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Abstract 
 

Operating systems engineers have developed 
tracing facilities to log process execution at the kernel 
level in order to better understand actual execution 
taking place on real systems. Uncovering certain types 
of useful information in this trace data is nearly 
impossible through manual inspection of a trace log. 
To detect interesting inter-process communication 
patterns, and other recurring runtime execution 
patterns on systems, we employ data mining 
techniques, in particular, frequent pattern mining, to 
analyze operating system trace logs.  We present a 
framework for mining kernel trace data, making use of 
frequent pattern mining in conjunction with special 
considerations for the temporal characteristics of 
kernel trace data. We present the pre-processing and 
data reduction steps necessary to convert operating-
system trace logs into easily mined data. We illustrate 
how an operating system’s abstractions serve as a 
basis for both classification and data reduction. 
Finally we experimentally validate our approach in 
terms of feasibility, effectiveness, and cost through two 
case studies. We use our framework to isolate 
processes responsible for systemic problems on Solaris 
and LINUX systems and demonstrate our framework is 
versatile and efficient. 
 
1. Introduction 
 

The introduction of low-impact kernel-level tracing 
tools allows for comprehensive and transparent 
reporting of process and operating system activity.  An 
operating system trace log provides detailed, explicit 
information about which processes use which system 
resources at what time. This time series data contains 
underlying knowledge, such as common execution 
patterns. This information can assist in both simple and 
complex systems-related tasks: application debugging, 
security enforcement, performance optimization, 
operating systems debugging, and dynamic 
reconfiguration. However, while kernel trace collection 
tools have advanced and matured, there remains a lack 

of proper trace analysis tools for extracting useful 
knowledge from raw trace logs.   
 
1.1 Motivation and Goals 

 
Most current trace collection tools, such as the 

Linux Trace Toolkit (LTT) [20] and Solaris’s dTrace 
[2], provide powerful mechanisms for collecting data. 
Unfortunately for their users, the tools provide limited 
or no functionality for analyzing the data collected. 
Neither LTT nor dTrace provide analysis functionality 
beyond simple aggregations, which must be specified 
before a trace can begin. Neither tool provides a 
mechanism to look for patterns either during a trace or 
after a trace is completed. The omission of such 
functionality is likely not an oversight; the data 
collected by tracing systems is abundant and complex. 

The lack of proper kernel trace analysis tools 
motivates us to build a framework that applies data 
mining techniques to analyze kernel trace data. The 
framework is designed to discover patterns that could 
not be detected with existing tools or manual 
inspection. We would like to study pre-processing and 
data mining techniques that can be used to identify 
interesting recurring inter-process communication 
patterns in noisy kernel trace data. These execution 
patterns can potentially help a variety of users 
including system administrators, application 
programmers, operating systems engineers, and 
security analysts.   

Systems administrators would benefit from data 
mining functionality for detecting frequent execution 
patterns and resource usage patterns that escape 
detection using traditional system-monitoring tools. 
When they are charged with optimizing systems’ 
performance, frequent execution patterns form a 
starting point for detecting otherwise non-obvious, but 
significant systemic problems. 

Application programmers would benefit from 
mining functionality in debuggers. Augmenting 
debuggers with mining functionality would provide an 
opportunity to both enlighten developers about the 
effects of their code on overall system functioning and 
ensure better quality software. 



Operating System Engineers can use data mining to 
analyze the output of kernel tracing tools to tune the 
performance of the most complex program running on 
a computer: the operating system itself. In contrast to 
user space programs, which sit atop a deterministic 
virtual machine, the operating system sits atop an 
exception driven real machine. Observing the same 
course of execution twice for a single workload inside 
the operating system, where frequent traps and 
interrupts continually change the order of execution, 
remains a near impossibility. It is this partially ordered 
nature of OS execution that makes detecting sequential 
patterns in trace data difficult. 

In the systems area, data mining techniques have 
been successfully used in the past for profiling and 
detecting mal-ware [17], optimizing data placement and 
prefetching for fast retrieval [13], and detecting 
operating system bugs introduced by copying and 
pasting of kernel source code [14]. To our knowledge, 
ours is the first effort for a general-purpose solution that 
mines across multiple kernel subsystems and the first 
attempt to tackle the task of mining kernel trace logs. 
 
1.2 Issues and Challenges for Mining Kernel 
Trace Data 

 
While data mining techniques [5, 9] have been 

successfully applied to mine time-series data in a 
variety of applications, mining kernel trace presents a 
unique set of challenges.  We discuss each of them 
below. 
  Log Data Volume and Complexity.  The complex 
and voluminous data generated by kernel tracing tools 
create our first mining challenge.  A typical kernel 
tracing tool, the Linux Trace Toolkit (LTT), can each 
report thousands of kernel-event records every second. 
During our experimentation on a Pentium 4 
workstation, LTT logged nearly a million events per 
minute during normal user activity. Each kernel event 
is a multi-attribute tuple containing, a record of which 
process caused the event, the sub-system of the 
operating system involved with executing the event, 
the actual event type, the address or descriptor for any 
resource accessed during the event, and the time at 
which the event occurred. Sample values for these 
attributes are shown in Table 1. 
  Pattern Complexity.  Further adding to the challenge 
of mining kernel trace data, is our desire to detect 
complex patterns in multiple attribute data. To uncover 
systemic problems on a system, we cannot focus our 
attention on one subsystem or application, mining only 
for patterns across a single attribute. For example, 
isolating the source of a memory allocation problem 
would necessitate looking for events in at least two  
 
 

Attribute Sample Values 
Process firefox 

staroffice 
xFree86 
postmaster 

subsystem  file system 
memory 
syscall 
sched 

event  open 
alloc 
syscall entry 

descriptor bookmarks.html 
gettimeofday 
2 (file descriptor) 
2531 (process ID) 

 
Table 1. Trace Attributes with Sample Values 
 
attributes: the event attribute for each event that affects 
memory usage, and the process attribute to determine 
which program generated the event. Uncovering 
complex inter-process, inter-subsystem interactions 
requires mining along multiple attributes. 
  Temporality. Another important consideration for 
mining a kernel trace is appropriate treatment of the 
time-series data. In trying to detect patterns in a 
computer’s ordered execution, the timestamp attribute 
plays a key role in defining what constitutes an 
interesting pattern. The timestamp attribute allows us 
to find more interesting patterns and information using 
data mining techniques than we could obtain by 
computing event aggregations and averages for data in 
kernel trace logs. In addition, the unique scheduling 
characteristics of the operating system make the kernel 
trace mining task not a straightforward application of 
existing sequence mining algorithms.  
 Meaningful Pattern Reporting.  Finally we must 
consider a way to interpret the results of our mining 
system. One main concern in generating our output of 
patterns is that events related to systemic problems 
could appear in the logs with not too high frequencies, 
whereas some normal events could appear with high 
frequency. Our system needs to identify those not-too-
frequent patterns that indicate problems. In addition, 
we should provide efficient ways to hide very frequent 
patterns that do not indicate problems. Because our 
users – those people interested in kernel-level activity 
– will be very technical, our concern is not how to hide 
technical details from the user, but how to direct the 
user toward the most meaningful results. Toward this 
end we develop a set of tools to help in measuring the 
quality of the mining system’s output.  

  



1.4 Contributions and Organization 
 

Bearing the above issues in mind, we design a 
framework for effectively and efficiently mining kernel 
trace logs and implement a suite of kernel mining tools 
to test the design. Our framework makes a number of 
unique contributions.  First, we transform the problem 
of kernel trace data pattern mining to maximal frequent 
itemset mining.  We provide special treatment for the 
unique temporal characteristics of kernel trace data and 
propose a combined approach of window folding and 
window slicing to group trace events into itemsets 
using their timestamp as a measure of temporal 
proximity (Section 2.2). Second, we develop a data 
filtering technique that allows versatile and flexible 
cross-attribute pattern mining (Section 2.3).  Third, we 
develop and implement a suite of tools that use a bit 
packing strategy to maintain the full semantics of each 
trace event inside an integer and allow for efficient 
mining (Section 3). Finally, we perform experimental 
studies where the tools are used to detect systemic 
problems on Solaris and LINUX systems. We test our 
tools with a range of algorithmic parameters, showing 
the feasibility, effectiveness, and cost of the approach 
(Section 4).  In particular, the extensive experiments 
provide insight as to how parameters can be selected in 
order to generate interesting patterns with minimal 
interference from typical, non-problematic execution 
events.  We conclude the paper with a review of related 
work (Section 5), a brief summary and a discussion of 
futures directions (Section 6). 
 
2.  Kernel Trace Mining Framework 

 
Kernel trace logs are massive, ordered records of 

events that occur inside the operating system. Their 
contents provide detailed, explicit information about 
which processes use system resources. Our goal is to 
find common execution patterns so that we can better 
understand the internal execution that is taking place 
on a machine.  In this section, we present an overview 
of our framework and show how we model kernel trace 
mining by considering sequential mining.  
 
2.1 Overview 

 
We present a conceptual diagram of our framework 

for mining kernel data in Figure 1. In our system, un-
modified processes, such as daemons and user 
applications, make requests of the operating system in 
the form of system calls. A trace module inside the 
operating system transparently monitors these calls and 
other internal activity. The trace monitor writes a 
detailed, time-series record of these events to a log file. 
The preprocessing utilities in our suite harvest the 
time-series data from a log and translate it into itemset  

 
Figure 1. System Architecture 
 
data for frequent itemset mining. The preprocessor 
output is passed into a frequent itemset mining tool and 
the output patterns are passed to a program for display 
and analysis. 

 
2.2 Mining Frequent Sequential Patterns 
 

Finding frequently occurring patterns in ordered or 
time-series data like our trace logs is a mining task 
commonly referred to as Sequential Pattern Mining. 
This section details how typical sequential pattern 
mining algorithms are not appropriate for kernel trace 
mining and how we account for the special temporal 
characteristics of kernel trace data and model the 
problem as  frequent itemset mining. 
 
2.2.1 Sequential Mining Problem 
 

Before we describe how we model the trace mining 
problem, we first give a brief review of the sequential 
pattern mining [5].  Given an ordered series of events, 
S,  and a minimum support, min_sup, mining for 
frequent sequences involves finding the set of all 
ordered series of events, F, that occur at least min_sup 
times in S. For example, with min_sup = 2 and S = <A, 
C, B, A, B> we have the frequent sequences F = <A, 
B>, <A>, <B>. These frequent subsequences are 
referred to as serial episodes.  

Additional constraints may be placed on the 
sequential mining problem. Constraining the interval i 
puts an upper limit on the maximum time that can have 



 

 
Figure 2. Alternative Scheduling of a Single 
Load  

 
elapsed between any two consecutive items in a serial 
event. On an integral timescale an interval of 0 requires 
all serial events to have no intervening events. With 
our original S, min_sup=2, i=0, only the single event 
series <A> and <B> would be reported as frequent 
series; there would be no multi-itemsets in our results.  

Kernel trace logs have unique temporal 
characteristics due to the partially ordered execution 
resulting from OS scheduling. We discuss below why 
we need a special treatment of the kernel trace data 
compared to typical time-series data. We propose two 
important techniques for the treatment, namely, event 
folding and window slicing. Event folding creates a 
series of parallel events and window slicing creates a 
sequence database. Together these steps create a 
database of parallel events.  As a result, we treat the 
parallel events as unordered and reduce the problem of 
sequential pattern mining to frequent itemset mining.  
  
2.2.2 Window Folding 
 

For the purposes of examining system trace data we 
need to maintain a sufficiently large interval to account 
for sequence gaps and re-orderings introduced by the 
operating system’s scheduler. On any modern OS the 
scheduler will regularly suspend the execution of a 
process so that other processes may execute. The 
maximum period for which a process may execute 
uninterrupted by the scheduler is referred to as the 
timeslice. Intervals used by our mining algorithms 
need to be sufficiently long to detect patterns that exist 
across multiple timeslices. Certainly if we hope to find 
inter-application patterns we need to consider more 
than one process at a time. Furthermore, because the 
scheduler does not guarantee any ordering of process 
execution to processes, detecting common process 
interactions requires relaxing the definition of 
sequence mining further to allow changes in ordering.  

Suppose jobs j1 and j2 require inter-process 
communication among processes A, B, and C. A and 
B’s execution can happen in any order. Furthermore, C 
is dependent on B having completed its work. The two 
similar jobs j1, j2 could be completed according to 
either of the execution schedules shown in Figure 2. 

Both sequences illustrate the same pattern of 
collaborative work being done by the same processes 
but in different orders of execution. Unless we relax 
the ordering constraint typically enforced in sequence 
mining, we will fail to generate any sequences 
demonstrating the interesting interaction between 
processes A, B, and C.  

In order to expose inter-process interactions on 
timeshared systems we relax the ordering requirement 
to consider events occurring within a certain temporal 
distance to be parallel events. The temporal distance is 
referred to as a folding window.  

 
2.2.3 Window Slicing  
 

Our task now becomes finding frequent parallel 
episodes – frequently occurring sets of temporally 
proximal events. Unfortunately, representing a list of 
all groups of parallel events with a folding window 
size w for a sequence with N items leads to a growth of 
data O(w*N). Although this growth is constant, the 
constant will be significant for typical window sizes. 
For the w values used in our experiments, storing every 
parallel event window would require several hundred 
to several thousand times more storage than the 
original trace representation and result in increased 
processing overhead. To avoid expanding our dataset 
we adopt a technique called window slicing.  

Window slicing is introduced in [13] as an effective 
technique to perform sequence mining of an extended 
sequence. Window slicing converts an extended 
sequence into a sequence database, a collection of 
relatively shorter sequences. The non-overlapping 
version of window slicing technique divides time-series 
data using a window period. Events that take place in 
the same window are treated as a single sequence 
record in the event database. We adapt this form of 
window slicing to our data while simultaneously 
performing event folding using the same period. This 
slice-and-fold step gives us an unordered database of 
parallel events. 

Without loss of generality, we consider LTT logs 
where timestamps are recorded as the number of 
microseconds elapsed since the UNIX epoch. We 
define a parameter w, the fold-slice-window period in 
microseconds. Using w we calculate a window ID for 
each log entry, Lx, using the formula: 
 

 
 



 
Figure 3. Windowing Slicing Error for Event 
SCHED 452 
 
Any two log entries that share a window ID  are treated 
as parallel events. The window ID serves as an itemset 
ID for our frequent itemset mining. 

Clearly, for a window of size w, some event 
sequences of size w will not be included in our sequence 
database using this window slicing method (Figure 3). 
However by using a window long enough to capture 
frequent patterns at least once in each window, we 
minimize the disruptive effects of window slicing on our 
data. Our tools detected problem patterns while using 
the window slicing technique. Our experimentation 
confirms previous work in [13] that shows window 
slicing will not adversely affect the result quality of our 
mining for sufficiently large windows.  

 
2.2.4 Frequent Itemset Mining 
 

By combining the window folding and window 
slicing methods, we can treat the parallel events as 
unordered and so our task of mining trace data has 
been reduced to frequent itemset mining.  

Specifically we look for maximal frequent itemsets, 
the elements of which comprise common maximal 
execution patterns in the original trace. We use 
maximal frequent itemset mining (MFI) in favor of 
frequent closed itemset mining (FCI) and frequent 
itemset (FI) mining because the volume of MFI output 
is much lower that that produced by FCI and FI mines. 
This is important because we want our output to be 
human-readable. Furthermore frequent closed itemset 
mining introduces noise into our results because 
slightly differing supports for items in a maximal 
frequent itemset, which exists as a result of window-
slicing and scheduling, cause multiple frequent closed 
itemsets to be reported – none of which provide any 
more insight than the single maximal frequent itemset.  
 
2.3 Attribute-Based Data Filtering  
 

Algorithms will deliver cleaner results more quickly 
if steps are taken to eliminate noise in input. To this 
end, we deploy a simple data filtering technique to 
reduce data. Data filtering essentially applies a 
projection of the input sequence data on the specified 
attribute values.  We deploy a pass-through filter that 

discards records that do no match any rule in a user 
specified list. Our rules are a series of formatted strings 
adhering to our attribute format proc-subsystem-call-
descriptor-size. We allow wildcard matching for an 
attribute with the asterisk character. For example, the 
rule *,MEM,*,*,* allows any call to the memory 
subsystem to pass into the dataset we use for mining.  
In our own experimentation, detailed in Section 4.5, 
attribute filtering helps yield more readable results.  

 
 3. System Implementation 
 

Using our framework as a guide, we implement a 
system for kernel trace mining. Our system includes a 
series of tools in C++ and perl that transform time-
series LTT and dTrace output into a series of integers 
for frequent itemset mining. For maximal frequent 
itemset mining we adopt MAFIA [1], a highly efficient 
algorithm for outputting maximal frequent patterns.  
Our preprocessing tools work together to perform the 
following tasks in the listed order: resolve operating 
system descriptors to file and executable names 
(Section 3.2), create uniform dictionaries for attribute 
representation (Sections 3.1 and 3.2), and filter data 
(Sections 2.3.2). 

The user is required to provide parameters for a 
period for window folding and slicing, optional 
attribute data filters that will be applied before mining, 
and minimum support for MAFIA’s frequent itemset 
mining,   
 
3.1 Bitpacking  

 
An important preprocessing step in our system is to 

convert our series of log entries into a collection of 
integers, with each integer representing one system 
call. Mining applications typically support data in 
integer format and are optimized for this format. 
Converting kernel trace data to this representation 
allows for easy testing of mining algorithms on kernel 
trace data. 

We allocate subfields of an integer to store the 
value of each attribute in our data set. Four dictionaries 
are created for storing a string-value pair for the 
process, subsystem, event, and resource descriptor 
attributes. The dictionary ID for each attribute of a 
record is stored in a region of our integer 
representation. Because we want to represent the entire 
record using a 32-bit value and the size attribute of our 
record is itself a 32-bit value, some form of lossy data 
reduction is necessary for this attribute.  

We would like attribute values that carry similar 
meaning in the initial dataset to have identical 
representation in the data that we mine. Two reads of 3 
and 4 bytes would both be considered small, whereas 
two reads of 2 Mbtyes and 3Mbytes would both be 



considered large. For each log record Lx, we store log8 
Lx.size in our integer representation. This allows us to 
store an approximation for each size value in far fewer 
bits than the native representation. It also gives many 
similarly sized attributes the same representation in our 
data.  
 
3.2 Kernel-trace specific preprocessing 
 

For each reference to a file, program, or hardware 
resource in our log, we want to use the same 
representation in our dataset. On any system a 
program, file, or hardware resource can be referenced 
by multiple IDs. On a multi-user system or server there 
may be dozens of instances of the same program 
running; each one will always have a unique process 
ID. Numerous processes may write to the same output 
device, each one referring to the device by a different 
file descriptor. Kernel tracing tools typically report file 
and process activity by file descriptor or process ID, 
not the path or executable name.  

For each reference to a file, program, or hardware 
resource in our log, we want to provide an identical 
representation to our mining tools. We accomplish this 
by using the process-ID-to-executable mapping 
available in the /proc file system when the trace 
begins. Because the operating system recycles process 
IDs, we update this mapping whenever a program is 
executed. We use a similar approach for resolving file 
descriptors to filenames, but do not have information 
about file descriptors already open at the start of a 
trace. 

 
4. Experimentation 
 

We performed a set of experiments evaluating the 
feasibility, effectiveness and cost of our proposed 
framework.  Our goal is to answer the following 
important questions: 1) Can kernel trace mining help 
system users in system-related tasks such as 
performance tuning and systems debugging?  2) How 
do different algorithmic components and parameters in 
our framework affect the mining results?  3) What is 
the performance overhead of the mining system?   

In this section, we present two real-world case 
studies.  In the first study, we use the kernel trace 
mining framework to effectively detect a known 
problem program, the GNOME applet gtik. We briefly 
describe the problem and our experiment setup for the 
GNOME applet, present the mining results, illustrate 
the effects of different algorithmic components and 
parameters of the mining framework, and finally 
discuss the performance overhead of the system. In the 
second study, we use our tools to isolate a poorly 
performing server application on a Solaris system. 
Using our framework implemented with Solaris and 

dTrace largely paralleled our experience under LINUX 
and LTT.  

 
4.1 Problem Scenario and Previous 
Approaches for isolating gtik 
 

The GNOME stock ticker applet gtik version 2.0 is 
a process now known to induce systemic problems 
because of the number of high-impact X programming 
calls.  However, identifying this process as a heavy 
consumer of system resources presents a challenge.   

Because much of the work being created by the gtik 
applet takes place inside the X server, detecting the 
applet as the source of system overhead using 
traditional tools such as top is impossible.  A recent 
study [2] used dTrace to identify the applet on a multi-
processor Solaris system. The study used the output of 
mpstat, a tool for monitoring processor activity, as a 
starting point for writing a series of dScripts. dScripts 
provide control and analysis functionality for Solaris’ 
dTrace kernel tracing mechanism. In all, five ad-hoc 
dScripts were necessary to trace the suspicious activity 
reported by mpstat back to gtik. These scripts required 
not only knowledge of X programming calls, but also 
implementation knowledge of an X server. 
Furthermore this solution using dTrace and custom 
dScripts was only possible because of the clues 
provided at the onset by mpstat’s cross call report, a 
feature that is not available on single processor 
machines.  

Given this problem scenario, we study how the 
proposed kernel trace mining system can help in 
detecting the problematic process through pattern 
discovery in kernel traces. 

 
4.2 Experiment Setup 
 

Using the LINUX Trace Toolkit we collected traces 
of kernel level activity, including system calls. We 
mined the traces collected using our suite of data 
preprocessing tools and maximal frequent itemset 
mining. We then examined the output of this mining to 
look for meaningful patterns of activity. 

We collected four 1 minute traces from a machine 
running version 2.5.7 of the Linux Kernel, patched 
with version 0.9.5 of the Linux Trace Toolkit, and 
running the version 2.8.3 of the Gnome Desktop. The 
computer was equipped with sufficient RAM to ensure 
no swapping would affect application performance 
during our traces.  

 
Table 2 summarizes the characteristics of the four 
traces.  Two traces were conducted while the gtik 
applet version 2.0, the version known to induce 
systemic problems, was running: The first trace, 
ltt_gtik_20_isolated, contained one minute of trace 
activity with no interactive applications running and no  



Trace Gtik Interactive 
Applications 

Ltt_gtik_20_isolated Buggy No 
Ltt_gtik_20_noisy Buggy Yes 
ltt_gtik_26_isolated Fixed No 
ltt_gtik_26_noisy Fixed Yes 
 

Table 2. Experiment Traces 
 
user activity. The second trace, ltt_gtik_20_noisy, was 
conducted while a user surfed the web using FireFox 
and edited a document in OpenOffice.  The next two 
traces, ltt_gtik_26_isolated and ltt_gtik_26_noisy, were 
collected under similar circumstances, but with an 
improved version of the gtik applet running. Version 
2.6 reduced the number of high-impact X 
programming calls, but the program still 
communicated with the X server very frequently – a 
phenomenon we saw in our mining results.  
 
4.3 Mining Results 

 
We first present a set of results showing clear 

patterns that can be used to identify the problematic 
gtik process.  Because we were aware that the 
symptoms pointing to the systemic problem with gtik 
trace applet would be observable through calls in the 
operating   system's  file   system  and   memory   sub- 

 
Experimental Configuration 

input: ltt_gtik_20_noisy 
fold-slice-window period: 25,000 (micro. sec.) 
minimum support: .5 
filters: *,FS,OPEN,*,* 
          *,FS,CLOSE,*,* 
          *,FS,READ,*,* 
          *,FS,WRITE,*,* 
          *,SCHED,*,*,* 
          *,MEM,*,*,* 
 

Output 
  itemset 1: 

XFree86, FS, WRITE 
XFree86, FS, READ 
XFree86, MEM, FREE 
Xfree86, MEM, ALLOC 

  itemset 2: 
gtik2_applet_2, MEM, ALLOC 
gtik2_applet_2, MEM, FREE 
gtik2_applet_2, FS, WRITE 
XFree86, FS, READ 
XFree86, MEM, FREE 
XFree86, MEM, ALLOC 

 
Figure 4. Experimentation Input/Output 

 

systems, we began our mining efforts by filtering to 
allow only calls to those subsystems. 

The frequent itemset, along with the experimental 
configuration, is listed in Figure 4. Frequent itemset 2 
directly points to the systemic problem on the trace 
machine. The pairing of gtik’s writes and XFree86’s 
reads, and the two processes’ complementary allocs 
and frees of memory suggest that gtik is responsible for 
much of the XFree86’s work. The first frequent itemset 
in our sample result reveals no non-obvious 
information – we expect the XFree86 server, which is 
responsible for all graphic display on the system, will 
be making almost constant system calls. The output 
produced by our mining system for this trace was 
exceptionally clear. It consisted of only 2 frequent 
itemsets, one which pointed directly to the systemic 
problem, and no noise generated by other programs 
running on the system.  

We also conducted experiments across all attributes 
with no data filtering which is discussed later in 
Section 4.5. In each of our traces we were able to 
detect frequent itemsets pointing to the gtik and X 
server interaction.  Even with an interactive load that 
consumed 40 percent of CPU load, meaning the 
presence of considerable noise for our data mining 
algorithm to contend with, the gtik and X11 interaction 
was clearly visible in our output.  

 
4.4 Parameter Effects on Mining Quality: 
Fold-slice-window and MinSup  

 
To test the durability of our system we also 

performed an extensive set of experiments over a range 
of data filtering and mining parameters. We 
investigated the effects of two important mining 
parameters, fold-slice-window and minsup.  We detail 
results for the ltt_gtik_20_noisey trace in this section 
because it contains the noisiest data and accordingly 
presents the greatest challenge to our mining system. 
To further test the system’s ability to eliminate noise 
from results we conducted these experiments across all 
attributes with no data filtering (see Section 4.5).  
We conducted each of our experiments using fold-
slice-window periods varying from 10,000 
microseconds to 1 second at discrete intervals. At each 
of these intervals we looked for maximal frequent 
itemsets with minimum supports between .1 and .9. 
We report 4 possible outcomes for each of these 
experiments: Present in single itemset – only 1 
frequent itemset was reported and it contained the 
problematic interaction, Present in multiple itemsets  – 
the pattern was detected in at least one frequent itemset 
reported and no itemset contained events generated by 
processes other than gtik or XFree86, Present with 
interference – the pattern was present in an itemset that 



 
Figure 5. Variations in Mine Quality 
 
also contained noise from processes not involved in the 
systemic problem, Not present – the problematic inter-
process pattern was not reported in any itemset.  

Figure 5 presents the mining outcomes with 
varying fold-slice-window periods and minimum 
supports. For all windows ranging from 25,000 micro-
seconds to 250,000 micro seconds we could detect the 
problematic inter-process interaction. We found that 
the minimum support parameter played a significant 
role in determining the quality of a result where the 
signal was strong. Where the fold-slice-window period 
was long – and the problem interaction between gtik 
and XFree86 was nearly guaranteed to be reported in 
every window – the high minimum support value 
effectively pruned noise from other processes out of 
the output itemsets. At the opposite end of the 
spectrum, where the problem interaction was present in 
only a few of the short windows, a high minimum 
support value pruned away the interaction from the 
results. 

Manual inspection of our output revealed that poor 
mining outcomes (such as Not Present and Present 
with Interference) generally exhibited one of two 
properties: no inter-attribute patterns or uninteresting 
(noisy) inter-attribute patterns, while a desired mining 
outcome exhibited interesting inter-attribute patterns.  
We discuss below each type of the outcome results. 

No inter-attribute patterns – for mines with short 
windows we never saw inter-process itemsets in the 
output. This makes sense since our windows were not 
likely to span across multiple processes’ execution 
timeslices. For these windows we received what 
amounted to a list of the most-frequent calls on the 
system – something we could have accomplished with 
aggregation functionality. Our hope of finding 
interesting inter-attribute patterns for these windows 
remained low. For longer windows noise from 
processes (not interesting to us) made for excessively 
long and inconclusive itemsets.  

Uninteresting (noisy) inter-attribute patterns – as 
window size increased it became impossible to tell 
which processes were interacting. Events that were not 
of significance began to make  their way into our results  

 
Figure 6: Result Quality as a Function of 
Parameter Values  
 
as the fold-slice-window period began to span multiple 
timeslices for each process, increasing the likelihood of 
processes generating noise in our output.  

Interesting inter-attribute patterns  -- for 
sufficiently high minimum supports and large enough 
windows we could see interesting inter-process 
interactions clearly in a few, reasonably short itemsets. 
Using parameters from this range gives the user the 
best opportunity to get easily interpretable, meaningful 
output from the system. Figure 6 presents a 
representative sketch of desired outcomes versus poor 
outcomes with varying parameter values. 
 
4.5 Effects of Attribute Filtering 

 
Because itemset length plays a key role in 

determining algorithm selection and performance, we 
pay special attention to the average cardinality of our 
input itemsets. We also pay special attention to the 
average cardinality of frequent itemsets found by the 
system, since smaller itemsets are much easier for the 
user to interpret. Both of these measures are 
significantly affected by our data filtering parameters. 
 We treat each window as a set of unordered tuples and 
therefore it is necessary to report only one instance of 
each kernel event found in any window to our mining 
algorithm. Longer fold-slice-window periods mean 
fewer windows appear in our dataset and more kernel 
events will appear in each window. It also means that 
there is an increased likelihood of duplicate events in 
each window. Performing data filtering limits the range 
of domain cardinality for each attribute – effectively 
imposing an upper bound on the number of possible 
distinct events in any one window. As the 
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Figure 7. Attribute Filtering Effects Input 
Itemset Cardinality  

 
window size increases, the average cardinality of our 
windows approaches this upper bound.  

We studied the effects of a filter allowing only 
memory events, scheduler events, along with read, 
write, open, and close calls as versus mining across all 
attributes without filtering. We tested the filter along 
window sizes ranging from 10,000 to 1,000,000 
microseconds.  Figure 7 and Figure 8 show the effects 
of attribute filtering on input itemset cardinality and 
output itemsets cardinality respectively.  Whereas 
attribute selection played a significant role reducing the 
cardinality of input itemset, it did not play as 
significant a role determining the cardinality of our 
output itemset. The mining algorithm’s removal of 
infrequent items from our data curbed the cardinality 
growth of the output as the window size increased.   

In conclusion, data filtering does make for more 
readable output, but the user can get meaningful results 
without the filtering. This is especially important for 
users investigating unknown problems, where 
appropriate filters may not be known. 
 
4.6 SuspectServer Case Study 
 

In our second case study, we replicated the 
functionality of a server that performed poorly in 
certain deployment environments. Specifically, if bash 
was not configured as the default shell, the server 
would exec a shell script (that contained yet another 
exec) for each connection the server brokered. The 
performance problem clearly escaped the developer – 
who probably wrote the script while using the bash 
shell. It also escaped the system administrator, who 
had trouble detecting the bug because the server 
invoked short-lived executables that went undetected 
by traditional system administration tools. Eventually 
the system administrator resorted to manual kernel 
tracing.  

We implemented a program called SuspectServer 
that simulated the regular shell script executions of the 
actual   server.    Our  implementation,   when  running,  
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incurred a .23 CPU load on a 1.2 Ghz dual-processor 
UltraSparc with 2GB of RAM. Even while overall load 
remained heavy, at no point did top report a load above 
.5 percent (a CPU load of .005) for our SuspectServer. 
The short-lived scripts also escaped detection in top. 
We implemented a tracing package in dTrace that 
recorded information similar to that collected by LTT. 

Using our data mining tools we were able to 
identify the system calls that directly illustrated the 
recurring fork and execute problems. The calls, 
illustrated in Figure 9, were inside an 80-item frequent 
itemset.  

The telltale calls did not form an exclusive frequent 
itemset as they did in some mining results in our gtik 
case study. However the benefit that comes from our 
mining is substantial. Looking through a few frequent 
itemsets, each with cardinality less than 100, is far 
easier than scanning the log from which they were 
derived – a 73K item log, collected over 11 seconds 
while SuspectServer was running. 
 
4.7 Performance Evaluation and Practical 
Impact 
 
Finally, we discuss the performance of our mining 
system.  Our preprocessing tools performed reasonably 
well to be considered for actual use. Using very coarse 
grained monitoring we observed that running each 
mining task from the window-slicing step to the output 
took an average of 20 seconds on a 2 Ghz. processor. 
This number is from our noisiest trace with no data 
filtering. Furthermore, our tools stand to benefit from 
numerous optimizations – both algorithmic and those 
possible through more efficient IO programming. 

Our first preprocessing step, resolving operating 
system IDs, takes minutes to complete. This step only 
needs to be performed once for each trace – so multiple 
experiments (with different fold-slice-window, 
minimum support, and data filtering parameters) can 
be performed more quickly. Each experiment beyond 
the first typically takes well under a minute to 



 
 

  0,SuspectServer,SYS,exece,/bin/sh,8  
  0,hostname,SYS,exece,/bin/uname,8  
  0,sh,FS,CLOSE,/platform/SUNW-Sun-Blade-2500/lib/libc_psr.so.1,8  
  0,sh,FS,OPEN,/platform/SUNW-Sun-Blade-2500/lib/libc_psr.so.1,8 
  
Figure 9: MSKD Output for window= 411,000,000ns minsup=.9 – abbreviated 

 
complete. Furthermore, if our tools were more tightly 
coupled with the tracing module, this preprocessing 
step could be eliminated. 

The performance of the actual mining step, where 
we used MAFIA to perform our maximal frequent 
itemset mining, was especially promising. Every 
mining of a 60-second LTT trace took less than 1 
second to complete.  

Furthermore, mining our dTrace log files collected 
under Solaris was very efficient. We tested our 
framework with 100 different window sizes, across 5 
levels of varying support. Average mining time was 
less than 2 seconds per mine on a 2.0 Ghz. PowerPC. 
In their present state, our tools need to perform 10 to 
50 mines to find optimal results; this takes at most a 
two minutes.  

The efficiency of MAFIA for mining maximal 
frequent itemsets and the straightforward 
improvements possible in our implemented data 
processing tools mean that this system, as described, is 
feasible for actual use. 

 
5. Related Work 

 
Pattern mining in time series data has been an 

emerging technique applied for a variety of 
applications [5, 19].  We briefly review in this section 
the most relevant works that apply data mining for 
operating systems.   

In developing a kernel-wide data-mining system, 
we consider research outcomes for systems targeting 
each of an operating system’s constituent subsystems. 
Research has been conducted to develop better data 
pre-fetching at the disk and network level [3, 4]. [3] 
exploited an existing sequence mining algorithm for 
data placement optimizations. As systems become 
increasingly distributed and complex, mining will play 
an increasingly important role in evaluation and 
optimization. Already, traditional file-system 
benchmarking applications are inadequate for 
meaningful performance evaluation in large-scale 
storage area networks (SANs) [16, 18]. The tools we 
developed for mining kernel trace data could be 
adapted to analyze multiple time-sequence logs from 
different components of a SAN or other distributed 
system.   

Tracking operating system activity for intrusion 
detection is a mature area of research [7, 8, 10, 12]. 
This work usually focuses on tracking individual users 
and processes. Mining-based approaches for system 
security are emerging as responsive and resilient 
strategies for system security [10, 11].  Mining 
techniques have also been successfully used for 
profiling and detecting mal-ware [17, 6], and for 
detecting operating system bugs introduced by copying 
and pasting of kernel source code [14]. In particular, 
[14] outlines a data mining approach for quality 
assurance during software development. Such an 
approach would pair well with our data mining 
framework when used by developers. 

Our work differs from above in that it is the first 
general-purpose solution that allows for mining for 
patterns across multiple subsystems in kernel traces to 
detect systemic problems. 

Finally, directly related to the performance of our 
system is work related to maximal frequent itemset 
mining [1] and sequence mining [21, 15]. For future 
adaptations of our systems, stream mining of frequent 
itemsets is a key area of interest [9]. 

 
6. Conclusion and Future Work 
 

We developed a framework for mining kernel trace 
data. We translate the task of mining kernel trace data 
into frequent itemset mining. We experimentally show 
that our system detects excessive inter-process 
communication and short-lived process interaction on 
real systems. Our system detects these patterns for a 
range of parameters and in noisy data. The 
preprocessing and data filtering techniques we develop 
allow users to define flexible attribute filters, which 
help to deliver cleaner, more readable results. 
Furthermore, our mining system detects problem inter-
processes interactions through a single analysis step – 
something that is impossible using existing system 
analysis tools.  

Our research continues along several directions. 
While our experimental results gave guidelines in 
selecting parameters for yielding the most interesting 
patterns, we are exploring the idea of learning and 
building a library of normal execution (house keeping) 
patterns on a normal running system. These patterns 
would be used for filtering mining results to generate 



less-noisy, interesting patterns.  In addition, tighter 
coupling between our tools and the kernel’s tracing 
facilities would improve performance and make for a 
more seamless user experience. Closer integration also 
would eliminate the need for much of the post-
processing we perform on kernel trace logs after trace 
collection, before mining. Finally, tighter integration 
with the operating system would make real-time, 
stream-based analysis of a system possible.  
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