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ABSTRACT
We systematically evaluate a recently proposed method for
unsupervised discrimination power analysis for feature se-
lection and optimization in multimedia applications. A se-
ries of experiments using real and synthetic benchmark data
is conducted, the results of which indicate the suitability of
the method for unsupervised feature selection and optimiza-
tion. We present an approach for generating synthetic fea-
ture spaces of varying discrimination power, modeling main
characteristics from real world feature vector extractors. A
simple, yet powerful visualization is used to communicate
the results of the automatic analysis to the user.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Multimedia Databases; I.5.2
[Pattern Recognition]: Feature evaluation and selection

Keywords
Feature vectors, discrimination power, feature selection, Self-
organizing map.

1. INTRODUCTION AND BACKGROUND
Many multimedia applications need to determine the sim-

ilarity between multimedia objects. E.g., in content-based
retrieval, cluster analysis, and fingerprinting applications,
discriminating similarity functions are required. One of the
most popular approaches for implementing similarity func-
tions for multimedia data is to capture important features
of the underlying objects by numeric vectors, referred to as
feature vectors (FVs) [5]. Distances between FVs are com-
puted using a suitable FV metric, and associated with the
degree of similarity between the objects represented by FVs.

For prominent multimedia data types such as images, mu-
sic pieces, video shots, or 3D models, an abundance of differ-
ent similarity functions based on FVs have been proposed to
date. For discriminating (or effective) FV representations,

distances measured in FV space closely resemble similarity
relationships in object space. The design of discriminat-
ing FV extractors for multimedia data is, however, a diffi-
cult problem, which to date is solved mostly by a heuris-
tic approach: Candidate FVs are composed by selected nu-
meric features, and experimentally benchmarked using pre-
classified (supervised) data. The main problem with this
approach is that it relies on the availability of supervised in-
formation, which (a) is expensive to obtain, (b) may be data
dependent and not generalize to different applications. Fur-
thermore, supervised benchmark outcomes may be unstable
regarding benchmark design choices [8].

Methods for the unsupervised estimation of FV discrimi-
nation power, allowing automatic benchmarking of different
FV configurations, are therefore desirable. A number of the-
oretical approaches proposed for unsupervised FV analysis
[1, 6] to the best of our knowledge have not been practically
exploited yet. In [9], we addressed the problem of unsu-
pervised discrimination estimation by means of an analysis
function defined over a compressed (clustered) representa-
tion of the unclassified feature vector data. The analysis
function serves as an estimator for the discrimination power
one may expect in a given feature space, understood as the
embedding of a given data set in a metric space using a given
feature extractor. We here complement the work introduced
in [9] by an in-depth evaluation presenting a systematic se-
ries of experiments using real world and synthetic data. The
study shows the robustness of the unsupervised feature se-
lection technique, demonstrating its potential as an unsu-
pervised complement or alternative to the long, iterative,
and costly process of supervised optimization of candidate
feature vector extractors.

Section 2 recalls the basic idea behind the unsupervised
discrimination power estimator. Section 3 applies the esti-
mator on a real world data set, evaluating its performance
for selecting feature vectors from a set of competing vectors,
and for selecting the optimal dimensionality for a given fea-
ture vector. Both selection problems frequently occur when
designing multimedia applications which rely on feature vec-
tors to discriminate objects. In Section 4, the estimator is
evaluated on a synthetic data set, modeling feature spaces
of varying discrimination power. Both evaluations are illus-
trated using visualization. Section 5 concludes the effective-
ness of the estimator, and outlines future work.

2. UNSUPERVISED FEATURE SELECTION
In [9], we proposed an unsupervised estimator of FV space
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Figure 1: Baseline supervised benchmark against which the unsupervised analysis method will be evaluated.
Chart (a) plots dimensionality vs. precision of the ten 3D feature spaces measured on the PSB data set.
Chart (b) shows a subset of chart (a) used in the experiments discussed in Section 3.2.

discrimination power based on the following hypothesis: Dis-
crimination power provided in a given FV space can be esti-
mated by the uniformity of the histogram of distances be-
tween the clusters in the respective FV space. [9] More
specifically, the hypothesis states that the discrimination
power contained in a given FV space may be estimated by
the degree of heterogeneity of the distances between cluster
centers calculated over the given FV space. The intuition
behind the hypothesis is that a FV space of high discrim-
ination power shows a uniform (unbiased) distribution of
distances between cluster centers, where each distance is
equally likely to occur. The hypothesis was inspired by a
basic image processing technique where the contrast in a
gray image is estimated by the uniformity of its gray value
histogram. The estimator is based on a compressed repre-
sentation of the feature space to provide for noise suppres-
sion, and to simplify distance histogram calculation.
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Figure 2: Regression analysis for the FV selection
experiment described in Section 3.1.

An unsupervised estimator of discrimination power can
be implemented as follows [9]. For clustering, we employ
the Self-Organizing Map (SOM) algorithm [7] as a robust
clustering algorithm that has been successfully adopted in
many data analysis and visualization applications [11]. The
SOM is a neural-network learning algorithm which for any

input set of data vectors calculates a fixed number of cluster
prototypes arranged on a regular grid. Practically, we use
the SOM algorithm to first cluster a candidate FV space f (a
given data set in a candidate FV representation). We then
calculate the histogram h(f, b) of b bins length over the L1

distances between all pairs of cluster prototypes adjacent
on the SOM grid. Having obtained h(f, b), we determine
its corresponding degree of uniformity (uniformity score us)
simply as its L1 distance to the theoretic uniform histogram:
us(h) =

∑b
i=1 |hi− 1

b
|. Lower us scores indicate h to be more

uniform-like, leading us to estimate higher discrimination
power for the underlying FV space.

3. EVALUATION ON REAL DATA

3.1 Feature Extractor Selection Problem
We designed and conducted a series of experiments to sys-

tematically analyze the performance of the unsupervised dis-
crimination estimator. Remember the goal is to mimic su-
pervised benchmarking in FV design using automatic anal-
ysis. We therefore compare the results of the estimator
against supervised benchmarking on a range of feature op-
timization problems.

We first test the estimator on a benchmark database of 3D
models - the Princeton Shape Benchmark (PSB) Train par-
tition [10] - indexed by a set of ten competing 3D FV extrac-
tors. These FV extractors are based on various geometric
3D features as described in [3] and elsewhere. As supervised
reference benchmark score we use the R-Precision score [2]
calculated over the benchmark classification information. R-
Precision is a measure of retrieval precision when answering
similarity queries under a given FV representation. Higher
R-Precision scores indicate higher discrimination power of
the underlying FV space. To assess the effectiveness of the
unsupervised estimator, we compare it against respective R-
Precision scores by correlation analysis. Figure 1 (a) plots
the supervised R-precision scores of ten different FV spaces
[4, 3]. Each method was benchmarked at several different
resolution levels of the respective feature extractors, result-
ing in the shown R-Precision curves. Note there exists a
FV-dependent optimal dimensionality setting for each FV.

We first evaluate the uniformity score in a feature selec-



(a) PMOM (15%, 1.16) (b) SD2 (18%, 0.97) (c) H3D (20%, 0.81) (d) VOX (31%, 0.73) (e) DBF (31%, 0.72) (f) DSR (43%, 0.73)

(g) equal 1 (1.0, 1.80) (h) equal 2 (2.0, 1.62) (i) equal 3 (3.0, 1.28) (j) equal 4 (4.0, 1.02) (k) equal 5 (5.0, 0.84)

Figure 3: Top row: Inter-cluster distances for the FV spaces of lowest (a-c) and highest (d-f) discrimina-
tion power (R-precision and uniformity scores given in brackets). Bottom row: The same visualization for
synthetic data sets under the equal-sampling scenario (d span uniformity scores given in brackets).

tion experiment. We use the uniformity score estimator to
determine the best discriminating FV representation. We
consider the optimum dimensionality setting of each FV,
according to Figure 1 (a). To evaluate the estimator, for
each FV space, we calculated SOMs of dimensionality 12×9
for the PSB data set. Figure 2 plots the R-precision scores
observed for the ten FV spaces against their respective uni-
formity scores (we set b = 10 to calculate the us score). The
Figure also shows a logarithm model regression analysis for
the plot. We verify the correlation between the supervised
and the unsupervised FV space metrics at squared correla-
tion coefficient R2 = 0.60 (a measure for the quality of the
dependence). While this is not a perfect functional depen-
dency, both metrics clearly correlate in the expected sense:
In FV spaces of better discrimination power (according to
supervised benchmarking), we also observe more uniform
distance distributions in the clustered FV space representa-
tions. The unsupervised usmetric is therefore recommended
to automatically select a discriminating FV representation
for the database from a set of candidate FV spaces, with-
out relying on supervised information: We select the FV
space that minimizes the us score, thereby maximizing the
distance distribution uniformity.

The analysis result can be illustrated by visualizing the
underlying SOM-based distance distributions in form of so-
called U-Matrices [11]. Figures 3 (a-f) show the distributions
of inter-cluster distances for the three FV spaces with low-
est and highest discrimination power, respectively. The im-
ages visualize the linearly (min,max) normalized magnitudes
of distances between adjacent cluster prototypes in form of
a diamond plot. It is obvious that the methods of lowest
benchmarked discrimination power exhibit the most biased
distance distributions. Specifically, image (a) is dominated
by low distances, while the other images show increasingly
more distance diversity, which is associated with higher ex-
pected discrimination power by the analysis function. Uni-
formity scores and R-precision scores are included in the
figure for comparison. The visualization is useful for inspec-
tion of different FV spaces, and to understand the choice of
the automatic feature selection scheme.

The unsupervised discrimination estimation may not only
serve to select a single (best scored) discriminating feature
vector to use. Using sets of feature vectors combining differ-

ent types of object characteristics often show superior results
in practice, compared to using just a single type of features
in a given application. The uniformity score may be used as
a weight for combining multiple candidate feature vectors
to an ensemble. E.g., the inverse of the uniformity score
may serve as a weight in a linear combination of FVs. Fea-
ture vectors showing lower uniformity scores then enter the
combination with higher weights, reflecting their better dis-
crimination estimation. We state that we performed exper-
iments using reciprocal us scores as weights for combining
feature vectors, and observed an improvement in R-precision
against the corresponding, unweighted ensembles.

3.2 Dimensionality Selection Problem
It is interesting to ask whether the estimator also works

for the dimensionality selection problem, given a specific FV
extractor, as these usually can be configured to different res-
olution levels, in itself being a feature selection problem tra-
ditionally solved by benchmarking. We conduct regression
experiments by plotting the R-precision values obtained for
different dimensionality settings of a given FV space against
the uniformity scores of the respective settings. We selected
a set of three FVs which allowed a sufficiently fine granu-
larity of available dimensionality settings, and a significant
spread in the R-Precision results for the sequence of dimen-
sionality configurations. Figure 1 (b) shows the FV spaces
and dimensionalities selected.

The charts in Figure 4 report the results of the exper-
iment. The top row of charts shows plots of R-precision
scores against uniformity scores, for all dimensionality set-
tings of the given FV spaces. The uniformity scores were
calculated using histogram width b such that the log re-
gression dependency was maximized w.r.t. the R2 statistic
(values given in Figure 4). The dependency strengths range
between 93% and 45%. The scatter plots indicate that a
correlation exists between the supervised and the unsuper-
vised FV metrics within each of these FV spaces for varying
dimensionality settings. We observe that selecting the FV
dimensionality minimizing the uniformity score not always
manages to pick the optimal FV dimensionality (maximizing
R-Precision), but gives solid selection results significantly
outperforming the random choice.

A parameter of the method is the width of the histograms
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Figure 4: Results of the dimensionality selection experiment.

used to evaluate the uniformity score. We therefore inves-
tigated the robustness of the analysis with respect to bin
width b, observing the correlation strength R2 while varying
b. The charts in the bottom row of Figure 4 plot the result-
ing R2 values resulting for b in the interval [2, 20]. The corre-
lation quality partially depends on the histogram width set-
tings. The strongest dependencies result for small histogram
widths between 3 and 7, depending on the FV space. For
larger b settings, the correlation strengths stabilize at sub-
maximal levels, showing certain oscillation. We currently
attribute this observation to the simple equal-width bin-
ning approach used in our implementation of the uniformity
score, possibly incurring discretization phenomena. We ex-
pect more advanced statistical uniformity tests to improve
the analysis robustness.

4. EVALUATION ON SYNTHETIC DATA
The above findings link unsupervised information extracted

from several given 3D FV spaces with respective discrimina-
tion power benchmarks. As benchmarks are supervised in
nature and expensive to build, unsupervised discrimination
estimation is desirable. We are therefore interested whether
these results generalize. As the number of available mul-
timedia benchmarks described by a significant number of
different competing FV extractors is limited, we chose to
generate synthetic data sets, simulating FV spaces of vary-
ing discrimination as follows:

• Dimensionality (dim) is set to 128, a medium sized
resolution regarding many real FV extractors.

• Database size is set to 50 or 200 classes (n classes),
each class consisting of 50 elements (c size). These
sizes are typical for real multimedia benchmarks.

• The FV dimensions are all normally distributed with
σ = 1.0 around a class centroid.

• The class centers are uniformly distributed in FV space.

• Discrimination quality is controlled primarily by the
size of the data space from which the class centroids
are drawn. Specifically, we vary the span of all FV
dimension (d span) between 1.0 and 5.0.

We also control the size of the Self-Organizing Maps used
for clustering prior to us score calculation. Specifically, we
use SOM grid sizes of 12 × 9 and 32 × 24. Together with
the above described parameters, we form three data sce-
narios by varying the proportion between the number of
SOM prototype vectors allowed, and the number of classes
contained in the synthetic benchmark. Table 1 gives the
parameter settings for the scenarios. In the equal-sampling
scenario, the number of SOM nodes is roughly equal to the
number of classes (1.08 nodes/class). In the over-sampling
and under-sampling scenarios, the number of SOM nodes is
larger or smaller than the number of classes (15.36 and 0.54
nodes/class, respectively).

Table 1: Three synthetic data scenarios.
Scenario dim n classes c size d span SOM size

over 128 50 50 [1.0, 5.0] 32× 24
equal 128 100 50 [1.0, 5.0] 12× 9
under 128 200 50 [1.0, 5.0] 12× 9

A series of experiments was run on these synthetic bench-
mark scenarios. Figures 5 (a-c) plot the uniformity scores
(we set b = 20) obtained by varying d span settings in the
three scenarios. Consider plot (b) which gives the result for
the equal-sampling scenario. There is a clear dependency
between the two metrics: As class discrimination improves
(d span increases), the uniformity score us decreases. R2

amounts to about 87%, indicating a strong correlation be-
tween class discrimination and uniformity score estimator.
Figures (a) and (c) show the over-sampling and the under-
sampling experiments. In both scenarios, we also observe
a significant correlation between both metrics (R2 = 45%
and R2 = 70%, respectively). The strong correlation in the
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Figure 5: Results of the experiments on synthetic data.

under-sampling setting is specifically interesting to observe,
as with 0.54 SOM prototype vectors per class, the number
of SOM reference vectors is not sufficient to exclusively rep-
resent each class by a cluster center.

Again, we also varied the histogram length parameter b, to
assess the robustness of the analysis. Figures 5 (d-f) report
observed R2 for the three scenarios when varying b between
[2, 20]. For small sizes up to about 5 bins, R2 is rather
low (but increasing). We presume the small histogram sizes
perform too much aggregation, eliminating useful informa-
tion regarding the distance distributions. For b = 7 and
above, we observe stable dependencies between R2 = 50%
and R2 = 85%, depending on the scenario.

In summary, these results indicate the robustness of the
uniformity score-based discrimination analysis w.r.t. main
parameter settings. Figure 3 shows the visualization of dis-
tance distributions in the equal-sampling scenario, for dif-
ferent d span settings. Higher settings correspond to more
discriminating FV spaces, and are reflected by more uniform
distributions of distances.

5. CONCLUSIONS
We evaluated an automatic, unsupervised method for es-

timation of discrimination power in competing FV spaces.
Systematic experiments on real and synthetic benchmark
data showed that the unsupervised estimator based on dis-
tributions of distances in compressed FV space is able to
closely resemble supervised benchmarking analysis. The
method was shown to be robust w.r.t. main parameter set-
tings. It is proposed as a valuable tool supporting and com-
plementing the data-dependent and expensive supervised
benchmarking approach to FV selection and optimization
in multimedia applications.

Future work involves refining the method by including
more sophisticated statistical distribution tests, experiment-
ing with additional estimator functions, and evaluating the
approach on additional benchmark data.
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