
VHDL vs. Bluespec System Verilog:
A case study on a Java embedded architecture

Flavius Gruian
Dept. of Computer Science

Lund University
221 00 Lund, Sweden

flavius.gruian@cs.lth.se

Mark Westmijze
Dept. of Computer Science

University of Twente
Enschede, The Netherlands

m.westmijze@student.utwente.nl

ABSTRACT
This paper compares two hardware design flows, based on
the classic VHDL on one side and the relatively new Blue-
spec System Verilog (BSV) on the other side. The compari-
son is based on a case study of a Java embedded architecture,
comprising a Java native processor and a memory manage-
ment unit. The processor is a micro-programmed, pipelined,
Java-optimized processor (JOP), initially written in VHDL,
and its BSV re-designed match BlueJEP. Its memory man-
agement unit implements the bytecodes dealing with mem-
ory allocation, along with a mark-compact garbage collec-
tor. The two design flows are examined from several points
of view, including both quantitative and qualitative mea-
sures. Based on this design experience, we conclude that the
new high-abstraction level languages, such as BSV, offer in
comparison to register-transfer (RT) level classic approaches
roughly the same trade-offs that C++ offers vs. assembly
language in the software world.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; C.1.3 [Processor Archi-
tectures]: Other Architecture Styles—pipeline processors,
stack-oriented processors

Keywords
Java processor, embedded systems, Bluespec

1. INTRODUCTION
With the increasing complexity of today’s digital systems,

it is only natural to demand higher abstraction level lan-
guages and strong, automatic synthesis support along with
these. In the software domain, moving from assembly lan-
guage to C, and further to C++ and Java made developing
huge applications in short time possible. In hardware, this
transition appears to be slower due to a number of specific

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08 March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

problems such as inherent parallelism, timing, and abun-
dance of implementation choices. Nevertheless, a number of
languages and design flows are attempting to raise the level
of abstraction from register-transfer and behavioral level de-
scribed in VHDL [1] or Verilog [15] to transaction and sys-
tem level (i.e., SystemC [14], SpecC [5]). Whenever the
abstraction level of a specification is raised, more steps and
support tools are required to refine that specification to a
final implementation. A mostly automatic refinement and
synthesis flow is desirable, in order to speed up the design
process. Although correctness may be easier to achieve in
this way, the results of such a flow may seem hard to control
to some designers. Furthermore, an experienced designer
might usually outperform such tools by obtaining better,
customized solutions, given enough time. Moving to a higher
abstraction level language is often a matter of trade-off be-
tween design time, cost, performance, and chip area.

In this paper, we compare a classic design flow, based on
a register-transfer level VHDL description, to a design flow
based on a higher level of abstraction language for hardware
design called Bluespec System Verilog (BSV [2]). BSV is a
rule based, strongly-typed, declarative hardware specifica-
tion language making use of Term Rewriting Systems [10]
to describe computation as atomic state changes. Although
relatively new, Bluespec seems to have captured the interest
of industry and academia, and a number of designs written
using BSV are making their appearance (i.e., [3,4,16]). How-
ever, to our knowledge, this is the first paper that presents a
comparison between RT-level VHDL and BSV using a study
on a larger design, implemented in both flows. In particu-
lar, we use a Java native architecture, targeted for embed-
ded systems. The architecture includes a Java processor,
which is a micro-programmed pipelined stack machine, and
a hardware memory manager with garbage collection.

The paper is organized as follows. Section 2 introduces the
architecture design used in our study, along with the VHDL
flow and the BSV solution. A discussion comparing the two
solutions and design flows makes the subject of Section 3.
Finally, Section 4 presents our conclusions.

2. THE DESIGN
This study focuses on a Java embedded architecture for

several reasons. First, the VHDL version was already avail-
able and familiar to the authors. Second, unlike typical toy
examples often used in such comparisons, this design is not
trivial, exhibiting both complex control and data. Finally,
several new architectural improvements could be tested, spe-
cific for Java processors in embedded systems.

1492

Briefly, the architecture that we use in our evaluation is
based on JOP processor core [11] extended with a mem-
ory management unit (MMU) capable of garbage collection,
introduced in [7]. The core is a stack machine, in the line
with the Java virtual machine, that can execute simple byte-
codes as single micro-instructions, while the more complex
ones are implemented either as micro-programs or even Java
methods. Being designed for embedded and real-time sys-
tems, this is not a general Java environment. For instance,
class loading is carried out and an executable image (still
as bytecodes) is generated offline. BlueJEP, the BSV ver-
sion, was re-written with the same design constraints, mak-
ing the solutions easily interchangeable. The MMU was also
re-written in BSV, to better integrate it with the new Blue-
JEP processor. From the programmer’s point of view, the
tool chain and system behavior is virtually the same for both
the VHDL and the BSV solutions.
Along with the processor and the memory manager, a

number of peripherals and a bus complete the system archi-
tecture, which is a typical system-on-chip targeted for em-
bedded applications. Depicted in Figure 1, such a system
contains the processor, a RAM (storing the Java application
and heap), a serial port (RS232), a timer, and some general
purpose input/output (LEDs and switches), all connected
through an On-chip Peripheral Bus (OPB). All the IPs ex-
cept the processor and the MMU are in fact standard cores
from the Xilinx EDK library. For more flexibility, the archi-
tecture can be configure with MMU, or without MMU, in
which case the garbage collection and memory management
is carried out in software [8]. A debug configuration facili-
tates interfacing the system with Chipscope cores [17], for
monitoring processor and bus signals.

On-chip Peripheral Bus (OPB)

Timer

RAM

RS232 GPIODebug

MMU
Java Processor

(JOP or BlueJEP)

Figure 1: The typical Java embedded system archi-
tecture used in our evaluation.

The following descriptions focus on the non-standard parts
of our architecture, namely on the processor and the mem-
ory management unit, with specific flavors of the VHDL and
BSV flows.

2.1 The VHDL solution
The processor in the VHDL design is a slightly altered

version of the Java optimized processor (JOP) which is a
four-stages pipelined stack machine. The first stage fetches
bytecodes from the memory (method cache) and translates
them to micro-program addresses. The second stage fetches
micro-instructions. The third decodes and generates neces-

sary stack addresses, while the last executes and writes back
results. This last stage carries out all the access to the stack,
all the spills/fills and local variable read/write. To simplify
and speed up the stack access, the top most two values from
the stack are mirrored by two dedicated registers. More
details on the JOP architecture can be found in [11, 13].
Changes in our version from the original JOP include small
variations in the micro-instruction set, the decode stage, and
the communication with the external memory (OPB).
The Java architecture used in our study can be configured

both with a software memory management (with garbage
collection) or with a hardware memory management unit,
as introduced in [7]. Since we are comparing hardware de-
sign languages, the hardware MMU configuration is more
interesting. In the VHDL solution, the MMU implements
the new,*newarray and garbage collection as finite state
machines (FSMs), controlling memory accesses in detail. An
arbiter is also implemented, in order to deal with concurrent
memory accesses from the processor and some of the MMU
FSMs.

2.2 The BSV solution
Early versions of the Bluespec System Verilog Java Em-

bedded Processor (BlueJEP) were almost identical to JOP,
the intention being just to rewrite the architecture in BSV.
Nevertheless, as we became more familiar with BSV, we de-
cided that a longer, six stages pipeline would be more inter-
esting, more flexible and modular, and hopefully faster. In
order to reuse most of the tools already implemented for the
VHDL solution, the micro-instruction set, the micro-code
and the executable image were kept almost identical to the
VHDL design. Brief reviews of BlueJEP and its MMU are
given below (refer to [8, 9] for more details).

2.2.1 BlueJEP Architecture
The processor went through at least three different ver-

sions until the six-stages solution described in here. Earlier
versions would stall the pipeline any time a data or a con-
trol hazard would occur, which meant more complex con-
trol. The current version only stalls on data hazards, and
uses speculative execution on branches, which means simpler
control, higher-performance, but wider pipeline registers (for
saving context). For speculative execution, the branches
are always assumed not taken, and whenever an unexpected
deviation of control occurs the pipeline is flushed and the
execution resumes using the context1 associated with the
instruction that caused the branch.
The stages see the pipeline registers as searchable FIFOs,

in order to check for stall conditions – which usually means
searching for instructions with a certain destination. Im-
plicit conditions for stalling a stage are given by attempting
to enqueue in a full FIFO or dequeue from an empty FIFO.

Stage 1: Fetch Bytecode fetches bytecodes from the cache
(BCCache), translates them to micro-addresses and
feeds them to the next stage.

Stage 2: Fetch micro-I manages the micro-pc, fetches in-
structions from the micro-ROM and feeds them to the
next stage. Whenever the micro-code sequence for the
current bytecode is completed, and the next must be

1Java program counter jpc, micro-program counter pc, and
stack pointer sp

1493

executed, it dequeues a micro-address from its input
FIFO and continues executing from there.

Stage 3: Decode dequeues and decodes the next micro-
instruction from its input FIFO, which can be either a
data moving instructions (one source and one destina-
tion) or an operation (two sources, one operation, one
destination). Register values are fetched in this stage,
while stack locations are fetched in the next. The de-
coded micro-instruction is passed on to the next stage.

Stage 4: Fetch stack fetches stack contents, unless the
location is supposed to be modified by an instruction
present in the following stages, case in which it stalls.
Operations and fetched values are passed to the Exe-
cute stage, while data moving instructions bypass Ex-
ecute, if idle, and go directly to Write-back.

Stage 5: Execute dequeues two values and an operation
identifier from the input FIFO, and executes the oper-
ation to obtain a result. The result and the destination
is sent on to the next stage. Conditional branches are
partially handled here, as the operation is simply dis-
carded if the condition is false or passed on to the next
stage if the condition is true.

Stage 6: Write-back commits all results to their destina-
tion, which can be registers or stack locations. This
stage issues pipeline flushes and a context roll-back,
when pc and jpc are explicitly changed.

2.2.2 Bytecode Cache
BlueJEP can operate with any cache module that im-

plements a specific BCCache interface. A number of caches
were specified in BSV and tested with the processor, from
simple single-word caches, to single-method caches, to multi-
method multi-block caches, with various block replacement
policies, suitable for Java processors [12]. The comparison
with our VHDL design is based on a single-method 1KB
cache. Cache fills are issued only on invokes and returns,
when entire methods are loaded into the cache, contributing
to the real-time predictability.

2.2.3 External Memory Access
The access to external memory follows the asynchronous

model of the VHDL solution, and is carried out through
a set of three registers: mwa, mra, and md. To read a
memory location, the mra register must be set, which starts
an external read access through the bus interface. The bus
interface will then update the md register with the data
arriving on the bus. On a write, the access starts with a
write to mwa which puts the contents of md on the bus.

2.2.4 Memory Management Unit
The hardware memory manager is a BSV redesign of the

VHDL solution as well. Five new registers (four data and
one control register) were introduced in BlueJEP in order
to interface the MMU with the processor. The MMU can
be configured to work either with the common system bus,
or through a second port, on dual-port memories. Schedul-
ing, concurrency, and synchronization among MMU FSMs
are mainly handled by the BSV compiler. Object structure
and memory management data layout in the executable re-
mained unchanged (refer to [8] for details).

2.2.5 Micro-Code Aspects
Depending on the micro-code, that is, what sequence of

micro-instructions needs to be executed for each bytecode,
there are four tables/ROMs that need to be generated.

• The micro-ROM contains the micro-code for all the
hardware implemented bytecodes.

• BC2microA maps bytecodes to micro-addresses.

• The jump table translates each of the available indexes
(up to 32) into an address offset used in the micro-code
jumps for updating the pc.

• The initial stack contains micro-code constants.

Our BSV solution uses a generator, bluejasm, which trans-
lates the assembler code into an intermediate BSV file, gen-
erator.bsv. This file, along with the micro-instruction set
definition from types.bsv is compiled as a standalone sim-
ulator by the BSV compiler. Finally, this executable will
output the .hex memory image files for the aforementioned
tables. The advantage is that if the micro-instruction set en-
coding changes, the bluejasm does not require any updates,
since the contents of the generator.bsv file are independent
of the encoding.

3. DISCUSSION
In this section, we examine the VHDL and BSV design

flows from several points of view, both quantitatively and
qualitatively. Although we do indicate our preference for
one or the other on occasion, one must point out that these
are subjective. The final choice of using VHDL or BSV may,
of course, vary with the designer’s experience, target system,
available time and budget.

All the results presented in this paper were obtained using
the Xilinx ISE 9.1i tool chain for the VHDL flow [18]. In
addition, we used the 2006.11 version of the Bluespec System
Verilog compiler in the BSV design flow. The designs were
incorporated in systems built with Xilinx EDK 9.1 and run
on Xilinx Virtex-II (XC2V1000, fg456-4) FPGAs.

3.1 Quantitative comparison
One way to compare the two solutions is by looking at

measurable features: design time, code lines, design area
and performance.

3.1.1 Design Time
Our VHDL solution is in fact a re-implementation of the

JOP processor [11], in order to adapt it to our applications,
requiring a hardware garbage collector [7] and a new On-chip
Peripheral Bus (OPB) bus interface [6]. This led up to an
almost complete re-write of the processor core, and even of
some of the tools used together with it, such as the binary
image generator and the micro-assembler. When starting
the BSV solution we had the advantage of experience and
some of the tools already being available. In both cases the
test and debug took longer than the time used to write the
final functionality. A rough estimate for the VHDL proces-
sor design time is six months while for BlueJEP (several
versions) is about four months. Re-designing the MMU in
BSV was much faster compared to the VHDL version, due
to the strong BSV support for writing FSMs. In fact it took
only one week to write and test the BSV version compared

1494

to a couple of months for its VHDL counterpart. Note that
we did have experience with VHDL prior to the VHDL ap-
proach, but we had very limited experience with BSV and
Verilog before starting on the BSV solution. Moreover, due
to some synthesis tool problems we spent a rather long time
on getting the Verilog code generated by the BSV compiler
to synthesize correctly on our FPGA. To summarize, we do
believe that the design time can be reduced to half if not
less when using BSV compared to pure VHDL.

3.1.2 Code Lines
Somewhat connected to the design time, is the number

of code lines for each solution, detailed in Table 1. The
VHDL number of lines is slightly under 3600, while the BSV
code takes about half of that, and compiled yields around
6000 Verilog lines (and an additional 1500 lines of comments
and debug messages). Note that this only includes the used
modules and no testing code. Furthermore, a fair number of
lines in the BSV code is used to print out debug messages,
so the BSV figures are actually smaller. It is worth noticing
as well that the BSV solution implements a longer pipeline
and more complex solution, which in VHDL might take even
more code to achieve.

There are many reasons for this difference, mostly coming
from the higher abstraction level of BSV. For example, it
takes less code to instantiate modules, and fewer lines to in-
voke a certain functionality in a module (method calls rather
than setting individual signals). Writing state machines is
very easy in BSV, using the StmtFSM package. Another
important difference comes from the scheduling model. The
VHDL solution must explicitly specify states, each monitor-
ing input signals, then decide on the actions to take, and
finally update the state on clock edges. In BSV the state
management and the order of actions are decided by the
compiler, based on the user-specified rules. This requires a
slightly different way of thinking, which may give the im-
pression of less control to a designer versed in VHDL. Nev-
ertheless, leaving the compiler to come up with a schedule
based on rule dependencies and resource accesses may bring
out solutions that are not possible to investigate in a design
with a predetermined schedule. In fact the actual schedule
internals and the states are not explicitly interesting, since
those are just means to achieving a purpose – the desired
functionality.

3.1.3 Area
The VHDL and BSV designs (processors with and with-

out their respective MMU) were synthesized using the same
parameters (optimized for speed) and the results reported
in Table 2. Note that the BSV designs (BlueJEP, +MMU)
take more area, which is not unusual, considering that the
BSV solution is a more complex processor, with a deeper
pipeline. Furthermore, this is the normal price one would
need to pay when moving up in abstraction level, just as
it happens in the software community when moving from
assembly language to C and further to C++.

One notable difference between BSV and VHDL that has
an impact on the area is the way memory elements are han-
dled. In BSV one must explicitly instantiate registers or
memory elements, while in VHDL one must adhere to a
specific coding standard in order to avoid generating un-
wanted latches from signals. These situations are of course
easy to detect and remedy, but they do require more effort

Table 1: Code lines for both solutions. Entities
and modules are aligned according to their approx-
imately equivalent functionality.

VHDL BSV
entity lines module lines

java cache 120 BCCache 110
bcfetch 330 Fetch bytecode 30
fetch 150 Fetch micro-I 80
decode & Decode & 200
address gen. 300 Fetch register

Fetch Stack 100
stack 400 Execute 50
(exec+r/w) Write-back 70

registers 120
core 330 Bluej 120
opb jop 250 opb if 150

SFIFO 100
types 150

GCU 1700 MMU 600

Total: 3580 Total: 1880

from the designer. On the other hand, the default memory
module or register files in BSV have five read ports and one
write port. These are usually expanded into groups of five
memories, each having one (independent) read port and one
(common) write port. This is also obvious in Table 2, when
one considers the amount of resources used as RAMs in both
cases. It is up to the synthesis tool to detect and optimize
unused ports and memories. Thus, an efficient synthesis
tool is more important in the case of the BSV flow than for
the RT-level VHDL. Nevertheless, any of the modules used
in the BSV specification, can be explicitly written and im-
ported from Verilog, leaving an open door for optimization
by hand.

Table 2: BSV vs. VHDL area and performance

Design Area: Slices Area: 4LUTs Clock
total FFs as logic as RAM Speed

BlueJEP 3490 756 2422 4436 84 MHz
+ MMU 4935 1083 4158 5456 68 MHz
JOP 1841 535 2522 1024 73 MHz
+ GCU 3327 1349 5375 1024 71 MHz

3.1.4 Performance
The maximum clock frequency as reported by the syn-

thesis tool (Table 2) is highest for the BlueJEP without
MMU (84MHz). This is expected, given the longer pipeline
of the BSV solution vs. the VHDL design. Adding the hard-
ware memory managers causes a reduction in performance
for both designs, but considerably more so in the BSV de-
sign. We made only limited efforts to improve the timing
of the BSV solution. It is also important to mention that
the bytecode execution speeds of the two designs are very
similar, since they are using almost identical micro-code.

When it comes to improving the performance of the de-

1495

signs by shortening the critical paths reported by the synthe-
sis tool, the balance turns in the favor of the VHDL solution.
During compilation to Verilog of the BSV design, many new
signals and variables are introduced, which makes it harder
to relate the names from the critical path back to the ini-
tial specification. Furthermore, it is often not clear what a
designer must change at the BSV source level in order to
get the desired change in the RT-level Verilog code. Hav-
ing written the specification directly at the RT-level for the
VHDL solution, detecting and changing critical paths is eas-
ier in the VHDL design flow.

3.2 Qualitative comparison
There are certain properties of the presented solutions

that cannot be easily quantified, but which are neverthe-
less interesting to look at.

3.2.1 Test and Debug
Testing and debugging the VHDL solution was very de-

manding, since this was done mainly by examining signals in
a VHDL simulator or using the final FPGA implementation
to output messages or LED signals. In general debugging
such systems is tedious, as there can be bugs in the hard-
ware, the micro-code, the micro-instruction assembler or the
binary image generator. The BSV compiler is however able
to generate a standalone simulator as an alternative to the
Verilog modules. This is an executable that can be used to
run the design on clock cycle basis. Combined with display-
ing messages in BSV module methods and rules, this was
extremely useful in debugging the BSV solution.

For each stage separately, we also wrote test modules that
would generate inputs for that stage. Stages then were con-
nected among them gradually, starting from the sixth back-
wards, and more test modules were implemented. Finally,
when all stages appeared to work properly together, the
bus interface was modeled and connected to the processor.
A memory module containing the actual binary image ob-
tained from Java class files was connected to and used to ex-
ecute on the processor. Forwarding and caching were added
later. Thus, hardware bugs were caught early, and micro-
code bugs later using the BSV compiler generated simulator.
We used the same binary image generator as for the VHDL
solution, but were actually able to detect a bug even in here
once the whole system was up and running.

Finally, once the system was running in hardware, we used
Xilinx ChipScope [17] to tap various signals, including the
bus, and compare the values obtained from the real hard-
ware against values obtained using the Bluespec standalone
simulation of our design. This step was used to detect and
fix bugs, and finally confirmed that the implementation be-
haves similarly to the high-level BSV specification. This fi-
nal testing step is not specific to the BSV flow, but we found
introducing probes in the BSV design rather easy and the
standalone simulation useful yet again.

Granted some tools and, more important, experience were
available from the VHDL solution, given the higher level of
abstraction of BSV, testing and debugging appeared to be
easier to carry out in the BSV approach.

3.2.2 Modularity
Both VHDL and BSV offer support for modular designs

in the form of modules, parameterization and complex static
elaboration. Nevertheless, we found that BSV offers more

powerful parameterization for types, modules, and functions,
allowing for better reuse and more modular designs. For ex-
ample, all the search FIFOs in the design, regardless of the
stored type or search function, are instances of the same
module. As another example, the tests for certain stages
were written using simpler data types for the input and out-
put FIFOs, but instantiated with the final types in the end
design. Finally, the strong BSV support for specifying FSMs
was invaluable both in testing and developing the MMU. In
fact all this becomes more apparent when comparing the
code lines of the VHDL and BSV solutions.

3.2.3 Flexibility
Changing the micro-instruction set encoding or adding

new micro-instructions is rather complicated in the VHDL
solution. First, the decode stage must be altered, a number
of new control signals may be required, which in turn will
alter the interface to the other stages. Depending on the
newly added instruction, the execution stage may also need
modifications, new multiplexers and registers. But not only
the VHDL files need serious changes, the assembler must be
modified to generate the micro-ROM contents with the new
encoding.

The BSV flow is considerably simpler, since the micro-
instruction encoding does not need to be specified explic-
itly and the micro-ROM generator does not require mod-
ifications (see section 2.2.5). In the BSV files, the micro-
instruction type must be changed to include the new micro-
instruction mnemonic, the decode stage must be altered to
handle the new instruction. The execute stage might also
need some changes in case a new and exotic operation must
be carried out. Finally, new registers might need to be
added. Nevertheless, all these changes are on a higher ab-
straction level than in the VHDL solution, making the BSV
solution more flexible.

It is important to mention here that the decoded instruc-
tion is using a three-address format, which may accept in
principle any sources and destinations. This opens the pos-
sibility of (micro-)instruction folding2 that was not there
with the VHDL solution. That solution uses a more strict
architecture, optimized for each and every micro-instruction.
Nevertheless, the increased flexibility exposed by the BSV
solution may come at the expense of area and performance.

3.2.4 Portability
In our case, we wanted to implement just the processor

and its memory manager in BSV, and use Xilinx EDK to
build the whole system, since a number of IPs are already
available in that environment. To this end we had to add
an OPB master interface to our core. In practice this meant
having the top BSV module use a well specified interface,
exposing the necessary signals when compiled to Verilog.
Although possible, this method did not seem intuitive, since
output signals end up as interface methods3 while input sig-
nals need to be input parameters to these methods. Thus,
porting designs from BSV to VHDL/Verilog systems needs
better support in the form of tools or language constructs.

2A version of BlueJEP that supports micro-instruction
folding is currently under development and testing, show-
ing interesting preliminary results.
3Furthermore, all these methods had to be explicitly aug-
mented as always ready and always enabled in order to ex-
actly control the number and behavior of I/O signals.

1496

On the other hand, BSV does provide good support for
importing Verilog modules or C functions into a BSV sys-
tem. In our case, imported Verilog modules were occasion-
ally tested to explicitly instantiate ROM memories instead
of using the BSV register files (see the discussion on mem-
ories in section 3.1.3). For fast prototyping, hardware/soft-
ware co-design and co-simulation, importing C is an invalu-
able feature.

3.2.5 Availability
Finally, this comparison would be incomplete if we would

not mention the availability of VDHL and BSV development
environments. There is a large number of commercial VHDL
environments and a couple of free ones, but, unfortunately,
only one BSV environment. This is rather normal, consider-
ing how much longer VHDL has been around, but the lack
of choice it is still a drawback for BSV.

3.3 Summary
Our design experience with the two different flows is sum-

marized in Table 3. Overall, we found the BSV design flow
to be preferable to the initial VHDL approach. The final
score is of course dependent on the priorities of the designer.
In our case, which focused on architectural exploration and
fast prototyping, BSV got the job done rather well.

Table 3: A summary of the comparison between
VHDL and BSV design flows.

Flow D
es

ig
n

ti
m

e

C
o
d
e

li
n
es

A
re

a

P
er

fo
rm

a
n
ce

T
es

t
&

D
eb

u
g

M
o
d
u
la

ri
ty

F
le

x
ib

il
it
y

P
o
rt

a
b
il
it
y

A
va

il
a
b
il
it
y

VHDL ? ? ?
BSV ? ? ? ? ? ? ?

4. CONCLUSION
The work presented in this paper used a Java embedded

architecture design as a case study for comparing two de-
sign flows. The first is based on a classic RT-level VHDL
specification, while the second employs a higher-level of ab-
straction specification language, namely Bluespec System
Verilog. As shown previously in many other contexts, there
is always a trade-off between design time and implemen-
tation size/performance, when moving to a higher-level of
abstraction language. As an example from software world,
moving from assembly code to C and further Java, means
developing applications faster at the expense of larger exe-
cutables and less fine grain control. This is true as well in
hardware design, and in particular in our case when moving
from RT-level VHDL to BSV. The BSV approach is better
for fast prototyping and architectural exploration. However,
once the architecture is fixed, a lower level Verilog or VHDL
specification might be required to achieve better control over
area and performance.

5. REFERENCES
[1] IEEE Standard VHDL Language Reference Manual:

IEEE Std 1076-1993. IEEE, August 1994.

[2] Bluespec, Inc. http://www.bluespec.com, 2007.

[3] N. Dave. Designing a processor in Bluespec. Master’s
thesis, MIT, Cambridge, MA, January 2005.

[4] N. Dave, M. Pellauer, S. Gerding, and Arvind. 802.11a
transmitter: A case study in microarchitectural
exploration. In International Conference on Formal
Methods and Models for Codesign (MEMOCODE’06),
pages 59–68, July 2006.

[5] A. Gerstlauer, R. Domer, J. Peng, and D. D. Gajski.
System Design - A Practical Guide with SpecC.
Kluwer academic, 2001.

[6] F. Gruian, P. Andersson, K. Kuchcinski, and
M. Schoeberl. Automatic generation of
application-specific systems based on a
micro-programmed java core. In 20th Symposium on
Applied Computing, Embedded Systems Track, 2005.

[7] F. Gruian and Z. Salcic. Designing a concurrent
hardware garbage collector for small embedded
systems. In Asia-Pacific Computer Systems
Architecture Conference, pages 281–294, 2005.

[8] F. Gruian and M. Westmijze. BluEJAMM: A
Bluespec embedded Java architecture with memory
management. In SYNASC’07 Real-Time and
Embedded Systems workshop, September 2007.

[9] F. Gruian and M. Westmijze. BlueJEP: A flexible and
high-performance Java embedded processor. In The
5th Int’l Workshop on Java Technologies for Real-time
and Embedded Systems, JTRES’07, pages 222–229,
September 26–29 2007.

[10] J. C. Hoe and Arvind. Hardware synthesis from term
rewriting systems. In VLSI ’99: Proceedings of the
IFIP TC10/WG10.5 Tenth International Conference
on Very Large Scale Integration, pages 595–619,
Deventer, The Netherlands, The Netherlands, 2000.

[11] M. Schoeberl. JOP: A java optimized processor. In
Workshop on Java Technologies for Real-Time and
Embedded Systems, November 2003.

[12] M. Schoeberl. A time predictable instruction cache for
a Java processor. In On the Move to Meaningful
Internet Systems 2004: Workshop on Java
Technologies for Real-Time and Embedded Systems
(JTRES 2004), volume 3292 of LNCS, pages 371–382,
Agia Napa, Cyprus, October 2004. Springer.

[13] M. Schoeberl. JOP: A Java Optimized Processor for
Embedded Real-Time Systems. PhD thesis, Vienna
University of Technology, January 2005.

[14] SystemC. the open systemC initiative.
http://www.systemc.org.

[15] D. E. Thomas and P. R. Moorby. The Verilog
Hardware Description Language. Springer, 5 edition,
June 2002.

[16] R. E. Wunderlich and J. C. Hoe. In-system FPGA
prototyping of an Itanium microarchitecture. In
International Conference on Computer Design,
October 2004.

[17] Xilinx. ChipScope Pro Software and Cores User
Guide, v9.1.01 edition, January 2007.

[18] Xilinx Inc. http://www.xilinx.com/, 2007.

1497

