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Abstract

Differential quantities, including normals, curvatures,principal di-
rections, and associated matrices, play a fundamental rolein geo-
metric processing and physics-based modeling. Computing these
differential quantitiesconsistentlyon surface meshes is important
and challenging, and some existing methods often produce incon-
sistent results and requiread hocfixes. In this paper, we show that
the computation of the gradient and Hessian of a height function
provides the foundation for consistently computing the differential
quantities. We derive simple,explicit formulas for the transforma-
tions between the first- and second-order differential quantities (i.e.,
normal vector and principal curvature tensor) of a smooth surface
and the first- and second-order derivatives (i.e., gradientand Hes-
sian) of its corresponding height function. We then investigate a
general, flexible numerical framework to estimate the derivatives of
the height function based on local polynomial fittings formulated
as weighted least squares approximations. We also propose an it-
erative fitting scheme to improve accuracy. This framework gen-
eralizes polynomial fitting and addresses some of its accuracy and
stability issues, as demonstrated by our theoretical analysis as well
as experimental results.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Algorithms, Design, Experimenta-
tion

Keywords: normals, curvatures, principal directions, shape oper-
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1 Introduction

Computing normals and curvatures is a fundamental problem for
many geometric and numerical computations, including feature de-
tection, shape retrieval, shape registration or matching,surface
fairing, surface mesh adaptation or remeshing, front tracking and
moving meshes. In recent years, a number of methods have
been introduced for the computation of the differential quantities
(see e.g., [Taubin 1995; Meek and Walton 2000; Meyer et al. 2002;
Cazals and Pouget 2005]). However, some of the existing methods
may produce inconsistent results. For example, when estimating
the mean curvature using the cotangent formula and estimating the
Gaussian curvature using the angle deficit [Meyer et al. 2002], the
principal curvatures obtained from these mean and Gaussiancurva-
tures are not guaranteed to be real numbers. Such inconsistencies
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often requiread hocfixes to avoid crashing of the code, and their
effects on the accuracy of the applications are difficult to analyze.

The ultimate goal of this work is to investigate a mathematically
sound framework that can compute the differential quantitiescon-
sistently (i.e., satisfying the intrinsic constraints) with provable
convergenceon general surface meshes, while being flexible and
easy to implement. This is undoubtly an ambitious goal. Al-
though we may have not fully achieved the goal, we make some
contributions toward it. First, using the singular value decompo-
sition [Golub and Van Loan 1996] of the Jacobian matrix, we de-
rive explicit formulas for the transformations between thefirst- and
second-order differential quantities of a smooth surface (i.e., nor-
mal vector and principal curvature tensor) and the first- andsecond-
order derivatives of its corresponding height function (i.e., gradient
and Hessian). We also give the explicit formulas for the transforma-
tions of the gradient and Hessian under a rotation of the coordinate
system. These transformations can be obtained without forming the
shape operator and the associated computation of its eigenvalues or
eigenvectors. We then reduce the problem, in a consistent man-
ner, to the computation of the gradient and Hessian of a function
in two dimensions, which can then be computed more readily by
customizing classical numerical techniques.

Our second contribution is to develop a general and flexible
method for differentiating a height function, which can be viewed
as a generalization of the polynomial fitting of osculating jets
[Cazals and Pouget 2005]. Our method is based on the Taylor se-
ries expansions of a function and its derivatives, then solved by a
weighted least squares formulation. We also propose an iterative-
fitting method that improves the accuracy of fittings. Further-
more, we address the numerical stability issues by a systematic
point-selection strategy and a numerical solver with safeguard. We
present experimental results to demonstrate the accuracy and stabil-
ity of our approach for fittings up to degree six.

The remainder of this paper is organized as follows. Section2 re-
views some related work on the computation of differential quanti-
ties of discrete surfaces. Section 3 analyzes the stabilityand consis-
tency of classical formulas for computing differential quantities for
continuous surfaces and establishes the theoretical foundation for
consistent computations using a height function. Section 4presents
a general framework and a unified analysis for computing the gra-
dient and Hessian of a height function based on polynomial fittings,
including an iterative-fitting scheme. Section 5 presents some ex-
perimental results to demonstrate the accuracy and stability of our
approach. Section 6 concludes the paper with a discussion onfuture
research directions.

2 Related Work

Many methods have been proposed for computing or estimatingthe
first- and second-order differential quantities of a surface. In recent
years, there have been significant interests in the convergence and
consistency of these methods. We do not attempt to give a compre-
hensive review of these methods but consider only a few of them
that are more relevant to our proposed approach; readers arere-
ferred to [Petitjean 2002] and [Gatzke and Grimm 2006] for com-
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prehensive surveys. Among the existing methods, many of them
estimate the different quantities separately of each other. For the
estimation of the normals, a common practice is to estimate ver-
tex normals using a weighted average of face normals, such asarea
weighting or angle weighting. These methods in general are only
first-order accurate, although they are the most efficient.

For curvature estimation, Meyer et al. [2002] proposed some
discrete operators for computing normals and curvatures, among
which the more popular one is the cotangent formula for mean cur-
vatures, which is closely related to the formula for Dirichlet en-
ergy of Pinkall and Polthier [1993]. Xu [2004] studied the con-
vergence of a number of methods for estimating the mean cur-
vatures (and more generally, the Laplace-Beltrami operators). It
was concluded that the cotangent formula does not converge except
for some special cases, as also noted in [Hildebrandt et al. 2006;
Wardetzky 2007]. Langer et al. [2005a; 2005b] proposed a tangent-
weighted formula for estimating mean-curvature vectors, whose
convergence also relies on special symmetric patterns of a mesh.
Agam and Tang [2005] proposed a framework to estimate curva-
tures of discrete surfaces based on local directional curvesampling.
Cohen-Steiner and Morvan [2003] used normal cycle to analyze
convergence of curvature measures for densely sampled surfaces.

Vertex-based quadratic or higher-order polynomial fittings can pro-
duce convergent normal and curvature estimations. Meek andWal-
ton [2000] studied the convergence properties of a number ofes-
timators for normals and curvatures. It was further generalized
to higher-degree polynomial fittings by Cazals and Pouget [2005].
These methods are most closely related to our approach. It is
well-known that these methods may encounter numerical difficul-
ties at low-valence vertices or special arrangements of vertices
[Lancaster and Salkauskas 1986], which we address in this paper.
Razdan and Bae [2005] proposed a scheme to estimate curvatures
using biquadratic Bézier patches. Some methods were also pro-
posed to improve robustness of curvature estimation under noise.
For example, Ohtake et al. [2004] estimated curvatures by fitting
the surface implicitly with multi-level meshes. Recently,Yang et
al. [2006] proposed to improve robustness by adapting the neigh-
borhood sizes. These methods in general only provide curvature
estimations that are meaningful in some average sense but donot
necessarily guarantee convergence of pointwise estimates.

Some of the methods estimate the second-order differentialquan-
tities from the surface normals. Goldfeather and Interrante [2004]
proposed a cubic-order formula by fitting the positions and normals
of the surface simultaneously to estimate curvatures and principal
directions. Theisel et al. [2004] proposed a face-based approach for
computing shape operators using linear interpolation of normals.
Rusinkiewicz [2004] proposed a similar face-based curvature esti-
mator from vertex normals. These methods rely on good normal
estimations for reliable results. Zorin and coworkers [Zorin 2005;
Grinspun et al. 2006] proposed to compute a shape operator using
mid-edge normals, which resembles and “corrects” the formula of
[Ońate and Cervera 1993]. Good results were obtained in practice
but there was no theoretical guarantee of its order of convergence.

3 Consistent Formulas of Curvatures for
Continuous Surfaces

In this section, we first consider the computation of differen-
tial quantities of continuous surfaces (as opposed to discrete sur-
faces). This is a classical subject of differential geometry (see e.g.,
[do Carmo 1976]), but the differential quantities are traditionally
expressed in terms of the first and second fundamental forms,which
are geometrically intrinsic but sometimes difficult to understand
when a change of coordinate system is involved. Furthermore, as

we will show shortly, it is not straightforward to evaluate the classi-
cal formulas consistently (i.e., in a backward-stable fashion) in the
presence of round-off errors due to the potential loss of symmetry
and orthogonality. Starting from these classical formulas, we derive
some simple formulas by a novel use of the singular value decom-
position of the Jacobian of the height functions. The formulas are
easier to understand and to evaluate. To the best of our knowledge,
some of our formulas (including those for the symmetric shape op-
erator and principal curvature tensor) have not previouslyappeared
in the literature.

3.1 Classical Formulas for Height Functions

We first review some well-known concepts and formulas in differ-
ential geometry and geometric modeling. Given a smooth surface
defined in the globalxyz coordinate system, it can be transformed
into a localuvw coordinate system by translation and rotation. As-
sume both coordinate frames are orthonormal right-hand systems.
Let the origin of the local frame be[x0, y0, z0]

T (note that for con-
venience we treat points as column vectors). Lett̂1 and t̂2 be the
unit vectors in the global coordinate system along the positive di-
rections of theu andv axes, respectively. Then,̂m = t̂1 × t̂2 is
the unit vector along the positivew direction. LetQ denote the
orthogonal matrix composed of column vectorst̂1, t̂2, andm̂, i.e.,

Q ≡

2

4 t̂1

˛
˛
˛
˛
˛
˛

t̂2

˛
˛
˛
˛
˛
˛

m

3

5 , (1)

where ‘|’ denotes concatenation. Any pointx on the surface is
then transformed to a point[u, v, f(u)]T ≡ QT (x− x0), where
u ≡ (u, v). In general,f is not a one-to-one mapping over the
whole surface, but if theuv plane is close to the tangent plane at a
point x, thenf would be one-to-one in a neighborhood ofx. We
refer to this functionf(u) : R2 → R (more precisely, from a subset
of R2 intoR) as aheight functionatx in theuvw coordinate frame.
In the following, all the formulas are given in theuvw coordinate
frame unless otherwise stated.

If the surface is smooth, the height functionf defines a smooth
surface composed of pointsp(u) = [u, v, f(u)]T ∈ R

3. Let

∇f ≡
»

fu
fv

–

denote the gradient off with respect tou and

H ≡
»

fuu fuv
fvu fvv

–

the Hessian off , wherefuv = fvu. The

Jacobian ofp(u) with respect tou, denoted byJ , is then

J ≡

2

4 pu

˛
˛
˛
˛
˛
˛

pv

3

5 =

2

4

1 0
0 1
fu fv

3

5 . (2)

The vectorspu andpv form a basis of the tangent space of the
surface atp, though they may not be unit vectors and may not be

orthogonal to each other. Letdu denote

»
du
dv

–

. Thefirst funda-

mental formof the surface is given by the quadratic form

I(du) = duT
Gdu, whereG ≡ J

T
J =

»
1 + f2

u fufv
fufv 1 + f2

v

–

.

G is called thefirst fundamental matrix. Its determinant isg ≡
det(G) = 1 + f2

u + f2
v . We introduce a symbolℓ ≡ √

g, which
will reoccur many times throughout this section. Geometrically,
ℓ = ‖pu × pv‖, so it is the “area element” and is equal to the area



of the parallelogram spanned bypu andpv. The unit normal to the
surface is then

n̂ =
pu × pv

ℓ
=

1

ℓ

2

4

−fu
−fv
1

3

5 . (3)

The normal in the globalxyz frame is then

n̂g =
1

ℓ
Q

2

4

−fu
−fv
1

3

5 =
1

ℓ
(m̂ − fut̂1 − fv t̂2). (4)

Thesecond fundamental formin the basis{pu,pv} is given by the
quadratic form

II(du) = duT
Bdu

where

B = −
»

n̂T
upu n̂T

upv

n̂T
v pu n̂T

v pv

–

=

»
n̂Tpuu n̂Tpuv

n̂Tpuv n̂Tpvv

–

. (5)

B is called thesecond fundamental matrix, and it measures the
change of surface normals. It is easy to verify that

B = H/ℓ (6)

by plugging (2) and (3) into (5).

In differential geometry, the well-knownWeingarten equationsread
[n̂u | n̂v] = − [pu | pv]W , whereW is theWeingarten matrix
(a 2 × 2 matrix a.k.a. theshape operator) at pointp with basis
{pu,pv}. By left-multiplying JT on both sides, we haveB =
GW , and therefore,

W = G
−1

B =
1

ℓ
(JT

J)−1
H . (7)

The eigenvaluesκ1 andκ2 of the Weingarten matrixW are the
principal curvaturesat p. The mean curvatureis κH = (κ1 +
κ2)/2 and is equal to half of the trace ofW . TheGaussian curva-
tureatp isκG = κ1κ2 and is equal to the determinant ofW . Note
thatκ2

H ≥ κG, because4(κ2
H − κG) = (κ1 − κ2)

2. Let d̂1 and
d̂2 denote the eigenvectors ofW . Then ê1 = Jd̂1/‖Jd̂1‖ and
ê2 = Jd̂2/‖Jd̂2‖ are theprincipal directions.

The principal curvatures and principal directions are often used to
construct the3× 3 matrix

C ≡ κ1ê1ê
T
1 + κ2ê2ê

T
2 . (8)

We refer toC as theprincipal curvature tensorin the local coordi-
nate system. Note thatC is sometimes simply called thecurvature
tensor, which is an overloaded term (see e.g., [do Carmo 1992]),
but we nevertheless will use it for conciseness in later discussions
of this paper. Note that̂n must be in the null space ofC , i.e.,
Cn̂ = 0. The curvature tensor is particularly useful because it
can facilitate coordinate transformation. In particular,the curvature
tensor in the global coordinate system isCg = QCQT .

3.2 Consistency of Classical Formulas

The Weingarten equation is a standard way for defining and com-
puting the principal curvatures and principal directions in differen-
tial geometry [do Carmo 1976], so it is important to understand its
stability and consistency. We notice that the singular-value decom-
position (SVD) of the Jacobian matrixJ is given by

J =

2

4

c/ℓ −s
s/ℓ c

‖∇f‖/ℓ 0

3

5

| {z }

U

»
ℓ 0
0 1

–

| {z }

Σ

»
c −s
s c

–T

| {z }

V T

, (9)

with

c = cos θ =
fu

‖∇f‖ , ands = sin θ =
fv

‖∇f‖ , (10)

whereθ = arctan(fv/fu). In the special case offu = fv = 0, we
haveℓ = 1, and anyθ leads to a valid SVD ofJ . To resolve this
singularity, we defineθ = 0 whenfu = fv = 0.

In (9), the column vectors ofU are the left singular vectors ofJ ,
which form an orthonormal basis of the tangent space, the diagonal
entries ofΣ are the singular values, andV is an orthogonal matrix
composed of the right singular vectors ofJ . The condition number
of a matrix in 2-norm is defined as the ratio between its largest and
the smallest singular values, so we obtain the following.

Lemma 1 The condition number ofJ in 2-norm isℓ and the con-
dition number of the first fundamental matrixG is ℓ2.

Note that the condition number ofG is equal to its determinant.
This is a coincidence because one of the singular values ofJ and
in turn G happens to be equal to1. SupposeH has an absolute
errorδH of O(ǫ‖H‖2). From the standard perturbation analysis,
we know that the relative error inW computed from (7) can be
as large asO(ℓ2ǫ). The mean and Gaussian curvatures, if com-
puted from the trace and determinant ofW , would then have an
absolute error ofO(ℓ2ǫ‖W ‖2). Therefore, the Weingarten equa-
tion must be avoided ifℓ2 ≫ 1, and it is desirable to keepℓ as
close to1 as possible. Note thatW is nonsymmetric, and more
precisely it is nonnormal, i.e.,W TW 6= WW T . The eigen-
values of nonsymmetric matrices are not necessarily real, and the
eigenvectors of a nonnormal matrix are not orthogonal to each other
[Golub and Van Loan 1996]. Therefore, in the presence of round-
off or discretization errors, the principal curvatures computed from
the Weingarten matrix are not guaranteed to be real, and the princi-
pal directions are not guaranteed to be orthogonal, causingpotential
inconsistencies.

Unlike the Weingarten matrixW , a curvature tensor is always
symmetric. The curvature tensors are important concepts and
are widely used nowadays (see e.g., [Gatzke and Grimm 2006;
Theisel et al. 2004]). In principle, the two larger eigenvalues (in
terms of magnitude) of a curvature tensors corresponding tothe
principal curvatures and their corresponding eigenvectors give a set
of orthogonal principal directions. As long as the estimated curva-
tures are real, one can use (8) to construct a curvature tensor C ,
except thatC would be polluted by the errors associated with the
nonorthogonal eigenvectors ofW . This pollution can in turn lead
to large errors in both the eigenvalues and eigenvalues ofC . For
example, for a spherical patchz =

p
4− (x− 0.5)2 − (y − 0.5)2

over the interval[0, 1]× [0, 1], we observed a relative error of up to
8.5% in the eigenvalues of the curvature tensors constructed from
a nonsymmetric Weingarten matrix. Another serious problemas-
sociated with curvature tensors is that if the minimum curvature is
close to zero, then the eigenvectors of a curvature tensor are ex-
tremely ill-conditioned. Therefore, one must avoid computing the
principal directions as the eigenvectors of the curvature tensor if the
minimum curvature is close to 0.

3.3 Simple, Consistent Formulas

To overcome the potential inconsistencies of the classicalformu-
las of principal curvatures and principal directions in thepresence
of largeℓ or round-off errors, we derive a different set of explicit
formulas. Our main idea is to enforce orthogonality and symme-
try explicitly and to make the error propagation independent of ℓ as
much as possible, starting from the following simple observation.

Lemma 2 LetU = [u1 | u2] be a3×2 matrix whose column vec-
tors form an orthonormal basis of the Jacobian, andC be the cur-



vature tensor.UTCU is the shape operator in the basis{u1,u2},
and it is a symmetric matrix with an orthogonal diagonalization
XΛX−1, whose eigenvalues (i.e., the diagonal entries ofΛ) are
real and whose eigenvectors are orthonormal (i.e.,XT = X−1).
The column vectors ofUX are the principal directions.

PROOF. Let κi and d̂i be the eigenvalues and eigenvectors of the
Weingarten matrixW in (7). Therefore,

Bd̂i = GWd̂i = κiGd̂i. (11)

LetS = UTJ . By left-multiplyingS−T on both sides of (11), we
have

S
−T

BS
−1(Sd̂i) = κi(S

−T
Gd̂i) = κi(Sd̂i).

Therefore, the eigenvalues ofS−TBS−1 are the principal curva-
turesκi and its eigenvectors are the principal directionsd̃1 ≡ Sd̂1

andd̃2 ≡ Sd̂2 in the basis{u1,u2}, soS−TBS−1 is the shape
operator in this basis. This shape operator is symmetric, soits
eigenvalues are real and its eigenvectors are orthonormal.By defi-
nition of the curvature tensor,

C = κ1Ud̃1d̃
T
1 U

T + κ2Ud̃2d̃
T
2 U

T

= U (κ1d̃1d̃
T
1 + κ2d̃2d̃

T
2 )U

T

= US
−T

BS
−1

U
T ,

soUTCU is equal to the shape operatorS−TBS−1.

Lemma 2 holds for any orthonormal basis of the Jacobian. There
is an infinite number of such bases. Algorithmically, such a basis
can be obtained from either the QR factorization or SVD ofJ . We
choose the latter for its simplicity and elegance, and it turns out to
be particularly revealing.

Theorem 1 LetJ = UΣV T be the reduced SVD of the Jacobian
of a height functionf as given by (9). Letu1 andu2 denote the
column vectors ofU and letS = ΣV T . The shape operator in the
orthonormal basis{u1,u2} is the symmetric matrix

W̃ = S
−T

BS
−1 =

1

ℓ

»
c/ℓ s/ℓ
−s c

–

H

»
c/ℓ −s
s/ℓ c

–

, (12)

wherec ands are defined in (10).

PROOF. Note that

S
−1 = V Σ

−1 =

»
c −s
s c

– »
1/ℓ 0
0 1

–

=

»
c/ℓ −s
s/ℓ c

–

.

Following the same argument as for Lemma 2, Eq. (12) holds.

To the best of our knowledge, the symmetric shape operatorW̃
defined in (12) has not previously appeared in the literature. Be-
causeW̃ is symmetric, its eigenvalues (i.e., principal curvatures)
are guaranteed to be real, and its eigenvectors (i.e., principal di-
rections) are guaranteed to be orthonormal. In addition, because
W̃ is given explicitly by (12), the relative error inH is no longer
amplified by a factor ofℓ2 (or evenℓ) in the computation ofW̃ .
Therefore, this symmetric shape operator provides a consistent way
for computing the principal curvatures or principal directions. Fur-
thermore, using this result we can now compute the curvaturetensor
even without forming the shape operator.

Theorem 2 Let the transformation from the local to global coordi-
nate system bex = Qu + x0. The curvature tensors in the local

and global coordinate systems are

C = J
+T

BJ
+ =

1

ℓ
J

+T
HJ

+ (13)

Cg = J
+T
g BJ

+
g =

1

ℓ
J

+T
g HJ

+
g , (14)

respectively, where

J
+ =

1

ℓ2

»
1 + f2

v −fufv fu
−fufv 1 + f2

u fv

–

(15)

is the pseudo-inverse ofJ , andJ+
g = J+QT is the pseudo-inverse

ofJg = QJ . In addition,H = ℓJTCJ = ℓJT
g CgJg.

PROOF. The principal directions arêe1 = Ud̃1 andê2 = Ud̃2 in
the local coordinate system, whered̃i are the eigenvectors of̃W .
Therefore,

C = κ1ê1ê
T
1 + κ2ê2ê

T
2

= UW̃U
T

= (UΣ
−1

V
T )B(V Σ

−1
U

T )

= J
+T

BJ
+.

By left multiplying ℓJT and right multiplyingJ of both sides, we
then have

ℓJT
CJ = ℓJT

J
+T

BJ
+
J = ℓB = H .

The curvature tensor in the global coordinate system isCg =
QCQT , which results in (14) andH = ℓJT

g CgJg. To obtain
the explicit formula forJ+, simply plug inc, s, andℓ into

J
+ =

»
c −s
s c

– »
1/ℓ 0
0 1

– »
c/ℓ s/ℓ ‖∇f‖/ℓ
−s c 0

–

.

Alternatively, we may obtainJ+ by expanding and simplifying
(JTJ)−1JT .

Theorem 2 allows us to transform between the curvature tensor and
the Hessian of a height function, both of which are symmetricma-
trices. Furthermore, we can easily compute the gradient andHes-
sian of one height function from their corresponding valuesof an-
other height function in a different coordinate system corresponding
to the same point of a smooth surface.

Corollary 1 Given the gradient∇f =

»
fu
fv

–

and HessianH

of a height functionf in an orthonormal coordinate system, letℓ

denote
p

1 + f2
u + f2

v , n̂ the unit normal[−fu,−fv , 1]
T /ℓ, C

the curvature tensorJ+THJ+/ℓ, whereJ = [I2×2 | ∇f ]T . Let
Q̂ ≡ [q̂1 | q̂2 | q̂3] be the orthogonal matrix whose column vectors
form the axes of another coordinate system, whereq̂T

3 n̂ > 0. Let

[α, β, γ]T denoteQ̂
T
n̂, and letf̃ denote the height function in the

latter coordinate frame corresponding to the same smooth surface.

Then the gradient of̃f is ∇f̃ =

»
−α/γ
−β/γ

–

, and the Hessian of̃f

is J̃
T
CJ̃/γ, whereJ̃ = Q̂

h

I2×2 | ∇f̃
iT

.

A direct implication of this corollary is that knowing theconsis-
tent surface normal and curvature tensor of a smooth surface in
the global coordinate frame is equivalent to knowing theconsis-
tent gradient and Hessian of its corresponding height function in
any local coordinate frame in which the Jacobian is nondegenerate



(i.e.,ℓ > 0). Here, the consistency refers to the fact that the normal
n̂ is in the null space of the curvature tensorC and that bothC
and the HessianH are symmetric (i.e.,Cn̂ = 0, CT = C , and
H = HT ).

The preceding formulas for the symmetric shape operator and
curvature tensor appear to be new and are particularly useful
when computing the principal curvatures and principal direc-
tions. Because many applications require the mean curvature and
Gaussian curvature, we also give the following simple formulas,
which are equivalent to those in classical differential geometry
[do Carmo 1976, p. 163] but are given here in a more concise form.

Theorem 3 The mean and Gaussian curvature of the height func-
tion f(u) : R2 → R are

κH =
tr(H)

2ℓ
− (∇f)TH(∇f)

2ℓ3
, andκG =

det(H)

ℓ4
. (16)

PROOF. Let v = [c, s]T andv⊥ = [−s, c]T , wherec ands are
defined in (10). The trace of̃W is

tr(W̃ ) = tr

„
1

ℓ

»
c/ℓ s/ℓ
−s c

–

H

»
c/ℓ −s
s/ℓ c

–«

=
1

ℓ

„
vT

ℓ
H

v

ℓ
+ v

⊥T
Hv

⊥

«

=
1

ℓ3

“

v
T
Hv + ℓ2v⊥T

Hv
⊥

”

=
1

ℓ3

“

ℓ2tr(H)− (ℓ2 − 1)vT
Hv

”

,

where the last step usesvTHv + v⊥THv⊥ = tr(H). Since√
ℓ2 − 1v = ∇f , therefore,

κH =
1

2
tr(W̃ ) =

tr(H)

2ℓ
− (∇f)TH(∇f)

2ℓ3
.

With regard toκG, we have

κG = det(W̃ ) = det(S−1)2det(H/ℓ) =
det(H)

ℓ4
.

This completes our description of the explicit formulas forthe
differential quantities. Since their derivations, especially for the
principal curvatures, principal directions, and curvature tensor, are
based on the shape operator associated with the left singular-vectors
of the Jacobian, many intermediate terms cancel out due to symme-
try and orthogonality, and the final formulas are remarkablysim-
ple. It is important to note that even if the gradient or Hessian
contain input errors, as long as the Hessian is symmetric andthe
Jacobian is nondegenerate, our formulas are consistent in the fol-
lowing sense: The principal curvatures are real, the principal direc-
tions are orthonormal, and the surface normal is orthogonalto the
column space ofJ , the row spaces ofJ+, and the column space of
the curvature tensor.

The consistency of our formulas is enabled by a simple fact: Acon-
sistent set of first- and second-order differential quantities have five
degrees of freedom, which is a direct result of Corollary 1. In the
Weingarten equations, numerically there are six degrees offreedom
(three inG and three inB), so there is an implicit constraint (which
should have enforced the orthogonality of the principal directions)
not present in the equations. In general, if a system of equations has
more degrees of freedom than the intrinsic dimension of the prob-
lem (i.e., with implicit constraints), its numerical solution would
likely lead to inconsistencies in the presence of round-offerrors.

The same argument may be applied to other methods that assume
more than five independent parameters per point for the first-and
second-order differential quantities. For example, if thedifferen-
tial quantities are evaluated from a parameterization of a surface
wherex, y, andz coordinates are viewed as independent functions
of u andv, one must compute more than five parameters, so their
numerical solutions may not be consistent. The gradient andthe
Hessian of the height function contain exactly five degrees of free-
dom when the symmetry of the Hessian is enforced, so we have
reduced the problem consistently into the computation of the gra-
dient and Hessian of the height function. We therefore buildour
method based on the estimation of the gradient and Hessian ofthe
height functions.

4 Computing Gradient and Hessian of Height
Function

To apply the formulas for continuous surfaces to discrete
surfaces, we must select a region of interest, define a lo-
cal uvw coordinate frame, and approximate the gradient and
Hessian of the resulting height function. We build our
method based on a local polynomial fitting. Polynomial fit-
ting is not a new idea and has been studied intensively
(e.g., [Lancaster and Salkauskas 1986; de Boor and Ron 1992;
Meek and Walton 2000; Cazals and Pouget 2005]). However, it is
well-known that polynomial fitting may suffer from numerical in-
stabilities, which in turn can undermine convergence and lead to
large errors. We propose some techniques to overcome instabili-
ties and to improve the accuracy of fittings. These techniques are
based on classical concepts in numerical linear algebra butare cus-
tomized here for derivative computations. In addition, we propose a
new iterative-fitting scheme and also present a unified erroranalysis
of our approach.

4.1 Local Polynomial Fitting

The local polynomial fitting can be derived from the Taylor series
expansion. Letf(u) denote a bivariate function, whereu = (u, v),

and letcjk be a shorthand for∂
j+k

∂uj∂vk f(0). The Taylor series ex-
pansion off about the originu0 = (0, 0) is

f(u) =

∞X

p=0

j+k=pX

j,k≥0

cjk
ujvk

j!k!
. (17)

Given a positive integerd, a functionf(u) can be approximated to
(d+ 1)st order accuracy about the originu0 as

f(u) =
dX

p=0

j+k=pX

j,k≥0

cjk
ujvk

j!k!
| {z }

Taylor polynomial

+O(‖u‖d+1)
| {z }

remainder

, (18)

assumingf hasd+1 continuous derivatives. The derivatives of the
Taylor polynomial are the same asf atu0 up to degreed.

Given a set of points sampling a small patch of a smooth surface, the
method of local polynomial fitting approximates the Taylor poly-
nomial by estimatingcjk from the given points. The degree of the
polynomial, denoted byd, is called thedegree of fitting. We will
limit ourselves to relatively low degree fittings (sayd ≤ 6), because
high-degree fittings tend to be more oscillatory and less stable. To
estimatecjk at a vertex of a surface mesh, we choose the vertex to
be the origin of a localuvw coordinate frame, where thew compo-
nent of the coordinates in this frame would be the height function f .



We use an approximate vertex normal (e.g., obtained by averaging
the face normals) as thew direction, so that the condition number
of the Jacobian off would be close to 1. Plugging in each given
point [ui, vi, fi]

T into (18), we obtain an approximate equation

dX

p=0

j+k=pX

j,k≥0

cjk
uj
iv

k
i

j!k!
≈ fi, (19)

which hasn ≡ (d + 1)(d + 2)/2 unknowns (i.e.,cjk for 0 ≤
j + k ≤ d, j ≥ 0 andk ≥ 0). As a concrete example, for cubic
fitting the equation is

c00 + c10ui + c01vi + c20
u2
i

2
+ c11uivi+

c02
v2i
2

+ c30
u3
i

6
+ c21

u2
i vi
2

+ c12
uiv

2
i

2
+ c03

v3i
6

≈ fi. (20)

Letm denote the number of these given points (including the vertex
u0 itself), we then obtain anm × n rectangular linear system. If
we want to enforce the fit to pass through the vertex itself, wecan
simply setc00 = 0 and remove the equation corresponding tou0,
leading to an(m − 1) × (n − 1) rectangular linear system. In
our experiments, it seems to have little benefit to do this, sowe do
not enforcec00 = 0 in the following discussions. However, our
framework can be easily adapted to enforcec00 = 0 if desired.

Suppose we have solved this rectangular linear system and obtained

the approximation ofcjk. At u0, the gradient off is

»
c10
c01

–

and the Hessian is

»
c20 c11
c11 c02

–

. Plugging their approximations

into the formulas in Section 3 would give us the normal and cur-
vature approximations atu0. This approach is similar to the fit-
ting methods in [Cazals and Pouget 2005; Meek and Walton 2000].
Note that the Taylor series expansions offu andfv aboutu0 are

fu(u) ≈
d−1X

p=0

j+k=pX

j,k≥0

c(j+1)k
ujvk

j!k!
, (21)

fv(u) ≈
d−1X

p=0

j+k=pX

j,k≥0

cj(k+1)
ujvk

j!k!
, (22)

where the residual isO(‖u‖d). The expansions for the second
derivatives have similar patterns. Plugging in the approximations
of cjk into these series, we can also obtain the estimations of the
gradient, Hessian, and in turn the curvatures at a pointu nearu0.
The remaining questions for this approach are the theoretical issue
of solving the rectangular system as well as the practical issues of
the selection of points and robust implementation.

4.2 Weighted Least Squares Formulation

Let us denote the rectangular linear system obtained from (19) for
i = 1, . . . ,m as

V c ≈ f , (23)

wherec is ann-vector composed ofcjk, f is anm-vector com-
posed offi, andV is a generalized Vandermonde matrix. For
now, let us assume thatm ≥ n andV has full rank (i.e., its col-
umn vectors are linearly independent). Such a system is saidto be
over-determined. We will address the robust numerical solutions
for more general cases in the next subsection.

The simplest solution to (23) is to minimize the 2-norm of theresid-
ualV c − f , i.e.,minc ‖V c − f‖2. A more general formulation

is to minimize a weighted norm (or semi-norm), i.e.,

min
c

‖V c − f‖W ≡ min
c

‖W (V c− f )‖2, (24)

whereW is anm × m diagonal matrix with nonnegative entries.
We refer toW as aweighting matrix. Such a formulation is called
weighted least squares[Golub and Van Loan 1996, p. 265], and it
has a unique solution ifWV has full rank. It is equivalent to a
linear least squares problem

Ac ≈ b, whereA ≡ WV andb ≡ Wf . (25)

Let ωi denote theith diagonal entry ofW . Algebraically,ωi as-
signs a weight to each row of the linear system. Geometrically, it
assigns a priority to each point (the largerωi, the higher the prior-
ity). If f is in the column space ofV , then a nonsingular weighting
matrix has no effect on the solution of the linear system. Other-
wise, different weighting matrices may lead to different solutions.
Furthermore, by settingωi to be zero or close to zero, the weighting
matrix can be used as a mechanism for filtering out outliers inthe
given points.

The weighted least squares formulation is a general technique, but
the choice ofW is problem dependent. For local polynomial fit-
ting, it is natural to assign lower priorities to points thatare farther
away from the origin or whose normals differ substantially from the
w direction of the local coordinate frame. Furthermore, the choice
of W may affect the residual and also the condition number ofA.
Let m̂i denote an initial approximation of the unit normal at the
ith vertex (e.g., obtained by averaging face normals). Basedon the
above considerations, we choose the weight of theith vertex as

ωi = γ+
i

ffi“p

‖ui‖2 + ǫ
”d/2

, (26)

whereγ+
i ≡ max(0, m̂T

i m̂0) andǫ ≡ 1
100m

Pm
i=1 ‖ui‖2. In

general, this weight is approximately equal to‖ui‖−d/2, where
the exponentd/2 tries to balance between accuracy and stability.
The factorγ+

i approaches1 for fine meshes at smooth areas, but
it serves as a safeguard against drastically changing normals for
coarse meshes or nonsmooth areas. The termǫ prevents the weights
from becoming too large at points that are too close tou0.

The weighting matrix scales the rows ofV . However, ifui or vi
are close to zero, the columns ofV can be poorly scaled, so that the
ith row ofA would be close to[ωi, 0, . . . , 0]. Such a matrix would
have a very large condition number. A general approach to alleviate
this problem is to introduce acolumn scaling matrixS. The least
squares problem then becomes

min
d

‖(AS)d − b‖2, whered ≡ S
−1

c. (27)

Here,S is a nonsingularn×n diagonal matrix. Unlike the weight-
ing matrixW , the scaling matrixS does not change the solution
of c under exact arithmetic. However, it can significantly improve
the condition number and in turn improve the accuracy in the pres-
ence of round-off errors. In general, letaj denote thejth column
vector ofA. We chooseS = diag(1/‖a1‖2, . . . , 1/‖an‖2), as it
approximately minimizes the 2-norm condition number ofAS (see
[Golub and Van Loan 1996, p. 265] and [van der Sluis 1969]).

4.3 Robust Implementation

Our preceding discussions considered only over-determined sys-
tems. However, even ifm ≥ n, the matrixV (and in turnAS)
may not have full rank for certain arrangements of points, sothe
weighted least squares would be practically under-determined with



an infinite number of solutions. Numerically, even ifV has full
rank, the condition number ofAS may still be arbitrarily large,
which in turn may lead to arbitrarily large errors in the estimated
derivatives. We address these issues by proposing a systematic way
for selecting the points and a safeguard for QR factorization for
solving the least squares problem.

4.3.1 Section of Points

As pointed out in [Lancaster and Salkauskas 1986], the condition
number of polynomial fitting can depend on the arrangements of
points. The situation may appear to be hopeless, because we in gen-
eral have little control (if any at all) about the locations of the points.
However, the problem can be much alleviated when the number of
pointsm is substantially larger than the number of unknownsn. To
the best of our knowledge, no precise relationship between the con-
dition number andm/n has been established. However, it suffices
here to have an intuitive understanding from the geometric inter-
pretation of condition numbers. Observe that anm× n matrixM
(with m ≥ n) is rank deficient if its row vectors are co-planar (i.e,
contained in a hyperplane of dimension less thann), and its con-
dition number is very large if its row vectors are nearly co-planar
(i.e., if they lie in the proximity of a hyperplane). Supposethe row
vectors ofM are random with a nearly uniform distribution, then
the probability of the vectors being nearly co-planar decreases ex-
ponentially asm increases. Therefore, having more points than
the unknowns can be highly beneficial in decreasing the probability
of ill-conditioning for well-scaled matrices. In addition, it is well-
known that having more points also improves noise resistance of
the fitting, which however is beyond the scope of this paper.

Based on the above observation, we requirem to be larger thann,
but a too largem would compromise efficiency and may also under-
mine accuracy. As a rule of thumb, it appears to be ideal form to be
between1.5n and2n. For triangular meshes, we define the follow-
ing neighborhoods that meet this criterion. First, let us define the
1-ring neighbor facesof a vertex to be the triangles incident on it.
We define the1-ring neighborhoodof a vertex to be the vertices of
its 1-ring neighbor faces, and define the1.5-ring neighborhoodas
the vertices of all the faces that share an edge with a 1-ring neigh-
bor face. This definition of 1-ring neighborhood is conventional,
but our definition of 1.5-ring neighborhood appears to be new. Fur-
thermore, fork ≥ 1, we define the(k + 1)-ring neighborhoodof
a vertex to be the vertices of thek-ring neighborhood along with
their 1-ring neighbors, and define the(k+ 1.5)-ring neighborhood
to be the vertices of thek-ring neighborhood along with their 1.5-
ring neighbors. Figure 1 illustrates these neighborhood definitions
up to2.5 rings.

Observe that a typicald+1
2

-ring neighborhood has about the ideal
number of points for thedth degree fittings at least up to degree
six, which is evident from Table 1. Therefore, we use this as the
general guideline for selecting the points. Note that occasionally
(such as for the points near boundary) thed+1

2
-ring neighborhood

may not have enough points. If the number of points is less than
1.5n, we increase the ring level by0.5 up to3.5. Note that we do
not attempt to filter out the points that are far away from the origin
at this stage, because such a filtering is done more systematically
through the weighting matrix in (24).

4.3.2 QR Factorization with Safeguard

Our discussions about the point selection was based on a prob-
ability argument. Therefore, ill-conditioning may still occur es-
pecially near the boundary of a surface mesh. The standard
approaches for addressing ill-conditioned rectangular linear sys-
tems include SVD or QR factorization with column pivoting (see

1.5 ring

2.5 ring

1 ring

2 ring

Figure 1: Schematics of 1-ring, 1.5-ring, 2-ring, and 2.5-ring
neighbor vertices of center vertex (black) in each illustration.

Table 1: Numbers of coefficients indth degree fittings versus num-
bers of points in typicald+1

2
rings.

degree (d) 1 2 3 4 5 6
#coeffs. 3 6 10 15 21 28

#points ind+1
2

ring 7 13 19 31 37 55

[Golub and Van Loan 1996, p. 270]. When applied to (27), the for-
mer approach would seek a solution that minimizes the 2-normof
the solution vector‖d‖2 among all the feasible solutions, and the
latter provides an efficient but less robust approximation to the for-
mer. Neither of these approaches seems appropriate in this context,
because they do not give higher priorities to the lower derivatives,
which are the solutions of interest.

Instead, we propose a safeguard for QR factorization for thelocal
fittings. Let the columns ofV (and in turn ofA) be sorted in in-
creasing order of the derivatives (i.e., in increasing order of j + k).
Let the reduced QR factorization ofAS be

AS = QR,

whereQ is m × n with orthonormal column vectors andR is
an n × n upper-triangular matrix. The 2-norm condition num-
ber ofAS is the same as that ofR. To determine whetherAS
is nearly rank deficient, we estimate the condition number ofR
in 1-norm (instead of 2-norm, for better efficiency), which can
be done efficiently for triangular matrices and is readily avail-
able in linear algebra libraries (such as DGECON in LAPACK
[Anderson et al. 1999]). If the condition number ofR is too large
(e.g.,≥ 103), we decrease the degree of the fitting by removing the
last few columns ofAS that correspond to the highest derivatives.
Note that QR factorization need not be recomputed after decreas-
ing the degree of fitting, because it can be obtained by removing
the corresponding columns inQ and removing the corresponding
rows and columns inR. If the condition number is still large, we
would further reduce the degree of fitting until the condition num-
ber is small or the fitting becomes linear. LetQ̃ andR̃ denote the
reduced matrices ofQ andR, and the final solution ofc is given
by

c = SR̃
−1

Q̃
T
b, (28)



whereR̃
−1

denotes a back substitution step. Compared to SVD or
QR with partial pivoting, the above procedure is more accurate for
derivative estimation, as it gives higher priorities to lower deriva-
tives, and at the same time it is more efficient than SVD.

4.4 Iterative Fitting of Derivatives

The polynomial fitting above uses only the coordinates of thegiven
points. If accurate normals are known, it can be beneficial totake
advantage of them. If the normals are not given a priori, we may
estimate them first by using the polynomial fitting describedearlier.
We refer to this approach asiterative fitting.

First, we convert the vertex normals into the gradients of the
height function within the localuvw frame at a point. Let̂ni =

[αi, βi, γi]
T denote the unit normal at theith point in theuvw

coordinate system, and then the gradient of the height function is
»

−αi/γi
−βi/γi

–

. Let ajk ≡ c(j+1)k andbjk ≡ cj(k+1). By plugging

ui, vi, andfu(ui, vi) ≈ −αi/γi into (21), we obtain an equation
for the coefficientsas; similarly for fv and bs. For example, for
cubic fittings we obtain the equations

a00 + a10ui + a01vi + a20
u2
i

2
+ a11uivi+

a02
v2i
2

+ a30
u3
i

6
+ a21

u2
i vi
2

+ a12
uiv

2
i

2
+ a03

v3i
6

≈ −αi

γi
, (29)

b00 + b10ui + b01vi + b20
u2
i

2
+ b11uivi+

b02
v2i
2

+ b30
u3
i

6
+ b21

u2
i vi
2

+ b12
uiv

2
i

2
+ b03

v3i
6

≈ −βi

γi
. (30)

If we enforceaj,k+1 = bj+1,k explicitly, we would obtain a sin-
gle linear system for all theas andbs with a reduced number of
unknowns. Alternatively,ajk andbjk can be solved separately us-
ing the same coefficient matrix as (23) and the same weighted least
squares formulation, but two different right-hand side vectors, and
thenaj,k+1 andbj+1,k must be averaged. The latter approach com-
promises the optimality of the solution without compromising the
symmetry and the order of convergence. We choose the latter ap-
proach for simplicity.

After obtaining the coefficientsas andbs, we then obtain the Hes-
sian of the height function atu0 as

H0 =

»
a10 (a01 + b10)/2

(a01 + b10)/2 b01

–

.

From the gradient and Hessian, the second-order differential quan-
tities are then obtained using the formulas in Section 3. We sum-
marize the overall iterative fitting algorithm as follows:
1) Obtain initial estimation of vertex normals by averagingface nor-
mals for the construction of local coordinate systems at vertices;
2) For each vertex, determined+1

2
-ring neighbor vertices and up-

grade neighborhood if necessary;
3) For each vertex, transform its neighbor points into its local coor-
dinate frame, solve for the coefficients using QR factorization with
safeguard, and convert gradients into vertex normals;
4) If iterative fitting is desired, for each vertex, transform normals
of its neighbor vertices to the gradient of the height function in its
local coordinate system to solve for Hessian;
5) For each vertex, convert Hessian into symmetric shape operator
to compute curvatures, principal directions, or curvaturetensor.

In the algorithm, some steps (such as the collection of neighbor
points) may be merged into the loops in later steps, with a trade-
off between memory and computation. Note that iterative fitting is

optional, because we found it to be beneficial only for odd-degree
fittings, as discussed in more detail in the next subsection.With-
out iterative fitting, the Hessian of the height function should be
obtained at step 3. Finally, note that we can also apply the idea of
iterative fitting to convert the curvature tensor to the Hessian of the
height function and then construct a fitting of the Hessian toobtain
higher derivatives. However, since the focus of this paper is on first-
and second-order differential quantities, we do not pursuethis idea
further.

4.5 Error Analysis

To complete the discussion of our framework, we must addressthe
fundamental question of whether the computed differentialquanti-
ties converge as the mesh gets refined, and if so, what is the con-
vergence rate. While it has been previously shown that polynomial
fittings produce accurate normal and curvature estimationsin noise-
free contexts [Cazals and Pouget 2005; Meek and Walton 2000],
our framework is more general and uses different formulas for com-
puting curvatures, so it requires a more general analysis. Leth de-
note the average edge length of the mesh. We consider the errors in
terms ofh. Our theoretical results have two parts, as summarized
by the following two theorems.

Theorem 4 Given a set of points inuvw coordinate frame that
interpolate a smooth height functionf or approximatef with an
error of O(hd+1) along thew direction. Assume the point distri-
bution and the weighing matrix are independent of the mesh reso-
lution, and the scaled matrixAS in (27) has a bounded condition
number. The degree-d weighted least squares fitting approximates
cjk toO(hd−j−k+1).

PROOF. Let c denote the vector composed ofcjk, the exact partial
derivatives off . Let b̃ denoteAc. Let r ≡ b − b̃, which we
consider as a perturbation in the right-hand side of

Ac ≈ b̃ + r.

Because the Taylor polynomial approximatesf toO(hd+1), andf
is approximated toO(hd+1) by the given points, each component
of f − V c in (23) isO(hd+1). Sincer = W (f − V c) and the
entries inW areΘ(1), each component ofr isO(hd+1).

The error incjk and inr are connected by the scaled matrixAS.
Since the point distribution are independent of the mesh resolution,
ui = Θ(h) andvi = Θ(h). The entries in the column ofA cor-
responding tocjk are thenΘ(hj+k), so are the2-norm of the col-
umn. After column scaling, the entries inAS are thenΘ(1), so are
the entries in its pseudo-inverse(AS)+. The error ofd in (27) is
thenδd = (AS)+r. Because each component ofr is O(hd+1),
each component ofδd isO(κhd+1), whereκ is the condition num-
ber ofAS and is bounded by a constant by assumption. The er-
ror in c is thenSδd, where the scaling factor associated withcjk
is Θ(1/hj+k). Therefore, the coefficientcjk is approximated to
O(hd−j−k+1).

Note that our weights given in (26) appear to depend on the mesh
resolution. However, we can rescale it by multiplyinghd/2 to make
it Θ(1) without changing the solution, so Theorem 4 applies to our
weighting scheme. Under the assumptions of Theorem 4, degree-
d fitting approximates the gradient toO(hd) and the Hessian to
O(hd−1) at the origin of the local frame, respectively. Using the
gradient and Hessian estimated from our polynomial fitting,the es-
timated differential quantities have the following property.

Theorem 5 Given the position, gradient, and Hessian of a height
function that are approximated toO(hd+1), O(hd) andO(hd−1),



respectively. a) The angle between the computed and exact normals
is O(hd); b) the components of the shape operator and curvature
tensor are approximatedO(hd−1) by (12) and (13); c) the Gaus-
sian and mean curvatures are approximated toO(hd−1) by (16).

PROOF. a) Let f̃u and f̃v denote the estimated derivatives off ,
which approximate the true derivativesfu andfv to O(hd). Let
ℓ̃ andℓ denote‖[−f̃u,−f̃v , 1]‖ and‖[−fu,−fv, 1]‖, respectively.
Let ñ denote the computed unit normal[−f̃u,−f̃v, 1]

T /ℓ̃ and n̂
the exact unit normal[−fu,−fv, 1]

T /ℓ. Therefore,

ñ − n̂ =
ℓ[−f̃u,−f̃v, 1]

T − ℓ̃[−fu,−fv, 1]
T

ℓℓ̃
,

where the numerator isO(hd) and the denominator isΘ(1). Let θ
denotearccos ñT n̂. Because‖ñ − n̂‖22 = 2 − 2ñT n̂ = θ2 +
O(θ4), it then follows thatθ is O(hd).

b) In (12), if fu = fv = 0, thenW̃ = H , which is approximated
to O(hd−1). Otherwise,H is approximated toO(hd−1) while ℓ,
c, ands are approximated toO(hd), so the error inW̃ isO(hd−1).
Similarly, in equations (13) and (14), the dominating errorterm is
theO(hd−1) error inH , while J+ and J̃

+
are approximated to

O(hd) by their explicit formulas, soC andCg are approximated
toO(hd−1).

c) In (16),ℓ and∇f are approximated toO(hd) andH is approxi-
mated toO(hd−1). Therefore,κG andκH are both approximated
toO(hd−1).

The above analysis did not consider iterative fitting. Following the
same argument, if the vertex positions and normals are both ap-
proximated toO(hd+1)) and the scaled coefficient matrix has full
rank, then the coefficientsajk andbjk are approximated to order
O(hd−j−k+1)) by our iterative fitting. The error in the Hessian
would then beO(hd), so are the estimated curvatures. Therefore,
iterative fitting is potentially advantageous, given accurate normals.
Note that none of our analyses requires any symmetry of the in-
put data points to achieve convergence. For even-degree fittings,
the leading term in the remainder of the Taylor series is odd de-
gree. If the input points are perfectly symmetric, then the resid-
ual would also exhibit some degree of symmetry, and the leading-
order error term may cancel out as in the centered-finite-difference
scheme. Therefore, superconvergence may be expected for even-
degree polynomial fittings, and iterative fitting may not be able to
further improve their accuracies. Regarding to the principal direc-
tions, they are inherently unstable at the points where the maximum
and minimum curvatures have similar magnitude. However, ifthe
magnitudes of the principal curvatures are well separated,then the
principal directions would also have similar convergence rates as
the curvatures.

5 Experimental Results

In this section, we present some experimental results of ourframe-
work. We focus on the demonstration of accuracy and stabil-
ity as well as the advantages of iterative fitting, the weighting
scheme, and the safeguarded numerical solver. We do not attempt
a thorough comparison with other methods; readers are referred to
[Gatzke and Grimm 2006] for such a comparison of earlier meth-
ods. We primarily compare our method against the baseline fitting
methods in [Cazals and Pouget 2005; Meek and Walton 2000], and
assess them for both closed and open surfaces.

Figure 2: Sample unstructured meshes of sphere and torus.

5.1 Experiments with Closed Surfaces

We first consider two simple closed surfaces: a sphere with unit
radius, and a torus with inner radius0.7 and outer radius1.3.
We generated the meshes using GAMBIT, a commercial software
from Fluent Inc. Our focuses here are the convergence rates with
and without iterative fitting as well as the effects of the weight-
ing scheme. For convergence test, we generated four meshes for
each surface independently of each other by setting the desired edge
lengths to0.1, 0.05, 0.025, and 0.0125, respectively. Figure 2
shows two meshes that are coarser but have similar unstructured
connectivities as our test meshes.

We first assess the computations of normals using fittings of degrees
between one and six. Figure 3 shows the errors in the computed
normals versus the “mesh refinement level.” We label the plots by
the degrees of fittings. Letv denote the total number of vertices, and
let n̂i andñi denote the exact and computed unit vertex normals at
theith vertex. We measure the relativeL2 errors in normals as

v
u
u
t

1

v

vX

1

‖ñi − n̂i‖22.

We compute the convergence rates as

convergence rate=
1

3
log2

„
error of level 1
error of level 4

«

,

and show them at the right ends of the curves. In our tests, the
convergence rates for normals were equal to or higher than the de-
grees of fittings. For spheres, the convergence rates of even-degree
fittings were about one order higher than predicted, likely due to
nearly perfect symmetry and error cancellation.
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Figure 3: L2 errors in computed normals for sphere (left) and torus
(right).

Second, we consider the computations of curvatures. It would be
excessive to show all the combinations, so we only show some rep-
resentative results. Figure 4 shows the errors in the minimum and



maximum curvatures for the sphere. Figure 5 shows the errorsin
the mean and Gaussian curvatures for the torus. In the labels, ‘+’
indicates the use of iterative fitting. Letki andk̃i denote the exact
and computed quantities at theith vertex, we measure the relative
errors inL2 norm as

‖κ̃− κ‖2
‖κ‖2

≡

v
u
u
t

vX

i=1

(κ̃i − κi)
2

, v
u
u
t

vX

i=1

κ2
i . (31)

Let d denote the degree of a fitting. In these tests, the convergence
rates wered−1 or higher as predicted by theory. In addition, even-
degree fittings converged up to one order faster due to error cancel-
lation. The converge rates for odd-degree polynomials wereabout
d − 1 but were also boosted to approximatelyd when iterative fit-
ting is used. Therefore, iterative fitting is effective in improving
odd-degree fittings. In our experiments, iterative fitting did not im-
prove even-degree fittings.
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Figure 4: L2 errors in computed minimum and maximum curva-
tures for sphere.
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Figure 5: L2 errors in computed mean and Gaussian curvatures
for torus.

The preceding computations used the weighting scheme described
in Section 4.1, which tries to balance conditioning and error cancel-
lation. This weighting scheme improved the results in virtually all
of our tests. Figure 6 shows a representative comparison with and
without weighting (as labeled by “·nw” and “·w”, respectively) for
the maximum curvatures of the sphere and torus.

5.2 Experiments with Open Surfaces

We now consider open surfaces, i.e. surfaces with boundary.We
focus on the study of stabilities and the effects of boundaryand
irregular connectivities. We use two surfaces defined by thefollow-
ing functions adopted from [Xu 2004]:

z = F1(x, y) =
1.25 + cos(5.4y)

6 + 6(3x− 1)2
, (32)

z = F2(x, y) = exp

„

−81

16

`
(x− 0.5)2 + (y − 0.5)2

´
«

, (33)
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Figure 6: Comparisons of curvature computations with and with-
out weighting for sphere (left) and torus (right).

where(x, y) ∈ [0, 1] × [0, 1]. Figure 7(a-b) shows these surfaces,
color-coded by the mean curvatures. We use two types of meshes,
including irregular and semi-regular meshes (see Figure 7(c-d)).
For convergence study, we refine the irregular meshes using the
standard one-to-four subdivision [Gallier 2000, p. 283] and refine
the semi-regular meshes by replicating the pattern. We computed
the “exact” differential quantities using the formulas in Section 3
in the global coordinate system, but performed all other computa-
tions in local coordinate systems. For rigorousness of the tests, we
consider bothL2 andL∞ errors. In addition, border vertices are
included in all the error measures, posting additional challenges to
the tests. Note that the results for vertices far away from the bound-
ary would be qualitatively similar to those of closed surfaces. We
primarily consider fittings of up to degree four, since higher conver-
gence rates may require larger neighborhoods for border vertices
(more than3.5-ring neighbors). To limit the length of presentation,
we report only some representative results to cover the aforemen-
tioned different aspects.

 

 

(a) F1. (b) F2.

(c) Irregular mesh. (d) Semi-regular mesh.

Figure 7: Test surfaces (a-b) and meshes (c-d). Surfaces are color-
coded by mean curvatures.

We first assess the errors in the computed normals for open surfaces.
Figure 8 shows the results forF1 over irregular meshes. We label



all the plots and convergence rates in the same way as for closed
surfaces. Letd denote the degree of a fitting. All these fittings de-
livered convergence rate ofd or higher inL2 errors. InL∞ errors,
computed asmaxi ‖ñi− n̂i‖2, the convergence rates wered−0.5
or higher, close to theoretical predictions.
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Figure 8: L2 (left) andL∞ (right) errors in computed normals for
F1 over irregular meshes.

Second, we assess the errors in the curvatures. Figure 9 shows the
errors in mean curvatures forF1 over irregular meshes, and Fig-
ure 10 shows the errors in Gaussian curvatures forF2 over semi-
regular meshes. Letκ andκ̃ denote the exact and computed quan-
tities. We computed theL2 error using (31) and computed theL∞

errors as
max

i
|κ̃i − κi| /max{|κi| , ǫ}, (34)

whereǫ = 0.01maxi |κi| was introduced to avoid division by too
small numbers. The convergence rates for curvatures were approx-
imately equal tod − 1 or higher for even-degree fittings and odd-
degree iterative fittings.
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Figure 9: L2 (left) andL∞ (right) in computed mean curvatures
for F1 over irregular meshes.
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Figure 10: L2 (left) andL∞ (right) in computed Gaussian curva-
tures forF2 over semi-regular meshes.

As noted earlier, the principal directions are inherently unstable
when the principal curvatures are roughly equal to each other (such
as at umbilic points). In Figure 11, we show theL2 andL∞ errors
of principal directions forF1 over semi-regular meshes, where the
errors are measured similarly as for normals. This surface is free of

umbilic points, and the principal directions converged at compara-
ble rates as curvatures for iterative cubic fitting and quartic fitting.
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Figure 11: L2 (left) andL∞ (right) in computed principal direc-
tions forF1 over semi-regular meshes.

Finally, to demonstrate the importance and effectiveness of our con-
ditioning procedure, Figure 12 shows comparison of computed nor-
mals and mean curvatures with and without conditioning (as la-
beled by “·nc” and “·c”, respectively) for fittings of degrees three,
five, and six. Here, the conditioning refers to requiring number of
points to be1.5 or more times of the number of unknowns as well
as the checking of condition numbers. Without conditioning, the
results exhibited large errors for normals and catastrophic failures
for curvatures, due to numerical instabilities. With conditioning,
our framework is stable for all the tests, although it did notachieve
the optimal convergence rate for the sixth-degree fittings due to too
small neighborhoods for the vertices near boundary.
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Figure 12: Comparisons of errors in computed normals (left) and
mean curvatures (right) with and without conditioning forF1 over
irregular meshes.

6 Discussions

In this paper, we presented a computational framework for comput-
ing the first- and second-order differential quantities of asurface
mesh. This framework is based on the computation of the first-and
second-order derivatives of a height function, which are then trans-
formed into differential quantities of a surface in a simpleand con-
sistent manner. We proposed an iterative fitting method to compute
the derivatives of the height function starting from the points with or
without the surface normals, solved by weighted least squares ap-
proximations. We improve the numerical stability by a systematic
point-selection strategy and QR factorization with safeguard. By
achieving both accuracy and stability, our method delivered con-
verging estimations of the derivatives of the height function and in
turn the differential quantities of the surfaces.

The main focus of this paper has been on the consistent and con-
verging computations of differential quantities. We did not address
the robustness issues for input surface meshes with large noise and
singularities (such as sharp ridges and corners). We have conducted
some preliminary comparisons with other methods, which we will



report elsewhere. One of the major motivating application of this
work is provably accurate and stable solutions of geometricflows
for geometric modeling and physics-based simulations. We are cur-
rently investigating the stability of our proposed methodsfor such
problems. Another future direction is to generalize our method to
compute higher-order differential quantities.
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