article-kind-p, [cd], true).

}

4.3.3 Stratified result with Future Variables

“Future variables” can be supported in X-HALO if we
record the program state at specific points in the execution
of a program so that we can evaluate the result condition
in terms of this recorded state at a later time, e.g. when we
do have a binding for the “future variables”. One way of
implementing this, is again by splitting up the pointcuts so



?T2:1logDiscountRate(?User, ?Article, ?7Rate) :-
?T2:call(?User, login, [1),
?T2:result(Promotions, singleton-instance, [], ?Singleton),
?T2:result(?Singleton, discount-rate-for, [?4rticle], 7Rate),
?T1 < 7T2,
?T3:call(?User, buy, [7Articlel),
?7T2 < 7T3.

Figure 4: “Future variable” ?7Article is only bound
after the result conditions must hold.

that we end up with pointcuts where result conditions are
only quantified with the “current” time stamp. result con-
ditions containing “future” variables will however be moved
to pointcuts that provide bindings for all the “future” vari-
ables. Note that this means the result condition’s time
stamp will be changed to a later time. These will there-
fore be evaluated in terms of past program state, copied at
the “right” time (the original time the result condition was
quantified with). We next discuss how we need to extend
some of the split-up pointcuts to generate copies of the join
point context they expose.

Saving the past state. A result condition contains a “fu-
ture variable” when it uses a variable that is only bound by
a condition to be matched at a later time than the result
condition needs to hold. In Figure 4, the variable ?Article
referenced in the second result condition is a “future” vari-
able, because it is only bound by the “buy” condition, whose
time stamp ?7T3 is “larger” than the result condition’s time
stamp ?T2 (note ?T2 < ?T3). This means we cannot sim-
ply split up the pointcut following the strategy described in
Section 4.3. That would result in one pointcut consisting of
the first four conditions, and another with the rest of the
conditions: there would be no binding for 7Article in the
first pointcut. Rather, we have to split up the pointcut so
that the result condition with the future variable ends up
in a pointcut where the other conditions provide a binding
for the future variable. In other words, we defer the result
condition to a later time. Below we have split up the point-
cut from Figure 4 accordingly.

?T:callLogin(?Singleton) :—
?T:call(?User, login, [1),
?T:result(Promotions, singleton-instance, [], ?Singleton).

?T1:logDiscountRate(?User, ?Article, ?7Rate) :-
?T1:call(?User, buy, [?Article]),
?T2:saved-input ([?PromoSingleton]),
?T1:result(?PromoSingleton, discount-rate-for, [?Article], ?Rate)
7T2 < 7T1.

The first pointcut in the listing above is matched when a
“login” join point occurs and exposes the Promotions’ ob-
ject. The second pointcut contains the condition for match-
ing the “buy” join point, a saved-input condition and a
result condition. In comparison to the original pointcut in
Figure 4, the result condition computing the discount rate
of an article, is deferred from the “login” time to the “buy”
time. Hence the latter result condition will be resolved (on-
demand) when “buy” join points occurs. According to the
pointcut in Figure 4 however, the discount rate should coin-
cide with the rate active when the “login” happens. Guar-
anteeing that the discount rate is indeed the rate active at
“login”, is done by means of the condition saved-input.
The saved-input condition binds all variables — other than
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the “future” variable — needed to resolve the result con-
dition. These bindings refer to copies of join point context
exposed at the “login”. Thus when the result condition is
evaluated to compute the discount rate, it is done so in re-
spect to the program state at the “login” time, yielding the
desired semantics. saved-input facts are generated when-
ever a “login” join point occurs. Again, this saving of the
fact, as well as splitting the pointcut, could be done by the
programmer manually, by simulating this as shown in the
piece of advice below. But by doing it automatically in an
implementation of result, (s)he does not have to write this
sort of plumbing code.

before 7T {
?T:calllogin(?Singleton)
}
do{
(assert *fact-repository*
(make-instance ’Fact :time :?T
:predicate ’saved-input
:arguments ‘(, (copy 7Singleton))))

5. RELATED WORK

We are certainly not the first to consider the general prob-
lem of integrating a logic language with an object-oriented
one. A survey of languages and systems that offer a level
of integration of a logic language (and other forms of rule-
based languages) with an object-oriented language is offered
by D’Hondt [3]. While numerous such integrations exist, the
effects of such integrations on the two languages are not al-
ways considered, which can also result in more ad-hoc forms
of integration. The goal of the research on linguistic symbio-
sis is to explicitly take such integrations as a field of study
in its own right.

The term linguistic symbiosis was first coined in work on
integrating RBCL with C++ as a way of implementing re-
flection [12]. Researchers that are, or were once, at our lab
have taken up the term, with a primary focus on integra-
tion of logic and object-oriented languages as exemplified
in the logic language SOUL [20, 3, 7]. These can be di-
vided into studies on the core symbiosis mechanisms [7],
its applications in logic meta programming [20, 7], and ap-
plications in implementing business rules [3]. Outside of
this RBCL-influenced branch of research exist industrial ap-
proaches such as CORBA and the .NET inter-operability
platform, as well as other research studying language inte-
gration between for example Java and Scheme [5], or formal
foundations for integration [16].

In our own application of SOUL to AspectJ-like aspect-
oriented programming, CARMA [6], the symbiosis mecha-
nism of SOUL was simply adopted without further study. It
is sometimes considered that such a mechanism is not nec-
essary, because in aspect languages, the advice body which
is written in the base language provides a straightforward
way of interacting with the base language. In this paper we
have made explicit our rejection of this notion on the ba-
sis of making a clear conceptual split between the “when”
and “what” parts of a piece of advice, and the use of the
mechanism in the logic rules of the logic pointcut language.

We can use our conceptual models and the derived varia-
tions to place existing logic-based pointcut languages. Most
are not history-based, so they fall in the category of SLAL
or variations that further limit the integration with the base
language (all are more expressive than SLAL when it comes



to offering additional types of join points etc.). Alpha [17]
is history-based and offers a kind of symbiosis mechanism in
the form of its “@” construct, but little is said about it [17].
No history is taken over this mechanism, thus placing Alpha
in our X-HALO variation discussed in Section 4.3.1 (“Cur-
rent results only”).

GAMMA [14] is an initial proposal to support pointcuts
that refer to the future by performing a fix point computa-
tion. Rather than by saving program state to “transport”
it to the future in pointcuts that have been split, as we've
considered here, the fix point computation proposal involves
executing the program multiple times. While facts that give
access to the instance variables of all objects are considered,
the impact of including a result-like predicate to access
methods was not considered.

As mentioned earlier, our own work on HALO [10, 9] falls
in the variation discussed in Section 4.3.3 but with a further
limitation to a fixed set of higher-order timestamp compari-
son operators which allows dynamic optimization of the fact
base.

6. CONCLUSIONS

In this paper, we've discussed the differences between a
number of pointcut languages with regards to integration
with the base language. We approached this by positing
two simple models for respectively non-history based and
history-based logic pointcut languages. In these models, in-
tegration with the base language is modelled straightfor-
wardly by result facts that are “simply” generated by the
fact generator. While this is as such unimplementable, it
allows a discussion of how different actual implementations
approximate the more ideal language given by the model,
and the influence this approximation has on what pointcuts
can actually be expressed. In the section on related work,
we briefly discussed how existing logic pointcut approaches
fit in the different variations of the models.
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