
Technical Report

TR-2007-022

Frequent Pattern Mining for Kernel Trace Data

by

Christopher LaRosa, Li Xiong, Ken Mandelberg

Mathematics and Computer Science

EMORY UNIVERSITY

Frequent Pattern Mining for Kernel Trace Data

Christopher LaRosa, Li Xiong, and Ken Mandelberg
Department of Mathematics and Computer Science

Emory University, Atlanta, GA 30322
{clarosa, lxiong, km}@mathcs.emory.edu

Abstract

Operating systems engineers have developed
tracing facilities to log process execution at the kernel
level in order to better understand actual execution
taking place on real systems. Uncovering certain types
of useful information in this trace data is nearly
impossible through manual inspection of a trace log.
To detect interesting inter-process communication
patterns, and other recurring runtime execution
patterns on systems, we employ data mining
techniques, in particular, frequent pattern mining, to
analyze operating system trace logs. We present a
framework for mining kernel trace data, making use of
frequent pattern mining in conjunction with special
considerations for the temporal characteristics of
kernel trace data. We present the pre-processing and
data reduction steps necessary to convert operating-
system trace logs into easily mined data. We illustrate
how an operating system’s abstractions serve as a
basis for both classification and data reduction.
Finally we experimentally validate our approach in
terms of feasibility, effectiveness, and cost through two
case studies. We use our framework to isolate
processes responsible for systemic problems on Solaris
and LINUX systems and demonstrate our framework is
versatile and efficient.

1. Introduction

The introduction of low-impact kernel-level tracing
tools allows for comprehensive and transparent
reporting of process and operating system activity. An
operating system trace log provides detailed, explicit
information about which processes use which system
resources at what time. This time series data contains
underlying knowledge, such as common execution
patterns. This information can assist in both simple and
complex systems-related tasks: application debugging,
security enforcement, performance optimization,
operating systems debugging, and dynamic
reconfiguration. However, while kernel trace collection
tools have advanced and matured, there remains a lack

of proper trace analysis tools for extracting useful
knowledge from raw trace logs.

1.1 Motivation and Goals

Most current trace collection tools, such as the

Linux Trace Toolkit (LTT) [20] and Solaris’s dTrace
[2], provide powerful mechanisms for collecting data.
Unfortunately for their users, the tools provide limited
or no functionality for analyzing the data collected.
Neither LTT nor dTrace provide analysis functionality
beyond simple aggregations, which must be specified
before a trace can begin. Neither tool provides a
mechanism to look for patterns either during a trace or
after a trace is completed. The omission of such
functionality is likely not an oversight; the data
collected by tracing systems is abundant and complex.

The lack of proper kernel trace analysis tools
motivates us to build a framework that applies data
mining techniques to analyze kernel trace data. The
framework is designed to discover patterns that could
not be detected with existing tools or manual
inspection. We would like to study pre-processing and
data mining techniques that can be used to identify
interesting recurring inter-process communication
patterns in noisy kernel trace data. These execution
patterns can potentially help a variety of users
including system administrators, application
programmers, operating systems engineers, and
security analysts.

Systems administrators would benefit from data
mining functionality for detecting frequent execution
patterns and resource usage patterns that escape
detection using traditional system-monitoring tools.
When they are charged with optimizing systems’
performance, frequent execution patterns form a
starting point for detecting otherwise non-obvious, but
significant systemic problems.

Application programmers would benefit from
mining functionality in debuggers. Augmenting
debuggers with mining functionality would provide an
opportunity to both enlighten developers about the
effects of their code on overall system functioning and
ensure better quality software.

Operating System Engineers can use data mining to
analyze the output of kernel tracing tools to tune the
performance of the most complex program running on
a computer: the operating system itself. In contrast to
user space programs, which sit atop a deterministic
virtual machine, the operating system sits atop an
exception driven real machine. Observing the same
course of execution twice for a single workload inside
the operating system, where frequent traps and
interrupts continually change the order of execution,
remains a near impossibility. It is this partially ordered
nature of OS execution that makes detecting sequential
patterns in trace data difficult.

In the systems area, data mining techniques have
been successfully used in the past for profiling and
detecting mal-ware [17], optimizing data placement and
prefetching for fast retrieval [13], and detecting
operating system bugs introduced by copying and
pasting of kernel source code [14]. To our knowledge,
ours is the first effort for a general-purpose solution that
mines across multiple kernel subsystems and the first
attempt to tackle the task of mining kernel trace logs.

1.2 Issues and Challenges for Mining Kernel
Trace Data

While data mining techniques [5, 9] have been

successfully applied to mine time-series data in a
variety of applications, mining kernel trace presents a
unique set of challenges. We discuss each of them
below.
 Log Data Volume and Complexity. The complex
and voluminous data generated by kernel tracing tools
create our first mining challenge. A typical kernel
tracing tool, the Linux Trace Toolkit (LTT), can each
report thousands of kernel-event records every second.
During our experimentation on a Pentium 4
workstation, LTT logged nearly a million events per
minute during normal user activity. Each kernel event
is a multi-attribute tuple containing, a record of which
process caused the event, the sub-system of the
operating system involved with executing the event,
the actual event type, the address or descriptor for any
resource accessed during the event, and the time at
which the event occurred. Sample values for these
attributes are shown in Table 1.
 Pattern Complexity. Further adding to the challenge
of mining kernel trace data, is our desire to detect
complex patterns in multiple attribute data. To uncover
systemic problems on a system, we cannot focus our
attention on one subsystem or application, mining only
for patterns across a single attribute. For example,
isolating the source of a memory allocation problem
would necessitate looking for events in at least two

Attribute Sample Values
Process firefox

staroffice
xFree86
postmaster

subsystem file system
memory
syscall
sched

event open
alloc
syscall entry

descriptor bookmarks.html
gettimeofday
2 (file descriptor)
2531 (process ID)

Table 1. Trace Attributes with Sample Values

attributes: the event attribute for each event that affects
memory usage, and the process attribute to determine
which program generated the event. Uncovering
complex inter-process, inter-subsystem interactions
requires mining along multiple attributes.
 Temporality. Another important consideration for
mining a kernel trace is appropriate treatment of the
time-series data. In trying to detect patterns in a
computer’s ordered execution, the timestamp attribute
plays a key role in defining what constitutes an
interesting pattern. The timestamp attribute allows us
to find more interesting patterns and information using
data mining techniques than we could obtain by
computing event aggregations and averages for data in
kernel trace logs. In addition, the unique scheduling
characteristics of the operating system make the kernel
trace mining task not a straightforward application of
existing sequence mining algorithms.
 Meaningful Pattern Reporting. Finally we must
consider a way to interpret the results of our mining
system. One main concern in generating our output of
patterns is that events related to systemic problems
could appear in the logs with not too high frequencies,
whereas some normal events could appear with high
frequency. Our system needs to identify those not-too-
frequent patterns that indicate problems. In addition,
we should provide efficient ways to hide very frequent
patterns that do not indicate problems. Because our
users – those people interested in kernel-level activity
– will be very technical, our concern is not how to hide
technical details from the user, but how to direct the
user toward the most meaningful results. Toward this
end we develop a set of tools to help in measuring the
quality of the mining system’s output.

1.4 Contributions and Organization

Bearing the above issues in mind, we design a
framework for effectively and efficiently mining kernel
trace logs and implement a suite of kernel mining tools
to test the design. Our framework makes a number of
unique contributions. First, we transform the problem
of kernel trace data pattern mining to maximal frequent
itemset mining. We provide special treatment for the
unique temporal characteristics of kernel trace data and
propose a combined approach of window folding and
window slicing to group trace events into itemsets
using their timestamp as a measure of temporal
proximity (Section 2.2). Second, we develop a data
filtering technique that allows versatile and flexible
cross-attribute pattern mining (Section 2.3). Third, we
develop and implement a suite of tools that use a bit
packing strategy to maintain the full semantics of each
trace event inside an integer and allow for efficient
mining (Section 3). Finally, we perform experimental
studies where the tools are used to detect systemic
problems on Solaris and LINUX systems. We test our
tools with a range of algorithmic parameters, showing
the feasibility, effectiveness, and cost of the approach
(Section 4). In particular, the extensive experiments
provide insight as to how parameters can be selected in
order to generate interesting patterns with minimal
interference from typical, non-problematic execution
events. We conclude the paper with a review of related
work (Section 5), a brief summary and a discussion of
futures directions (Section 6).

2. Kernel Trace Mining Framework

Kernel trace logs are massive, ordered records of

events that occur inside the operating system. Their
contents provide detailed, explicit information about
which processes use system resources. Our goal is to
find common execution patterns so that we can better
understand the internal execution that is taking place
on a machine. In this section, we present an overview
of our framework and show how we model kernel trace
mining by considering sequential mining.

2.1 Overview

We present a conceptual diagram of our framework

for mining kernel data in Figure 1. In our system, un-
modified processes, such as daemons and user
applications, make requests of the operating system in
the form of system calls. A trace module inside the
operating system transparently monitors these calls and
other internal activity. The trace monitor writes a
detailed, time-series record of these events to a log file.
The preprocessing utilities in our suite harvest the
time-series data from a log and translate it into itemset

Figure 1. System Architecture

data for frequent itemset mining. The preprocessor
output is passed into a frequent itemset mining tool and
the output patterns are passed to a program for display
and analysis.

2.2 Mining Frequent Sequential Patterns

Finding frequently occurring patterns in ordered or
time-series data like our trace logs is a mining task
commonly referred to as Sequential Pattern Mining.
This section details how typical sequential pattern
mining algorithms are not appropriate for kernel trace
mining and how we account for the special temporal
characteristics of kernel trace data and model the
problem as frequent itemset mining.

2.2.1 Sequential Mining Problem

Before we describe how we model the trace mining
problem, we first give a brief review of the sequential
pattern mining [5]. Given an ordered series of events,
S, and a minimum support, min_sup, mining for
frequent sequences involves finding the set of all
ordered series of events, F, that occur at least min_sup
times in S. For example, with min_sup = 2 and S = <A,
C, B, A, B> we have the frequent sequences F = <A,
B>, <A>, . These frequent subsequences are
referred to as serial episodes.

Additional constraints may be placed on the
sequential mining problem. Constraining the interval i
puts an upper limit on the maximum time that can have

Figure 2. Alternative Scheduling of a Single
Load

elapsed between any two consecutive items in a serial
event. On an integral timescale an interval of 0 requires
all serial events to have no intervening events. With
our original S, min_sup=2, i=0, only the single event
series <A> and would be reported as frequent
series; there would be no multi-itemsets in our results.

Kernel trace logs have unique temporal
characteristics due to the partially ordered execution
resulting from OS scheduling. We discuss below why
we need a special treatment of the kernel trace data
compared to typical time-series data. We propose two
important techniques for the treatment, namely, event
folding and window slicing. Event folding creates a
series of parallel events and window slicing creates a
sequence database. Together these steps create a
database of parallel events. As a result, we treat the
parallel events as unordered and reduce the problem of
sequential pattern mining to frequent itemset mining.

2.2.2 Window Folding

For the purposes of examining system trace data we
need to maintain a sufficiently large interval to account
for sequence gaps and re-orderings introduced by the
operating system’s scheduler. On any modern OS the
scheduler will regularly suspend the execution of a
process so that other processes may execute. The
maximum period for which a process may execute
uninterrupted by the scheduler is referred to as the
timeslice. Intervals used by our mining algorithms
need to be sufficiently long to detect patterns that exist
across multiple timeslices. Certainly if we hope to find
inter-application patterns we need to consider more
than one process at a time. Furthermore, because the
scheduler does not guarantee any ordering of process
execution to processes, detecting common process
interactions requires relaxing the definition of
sequence mining further to allow changes in ordering.

Suppose jobs j1 and j2 require inter-process
communication among processes A, B, and C. A and
B’s execution can happen in any order. Furthermore, C
is dependent on B having completed its work. The two
similar jobs j1, j2 could be completed according to
either of the execution schedules shown in Figure 2.

Both sequences illustrate the same pattern of
collaborative work being done by the same processes
but in different orders of execution. Unless we relax
the ordering constraint typically enforced in sequence
mining, we will fail to generate any sequences
demonstrating the interesting interaction between
processes A, B, and C.

In order to expose inter-process interactions on
timeshared systems we relax the ordering requirement
to consider events occurring within a certain temporal
distance to be parallel events. The temporal distance is
referred to as a folding window.

2.2.3 Window Slicing

Our task now becomes finding frequent parallel
episodes – frequently occurring sets of temporally
proximal events. Unfortunately, representing a list of
all groups of parallel events with a folding window
size w for a sequence with N items leads to a growth of
data O(w*N). Although this growth is constant, the
constant will be significant for typical window sizes.
For the w values used in our experiments, storing every
parallel event window would require several hundred
to several thousand times more storage than the
original trace representation and result in increased
processing overhead. To avoid expanding our dataset
we adopt a technique called window slicing.

Window slicing is introduced in [13] as an effective
technique to perform sequence mining of an extended
sequence. Window slicing converts an extended
sequence into a sequence database, a collection of
relatively shorter sequences. The non-overlapping
version of window slicing technique divides time-series
data using a window period. Events that take place in
the same window are treated as a single sequence
record in the event database. We adapt this form of
window slicing to our data while simultaneously
performing event folding using the same period. This
slice-and-fold step gives us an unordered database of
parallel events.

Without loss of generality, we consider LTT logs
where timestamps are recorded as the number of
microseconds elapsed since the UNIX epoch. We
define a parameter w, the fold-slice-window period in
microseconds. Using w we calculate a window ID for
each log entry, Lx, using the formula:

Figure 3. Windowing Slicing Error for Event
SCHED 452

Any two log entries that share a window ID are treated
as parallel events. The window ID serves as an itemset
ID for our frequent itemset mining.

Clearly, for a window of size w, some event
sequences of size w will not be included in our sequence
database using this window slicing method (Figure 3).
However by using a window long enough to capture
frequent patterns at least once in each window, we
minimize the disruptive effects of window slicing on our
data. Our tools detected problem patterns while using
the window slicing technique. Our experimentation
confirms previous work in [13] that shows window
slicing will not adversely affect the result quality of our
mining for sufficiently large windows.

2.2.4 Frequent Itemset Mining

By combining the window folding and window
slicing methods, we can treat the parallel events as
unordered and so our task of mining trace data has
been reduced to frequent itemset mining.

Specifically we look for maximal frequent itemsets,
the elements of which comprise common maximal
execution patterns in the original trace. We use
maximal frequent itemset mining (MFI) in favor of
frequent closed itemset mining (FCI) and frequent
itemset (FI) mining because the volume of MFI output
is much lower that that produced by FCI and FI mines.
This is important because we want our output to be
human-readable. Furthermore frequent closed itemset
mining introduces noise into our results because
slightly differing supports for items in a maximal
frequent itemset, which exists as a result of window-
slicing and scheduling, cause multiple frequent closed
itemsets to be reported – none of which provide any
more insight than the single maximal frequent itemset.

2.3 Attribute-Based Data Filtering

Algorithms will deliver cleaner results more quickly
if steps are taken to eliminate noise in input. To this
end, we deploy a simple data filtering technique to
reduce data. Data filtering essentially applies a
projection of the input sequence data on the specified
attribute values. We deploy a pass-through filter that

discards records that do no match any rule in a user
specified list. Our rules are a series of formatted strings
adhering to our attribute format proc-subsystem-call-
descriptor-size. We allow wildcard matching for an
attribute with the asterisk character. For example, the
rule *,MEM,*,*,* allows any call to the memory
subsystem to pass into the dataset we use for mining.
In our own experimentation, detailed in Section 4.5,
attribute filtering helps yield more readable results.

 3. System Implementation

Using our framework as a guide, we implement a
system for kernel trace mining. Our system includes a
series of tools in C++ and perl that transform time-
series LTT and dTrace output into a series of integers
for frequent itemset mining. For maximal frequent
itemset mining we adopt MAFIA [1], a highly efficient
algorithm for outputting maximal frequent patterns.
Our preprocessing tools work together to perform the
following tasks in the listed order: resolve operating
system descriptors to file and executable names
(Section 3.2), create uniform dictionaries for attribute
representation (Sections 3.1 and 3.2), and filter data
(Sections 2.3.2).

The user is required to provide parameters for a
period for window folding and slicing, optional
attribute data filters that will be applied before mining,
and minimum support for MAFIA’s frequent itemset
mining,

3.1 Bitpacking

An important preprocessing step in our system is to

convert our series of log entries into a collection of
integers, with each integer representing one system
call. Mining applications typically support data in
integer format and are optimized for this format.
Converting kernel trace data to this representation
allows for easy testing of mining algorithms on kernel
trace data.

We allocate subfields of an integer to store the
value of each attribute in our data set. Four dictionaries
are created for storing a string-value pair for the
process, subsystem, event, and resource descriptor
attributes. The dictionary ID for each attribute of a
record is stored in a region of our integer
representation. Because we want to represent the entire
record using a 32-bit value and the size attribute of our
record is itself a 32-bit value, some form of lossy data
reduction is necessary for this attribute.

We would like attribute values that carry similar
meaning in the initial dataset to have identical
representation in the data that we mine. Two reads of 3
and 4 bytes would both be considered small, whereas
two reads of 2 Mbtyes and 3Mbytes would both be

considered large. For each log record Lx, we store log8
Lx.size in our integer representation. This allows us to
store an approximation for each size value in far fewer
bits than the native representation. It also gives many
similarly sized attributes the same representation in our
data.

3.2 Kernel-trace specific preprocessing

For each reference to a file, program, or hardware
resource in our log, we want to use the same
representation in our dataset. On any system a
program, file, or hardware resource can be referenced
by multiple IDs. On a multi-user system or server there
may be dozens of instances of the same program
running; each one will always have a unique process
ID. Numerous processes may write to the same output
device, each one referring to the device by a different
file descriptor. Kernel tracing tools typically report file
and process activity by file descriptor or process ID,
not the path or executable name.

For each reference to a file, program, or hardware
resource in our log, we want to provide an identical
representation to our mining tools. We accomplish this
by using the process-ID-to-executable mapping
available in the /proc file system when the trace
begins. Because the operating system recycles process
IDs, we update this mapping whenever a program is
executed. We use a similar approach for resolving file
descriptors to filenames, but do not have information
about file descriptors already open at the start of a
trace.

4. Experimentation

We performed a set of experiments evaluating the
feasibility, effectiveness and cost of our proposed
framework. Our goal is to answer the following
important questions: 1) Can kernel trace mining help
system users in system-related tasks such as
performance tuning and systems debugging? 2) How
do different algorithmic components and parameters in
our framework affect the mining results? 3) What is
the performance overhead of the mining system?

In this section, we present two real-world case
studies. In the first study, we use the kernel trace
mining framework to effectively detect a known
problem program, the GNOME applet gtik. We briefly
describe the problem and our experiment setup for the
GNOME applet, present the mining results, illustrate
the effects of different algorithmic components and
parameters of the mining framework, and finally
discuss the performance overhead of the system. In the
second study, we use our tools to isolate a poorly
performing server application on a Solaris system.
Using our framework implemented with Solaris and

dTrace largely paralleled our experience under LINUX
and LTT.

4.1 Problem Scenario and Previous
Approaches for isolating gtik

The GNOME stock ticker applet gtik version 2.0 is
a process now known to induce systemic problems
because of the number of high-impact X programming
calls. However, identifying this process as a heavy
consumer of system resources presents a challenge.

Because much of the work being created by the gtik
applet takes place inside the X server, detecting the
applet as the source of system overhead using
traditional tools such as top is impossible. A recent
study [2] used dTrace to identify the applet on a multi-
processor Solaris system. The study used the output of
mpstat, a tool for monitoring processor activity, as a
starting point for writing a series of dScripts. dScripts
provide control and analysis functionality for Solaris’
dTrace kernel tracing mechanism. In all, five ad-hoc
dScripts were necessary to trace the suspicious activity
reported by mpstat back to gtik. These scripts required
not only knowledge of X programming calls, but also
implementation knowledge of an X server.
Furthermore this solution using dTrace and custom
dScripts was only possible because of the clues
provided at the onset by mpstat’s cross call report, a
feature that is not available on single processor
machines.

Given this problem scenario, we study how the
proposed kernel trace mining system can help in
detecting the problematic process through pattern
discovery in kernel traces.

4.2 Experiment Setup

Using the LINUX Trace Toolkit we collected traces
of kernel level activity, including system calls. We
mined the traces collected using our suite of data
preprocessing tools and maximal frequent itemset
mining. We then examined the output of this mining to
look for meaningful patterns of activity.

We collected four 1 minute traces from a machine
running version 2.5.7 of the Linux Kernel, patched
with version 0.9.5 of the Linux Trace Toolkit, and
running the version 2.8.3 of the Gnome Desktop. The
computer was equipped with sufficient RAM to ensure
no swapping would affect application performance
during our traces.

Table 2 summarizes the characteristics of the four
traces. Two traces were conducted while the gtik
applet version 2.0, the version known to induce
systemic problems, was running: The first trace,
ltt_gtik_20_isolated, contained one minute of trace
activity with no interactive applications running and no

Trace Gtik Interactive
Applications

Ltt_gtik_20_isolated Buggy No
Ltt_gtik_20_noisy Buggy Yes
ltt_gtik_26_isolated Fixed No
ltt_gtik_26_noisy Fixed Yes

Table 2. Experiment Traces

user activity. The second trace, ltt_gtik_20_noisy, was
conducted while a user surfed the web using FireFox
and edited a document in OpenOffice. The next two
traces, ltt_gtik_26_isolated and ltt_gtik_26_noisy, were
collected under similar circumstances, but with an
improved version of the gtik applet running. Version
2.6 reduced the number of high-impact X
programming calls, but the program still
communicated with the X server very frequently – a
phenomenon we saw in our mining results.

4.3 Mining Results

We first present a set of results showing clear

patterns that can be used to identify the problematic
gtik process. Because we were aware that the
symptoms pointing to the systemic problem with gtik
trace applet would be observable through calls in the
operating system's file system and memory sub-

Experimental Configuration

input: ltt_gtik_20_noisy
fold-slice-window period: 25,000 (micro. sec.)
minimum support: .5
filters: *,FS,OPEN,*,*
 ,FS,CLOSE,,*
 ,FS,READ,,*
 ,FS,WRITE,,*
 ,SCHED,,*,*
 ,MEM,,*,*

Output
 itemset 1:

XFree86, FS, WRITE
XFree86, FS, READ
XFree86, MEM, FREE
Xfree86, MEM, ALLOC

 itemset 2:
gtik2_applet_2, MEM, ALLOC
gtik2_applet_2, MEM, FREE
gtik2_applet_2, FS, WRITE
XFree86, FS, READ
XFree86, MEM, FREE
XFree86, MEM, ALLOC

Figure 4. Experimentation Input/Output

systems, we began our mining efforts by filtering to
allow only calls to those subsystems.

The frequent itemset, along with the experimental
configuration, is listed in Figure 4. Frequent itemset 2
directly points to the systemic problem on the trace
machine. The pairing of gtik’s writes and XFree86’s
reads, and the two processes’ complementary allocs
and frees of memory suggest that gtik is responsible for
much of the XFree86’s work. The first frequent itemset
in our sample result reveals no non-obvious
information – we expect the XFree86 server, which is
responsible for all graphic display on the system, will
be making almost constant system calls. The output
produced by our mining system for this trace was
exceptionally clear. It consisted of only 2 frequent
itemsets, one which pointed directly to the systemic
problem, and no noise generated by other programs
running on the system.

We also conducted experiments across all attributes
with no data filtering which is discussed later in
Section 4.5. In each of our traces we were able to
detect frequent itemsets pointing to the gtik and X
server interaction. Even with an interactive load that
consumed 40 percent of CPU load, meaning the
presence of considerable noise for our data mining
algorithm to contend with, the gtik and X11 interaction
was clearly visible in our output.

4.4 Parameter Effects on Mining Quality:
Fold-slice-window and MinSup

To test the durability of our system we also

performed an extensive set of experiments over a range
of data filtering and mining parameters. We
investigated the effects of two important mining
parameters, fold-slice-window and minsup. We detail
results for the ltt_gtik_20_noisey trace in this section
because it contains the noisiest data and accordingly
presents the greatest challenge to our mining system.
To further test the system’s ability to eliminate noise
from results we conducted these experiments across all
attributes with no data filtering (see Section 4.5).
We conducted each of our experiments using fold-
slice-window periods varying from 10,000
microseconds to 1 second at discrete intervals. At each
of these intervals we looked for maximal frequent
itemsets with minimum supports between .1 and .9.
We report 4 possible outcomes for each of these
experiments: Present in single itemset – only 1
frequent itemset was reported and it contained the
problematic interaction, Present in multiple itemsets –
the pattern was detected in at least one frequent itemset
reported and no itemset contained events generated by
processes other than gtik or XFree86, Present with
interference – the pattern was present in an itemset that

Figure 5. Variations in Mine Quality

also contained noise from processes not involved in the
systemic problem, Not present – the problematic inter-
process pattern was not reported in any itemset.

Figure 5 presents the mining outcomes with
varying fold-slice-window periods and minimum
supports. For all windows ranging from 25,000 micro-
seconds to 250,000 micro seconds we could detect the
problematic inter-process interaction. We found that
the minimum support parameter played a significant
role in determining the quality of a result where the
signal was strong. Where the fold-slice-window period
was long – and the problem interaction between gtik
and XFree86 was nearly guaranteed to be reported in
every window – the high minimum support value
effectively pruned noise from other processes out of
the output itemsets. At the opposite end of the
spectrum, where the problem interaction was present in
only a few of the short windows, a high minimum
support value pruned away the interaction from the
results.

Manual inspection of our output revealed that poor
mining outcomes (such as Not Present and Present
with Interference) generally exhibited one of two
properties: no inter-attribute patterns or uninteresting
(noisy) inter-attribute patterns, while a desired mining
outcome exhibited interesting inter-attribute patterns.
We discuss below each type of the outcome results.

No inter-attribute patterns – for mines with short
windows we never saw inter-process itemsets in the
output. This makes sense since our windows were not
likely to span across multiple processes’ execution
timeslices. For these windows we received what
amounted to a list of the most-frequent calls on the
system – something we could have accomplished with
aggregation functionality. Our hope of finding
interesting inter-attribute patterns for these windows
remained low. For longer windows noise from
processes (not interesting to us) made for excessively
long and inconclusive itemsets.

Uninteresting (noisy) inter-attribute patterns – as
window size increased it became impossible to tell
which processes were interacting. Events that were not
of significance began to make their way into our results

Figure 6: Result Quality as a Function of
Parameter Values

as the fold-slice-window period began to span multiple
timeslices for each process, increasing the likelihood of
processes generating noise in our output.

Interesting inter-attribute patterns -- for
sufficiently high minimum supports and large enough
windows we could see interesting inter-process
interactions clearly in a few, reasonably short itemsets.
Using parameters from this range gives the user the
best opportunity to get easily interpretable, meaningful
output from the system. Figure 6 presents a
representative sketch of desired outcomes versus poor
outcomes with varying parameter values.

4.5 Effects of Attribute Filtering

Because itemset length plays a key role in

determining algorithm selection and performance, we
pay special attention to the average cardinality of our
input itemsets. We also pay special attention to the
average cardinality of frequent itemsets found by the
system, since smaller itemsets are much easier for the
user to interpret. Both of these measures are
significantly affected by our data filtering parameters.
 We treat each window as a set of unordered tuples and
therefore it is necessary to report only one instance of
each kernel event found in any window to our mining
algorithm. Longer fold-slice-window periods mean
fewer windows appear in our dataset and more kernel
events will appear in each window. It also means that
there is an increased likelihood of duplicate events in
each window. Performing data filtering limits the range
of domain cardinality for each attribute – effectively
imposing an upper bound on the number of possible
distinct events in any one window. As the

0

100

200

300

400

500

600

700

800

900

1000

10000 100000 1000000

Window Size

A
v

er
a

g
e

C
a

rd
in

a
li

ty
 o

f
In

p
u

t
It

em
se

ts
Isolated Filter

Isolated No Filter

Noisey Filter

Noisey No Filter

Figure 7. Attribute Filtering Effects Input
Itemset Cardinality

window size increases, the average cardinality of our
windows approaches this upper bound.

We studied the effects of a filter allowing only
memory events, scheduler events, along with read,
write, open, and close calls as versus mining across all
attributes without filtering. We tested the filter along
window sizes ranging from 10,000 to 1,000,000
microseconds. Figure 7 and Figure 8 show the effects
of attribute filtering on input itemset cardinality and
output itemsets cardinality respectively. Whereas
attribute selection played a significant role reducing the
cardinality of input itemset, it did not play as
significant a role determining the cardinality of our
output itemset. The mining algorithm’s removal of
infrequent items from our data curbed the cardinality
growth of the output as the window size increased.

In conclusion, data filtering does make for more
readable output, but the user can get meaningful results
without the filtering. This is especially important for
users investigating unknown problems, where
appropriate filters may not be known.

4.6 SuspectServer Case Study

In our second case study, we replicated the
functionality of a server that performed poorly in
certain deployment environments. Specifically, if bash
was not configured as the default shell, the server
would exec a shell script (that contained yet another
exec) for each connection the server brokered. The
performance problem clearly escaped the developer –
who probably wrote the script while using the bash
shell. It also escaped the system administrator, who
had trouble detecting the bug because the server
invoked short-lived executables that went undetected
by traditional system administration tools. Eventually
the system administrator resorted to manual kernel
tracing.

We implemented a program called SuspectServer
that simulated the regular shell script executions of the
actual server. Our implementation, when running,

0

20

40

60

80

100

120

10000 100000 1000000

Window Size

A
v

er
a

g
e

M
u

lt
i-

It
em

se
t

O
u

tp
u

t

C
a

rd
in

a
li

ty

Isolated Filter

Isolated No Filter

Noisey Filter

Noisey No Filter

Figure 8. Attribute Filtering Effects on Output
Itemset Cardinality

incurred a .23 CPU load on a 1.2 Ghz dual-processor
UltraSparc with 2GB of RAM. Even while overall load
remained heavy, at no point did top report a load above
.5 percent (a CPU load of .005) for our SuspectServer.
The short-lived scripts also escaped detection in top.
We implemented a tracing package in dTrace that
recorded information similar to that collected by LTT.

Using our data mining tools we were able to
identify the system calls that directly illustrated the
recurring fork and execute problems. The calls,
illustrated in Figure 9, were inside an 80-item frequent
itemset.

The telltale calls did not form an exclusive frequent
itemset as they did in some mining results in our gtik
case study. However the benefit that comes from our
mining is substantial. Looking through a few frequent
itemsets, each with cardinality less than 100, is far
easier than scanning the log from which they were
derived – a 73K item log, collected over 11 seconds
while SuspectServer was running.

4.7 Performance Evaluation and Practical
Impact

Finally, we discuss the performance of our mining
system. Our preprocessing tools performed reasonably
well to be considered for actual use. Using very coarse
grained monitoring we observed that running each
mining task from the window-slicing step to the output
took an average of 20 seconds on a 2 Ghz. processor.
This number is from our noisiest trace with no data
filtering. Furthermore, our tools stand to benefit from
numerous optimizations – both algorithmic and those
possible through more efficient IO programming.

Our first preprocessing step, resolving operating
system IDs, takes minutes to complete. This step only
needs to be performed once for each trace – so multiple
experiments (with different fold-slice-window,
minimum support, and data filtering parameters) can
be performed more quickly. Each experiment beyond
the first typically takes well under a minute to

 0,SuspectServer,SYS,exece,/bin/sh,8
 0,hostname,SYS,exece,/bin/uname,8
 0,sh,FS,CLOSE,/platform/SUNW-Sun-Blade-2500/lib/libc_psr.so.1,8
 0,sh,FS,OPEN,/platform/SUNW-Sun-Blade-2500/lib/libc_psr.so.1,8

Figure 9: MSKD Output for window= 411,000,000ns minsup=.9 – abbreviated

complete. Furthermore, if our tools were more tightly
coupled with the tracing module, this preprocessing
step could be eliminated.

The performance of the actual mining step, where
we used MAFIA to perform our maximal frequent
itemset mining, was especially promising. Every
mining of a 60-second LTT trace took less than 1
second to complete.

Furthermore, mining our dTrace log files collected
under Solaris was very efficient. We tested our
framework with 100 different window sizes, across 5
levels of varying support. Average mining time was
less than 2 seconds per mine on a 2.0 Ghz. PowerPC.
In their present state, our tools need to perform 10 to
50 mines to find optimal results; this takes at most a
two minutes.

The efficiency of MAFIA for mining maximal
frequent itemsets and the straightforward
improvements possible in our implemented data
processing tools mean that this system, as described, is
feasible for actual use.

5. Related Work

Pattern mining in time series data has been an

emerging technique applied for a variety of
applications [5, 19]. We briefly review in this section
the most relevant works that apply data mining for
operating systems.

In developing a kernel-wide data-mining system,
we consider research outcomes for systems targeting
each of an operating system’s constituent subsystems.
Research has been conducted to develop better data
pre-fetching at the disk and network level [3, 4]. [3]
exploited an existing sequence mining algorithm for
data placement optimizations. As systems become
increasingly distributed and complex, mining will play
an increasingly important role in evaluation and
optimization. Already, traditional file-system
benchmarking applications are inadequate for
meaningful performance evaluation in large-scale
storage area networks (SANs) [16, 18]. The tools we
developed for mining kernel trace data could be
adapted to analyze multiple time-sequence logs from
different components of a SAN or other distributed
system.

Tracking operating system activity for intrusion
detection is a mature area of research [7, 8, 10, 12].
This work usually focuses on tracking individual users
and processes. Mining-based approaches for system
security are emerging as responsive and resilient
strategies for system security [10, 11]. Mining
techniques have also been successfully used for
profiling and detecting mal-ware [17, 6], and for
detecting operating system bugs introduced by copying
and pasting of kernel source code [14]. In particular,
[14] outlines a data mining approach for quality
assurance during software development. Such an
approach would pair well with our data mining
framework when used by developers.

Our work differs from above in that it is the first
general-purpose solution that allows for mining for
patterns across multiple subsystems in kernel traces to
detect systemic problems.

Finally, directly related to the performance of our
system is work related to maximal frequent itemset
mining [1] and sequence mining [21, 15]. For future
adaptations of our systems, stream mining of frequent
itemsets is a key area of interest [9].

6. Conclusion and Future Work

We developed a framework for mining kernel trace
data. We translate the task of mining kernel trace data
into frequent itemset mining. We experimentally show
that our system detects excessive inter-process
communication and short-lived process interaction on
real systems. Our system detects these patterns for a
range of parameters and in noisy data. The
preprocessing and data filtering techniques we develop
allow users to define flexible attribute filters, which
help to deliver cleaner, more readable results.
Furthermore, our mining system detects problem inter-
processes interactions through a single analysis step –
something that is impossible using existing system
analysis tools.

Our research continues along several directions.
While our experimental results gave guidelines in
selecting parameters for yielding the most interesting
patterns, we are exploring the idea of learning and
building a library of normal execution (house keeping)
patterns on a normal running system. These patterns
would be used for filtering mining results to generate

less-noisy, interesting patterns. In addition, tighter
coupling between our tools and the kernel’s tracing
facilities would improve performance and make for a
more seamless user experience. Closer integration also
would eliminate the need for much of the post-
processing we perform on kernel trace logs after trace
collection, before mining. Finally, tighter integration
with the operating system would make real-time,
stream-based analysis of a system possible.

8. References

[1] D. Burdick, M. Calimlim and J. Gehrke. MAFIA: A
Maximal Frequent Itemset Algorithm for Transactional
Databases. IEEE Transactions on Knowledge and Data
Engineering, 1490-1504. Vol 17. Issue 11, Nov. 2005.

[2] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal.
Dynamic instrumentation of production systems. In Proc. of
the USENIX Annual Technical Conference, pp, 15-28, 2004.

[3] P. Cao, E. Felten, A. Karlin, and K. Li. A Study of
Integrated Prefetching and Caching Strategies. In
Proceedings of the 1995 ACM SIGMETRICS, pp 171-
182,1995.

[4] J. Griffioen and R. Appleton. Reducing File System
Latency Using a Predictive Approach. IN Proc. of the 15th
IEEE Symposium on Mass Storage Systems, 1998.

[5] J. Han and M. Kamber. Data Mining: Concepts and
Technqiues, 2nd ed.. Morgan Kaufmann Publisers, ISBN 1-
55860-901-6, 2006.

[6] J. Z. Kolter and M. A. Maloof. Learning to Detect
Malicious Executables in the Wild, In Proc. 10th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2004

[7] T. Lane and C. E. Brodley. Sequence matching and
learning in anomaly detection for computer security. In AAAI
Workshop: AI Approaches to Fraud Detection and Risk
Management, pp 43 – 49, 1997.

[8] T Lane and C E. Brodie. Temporal sequence learning and
data reduction for anomaly detection. In 5th ACM
Conference on Computer & Communications Security, pp.
150 -- 158, 1998.

[9] D. Lee and W. Lee. Finding Maximal Frequent Itemsets
over Online Data Streams Adaptively. In Proc. of the 5th
ICDM, 2005.

[10] W. Lee, S. J. Stolfo, and P. K. Chan. Learning Patterns
from Unix Process Execution Traces for Intrusion Detection.

In AAAI Workshop: AI Approaches to Fraud Detection and
Risk Management, pp 50 – 56, 1997.

[11] W. Lee, S. J. Stolfo, and K. W. Mok. A Data Mining
Framework for Building Intrusion Detection Models. In
Proc. of the 1999 IEEE Symposium on Security and Privacy,
1999.

[12] W. Lee, S. J. Stolfo, and K. W. Mok. Artificial
Intelligence Review, Kluwer Academic Publishers,
14(6):533-567, 2000

[13] Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou. C-Miner:
Mining Block Correlations in Storage Systems. In
Proceedings of the 3rd USENIX Conference on File and
Storage Technologies (FAST), pp. 173--186, 2004.

[14] Z. Lie, S. Lu, S. Myagmar, and Y Zhou. CP-Miner: A
tool for Finding Copy-paste and Related Bugs in Operating
System Code. IN Proceedings of the 6th USENIX Symposium
on Operating Systems Design and Implementation, pp 289-
302. 2004.

[15] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U.
Dayal and M-C. Hsu. PrefixSpan: Mining Sequential Patterns
Efficiently by PrefixProjected Pattern Growth. In. Proc. 2001
Int. Conf. Data Engineering (ICDE'01), pp. 215-224, 2001.

[16] Thomas M. Ruwart. File System Performance
Benchmarks, Then, Now, and Tomorrow. In 18th IEEE
Symposium on Mass Storage Systems, 2001.

[17] M. Schultz, E. Eskin, E. Zadok, S. Stolfo, Data mining
methods for detection of new malicious executables, in: Proc.
IEEE Symposium on Security and Privacy, 2001, pp. 178--
184.

[18] E. Thereska, B. Salmon, J. Strunk, M. Wachs, M. Abd-
El-Malek, J. Lopez, and G. R. Ganger. Stardust: Tracking
activity in a distributed storage system. In ACM
SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, 2006.

[19] W. Wang and J. Yang. Mining Sequential Patterns from
Large Data Sets. Series: The Kluwer International Series on
Advances in Database Systems, Vol. 28. ISBN: 0-387-
24246-5, 2005

[20] K. Yaghmour and M. R. Dagenais. Measuring and
Characterizing System Behavior Using Kernel-Level Event
Logging. In Proc. of the 2000 USENIX Annual Technical
Conference, 2000.

[21] X. Yan, J. Han, and R. Afshar. CloSpan: Mining Closed
Sequential Patterns in Large Datasets, In Proc. 2003 SIAM
Int. Conf. Data Mining (SDM'03), 2003.

