
Modelling Adaptive Services for Distributed Systems

Liliana Rosa
IST/INESC-ID

lrosa@gsd.inesc-id.pt

Antónia Lopes
University of Lisbon

mal@di.fc.ul.pt

Luís Rodrigues
IST/INESC-ID
ler@ist.utl.pt

ABSTRACT
There exists a growing class of distributed applications that
require adaptive middleware services, i.e., services that are
able to monitor changes in the execution environment and in
the user requirements, reacting to these changes by adapting
their behaviour. This paper proposes modelling primitives
that allow to describe the adaptation logic of distributed
applications that use recon�gurable service compositions.

Categories and Subject Descriptors
D.2.m [Software Engineering]: Miscellaneous

General Terms
Adaptive systems, context-awareness, distributed systems,
service composition

1. INTRODUCTION
Today, more and more distributed systems are required to

have the ability to operate in highly dynamic environments.
Such systems must cope with aspects such as resource vari-
ability, changes in the user requirements, faults and intru-
sions, etc, by dynamically self-adapting their behaviour.
Unfortunately, building adaptive distributed applications,

that monitor changes in their operational context and are
able react to those changes, is an inherently complex task.
Our work aims at reducing this complexity for distributed
systems whose adaptiveness can be achieved through the
use of adaptive middleware services. To achieve this, we de-
veloped an architecture to support the construction of such
systems. The architecture comprises general-purpose and
application-speci�c components. General-purpose compo-
nents are responsible for tasks such as the management and
dissemination of contextual information as well as the adap-
tation management, and can be used in the construction of
di�erent adaptive applications. They interact with applica-
tion-speci�c components that encode the application's adap-
tation logic and address issues such as which contextual in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08 March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

formation needs to be monitored and how, when adaptation
must take place, and what kind of adaptation must be per-
formed.
In this paper, our focus is on the modelling of application

adaptability. We present modelling primitives that allow
to describe the adaptation logic of adaptive distributed ap-
plications. The role of these primitives is twofold. First,
they provide means for expressing adaptation explicitly, at
a high-level of abstraction, separated from the description
of the individual middleware services in use. This facilitates
the conception and validation of a design solution, and the
comparison between di�erent design alternatives. Second,
they support the de�nition of models that can be used as the
basis for automatically obtain part of the implementation of
the architecture's application-speci�c components. This fa-
cilitates signi�cantly the construction of adaptive systems
as it contributes to the reduction of the development e�ort
and eases system's modi�cation and evolution.
The modelling approach that we developed considers that

the core part of an application uses a set of channels, each
o�ering a given quality of service (QoS). Each channel is
realized through a composition of middleware services that
can be dynamically recon�gured whenever the current com-
position is not accomplishing what it is intended to do, or
better functionality is possible. Support for describing dif-
ferent aspects of the adaptation logic, such as the user's
preferences, the properties of the individual services, and
the relevant context information, is provided by �ve com-
plementary elements: service, channel, sensor, context, and
application models. Additionally, the adaptation logic mod-
elling includes a high-level policy de�ning when and how the
service compositions in place should be recon�gured.
In previous work, we have developed a service composition

framework that supports the implementation and execution
of such recon�gurable service compositions [16] and a con-
cretization of the architecture generic components [15]. This
infrastructure was used on the construction of prototypes of
some case studies and we applied our modelling approach
to these examples. In this paper, for illustration purpose,
we use a simpli�ed version of a middleware application for
database replication.
This paper is organized as follows. Section 2 gives an ap-

proach overview, focusing the architecture and the example
used for illustration purposes thorough the paper. Section 3
describes the modelling approach that was developed, intro-
ducing the di�erent kinds of models that are used. Section 4
contains a discussion of the models described in the previous
section. Section 5 addresses the related work and, �nally,

C
ontextSensor

C
ontextSensor

Node Node

Adaptation
Manager

AD

R
econfiguration

A
gent

R
econfiguration

A
gent

Application Application
Context
Monitor

CI

SI

SS SS

Figure 1: System architecture

Section 6 concludes this paper.

2. APPROACH OVERVIEW
Our approach addresses the construction of adaptive dis-

tributed systems whose adaptation logic can be separated
from the core application logic, and achieved through the
use of adaptive middleware services [11]. As argued in [9],
when an application needs to adapt it is usually not because
the core problem domain of the application has changed but
rather a non-functional requirement or behaviour of some
service within the application, such as the network commu-
nication protocol, needs to change.
An application is considered to be structured in terms of

a core application layer (or just application, for short) that
uses a �xed set of channels. Each channel is realized through
a recon�gurable composition of domain-speci�c and general-
purpose middleware services, as depicted in Figure 2. Adap-
tation may happen in reaction to changes in the user's re-
quirements, which are assumed to be collected by the core
application layer, or to changes in the system's operational
envelope.

2.1 Architecture
To support the construction of such adaptive systems,

we have developed the architecture sketched in Figure 1,
where we have represented the general-purpose components
by grey boxes.
In this architecture, the system has two types of com-

ponents involved in the adaptation management | local
Recon�guration Agents and a central Adaptation Manager.
Adaptation is controlled by the Adaptation Manager, en-
forcing the adaptation decisions communicated by an ap-
plication speci�c component (AD). The adaptation man-
ager is also responsible for guiding the nodes during the
adaptation process, either preparing them for recon�gura-
tion, coordinating them, or ordering speci�c recon�gura-
tions. At each node, the Recon�guration Agent is respon-
sible for performing the necessary recon�gurations of the lo-
cal service compositions, as ordered by the manager. These
recon�gurations can be achieved through the addition, re-
moval, and exchange of services, as well as the �ne-tuning
of service parameters. Additionally, the architecture has
two types of components involved in the gathering, manage-
ment, and dissemination of contextual information | local
Context Sensors and a central Context Monitor. Context
information comprises all relevant information whose evo-
lution can trigger adaptation. This information can have
di�erent sources [2], such as user's preferences or devices

characteristics, and is captured by the local sensors. All
captured information is concentrated in the context moni-
tor. The Context Monitor keeps all information and makes
it available to an application-speci�c component (CI) that
interprets this information and is able to detect the relevant
changes. These changes need to be communicated to the
adaptation manager. The context monitor is also responsi-
ble for informing the generic sensor of each node about the
context information that it has to gather locally. It is an
application-speci�c component (SI) that de�nes which con-
text information should be collected by the generic Context
Sensor in each node and sent to the context monitor. The
generic context sensor may obtain this information from the
local service compositions and also from application-speci�c
sensors (SS) locally deployed. The need for such speci�c
sensors depends on the situation. For example, keeping in-
formation on the error rates of di�erent services, can be
achieved simply through the use of a generic sensor that
collects information from all the target services, through a
request/reply approach. On the other hand, to keep infor-
mation on the available bandwidth at speci�c intervals or
CPU usage, we would need to deploy speci�c sensors.

2.2 Example
For illustration purpose, we shall use a middleware solu-

tion for database replication based in the results of theGOR-
DA project [4]. The system is composed by a set of database
servers. The database is fully replicated, i.e., a replica of
the entire database exists at each server. At each server, an
application service is in charge of serving multiple remote
clients; it includes an interface with remote clients through
which SQL queries are routed. Additionally, the applica-
tion service also includes the interface with a management
console which can be used, for instance, to activate auditing
services and other management operations.
The application service uses a JDBC [13] interface to per-

form queries to the database in the Data channel. The
queries are processed by a replication service that executes
locally the transaction and, at commit time, communicates
with the remaining replicas to ensure serializability. For
that purpose, the replication uses a group communication
service implementing totally ordered atomic broadcast [12].
A description of the database consistency algorithm is out-
side the scope of this paper (the interested reader may refer
to [4]). The service composition of the Data channel may
include an optional auditing service, that can be present
at each node for performance monitoring and management.
This service role is to keep track of information regarding
the queries processed at the local server.
The application uses another channel| Control channel,

for administrative purposes, for instance, to temporarily
shutdown a replica for maintenance. The channel composi-
tion includes a management service that, among other tasks,
executes the reintegration procedure when a replica recov-
ers from a crash. The service composition is illustrated in
Figure 2.
Two di�erent total order services are available to be used

in the service composition, namely a sequencer based total
order service and a rotating-token based total order service.
The �rst service o�ers better performance in systems with
unbalanced load, when most queries are performed by a sin-
gle node. The second service performs best in highly loaded,
well balanced systems given that it reduces the contention

O.S.

Auditing

Replication

Total Order

DB Replic. Application

Data Control

Management

Figure 2: A possible con�guration of the database

replication application

in low-level resources [12].
The adaptable behaviour of the application results from

the recon�guration of the service composition associated to
the channels used by the application. More concretely, its
adaptation logic includes rules de�ning that (i) the Auditing
service is added or removed from the service composition ac-
cording to the user preferences and (ii) the sequencer based
total order service may be replaced by the rotating-token
based total order service (and vice-versa) depending on the
observed load pattern. The next section is concerned with
the modelling of this kind of adaptive systems.

3. MODELLING ADAPTATION LOGIC
In our approach, the adaptable behaviour of a system re-

sults from the dynamic recon�guration of the service com-
position associated to the channels used by the core layer.
To support the de�nition of the runtime adaptation of these
service compositions at a high-level of abstraction, we have
developed primitives for the speci�cation of high-level adap-
tation policies. These policies allow to specify when and how
the service composition associated with each channel has to
be recon�gured in terms of a logical view of channels, ser-
vices, and service compositions. The choice of these policies
was driven by the adaptation requirements of previous sys-
tems built using the protocol composition framework [16],
as described in [14].
As shown in Figure 3, the speci�cation of an adaptation

policy uses elements described in other models: the ser-
vice model, that provides a logical description of the ser-
vices that are available and can be used in service composi-
tions; the channel model, that provides a logical description
of the channels whose service compositions can be adapted;
the context model, that describes the context information re-
quired to de�ne the situations in which adaptation is needed.
Additionally, modelling the adaptation logic of an applica-
tion also involves the de�nition of an application model and
a sensor model, as explained in the next sections.

uses
uses uses

Application
Model

uses

Service
Model

Channel
Model

Context
Model

Sensor
Model

Adaptation
Policy

uses

Figure 3: Models for describing adaptation

3.1 Service Model
A service model describes the services that are available

for composition in terms of a type hierarchy, re
ecting the
functionality provided by those services. As usual, this no-
tion of sub-typing subsumes the is a relationship. Moreover,
all the super-type characteristics also apply to the elements
of the subtype. Service types can be concrete, designating a
speci�c service for which an implementation is available, or
abstract, representing simply the characteristics of a group
of other service types. Naturally, the service type hierarchy
can have multiple levels. Figure 4 depicts part of the ser-
vice type hierarchy for the database replication application.
In this model, TokenTOService and SequencerTOService are
concrete services, sub-types of the abstract type TotalOrder-
Service.
The service type hierarchy supports the speci�cation of

adaptation policies in an abstract and
exible way. For in-
stance, it is possible to specify a rule that applies to any
service of a given abstract type, without concerns regarding
the concrete service used in the composition at a particular
moment in time. This is particularly important because the
concrete service may change as a result of a recon�guration.
When an application uses multiple service compositions si-
multaneously, the type architecture also allows to specify re-
con�guration rules that apply to all services of a given type,
without requiring a speci�c enumeration of these services.
In addition to the type hierarchy, the service model also

describes the con�guration parameters of each service type
and the context information that it provides. It is consid-
ered that a service can provide context information in two
manners. One consists in maintaining context information
in its local state that can be queried, for instance, the aver-
age message load at each node. Another consists in having
the service raising an alarm event when some exception con-
dition occurs, for instance, when a replica failure is detected.
The full description of services in the service model has the
following structure:

f abs t rac t g s e r v i c e s e r v i c eTyp e i s
subtypeOf [s e r v i c eTyp e]�
parameters [p a r ame t e rS i gna tu r e]�
que r i e s [q u e r yS i g n a t u r e]�
t raps [trapName [a t t r i bu teName ; type] �] �

For instance, the Total Order is an abstract service that
could be described as follows:

abs t rac t s e r v i c e To t a lO r d e r S e r v i c e i s
subtypeOf S e r v i c e
parameters f a i l u r eD e t e c t i o nT imeou t : long ,

r e t r a n sm i s s i o nT imeou t : l ong
t raps noConnect ion

s e r v i c e R e p l i c a t i o n S e r v i c e i s
subtypeOf S e r v i c e
que r i e s s e r v i c e L o ad : i n t

This service model fragment describes that the TotalOrder
abstract service has two con�gurable parameters { failure-
DetectionTimeout and retransmissionTimeout, and throws
the noConnection trap when connectivity is lost. From this
incurs that both SequencerTO and TokenTO services will
also have these parameters and trap. In our example, the
service model also describes that the Replication service of-
fers a possible query to the sensed information serviceLoad,
given in terms of the number of SQL queries processed in a
�xed time interval.

Channel

DataChannel

Service

TotalOrderService

TokenTOService SequencerTOService ManagementService

AuditingService
ControlChannel

Figure 4: Service and channel hierarchies for the database replication application

3.2 Channel Model
As discussed in Section 2, in our approach, the connection

between the application and service layers relies uniquely on
the notion of channel. At runtime, a channel is associated
with a stack of service instances that process the information
sent by the application, and produce and deliver information
to the application. Typically, as illustrated in Figure 2, at
the bottom of the stack, there is an interface to the operating
system level services. For instance, a stack of services may
send and receive messages using a socket interface, or save
data in the persistent store using the �le system interface.
As illustrated by our example, an application may use

multiple channels simultaneously, each one for a di�erent
purpose, i.e., a di�erent QoS. In order to support the spec-
i�cation of the recon�guration actions scope, in a
exible
manner, channels are described in a channel model also in
terms of a hierarchy of types de�ning a subtype relation-
ship. To some extend, the channel types in this hierarchy
re
ect the types of QoS that are expected from the channel
instances.
Figure 4 depicts the hierarchy de�ned by the channel

model developed for the example. The possibility of de�n-
ing QoS at di�erent levels of abstraction, allows to describe
adaptation policies that are reusable across di�erent sys-
tems. Naturally, the importance of this model becomes more
clear with examples that have richer hierarchies.

3.3 Application Model
The application model is quite simple and mainly describes

the concrete channels that are used by the application and
their type. If the application captures user-de�ned prefer-
ences and these preferences need to be passed to the service
layer, the application model also de�nes how this context
information is provided and where. Changes in the rele-
vant user-de�ned preferences are modelled as context traps,
raised by the application, and sent through the channels
where they are relevant. The description of an application
in the application model has the following structure:

use channel channelName : channe lType
t raps [trapname [a t t r i bu teName : type] �] �

Our database replication application, which uses two dif-
ferent channels, is described by the application model pre-
sented below. The channel Data is of type DataChannel
and the channel Control of type ControlChannel. The ac-
tivation/deactivation of the auditing service is triggered by
the user's preferences that are passed to the service layer by
the traps auditingOn and auditingO� in the channel Data.
This is described as follows:

use channel Data : DataChannel
t raps
aud i t i ngOn
a u d i t i n gO f f

use channel Con t r o l : Con t ro lChanne l

3.4 Sensor and Context Model
Another important element of the adaptation logic is the

context de�nition, i.e., the surrounding environment charac-
teristics, determinant to the system behaviour. These char-
acteristics need to be sensed and, to be used as context
information, the captured data has to be abstracted. The
role of the sensor and context models is, precisely, to de�ne
these two aspects.
In our approach, the description of context information

relies on two types of mechanisms: observables and events.
Observables model the context information part that is kept
in the context monitor state, while events are indications
of asynchronous changes in the context. Events can carry
extra information, as the identity of the node that raised the
event.
Sensor Model. This model consists of a set of observables
and events, modelling context information that needs to be
provided to the context monitor by appropriated sensors.
This context information is often obtained from the services
in compositions, through queries and traps. Observables
and events are described as follows:

observab le r e tu rnType accessName ([paramete r
] �)

[p e r i o d i c a l l y : number]�
event eventName

[a t t r i bu teName : r e tu rnType]�

Observables have a return value and may also have one
or more parameters. The observable de�nition may indicate
that periodical capture is required, with a certain sampling
time (for instance, through the query of a sensor that has
that information). Events may have attributes, carrying
di�erent types of information. In the database replication
example, the sensor model declares events representing the
change in the user's preferences regarding the auditing ser-
vice and de�nes an observable representing the service load.
Recall that this information is declared to be sensed by the
Replication service, in a periodic manner. Hence, if we en-
sure that this service is always present in the service com-
position, we can be sure that the solution does not require
any speci�c sensor for sensing this information.

observab le i n t s e r v i c e L o a d (node Id)
p e r i o d i c a l l y : TIME

Context Model. This model consists of a set of observ-
ables and events modelling context information that is pro-
vided by the context monitor to the adaptation manager and
that can be used in the de�nition of the adaptation policy.
Typically, this kind of information is obtained by interpret-
ing, combining, and/or constraining information obtained
from di�erent sources. This information is produced from

the sensed context information through a number of com-
putations. It can be described as follows:

observab le r e tu rnType accessName ([paramete r
] �)

[p e r i o d i c a l l y : number]�
exp r e s s i onOfRe tu rnType

event eventName
[a t t r i bu teName : type]�
[when [c o n d i t i o n]
with [a t t r i bu teName=exp re s s i onOfType] �] �

The de�nition of an observable includes an expression de-
scribing how its value is calculated from other observables
and/or events, namely, those de�ned in the sensor model.
An event de�nition includes at least one pair of when and
with clauses. The when clause allows to express what is
the condition, expressed in terms of other events or changes
in other observables, that once evaluated to true, triggers
the event publishing. Through the with clause it is possi-
ble to express the values of each event's attribute. These
values can, for instance, be inherited from other events or
calculated using observables. Below, we present a fragment
of the context model of our running example declaring two
observables and three events.

observab le i n t AverageLoad ()
p e r i o d i c a l l y : TIME

(SUM i : Nodes () s e r v i c e L o ad (i)) /
Nodes () . l e n g t h ()

observab le i n t NumbOverloadedNodes ()
p e r i o d i c a l l y : 2xTIME
COUNT i : Nodes () j s e r v i c e L o ad (i)>

(AverageLoad ()+LIMIT)

event S ing l eNodeOve r l oaded
i d : node Id
when NumbOverloadedNodes ()==1
with i d=i : Nodes () j s e r v i c e L o ad (i)>

(AverageLoad ()+LIMIT)

event NoSing leNodeOver loaded
when NumbOverloadedNodes () !=1

event Aud i t i ngP r e f e r enc eChange
i d : nodeId , withAud : boo l
when aud i t i ngOn with i d=aud i t i n gOn . i d

withAud=t r u e
when a u d i t i n gO f f with i d=a u d i t i n gO f f . i d

withAud=f a l s e

The logical architecture of the service compositions asso-
ciated with channels is an important information that, in
most of the applications, needs to be taken into account
while specifying adaptation. For this reason, this informa-
tion is considered to be part of any system context infor-
mation and, hence, is provided by the infrastructure. In
this way, in addition to application-speci�c sensed events
and observables, every context model includes some built-
in observables capturing the logical structure of the current
service compositions. For instance, it includes observable
bool hasService(ServiceType,ChannelType,nodeId), that al-
lows to know if a certain service type is present in the service
composition of a channel type in a given node. Every ser-
vice composition is associated to a speci�c node. The list of

nodes with service compositions is also a built-in observable,
accessed as Nodes().

3.5 Adaptation Policy
An adaptation policy de�nes when adaptation should be

performed, how the application should be adapted, and what
to adapt, i.e., which are the adaptation targets [5]. This de-
scription can be achieved by a set of rules, described us-
ing a policy speci�cation language [14]. Each rule follows
an event-condition-action (ECA) [10] style, specifying the
events that trigger the rule, the conditions that must ap-
ply to activate the rule, and the recon�guration actions to
be applied. All the elements needed to specify these rules
are de�ned by the previous models.
More concretely, in each rule, the conditions that trigger

the adaptation are expressed in terms of context information
produced by the context monitor. The elements de�ned in
the context model are used to refer context changes. The
adaptation to be carried out, when the rule is triggered, is
expressed in terms of a number of actions that can be per-
formed on the current service compositions. The recon�gu-
ration actions available are: tuning parameters that change
the behaviour of a service and add, remove, or replace an
ordered set of services by another one. Finally, the adapta-
tion target expresses which nodes, services, and channels of
the distributed application should be a�ected by the recon-
�guration actions, in what is called action scope. This scope
is speci�ed in terms of the target elements de�ned in service
and channel models.
An adaptation policy is a set of rules that de�ne all cir-

cumstances that require adaptation and the corrective ac-
tion to be taken. Each rule has the following general syntax:

When t r i g g e r C o n d i t i o n
[With s t a t eC o n d i t i o n]
Do f r e c o n f i g u r a t i o nA c t i o n

[Where nodeScope]
[For s e r v i c e S c o p e]
[Apply compos i t i onScope]g+

The triggerCondition is a context model de�ned event and
speci�es when the rule is triggered. The stateCondition is a
function of one or more context model de�ned observables
that specify the conditions that need to be satis�ed so that
the rule can be applied. Each recon�gurationAction has a
scope composed of a node scope (de�ning the target nodes),
a service scope (determining the target services using the
types de�ned in the service model), and a channel scope
(describing the target channels using the hierarchy on the
channel model). The scopes are optional and, by default,
an action is considered to target all nodes/services/compo-
sitions. In the database replication example, the adaptation
policy includes the following rules:

When S ing l eNodeOve r l oaded
With ! h a s S e r v i c e (SequencerTOServ ice ,

DataChannel , S i n g l eNodeOve r l o ad ed . i d)
Do c h ang eS e r v i c e s ([SequencerTOServ ice])

For To t a lO r d e r S e r v i c e

When S ing l eNodeOve r l oaded
With ! i s S e qu en c e r (S i n g l eNodeOve r l o ad ed . i d)
Do s e tPa ramete r (s e tSequence r ,

S i n g l eNodeOve r l o ad ed . i d)
For SequencerTOServ ice

When Aud i t i ngP r e f e r enc eChange &&
Aud i t i ngPr e f e r enceChange .w i thAud

With ! h a s S e r v i c e (Aud i t i n gS e r v i c e ,
DataChannel ,
Aud i t i n gP r e f e r e n c eChang e . i d)

Do addS e r v i c e s ([A u d i t i n g S e r v i c e] , above)
Where Aud i t i n gP r e f e r e n c eChang e . i d
For R e p l i c a t i o n S e r v i c e
Apply DataChannel

The �rst rule states that, when a SingleNodeOverloaded
event occurs, if the TotalOrderService is in place, it must be
exchanged by a SequencerTotalOrder. Moreover, the new
service parameter setSequencer has to be set to the node
id with highest load, carried by the trigger. The second
rule states that, when a trigger AuditingPreferenceChange
event occurs, if the node has not the Auditing service already
active, then it has to be added to the Data channel, above
the service of type Replication in place in the composition.
For more details on the policy speci�cation language, please
refer to [14].

4. DISCUSSION
In this paper, we addressed the modelling of adaptive mid-

dleware services for distributed systems. Having adopted an
infrastructured-centred view of adaptive systems construc-
tion, we focused on the de�nition of modelling primitives
that allow developers to represent the adaptation logic of
an adaptive distributed system at a high-level abstraction.
As shown, the adoption of appropriate abstractions of the

involved elements, permits the formulation of general rules
for adaptation at the structural and behavioural level of ser-
vice compositions. Furthermore, these rules are amenable to
di�erent kinds of analysis useful in the validation of design
solutions. For instance, the analysis of dependencies be-
tween di�erent aspects of the adaptation may lead to the
detection of con
icts that invalidate a solution. Similarly,
the analysis of the set of reachable service compositions may
lead to the detection of situations in which context informa-
tion that is supposed to be collected from a service compo-
sition is not provided by any of its elements (for instance,
because it is possible to reach a state in which the single
service that may provide that information is absent).
Adaptation models are abstract representations, for which

concrete implementations have to be developed. The fact
that the proposed models are tailored to a speci�c architec-
ture makes them particularly useful during the construction
of implementations. They help developers to build imple-
mentations that are consistent with what was designed, in
two di�erent ways. On the one hand, the channel, service,
and application models explicitly state what is expected
from each channel (QoS), from each service (con�gurable
parameters and sensed information) and from the applica-
tion layer (channels that are used and user requirements
that need to be delivered to the service layer). On the other
hand, the context and sensor models and the adaptation
policy can be used as the basis for automatically generating
some of the infrastructure-speci�c code that realizes the de-
scribed adaptation logic (components CI and AD of Figure
1).
Techniques for supporting this model-driven process are

currently being investigated and, hence, our experience us-
ing these models in the development of case studies is limited
to the �rst aspect. We applied our modelling approach to

some case studies for which prototype implementations us-
ing RAppia [16] were developed and we found it signi�cantly
helped to understand the problem, conceive and validate so-
lutions and, subsequently, it contributed to the reduction of
system's development and implementation time.

5. RELATED WORK
There is a large amount of work devoted to the develop-

ment of frameworks and middleware infrastructures to fa-
cilitate the implementation of adaptive systems [9, 7, 18, 6,
3, 5]. There are architecture-based adaptation frameworks
such as Rainbow [7], whose main goal is to be general pur-
pose, applicable to a wide variety of systems with di�erent
architecture styles. Rainbow incorporates mechanisms to
monitor and adapt systems to surrounding changes, mainly
aims at providing a reusable infrastructure, with specializa-
tion mechanisms to �ll in any particular needs. Being an
approach that aims at a broaden applicability, the set of
tailorable parts that need to be customized or even devel-
oped from scratch still requires some e�ort. In contrast, our
approach relies on a more tight architecture, with a strong
structure, but demanding less e�ort to address speci�c ap-
plication's needs in a way that is consistent with what was
designed and previously validated.
In the context of composition frameworks, support for

adaptation has already been addressed, namely in Ensem-
ble [17] and Cactus [3]. However, they focus more on the
mechanisms to support protocol composition and recon�gu-
ration, than on the models that allow to capture the adap-
tive properties of the protocols with high-level abstractions.
In most of the existing approaches, modelling of the adap-

tation logic is not addressed; it is simply programmed, even
with high-level models describing the components' informa-
tion and interconnection [1]. As far as modelling techniques
for adaptive systems are concerned, the approach presented
in [8] is the most closed related to ours. In this approach, ap-
plication adaptability can be addressed at high levels of ab-
straction through infrastructure-independent models, which
can be transformed into code for a speci�c infrastructure us-
ing appropriated tools. Because the approach is component-
based, the proposed abstractions for modelling application
adaptability are not suitable for expressing the adaptation
logic of systems with the structure of those that our ap-
proach targets.

6. CONCLUSIONS
This paper addresses the modelling of adaptive middle-

ware services for distributed systems. We propose mod-
elling primitives that aim at reducing the complexity and
e�ort required for developing adaptive distributed systems.
These primitives have several advantages: i) they allow to
describe the application-speci�c adaptation logic using high-
level constructs; ii) they provide the basis to perform the au-
tomatic generation of the application-speci�c components;
and iii) they allow to facilitate the evaluation and valida-
tion of design solutions. We have illustrated the expressive-
ness of our primitives in the context of building an adaptive
middleware solution for database replication.

7. ACKNOWLEDGMENTS
This work was partially funded by FCT project MICAS

(POSI/EIA/60692/2004) through POSI and FEDER.

8. REFERENCES
[1] T. Batista and N. Rodriguez. Dynamic recon�guration

of component-based applications. In PDSE '00:
Proceedings of the International Symposium on
Software Engineering for Parallel and Distributed
Systems, pages 32{40, Washington, DC, USA, 2000.
IEEE Computer Society.

[2] G. Chen and D. Kotz. A survey of context-aware
mobile computing research. Technical report,
Dartmouth College, Hanover, NH, USA, 2000.

[3] W.-K. Chen, M. A. Hiltunen, and R. D. Schlichting.
Constructing adaptive software in distributed systems.
In ICDCS '01: Proceedings of the The 21st
International Conference on Distributed Computing
Systems, pages 635{643, Washington, DC, USA, 2001.
IEEE Computer Society.

[4] A. Correia Jr., J. Pereira, L. Rodrigues, N. Carvalho,
R. Vila�ca, R. Oliveira, and S. Guedes. Gorda: An
open architecture for database replication. In NCA
'07: Proceedings of the 6th IEEE International
Symposium on Network Computing and Applications,
Los Alamitos, CA, USA, July 2007. IEEE Computer
Society.

[5] F. J. da Silva e Silva, F. Kon, J. Yoder, and
R. Johnson. A pattern language for adaptive
distributed systems. In SugarLoafPLoP'2005:
Proceedings of the 5th Latin American Conference on
Pattern Languages of Programming, pages 19{48,
2005.

[6] P.-C. David and T. Ledoux. An infrastructure for
adaptable middleware. In On the Move to Meaningful
Internet Systems, 2002 - DOA/CoopIS/ODBASE
2002 Confederated International Conferences DOA,
CoopIS and ODBASE 2002, pages 773{790, London,
UK, 2002. Springer-Verlag.

[7] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl,
and P. Steenkiste. Rainbow: Architecture-based
self-adaptation with reusable infrastructure.
Computer, 37(10):46{54, 2004.

[8] K. Geihs, M. U. Khan, R. Reichle, A. Solberg,
S. Hallsteinsen, and S. Merral. Modeling of
component-based adaptive distributed applications. In
SAC '06: Proceedings of the 2006 ACM symposium on
Applied computing, pages 718{722, New York, NY,
USA, 2006. ACM Press.

[9] J. Keeney and V. Cahill. Chisel: A policy-driven,
context-aware, dynamic adaptation framework. In
POLICY '03: Proceedings of the 4th IEEE
International Workshop on Policies for Distributed
Systems and Networks, pages 3{14, Washington, DC,
USA, 2003. IEEE Computer Society.

[10] D. McCarthy and U. Dayal. The architecture of an
active database management system. In SIGMOD '89:
Proceedings of the 1989 ACM SIGMOD international
conference on Management of data, pages 215{224,
New York, NY, USA, 1989. ACM Press.

[11] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and
B. H. C. Cheng. A taxonomy of compositional
adaptation. Technical Report MSU-CSE-04-17,
Department of Computer Science, Michigan State
University, East Lansing, Michigan, May 2004.

[12] J. Mocito and L. Rodrigues. Run-time switching

between total order algorithms. In Euro-Par '06:
Proceedings of the European Conference in Parallel
Computing, LNCS, pages 582{591, London, UK, Aug.
2006. Springer-Verlag.

[13] G. Reese. Database programming with JDBC and
JAVA. O'Reilly & Associates, Inc., Sebastopol, CA,
USA, 1997.

[14] L. Rosa, A. Lopes, and L. Rodrigues. Policy-driven
adaptation of protocol stacks. In ICAS '06:
Proceedings of the International Conference on
Autonomic and Autonomous Systems, pages 5{12,
Washington, DC, USA, 2006. IEEE Computer Society.

[15] L. Rosa, A. Lopes, and L. Rodrigues. A framework to
support multiple recon�guration strategies. In
Autonomics'07: Proceedings of the International
Conference on Autonomic Computing and
Communication Systems, page to appear, Washington,
DC, USA, 2007. IEEE Computer Society.

[16] L. Rosa, L. Rodrigues, and A. Lopes. Appia to
R-Appia: Refactoring a protocol composition
framework for dynamic recon�guration. DI/FCUL TR
07{4, Department of Informatics, University of
Lisbon, March 2007.

[17] R. van Renesse, K. Birman, M. Hayden, A. Vaysburd,
and D. Karr. Building adaptive systems using
ensemble. Softw. Pract. Exper., 28(9):963{979, 1998.

[18] R. Vanegas, J. Zinky, J. Loyall, D. Karr, R. Schantz,
and D. Bakken. Quo's runtime support for quality of
service in distributed objects. In Middleware'98:
Proceedings of the IFIP International Conference on
Distributed Systems Platforms and Open Distributed
Processing, pages 207{222, London, UK, 1998.
Springer.

