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ABSTRACT
We analyze a distributed variation on the Pólya urn process
in which a network of tiny artifacts manages the individ-
ual urns. Neighboring urns interact by repeatedly adding
the same colored ball based on previous random choices.
We discover that the process rapidly converges to a defini-
tive random ratio between the colors in every urn and that
the rate of convergence of the process at a given node de-
pends on the global topology of the network. In particular,
the same ratio appears for the case of complete communi-
cation graphs. Surprisingly, this effortless random process
supports useful applications, such as clustering and pseudo-
coordinate computation. We present preliminary numerical
studies that validate our theoretical predictions.

Keywords: Pólya Urns, Networks of Tiny Artifacts, Clus-
tering.

1. INTRODUCTION
Designers of distributed algorithms often assume that each

node is computationally powerful, capable of storing non-
trivial amounts of data and carrying out complex calcula-
tions. However, recent technological developments in wire-
less communications and microprocessors allow us to estab-
lish networks consisting of massive amounts of cheap and
tiny artifacts that are tightly resource constrained. These
networks of tiny artifacts are far more challenging than the
traditional networks; on one hand, their relative scale is
enormous, while on the other hand, each tiny artifact can
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only run a millicode that is aided by a miniature memory
– possibly as little as a constant number of bits per tiny
artifact. Such limitations are not crippling if the system
designer has a precise understanding of the tiny artifacts’
computational power, and local interaction rules from which
global formation emerges.

Urn processes (and more generally processes with rein-
forcements) is a tool for modeling stochastic processes that
show structure emerging. Their aim is to analyze the global
structure of a given population given the micro-mechanisms
the particular entities are applying. The global structure
reflects the ability of the entities to self-organize. For in-
stance, such models can explain the preferential-attachment
model in small-world networks, the process of market shar-
ing, interaction of biological entities, etc., based on given
micro mechanisms. We refer to [15] and references therein
for reinforcement processes, for models based on urn models
see [8], and for the emergence of structure we refer to [2].

1.1 Our contribution.
In this paper our aim is to extend the classical urn pro-

cess to a network of interacting urn processes and to ana-
lyze the emerging global formation, which is carried out by
a low-level interaction process. The network of tiny artifacts
repeats the following operations. Each urn has a multiset
of black and white balls, initially one of each color. A given
tiny artifact draws a ball from the urn with uniform dis-
tribution and returns to the urn the ball along with a new
ball of the same color.1 The tiny artifact interacts with its
neighbors on the network. Namely, after returning the two
balls, the tiny artifact announces the balls’ color to its neigh-
bors, and the neighbors add a new ball of that color to their
urns. The selection of the artifact drawing the ball from
the urn is random and uniform (any artifact might be se-
lected with the same probability). These assumptions might
be implemented by introducing synchronous and centralized
coordination of the tiny artifacts or completely distributed
mechanism that assumes partial-asynchrony. Indeed, if we
assume that before drawing from the urn the tiny artifacts
wait for a random time with λ−exponential distribution,
then globally, the tiny artifacts are going to be selected uni-
formly without any global synchronization. Notice that the
algorithm steps are composed of the following operations:

1This is a classical Pólya urn [9]



(1) an urn ball-drawing operation, (2) a ball announcement
operation, and (3) an update of the urn by the drawing tiny
artifact and its neighboring urns. Concurrent steps should
interleave carefully; we require that at most one artifact
among any set of neighbors is accessing its urn at a time,
announces its ball drawing, and no neighboring artifact takes
a step before all neighboring artifacts update their urns.

This work presents:
• An analysis of the interacting urns process, allowing us
to demonstrate that the ratio between the numbers of black
and white balls in every urn is converging and that these
ratios, which are obtained locally, provide global information
about the communication graph.
• Applications for large-scale networks of tiny artifacts in-
clude clustering and virtual coordinate computation. We
present preliminary numerical studies that validate our the-
oretical predictions on the emerging global formations.

The implementation for tiny artifacts requires broadcast-
ing balls on shared communication media. The interacting
urn process analysis assumes undisturbed steps, and that all
urns are selected with the same probability. We look into
different system settings and explain how to implement the
interacting urn process. Due to space limits, some parts of
the implementation appear in the Appendix.

1.2 Document structure
We start by analyzing the process (Section 2), before pre-

senting the applications (Section 3), and the implementation
(Section 4). Our conclusions appear last (Section 5).

2. THE INTERACTING URN PROCESSES
There is no unified way of analyzing the dynamic behavior

of the type of systems we consider in this paper. These sys-
tems usually cannot be understood with Markovian formal-
ism. Indeed, the dynamics is Markovian but describing the
process in this way leads to an intractable set of equations.
Relative to these kinds of processes, which are character-
ized by path-dependence and/or (negative) reinforcement,
we can find various ad hoc techniques. Many references are
available from the survey [15].

In the following, we analyze the behavior of our interact-
ing urn process by embedding a multitype branching pro-
cess. This embedding is well known in the case of a single
urn [13]. For example, consider balls of different types corre-
sponding to the color of the ball as well as the urn number it
belongs to. Balls wait independently for a random exponen-
tially distributed random time and then produce new balls
corresponding to its own type and the type of the neighbors
of the urn. This corresponds to adding a ball of the same
color to the current urn and announcing it to the neighbors.
If N is the number of urns composing the network, the state
of the multitype branching process is described by the vector

Z(t) =
(
Z1(t), . . . , ZN (t)

)T
, (1)

with Zi(t) = (bi
t, w

i
t)

T . The type of a ball is then given by in-
dex i referring to the urn number and the color b, w. To sim-
plify the notation, we start by writing down the equations for
the total population belonging to the urns Zi(t) = bi

t + wi
t.

If we consider that the particles are evolving independently,
the lifetime of the particles composing the same urn has to
be inversely proportional to the total number of balls in the
urn in order to ensure that particles split/die at a constant

rate to mimic the interacting urn process in which a partic-
ular urn is selected with uniform distribution. Hence, the
lifetime of particles in urn i is exponentially distributed with
parameter

λi(t) =
λ

bi
t + wi

t

≈ 1

t(deg(i) + 1)
. (2)

Since it is clear that bi
t + wi

t ≈ λ(deg(i) + 1)t as t is large.
With ei ∈ �N the vector with all entries at zero except the
ith, the generating function

F i(t, s) = E
(
s

Z1(t)
1 . . . s

ZN (t)
N | Z(t) = ei

)
, (3)

can be shown to satisfy the forward Kolmogorov equation

d

dt
F i(t, s

)
=

N∑

k=1

λk(t)
(
snk+ek − sk

) ∂

∂sk
F i(t, s

)
, (4)

where the jth entry of the vector nk is 0 or 1 to indicate
that the jth node is a neighbor or not of k. This vector
describes the topology of the communication graph. Equa-
tion (4) can be found in a more general setting in [6], chap-
ter V. The dependence with time of the parameters λk(t),
see (2), expresses the interdependence between the urn pro-
cesses. In our situation, we can use the asymptotic limit
approximation (2). Indeed, if we proceed to an exponential
time change, the time dependence is suppressed. Writing
F i(log(t), s) = F̃ i(t, s) and using the asymptotic limit (2),
we get

d

dt
F i(t, s

)
=

N∑

k=1

1

(deg(i) + 1)

(
snk+ek − sk

) ∂

∂sk
F i(t, s

)
.

(5)
The forward Kolmogorov equation (5) is one of a mul-

titype branching process with constant rate (λk(t) = λk).
From [3, 13] we know that

lim
t→∞

Z(t, ω)e−λ1t = W (ω)u (6)

where Z(t, ω) is the state vector of our interacting urn pro-
cess (1) in which we make explicit the underlying probabil-
ity space by writing the sample point ω; W (ω) is a random
variable and u is the left eigenvector of the matrix A cor-
responding to the largest eigenvalue λ1. Hence, because of
the exponential time change, the solution of (4) is going to
converge like

lim
t→∞

Z(t, ω)

t−λ1
= W (ω)u. (7)

Remark : The use of the asymptotic limit (2) to derive
equation (5), which is known to converge like (6), and then
deduce that the solution to (4) converges to (7) is subject
to caution. However, it is motivated by the fact that the
convergence to (5) of (2) is independent of the initial condi-
tion.2 Actually, the result we obtain in this section can be
formally derived with the techniques introduced in [10].

From (5) we know that given an initial urn content vector
(Z1(0), . . . , ZN (0))T , the expected population is given by

(Z1(0), . . . , ZN (0))M(t) = (Z1(0), . . . , ZN (0))exp(At),

with the matrix A given by

aij =
δij

deg(i) + 1
, i, j = 1, . . . , N. (8)

2Except perhaps of the law of W (ω) that we do not consider.



The convergence rate of the process is determined by the
second largest eigenvalue.

Proposition 1. The eigenvalues λ1 > λ2 ≥ . . . ≥ λn of
the matrix A are given by λ1 = 1 − μi with 0 = μ1 < μ2 ≤
. . . ≤ μn the eigenvalues of the Laplacian of the communi-
cation graph of the network.

Proof. Let Ad be the adjacency matrix of the commu-
nication graph (aij = 1i∼j) and D the diagonal matrix with
dii = deg(i). The matrix A is given by A = (I + D)−1(I +
Ad). Algebraic manipulations show that if x, λ are right
eigenvector and eigenvalue of A, then x, 1−λ are right eigen-
vector and eigenvalue of the Laplacian D − Ad of the com-
munication graph. The result follows since we assume that
the communication graph is connected (then the eigenvalue
0 is simple) and by known properties of the spectrum of the
Laplacian matrix.

This proposition shows that the dominant eigenvalue of
the matrix A is 1 and one can check that the corresponding
left eigenvector is given by (deg(1) + 1, . . . , deg(N) + 1)T .

Proposition 2. Let x be the left eigenvector of A cor-
responding to the eigenvalue 1, then u = (D + I)−1x is
a right generalized eigenvector of (Ad, D), i.e., it satisfies
Adu = Du.

Proof. The proof uses the same decomposition of the
matrix A as in the previous proposition and proceeds by
direct computations using the fact that the matrices D + I
and Ad are symmetric.

Generalized eigenvectors are useful for spectral graph draw-
ing. Actually, as discussed in [11], generalized eigenvectors
corresponding to the generalized eigenvalues smaller than
the dominant one provide coordinates for drawing the graph
in the plane. Numerical evidence supports the fact that such
generalized eigenvectors provide better coordinates than the
eigenvectors of the Laplacian matrix. This proposition will
support our application of the interacting urn process to
clustering.

We now consider what does happen if we distinguish black
and white balls in a same urn. Actually, the analysis previ-
ously presented carries on, the rate of split/die of the parti-
cles living in a given urn of different colors being asymptot-
ically independent since bi

t + wi
t → t(deg(i) + 1)t, see (5).

Theorem 1. The scaled interacting urn process popula-
tions converge to a random vector which is proportional to
the left eigenvector of the matrix A corresponding to the
maximal eigenvalue 1, see (7). The ratio of the black balls
among the total population of a given urn, denoted Xi

t , con-
verges to a mean value

Xi
∞ =

1

deg(i) + 1

N∑

j=1

δijX
j
∞, (9)

which is equivalent to

Xi
∞ =

1

deg(i)

N∑

j=1

1i∼jX
j
∞.

Proof. The equivalence between the two expressions above
follows from simple computation; we point out that the dif-
ference between the two sums is that in the first one we take

into account the term Xi
∞ while we do not in the second.

The populations of black balls in the urn bi
∞ satisfies; see

(7)

bi
∞ =

n∑

j=1

δij

deg(j) + 1
bj
∞.

Moreover, the total populations composing the urns satisfy

bi
∞ + wi

∞
deg(i) + 1

=
bj
∞ + wj

∞
deg(j) + 1

,

because of the asymptotic limit (2). Hence,

Xi
∞ =

bi
∞

bi∞ + wi∞
=

∑

j

δijb
j
∞

(deg(j) + 1)(bi∞ + wi∞)

=
∑

j

δijb
j
∞

(deg(i) + 1)(bj
∞ + wj

∞)
=

1

deg(i) + 1

∑

j

δijX
j
∞.

Broadly speaking, it is hard to get general results on the
convergence rate of the interacting urn process because it is
related to random processes (e.g., processes with reinforce-
ment [15]). The process convergence rate depends on the
value of the second largest eigenvalue of A. The difficulty of
asserting general results is mainly because such results de-
pend on the topology of the interactions, i.e., the matrix A.
However, the case where the topology of the graph of interac-
tions is a complete graph is easy to understand, because the
completeness implies identical urn content and the process
is similar to the classical pólya urn. This can motivate us
to investigate the applications of the interacting urn process
in clustered networks, since nodes that share many links are
apt to develop similar urn content. Another folk result con-
cerning processes similar to the interacting urn process, is
that the time for convergence to the definite value is usually
very large and not numerically observable. However, some
significant values may emerge quickly from the dynamic pro-
cess. Moreover, notice that due to the probabilistic nature
of the interacting urn process, fault tolerances is implied;
there is an inherent recovery after the loss of a ball, say, due
to communication interferences.

3. APPLICATIONS
We now turn to describe two of the many possible ap-

plications of the interacting urn process in networks of tiny
artifacts.

3.1 Cluster formation
Spectral graph drawing considers the entries of the gen-

eralized eigenvector of (Ad, D) corresponding to the second
largest eigenvalue as 1d coordinate of the node as an efficient
heuristic, see [11].3 It is then natural to cluster nodes that
are close in the 1d drawing of the graph. We have shown that
the population vector (b1

t , . . . , b
N
t )/t converges, with the left

eigenvector of the matrix A corresponding to the dominant
eigenvalue 1, see equation 7, and that bi

t+wi
t → t(deg(i)+1).

The ratio Xi
t = bi

t/(bi
t + wi

t) is then converging to the gen-
eralized eigenvector of (Ad, D) corresponding to the domi-
nant eigenvalue 1 by proposition 2, with a rate of conver-
gence depending on the second largest eigenvalue. However,
3By considering successive generalized eigenvectors of
(Ad, D) one can also obtain multidimensional representation
of the graph.



Figure 1: Clusters obtained with the interacting urn pro-
cess. The top depicts the communication graph (n = 300
and r = 0.12). The bottom depicts the clusters with their
assigned numerical values. For each cluster, we choose a rep-
resentative node and connect representative nodes of other
clusters, whenever there are neighboring nodes belonging to
both clusters.

by direct computation, one can check that this generalized
eigenvector is (1, . . . , 1)T , and by considering the difference
Xi

t − Xj
t we get an approximation of the component of the

generalized eigenvalue of (Ad, D) corresponding to the sec-
ond largest eigenvalue, which is related to the distance of

the nodes in the 1d drawing of the graph. The preceding
analysis suggests running the interacting urn process and
clustering neighbor nodes whose difference Xi

t −Xj
t is below

a threshold.
A preliminary numerical study that validates our theoret-

ical prediction is presented in Figure 1. In the experiment,
the schedule of nodes interaction is generated uniformly at
random. The time to stop the process was obtained while
the clustered network stopped evolving visually, after about
20 draws per node; however, the global formation starts to
emerge after 15 draws per node. In Figure 1, we observe
that the algorithm behaves as expected, and a global clus-
ter formation emerges.

3.2 Pseudo Coordinates
In very large-scale networks, it is not possible to register

the location of all nodes manually, or to equip all tiny arti-
facts with GPS units [7]. Nevertheless, position-awareness is
of great importance for many applications, e.g., geo-routing
(see [12]). We assume that merely a few landmark nodes
(so-called anchor) have a registered position by some means,
e.g., a GPS unit. We aim at letting all others nodes derive
a coordinate system through connectivity information. Our
approach is similar to that of Wattenhofer et al. [17], how-
ever, we are interested in using the interacting process as a
heuristic. Consider the following process, in which the land-
mark nodes keep their coordinates unchanged during the
entire process, and other nodes choose an initial position
randomly. Then, repeatedly, the nodes transmit their posi-
tions, collect the coordinates of their neighbors and assign
themselves to the barycentric coordinates. The processes
converge, producing pseudo-coordinates for the nodes.

We wish to emulate a similar process to the one described
above, and let the interacting urn process estimate the mean
of the barycentric neighboring values. Therefore, nodes main-
tain two urns, one for the x-axis and one for the y-axis, each
urn composed of black and white balls. The position (x, y)
of a landmark node corresponds to the color ratio of balls
to be sent to their neighbors, i.e., the urn with a constant
number of x white balls and y black balls. Other nodes start
with one black ball and one white ball in their urn. We let
the interacting urn process run before using the content of
both urns for producing the coordinates by taking the in-
teger part of a factor of the color ratio in every urn. We
identify nodes with the same integer coordinates as belong-
ing to the same cluster, because of their similarity to the
clustering application above.

The obtained coordinates are useful for geo-routing, as
clearly presented in Figure 2. Similar to the clustering ap-
plication, the time to stop the process was obtained while
the pseudo-coordinate stopped evolving visually, after about
20 draws per node; however, the global formation starts to
emerge after 15 drawings per node. Lastly, we note that
the virtual coordinates (see [12]) are mainly consistent with
the real positions. However, this is not expected in our ex-
periment because the topology of the communication graph
plays an important role in obtaining the virtual coordinates,
whereas our aim is for any coordinates that merely facilitate
geo-routing.

4. THE IMPLEMENTATION
Our analysis of interacting urn processes assumes that

time is continuous. However, in practice, clock mechanisms



Figure 2: Pseudo-coordinates obtained with two interacting
urn processes. On the top we see the communication graph
(n = 300 and r = 0.12) with 8 landmark nodes at (0.0, 0.0),
(0.0, 1.0), (0.5, 0.0), (0.5, 0.5), (0.5, 1.0), (1.0, 0.0), (1.0, 0.5),
(1.0, 1.0).The bottom depicts the clusters with their pseudo-
coordinates. The numbers are the colors’ ratio multiplied by
100. See Figure 1 for the clusters’ description.

are discrete. Fortunately, when considering a stochastic pro-
cess evolving in continuous time, it is always possible to
conduct a discrete process by considering merely the pro-
duced successive events and ignore any reference to contin-
uous time. The transformation from continuous to discrete

Types
2 colors: { balck, white }

4 Variables
urn: multiset of colors, initiialy 〈balck, white〉

6

External functions
8 fetch() / deliver() / transfer(): data link layer interface

get lock() / release lock(): lock interface
10 set-timer() / timer expiried(): timmer interface

select(): a uniform selection
12

Macro
14 time2wait(): choose time to wait using λ−exponential distribution

16 Upon deliver(〈ball〉)
urn ← urn ∪ { ball }

18

Upon timer expiried()
20 let fail = get lock()

if not fail then
22 let ball = select(urn)

transfer(m)(〈 ball 〉)
24 urn ← urn ∪ { ball }

release lock()
26 set-timer(time2wait())

28 Constants

D = upper bound on neighboring nodes′ number

Figure 3: The interacting urn algorithm.

stochastic model is known as discrete skeleton (see [5]).
Another assumption that we make in our analysis is about

the instant algorithm’s step (i.e., it takes no time to draw
a ball, announce it, and let the drawing tiny artifact and
the neighboring tiny artifacts update their urns). In real
distributed systems, this assumption does not hold and the
concurrent algorithm’s steps can be non-serializable. There-
fore, we require that at any time, there is at most one tiny
artifact that takes the algorithm’s step.

We present the pseudocode for a possible implementa-
tion in Figure 3. The code makes use of λ−exponential
distributed when waiting a random timeout period as well
as a distributed locking mechanism for assuring the above
requirement. Chockler et al. [4] explain how to implement
a mechanism that enables implementation of a distributed
locking mechanism in synchronous settings with different
kinds of collision detectors. Due to the space limits of this
paper, we present in the Appendix a self-stabilizing mech-
anism for implementing a distributed locking mechanism in
partially synchronous system settings using perfect and im-
perfect collision detectors. We believe that it might be pos-
sible to extend the work of Panconesi et al. [14] to allow
a lightweight mechanism for repeated test-and-set in asyn-
chronous settings.

5. DISCUSSION

5.1 Related work
Urn processes (and more generally processes with rein-

forcements) is a tool for modeling stochastic processes that
show emerging structures. Their aim is to analyze the global
structure of a given population given the micro-mechanisms
the particular entities are applying. The global structure
reflects the ability of the entities to self-organize. Such mod-
els can explain the preferential-attachment model in small-
world networks, the process of market sharing, interaction



of biological entities, etc., based on given micro mechanisms.
We refer to [15] and references therein for reinforcement pro-
cesses, for models based on urn models see [8], and for the
emergence of structure we refer to [2].

Tishby and Slonim [16] use random processes for network
clustering. The authors use a Markov process and the clus-
ters are built by considering the decay of mutual informa-
tion. The information changes with time and during an
appropriate period, the mutual information is relevant for
clustering. After this period, the mixing property of the
Markov process destroys the emerged structure. The ran-
dom processes we suggest converge so slowly that the mixing
property is useful for tolerating various faults. Nevertheless,
the process obtains the significant values rapidly.

Angluin et al. [1] define urn automata that include a state
controller, and an urn containing balls with a finite set of
colors. Tiny artifacts can implement the urn automata with
provable guarantees regarding their computational power
and, by that, allowing the exact analyses of the interaction
process among artifacts. This work aims at understand-
ing the possibilities of the urn automata to emerging global
formations using miniature algorithms and diminutive re-
sources.

5.2 Conclusions
We are interested in simplifying the design of tiny arti-

facts, and bridging the gap between these future networks
and existing ones. Existing implementations, say, for sensor
networks, often use protocols that assume traditional sys-
tem settings that require resources that tiny artifacts do not
have. Alternatively, when the designers do not assume tradi-
tional system settings, they turn to improving performance
and reducing resource consumption by using probabilistic
algorithms. However, designers that do not consider imple-
mentation explicitly do not specify the exact computational
power required for each node. In some cases, the implemen-
tation requires storing non-trivial quantities of data.

This paper shows the existence of an infrastructure for
tiny artifacts that requires merely O(log D) of space, trans-
mits 1-bit at a time, and still rapidly facilitates reasonable
clustering with efficient geo-routing.

5.3 Acknowledgments
This work would not have been possible without the con-

tribution of Paul G. Spirakis in many helpful discussions,
ideas, and analysis. Many thanks to Edna Oxman for im-
proving the presentation.

6. REFERENCES
[1] Dana Angluin, James Aspnes, Zoë Diamadi,
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