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Abstract

Differential quantities, including normals, curvaturpsincipal di-
rections, and associated matrices, play a fundamentalrr@eo-
metric processing and physics-based modeling. Computieget
differential quantitieconsistentlyon surface meshes is important
and challenging, and some existing methods often produm®in
sistent results and requiegl hocfixes. In this paper, we show that
the computation of the gradient and Hessian of a height iomct
provides the foundation for consistently computing théedéntial
quantities. We derive simplexplicit formulas for the transforma-
tions between the first- and second-order differential tjties (i.e.,
normal vector and principal curvature tensor) of a smootfasa
and the first- and second-order derivatives (i.e., gradiadtHes-
sian) of its corresponding height function. We then ingt a
general, flexible numerical framework to estimate the édeirres of
the height function based on local polynomial fittings fotated
as weighted least squares approximations. We also propoge a
erative fitting scheme to improve accuracy. This framewark-g
eralizes polynomial fitting and addresses some of its acguand
stability issues, as demonstrated by our theoretical aitahs well
as experimental results.
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1 Introduction

Computing normals and curvatures is a fundamental probtam f
many geometric and numerical computations, includingufeade-
tection, shape retrieval, shape registration or matchingface
fairing, surface mesh adaptation or remeshing, front trecknd
moving meshes.
been introduced for the computation of the differential ritees
(see e.g.[[Taubin 1995; Meek and Walton 2000; Meyer et &220
Cazals and Pouget 2005]). However, some of the existingadsth
may produce inconsistent results. For example, when etigha
the mean curvature using the cotangent formula and estightite
Gaussian curvature using the angle deficit [Meyer et al. Raga
principal curvatures obtained from these mean and Gaussian-
tures are not guaranteed to be real numbers. Such incorseste
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often requiread hocfixes to avoid crashing of the code, and their
effects on the accuracy of the applications are difficultrtalgze.

The ultimate goal of this work is to investigate a mathenadityc
sound framework that can compute the differential quagion-
sistently (i.e., satisfying the intrinsic constraints) with provabl
convergenceon general surface meshes, while being flexible and
easy to implement. This is undoubtly an ambitious goal. Al-
though we may have not fully achieved the goal, we make some
contributions toward it. First, using the singular valuead®po-
sition [Golub and Van Loan 1996] of the Jacobian matrix, we de
rive explicit formulas for the transformations betweenfing- and
second-order differential quantities of a smooth surfaee, (nor-

mal vector and principal curvature tensor) and the first-sssmbnd-
order derivatives of its corresponding height functioa.(igradient
and Hessian). We also give the explicit formulas for thetfarma-
tions of the gradient and Hessian under a rotation of thedioate
system. These transformations can be obtained withoutifigrthe
shape operator and the associated computation of its eilyesvor
eigenvectors. We then reduce the problem, in a consistent ma
ner, to the computation of the gradient and Hessian of a ifumct

in two dimensions, which can then be computed more readily by
customizing classical numerical techniques.

Our second contribution is to develop a general and flexible
method for differentiating a height function, which can bewed

as a generalization of the polynomial fitting of osculatirgsj
[Cazals and Pouget 2005]. Our method is based on the Taylor se
ries expansions of a function and its derivatives, thenezblyy a
weighted least squares formulation. We also propose aatiiter
fitting method that improves the accuracy of fittings. Furthe
more, we address the numerical stability issues by a sysiema
point-selection strategy and a numerical solver with sazded. We
present experimental results to demonstrate the accunalcstabil-

ity of our approach for fittings up to degree six.

The remainder of this paper is organized as follows. Se@ios+
views some related work on the computation of differentigdrati-
ties of discrete surfaces. Sectidn 3 analyzes the stahiiifyconsis-

In recent years, a number of methods havetency of classical formulas for computing differential qtities for

continuous surfaces and establishes the theoretical &iomdfor
consistent computations using a height function. Se€Efipredents
a general framework and a unified analysis for computing the g
dient and Hessian of a height function based on polynomtaddi,
including an iterative-fitting scheme. Sect{dn 5 presentaes ex-
perimental results to demonstrate the accuracy and s$yabflour
approach. Sectidd 6 concludes the paper with a discussifutune
research directions.

2 Related Work

Many methods have been proposed for computing or estimtiténg
first- and second-order differential quantities of a swefda recent
years, there have been significant interests in the corvesgend
consistency of these methods. We do not attempt to give amsmp
hensive review of these methods but consider only a few aghthe
that are more relevant to our proposed approach; readene-are
ferred to [Petitjean 2002] and [Gatzke and Grimm 2006] faneo
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prehensive surveys. Among the existing methods, many af the
estimate the different quantities separately of each otRer the
estimation of the normals, a common practice is to estimate v
tex normals using a weighted average of face normals, suateas
weighting or angle weighting. These methods in general alg o
first-order accurate, although they are the most efficient.

For curvature estimation, Meyer et al.
discrete operators for computing normals and curvatunemng
which the more popular one is the cotangent formula for mean c
vatures, which is closely related to the formula for Dirigthén-
ergy of Pinkall and Polthierl [1993]. Xu_[2004] studied theneo

[2002] proposed some

we will show shortly, itis not straightforward to evaluaketclassi-
cal formulas consistently (i.e., in a backward-stable ifashin the
presence of round-off errors due to the potential loss ofrsgiry
and orthogonality. Starting from these classical formulasderive
some simple formulas by a novel use of the singular valuerdeco
position of the Jacobian of the height functions. The foamsidre
easier to understand and to evaluate. To the best of our kadge|
some of our formulas (including those for the symmetric shap-
erator and principal curvature tensor) have not previoaplyeared
in the literature.

vergence of a number of methods for estimating the mean cur- 3-1 Classical Formulas for Height Functions

vatures (and more generally, the Laplace-Beltrami opespatolt
was concluded that the cotangent formula does not conveogpe
for some special cases, as also noted_in [Hildebrandt e0@€;2
Wardetzky 20077]. Langer et al. [200%a; 2005b] proposed getan
weighted formula for estimating mean-curvature vectorbpse
convergence also relies on special symmetric patterns oéshm

Agam and Tang [2005] proposed a framework to estimate curva-

tures of discrete surfaces based on local directional czaxgpling.
Cohen-Steiner and Morvan_[2003] used normal cycle to amalyz
convergence of curvature measures for densely sampleatestf

Vertex-based quadratic or higher-order polynomial fitsiegn pro-
duce convergent normal and curvature estimations. Meek\&id
ton [2000] studied the convergence properties of a numbesof
timators for normals and curvatures. It was further gefzrdl
to higher-degree polynomial fittings by Cazals and Poudg®%?
These methods are most closely related to our approach.
well-known that these methods may encounter numericatdifi
ties at low-valence vertices or special arrangements dicesr
[Lancaster and Salkauskas 1986], which we address in tipisrpa
Razdan and Baé [2005] proposed a scheme to estimate cawatur
using biquadratic Bézier patches. Some methods were atso p
posed to improve robustness of curvature estimation undieen
For example, Ohtake et al._[2004] estimated curvatures bydit
the surface implicitly with multi-level meshes. Recentfang et

al. [2006] proposed to improve robustness by adapting tighne
borhood sizes. These methods in general only provide awevat
estimations that are meaningful in some average sense bubtdo
necessarily guarantee convergence of pointwise estimates

Some of the methods estimate the second-order differeqigah-
tities from the surface normals. Goldfeather and Integd2004]
proposed a cubic-order formula by fitting the positions amdmals
of the surface simultaneously to estimate curvatures aimtipal
directions. Theisel et al._[2004] proposed a face-baserbaph for
computing shape operators using linear interpolation ofnads.
Rusinkiewicz [2004] proposed a similar face-based cureasisti-

mator from vertex normals. These methods rely on good normal

estimations for reliable results. Zorin and coworkérs [@@0085;
Grinspun et al. 2006] proposed to compute a shape operdtay us
mid-edge normals, which resembles and “corrects” the ftarnti
[Ohate and Cervera 1993]. Good results were obtained ictipea
but there was no theoretical guarantee of its order of coevere.

3 Consistent Formulas of Curvatures for
Continuous Surfaces

In this section, we first consider the computation of differe
tial quantities of continuous surfaces (as opposed to eliscur-
faces). This is a classical subject of differential geognétee e.g.,
[do Carmo 1976]), but the differential quantities are ttiadially
expressed in terms of the first and second fundamental fovirish
are geometrically intrinsic but sometimes difficult to urstand
when a change of coordinate system is involved. Furthernasre

It is

We first review some well-known concepts and formulas inediff
ential geometry and geometric modeling. Given a smoothasarf
defined in the globatyz coordinate system, it can be transformed
into a localuvw coordinate system by translation and rotation. As-
sume both coordinate frames are orthonormal right-hant:sys
Let the origin of the local frame b, yo, zO]T (note that for con-
venience we treat points as column vectors). ;eandi, be the
unit vectors in the global coordinate system along the pesdi-
rections of theu andv axes, respectively. Therip = #; x &2 is
the unit vector along the positive direction. Let@ denote the
orthogonal matrix composed of column vectérst,, andri, i.e.,

@)

where {' denotes concatenation. Any point on the surface is
then transformed to a poifi, v, f(u)]” = QT (x — x¢), where

u = (u,v). In general,f is not a one-to-one mapping over the
whole surface, but if thawv plane is close to the tangent plane at a
point , then f would be one-to-one in a neighborhoodaaf We
refer to this functionf (u) : R* — R (more precisely, from a subset
of R? into R) as aheight functioratz in theuvw coordinate frame.

In the following, all the formulas are given in the»w coordinate
frame unless otherwise stated.

If the surface is smooth, the height functigndefines a smooth

surface composed of poings(u) = [u,v, f(u)]” € R3. Let
Vf = { ?‘ denote the gradient of with respect tou and
H = { ;““ ?‘” } the Hessian off, where fu,, = fou. The
Jacobian op(w) with respect tas, denoted byJ, is then
1 0
J = pu pv = 0 1 (2)
fu  fo

The vectorsp,, and p, form a basis of the tangent space of the
surface ap, though they may not be unit vectors and may not be

. Thefirst funda-

G is called thefirst fundamental matrix Its determinant iy =
detG) = 1+ f2 + f2. We introduce a symbal = /g, which

will reoccur many times throughout this section. Geomatlye
L= |p, x p,|, soitis the “area element” and is equal to the area

du
dv
mental formof the surface is given by the quadratic form

orthogonal to each other. Léu denote

1+ f2
Sfufo

fufo

I(du) = du” Gdu, whereG = J"J = { Iy



of the parallelogram spanned py, andp,,. The unit normal to the
surface is then

_fu
L Py XDy, 1|
The normal in the globatyz frame is then
N B I U
ng = ZQ - | = Z(m—futl—fvb)- (4)
1

Thesecond fundamental form the basig{p,,, p, } is given by the
quadratic form

where

T
nupu

B=—
Ay P,

I1(du) = du” Bdu
AT T ~ T
n%pu :| n puu n puv (5)

ﬁl/p’u - |: ’ﬁ’ pu’u ﬁ’ p’uv

B is called thesecond fundamental matriband it measures the
change of surface normals. It is easy to verify that

B=H/l
by plugging [2) and{3) intd{5).

In differential geometry, the well-knowWeingarten equationgad
[P | o] = — [P, | P,) W, WwhereW is theWeingarten matrix
(a2 x 2 matrix a.k.a. theshape operatdgrat pointp with basis
{p,.,p,}- By left-multiplying J” on both sides, we havB =

GW , and therefore,

(6)

@)

The eigenvalues; and k2 of the Weingarten matri¥ are the
principal curvaturesat p. The mean curvatures g (k1 +

k2)/2 and is equal to half of the trace 8. TheGaussian curva-
tureatp is kg = k1k2 and is equal to the determinant@f. Note
thatk? > ke, becausel(sy — ka) = (k1 — k2)?. Letd, and
d denote the eigenvectors 8. Thene, = Jd,/||Jd:|| and
és = Jdy/||Jd2|| are theprincipal directions

W =G 'B= %(JTJ)’lH.

The principal curvatures and principal directions arerofised to
construct they x 3 matrix

C = k1618] + Kaésés. (8)

We refer toC' as theprincipal curvature tensom the local coordi-
nate system. Note th&t is sometimes simply called thervature
tensor which is an overloaded term (see e.@., [do Carmo 1992]),
but we nevertheless will use it for conciseness in laterudisions

of this paper. Note thaf must be in the null space &, i.e.,
Cn = 0. The curvature tensor is particularly useful because it
can facilitate coordinate transformation. In particuthg curvature
tensor in the global coordinate systens = QCQ7.

3.2 Consistency of Classical Formulas

The Weingarten equation is a standard way for defining and com
puting the principal curvatures and principal directiomslifferen-

tial geometry[[do Carmo 1976], so it is important to underdtés
stability and consistency. We notice that the singulaveaecom-
position (SVD) of the Jacobian matrik is given by

T
= s e [g QHE ‘CS]T, ©)
vee o L0t

U b

with
_fu o

VA VA
wheref = arctan(f,/f.). Inthe special case ¢f, = f, = 0, we

have? = 1, and anyd leads to a valid SVD off. To resolve this
singularity, we defind = 0 when f, = f, = 0.

c=rcosf = ands = sinf =

(10

In (@), the column vectors di/ are the left singular vectors of,
which form an orthonormal basis of the tangent space, ttgodia
entries of¥ are the singular values, and is an orthogonal matrix
composed of the right singular vectors.bf The condition number
of a matrix in 2-norm is defined as the ratio between its largad
the smallest singular values, so we obtain the following.

Lemmal The condition number of in 2-norm is¢ and the con-
dition number of the first fundamental matiis ¢2.

Note that the condition number @ is equal to its determinant.
This is a coincidence because one of the singular valugs arfd

in turn G happens to be equal to SupposeH has an absolute
errord H of O(¢||H ||2). From the standard perturbation analysis,
we know that the relative error ifV computed from[{[7) can be
as large ag)(¢%¢). The mean and Gaussian curvatures, if com-
puted from the trace and determinant¥df, would then have an
absolute error 0D (¢*¢||W||2). Therefore, the Weingarten equa-
tion must be avoided i#> > 1, and it is desirable to keep as
close tol as possible. Note thd¥ is nonsymmetric, and more
precisely it is nonnormal, i.eW W # WW?. The eigen-
values of nonsymmetric matrices are not necessarily redl tlze
eigenvectors of a nonnormal matrix are not orthogonal tb ettver
[Golub and Van Loan 1996]. Therefore, in the presence ofdeun
off or discretization errors, the principal curvatures pated from
the Weingarten matrix are not guaranteed to be real, andrithe
pal directions are not guaranteed to be orthogonal, capsitegtial
inconsistencies.

Unlike the Weingarten matri¥%”, a curvature tensor is always
symmetric. The curvature tensors are important concepts an
are widely used nowadays (see e.q., [Gatzke and Grimm 2006;
Theisel et al. 2004]). In principle, the two larger eigenn (in
terms of magnitude) of a curvature tensors correspondindpeo
principal curvatures and their corresponding eigenveajore a set

of orthogonal principal directions. As long as the estirdaterva-
tures are real, one can ugé (8) to construct a curvaturert€nso
except thaiC' would be polluted by the errors associated with the
nonorthogonal eigenvectors ¥ . This pollution can in turn lead

to large errors in both the eigenvalues and eigenvalu&s.ofor
example, for a spherical pateh= /4 — (z — 0.5)2 — (y — 0.5)2
over the interval0, 1] x [0, 1], we observed a relative error of up to
8.5% in the eigenvalues of the curvature tensors constructed fro
a nonsymmetric Weingarten matrix. Another serious probéesm
sociated with curvature tensors is that if the minimum ctuseis
close to zero, then the eigenvectors of a curvature tensoexar
tremely ill-conditioned. Therefore, one must avoid conmuyithe
principal directions as the eigenvectors of the curvatemsar if the
minimum curvature is close to 0.

3.3 Simple, Consistent Formulas

To overcome the potential inconsistencies of the clas$arahu-
las of principal curvatures and principal directions in firesence
of large ¢ or round-off errors, we derive a different set of explicit
formulas. Our main idea is to enforce orthogonality and symm
try explicitly and to make the error propagation indepenaéid as
much as possible, starting from the following simple obaton.

Lemma2 LetU = [u: | uz] be a3 x 2 matrix whose column vec-
tors form an orthonormal basis of the Jacobian, afidbe the cur-



vature tensorlU " CU is the shape operator in the badia 1, u2},
and it is a symmetric matrix with an orthogonal diagonalinat
XAX™! whose eigenvalues (i.e., the diagonal entried\dfare
real and whose eigenvectors are orthonormal (i1 = X 1).
The column vectors @ X are the principal directions.

PROOF Let x; andd; be the eigenvalues and eigenvectors of the

Weingarten matrid¥ in (). Therefore,

Bd;, = GWd; = k;Gd;. (1)

LetS = U7 J. By left-multiplying S~ on both sides of{11), we
have

S TBST(Sd;) = ri(S™TGd;) = ki(Sdy).

Therefore, the eigenvalues 85" BS~! are the principal curva-
turesk; and its eigenvectors are the principal directiohs= Sd,
andd. = Sds in the basis{u,u2}, s0S~T BS~! is the shape
operator in this basis. This shape operator is symmetridfsso
eigenvalues are real and its eigenvectors are orthonoByadefi-
nition of the curvature tensor,

C=rmUdid, U" + koUdods U
= U(/{lzhaf + Hz&Q&g)UT
=Uus'Bs'U7,

soUTCU is equal to the shape opera®®r” BS 1. [ ]

Lemmal2 holds for any orthonormal basis of the Jacobian. erher

is an infinite number of such bases. Algorithmically, suctaai®
can be obtained from either the QR factorization or SVJofWe
choose the latter for its simplicity and elegance, and itgwout to
be particularly revealing.

Theorem 1 LetJ = UXVT be the reduced SVD of the Jacobian
of a height functionf as given by[(9). Let:; andu> denote the
column vectors d/ and letS = V7. The shape operator in the
orthonormal basi w1, u2} is the symmetric matrix

s T a1 L[/l s/t c/t —s

W =5"BS 72{_8 C}H{s/e e | @2
wherec and s are defined in[{10).
PrROOF Note that

-1 -1_ | ¢ —s 1/¢ 0| | ¢/t —s
So=Vvyo= { s ¢ ] { 0 1 } - { s/t ¢ ]'

Following the same argument as for Lemma 2, Eql (12) holda.

To the best of our knowledge, the symmetric shape opeffor
defined in[(IR) has not previously appeared in the literatie-
causeW is symmetric, its eigenvalues (i.e., principal curvatiires
are guaranteed to be real, and its eigenvectors (i.e.,ipaindi-
rections) are guaranteed to be orthonormal. In additionalbse
W is given explicitly by [I2), the relative error il is no longer
amplified by a factor of? (or even) in the computation oV .
Therefore, this symmetric shape operator provides a densigay
for computing the principal curvatures or principal diieos. Fur-
thermore, using this result we can now compute the curvidmisor
even without forming the shape operator.

Theorem 2 Let the transformation from the local to global coordi-
nate system be = Qu + x. The curvature tensors in the local

and global coordinate systems are

c=J""BJ" = %J*THJ+ (13)
C,=J"BJ} = %J;THJ; (14)
respectively, where
1 1 + f2 _fufv fu
+ _ = v
A ey & (13)

is the pseudo-inverse df, andJ} = J*Q" is the pseudo-inverse
of J, = QJ. In addition, H = LJ"CJ = LI Cy4J,.

PROOF. The principal directions aré; = Ud, andé; = Uds in
the local coordinate system, whedg are the eigenvectors oV .
Therefore,

C = k16187 + koésed
=UwWUT
=wx'vhHBwvxe'u")
=JTBJ".

By left multiplying £J7 and right multiplying.J of both sides, we
then have

Jt*cyg=¢J*J""BJTJ =¢B = H.

The curvature tensor in the global coordinate systen®js =
QCQ", which results in[(I¥) andd = ¢J] C4J,. To obtain
the explicit formula forJ ™, simply plug inc, s, and? into

J+:[c —3H1(/)4 (1)H HV{)II/Z .

S C
Alternatively, we may obtainJ ™ by expanding and simplifying
(0 A [

c/t s/t

—S C

Theoreni R allows us to transform between the curvature temsb
the Hessian of a height function, both of which are symmaeitréc
trices. Furthermore, we can easily compute the gradient-esd
sian of one height function from their corresponding valagan-
other height function in a different coordinate systemesponding
to the same point of a smooth surface.

{ ?‘ ] and HessianH

of a height functionf in an orthonormal coordinate system, let
denote\/1 + f2 + f2, @ the unit normal[— f.., —f., 1] /¢, C
the curvature tensod *7 HJ* /¢, whereJ = [I2xo | Vf]". Let

Q =[q, | 4, | 4] be the orthogonal matrix whose column vectors
form the axes of another coordinate system, wiggré > 0. Let

[, B,~]" denoteQ” 7, and letf denote the height function in the
latter coordinate frame corresponding to the same smootfase.

Then the gradient of is Vf = { :gﬂ ] and the Hessian of
AT

isJ' CJ/y, whereJ = Q [szz | Vf}

Corollary 1 Given the gradienvV f =

A direct implication of this corollary is that knowing theonsis-

tent surface normal and curvature tensor of a smooth surface in

the global coordinate frame is equivalent to knowing tioasis-
tent gradient and Hessian of its corresponding height function i
any local coordinate frame in which the Jacobian is nondegda



(i.e.,£ > 0). Here, the consistency refers to the fact that the normal
n is in the null space of the curvature tenggrand that bothC

and the Hessialll are symmetric (.,eCn = 0, CT = C, and
H=HT).

The preceding formulas for the symmetric shape operator and
curvature tensor appear to be new and are particularly usefu
when computing the principal curvatures and principal dire
tions. Because many applications require the mean cugvaiun
Gaussian curvature, we also give the following simple fdesu
which are equivalent to those in classical differential rgetry

[do Carmo 1976, p. 163] but are given here in a more concise.for

Theorem 3 The mean and Gaussian curvature of the height func-
tion f(u) : R* — Rare

tr(H)
20

(VHTH(V )

det H)
203 :

, andkg 7

KH = (16)

PROOF. Letv = [¢,s]” andvt = [—s,¢|”, wherec ands are

defined in[(ID). The trace a¥ is

tr(W) = tr @ { ol }H{ e D
-4 (gt

_ 23 (o Ho + o T Ho")
(13 (£2tr(H) (2 - 1)vTHv) ,

where the last step uses’' Hv + v*"Hv = tr(H). Since
V{2 — 1v = V£, therefore,
_ 1w UWH)  (VHTH(VS)
KRH = 2tr(W) =9 Y8 .
With regard tox ¢, we have
= _ det(H
ke = def{W) = det(S~")°det( H /() = 2).
|

This completes our description of the explicit formulas fbe
differential quantities. Since their derivations, espégifor the
principal curvatures, principal directions, and curvattensor, are
based on the shape operator associated with the left singedtors
of the Jacobian, many intermediate terms cancel out duenongy
try and orthogonality, and the final formulas are remarkag-
ple. It is important to note that even if the gradient or Hassi
contain input errors, as long as the Hessian is symmetricttznd
Jacobian is nondegenerate, our formulas are consistehe ifok
lowing sense: The principal curvatures are real, the gadairec-
tions are orthonormal, and the surface normal is orthogtmtie
column space of, the row spaces af ¥, and the column space of
the curvature tensor.

The consistency of our formulas is enabled by a simple factor:
sistent set of first- and second-order differential queastihave five
degrees of freedom, which is a direct result of Corol[@ryri tHe
Weingarten equations, numerically there are six degrefe@dom
(three inG and three inB), so there is an implicit constraint (which
should have enforced the orthogonality of the principatctions)
not present in the equations. In general, if a system of ansbhas
more degrees of freedom than the intrinsic dimension of the-p
lem (i.e., with implicit constraints), its numerical sdtut would
likely lead to inconsistencies in the presence of roundeofors.

The same argument may be applied to other methods that assume
more than five independent parameters per point for the &rat-
second-order differential quantities. For example, if dliféeren-

tial quantities are evaluated from a parameterization afirfase
wherez, y, andz coordinates are viewed as independent functions
of v andv, one must compute more than five parameters, so their
numerical solutions may not be consistent. The gradientthed
Hessian of the height function contain exactly five degrddsce-

dom when the symmetry of the Hessian is enforced, so we have
reduced the problem consistently into the computation efgta-
dient and Hessian of the height function. We therefore baoild
method based on the estimation of the gradient and Hesside of
height functions.

4 Computing Gradient and Hessian of Height
Function

To apply the formulas for continuous surfaces to discrete
surfaces, we must select a region of interest, define a lo-
cal wvw coordinate frame, and approximate the gradient and
Hessian of the resulting height function. We build our
method based on a local polynomial fitting. Polynomial fit-
ting is not a new idea and has been studied intensively
(e.g., [Lancaster and Salkauskas 1986:; de Boor and Ron 1992;
Meek and Walton 2000; Cazals and Pouget 2005]). Howeves, it i
well-known that polynomial fitting may suffer from numerida-
stabilities, which in turn can undermine convergence aad l®
large errors. We propose some technigues to overcome iiirstab
ties and to improve the accuracy of fittings. These techisigue
based on classical concepts in numerical linear algebrarbutus-
tomized here for derivative computations. In addition, wepose a
new iterative-fitting scheme and also present a unified arralysis

of our approach.

4.1 Local Polynomial Fitting

The local polynomial fitting can be derived from the Taylorieg
expansion. Lef (u) denote a bivariate function, whete= (u, v),

and letc;;, be a shorthand fog%f(o). The Taylor series ex-

pansion off about the originug = (0, 0) is

oo j+k=p

=2 >

p=0 j,k>0

w‘ 17)

Given a positive integet, a functionf () can be approximated to
(d + 1)st order accuracy about the origiy as

=

Taylor polynomial

i+

+0<|\u||d“> (18)
N’

remainder

assumingf hasd + 1 continuous derivatives. The derivatives of the
Taylor polynomial are the same gsatu, up to degreel.

Given a set of points sampling a small patch of a smooth seirtae
method of local polynomial fitting approximates the Tayladyp
nomial by estimating;, from the given points. The degree of the
polynomial, denoted by, is called thedegree of fitting We will

limit ourselves to relatively low degree fittings (sé&y< 6), because
high-degree fittings tend to be more oscillatory and ledsietalo
estimater;;, at a vertex of a surface mesh, we choose the vertex to
be the origin of a locallww coordinate frame, where the compo-
nent of the coordinates in this frame would be the heighttiongf.



We use an approximate vertex normal (e.g., obtained by gvera
the face normals) as the direction, so that the condition number
of the Jacobian of would be close to 1. Plugging in each given
point [u;, v;, f:]” into (I8), we obtain an approximate equation

d jtk=p

2 >

p=0 j,k>0

ujk

lk!

~ fi, (19)

which hasn = (d + 1)(d + 2)/2 unknowns (i.e.c;, for 0 <
j+k <d,j>0andk > 0). As a concrete example, for cubic
fitting the equation is

2
U
coo + c1oui + co1v; + 02072 + cruivit

2 3 2, 2 3

¢ v; +e % +e Ui Vs +e U;V; +e vy ""f
02—~ 30 21 12—7— 03— ~ Ji-
2 6 2 2 6

(20)

Letm denote the number of these given points (including the xerte
uo itself), we then obtain am x n rectangular linear system. If
we want to enforce the fit to pass through the vertex itselfcare
simply setcop = 0 and remove the equation corresponding:tQ
leading to an(m — 1) x (n — 1) rectangular linear system. In
our experiments, it seems to have little benefit to do thisysalo
not enforcecoo = 0 in the following discussions. However, our
framework can be easily adapted to enforge = 0 if desired.

Suppose we have solved this rectangular linear system aathed

the approximation of:;. At uo, the gradient off is { g(l)‘lj ]

C20 C11

Co2
into the formulas in Section] 3 would give us the normal and cur
vature approximations ato. This approach is similar to the fit-
ting methods in[Cazals and Pouget 2005: Meek and Walton]2000
Note that the Taylor series expansionsfpfand f,, aboutu, are

and the Hessian i . Plugging their approximations

d—1j+k=p

Z Z C(aﬂ)k lk:"

p=0 7,k>0

(1)

d—1j+k=p

HOEDDY €1041) T 'k:"

p=0 5,k>0

(22)

where the residual i©(||u|%). The expansions for the second
derivatives have similar patterns. Plugging in the appnations

is to minimize a weighted norm (or semi-norm), i.e.,

min [[Ve - fllyy = min [[W (Ve — £, (24)
whereW is anm x m diagonal matrix with nonnegative entries.
We refer toW as aweighting matrix Such a formulation is called
weighted least squard&olub and Van Loan 1996, p. 265], and it
has a unique solution WV has full rank. It is equivalent to a
linear least squares problem

Ac =~ b, whereA =WV andb =W f. (25)
Let w; denote theth diagonal entry oW . Algebraically,w; as-
signs a weight to each row of the linear system. Geometyidall
assigns a priority to each point (the larger, the higher the prior-
ity). If f isinthe column space af, then a nonsingular weighting
matrix has no effect on the solution of the linear system. eBth
wise, different weighting matrices may lead to differeniusions.
Furthermore, by setting; to be zero or close to zero, the weighting
matrix can be used as a mechanism for filtering out outliethén
given points.

The weighted least squares formulation is a general teakniout
the choice ofW is problem dependent. For local polynomial fit-
ting, it is natural to assign lower priorities to points tlaag¢ farther
away from the origin or whose normals differ substantialgnfi the

w direction of the local coordinate frame. Furthermore, theice

of W may affect the residual and also the condition numbed of
Let m; denote an initial approximation of the unit normal at the
ith vertex (e.g., obtained by averaging face normals). Bageatie
above considerations, we choose the weight oftheertex as

d/2
=t [ (Vi)™ (26)
wherey;” = max(0, 7] o) ande = o= 3" |lui®.
general, this weight is approximately equal|ta;||~%/2, where

the exponenti/2 tries to balance between accuracy and stability.
The factory;” approached for fine meshes at smooth areas, but
it serves as a safeguard against drastically changing ferioia
coarse meshes or nonsmooth areas. Thedgmavents the weights
from becoming too large at points that are too closedo

The weighting matrix scales the rows bf. However, ifu; or v;
are close to zero, the columns¥Wfcan be poorly scaled, so that the
ith row of A would be close tdw;, 0, . . ., 0]. Such a matrix would
have a very large condition number. A general approach ¢wiatie

of ¢ into these series, we can also obtain the estimations of the this problem is to introduce eolumn scaling matrixS. The least

gradient, Hessian, and in turn the curvatures at a poinearu,.
The remaining questions for this approach are the theatasisue
of solving the rectangular system as well as the practisaies of
the selection of points and robust implementation.

4.2 Weighted Least Squares Formulation

Let us denote the rectangular linear system obtained fr@nfk
t=1,...,mas
Ve f, (23)

wherec is ann-vector composed of;, f is anm-vector com-
posed of f;, and V' is a generalized Vandermonde matrix~or
now, let us assume that > n andV has full rank (i.e., its col-
umn vectors are linearly independent). Such a system idedid
over-determined We will address the robust numerical solutions
for more general cases in the next subsection.

The simplest solution t§ (23) is to minimize the 2-norm of tesid-
ual Ve — f,i.e.,mine ||[Ve — fl|l2. A more general formulation

squares problem then becomes

mén (AS)d — b2, whered = S~! (27)

Here,S is a nonsingulan x n diagonal matrix. Unlike the weight-
ing matrix W, the scaling matrixS does not change the solution
of ¢ under exact arithmetic. However, it can significantly img@o
the condition number and in turn improve the accuracy in tles
ence of round-off errors. In general, e} denote thejth column
vector of A. We chooseS = diag(1/||a1]l2,...,1/|lax]2), as it
approximately minimizes the 2-norm condition numbetof (see
[Golub and Van Loan 1996, p. 265] and [van der Sluis 1969]).

4.3 Robust Implementation

Our preceding discussions considered only over-detednays-
tems. However, even ifn > n, the matrixV' (and in turnA.S)

may not have full rank for certain arrangements of pointstheo
weighted least squares would be practically under-detexdmvith



an infinite number of solutions. Numerically, evenVif has full

rank, the condition number aA.S may still be arbitrarily large,
which in turn may lead to arbitrarily large errors in the ested
derivatives. We address these issues by proposing a sy&tevag

for selecting the points and a safeguard for QR factorinator

solving the least squares problem.

4.3.1 Section of Points

As pointed out in[[Lancaster and Salkauskas 1986], the tondi
number of polynomial fitting can depend on the arrangemehts o
points. The situation may appear to be hopeless, becausegee-
eral have little control (if any at all) about the locatiorishe points.
However, the problem can be much alleviated when the nunfber o
pointsm is substantially larger than the number of unknowndo

the best of our knowledge, no precise relationship betweeoan-
dition number andn/n has been established. However, it suffices
here to have an intuitive understanding from the geometitieri
pretation of condition numbers. Observe thatanx n matrix M
(with m > n) is rank deficient if its row vectors are co-planar (i.e,
contained in a hyperplane of dimension less thanand its con-
dition number is very large if its row vectors are nearly darar
(i.e., if they lie in the proximity of a hyperplane). Suppdke row
vectors of M are random with a nearly uniform distribution, then
the probability of the vectors being nearly co-planar dases ex-
ponentially asm increases. Therefore, having more points than
the unknowns can be highly beneficial in decreasing the ititya

of ill-conditioning for well-scaled matrices. In additipit is well-
known that having more points also improves noise resistafc
the fitting, which however is beyond the scope of this paper.

Based on the above observation, we requiréo be larger tham,
but a too largen would compromise efficiency and may also under-
mine accuracy. As a rule of thumb, it appears to be idealfoo be
betweenl.5n and2n. For triangular meshes, we define the follow-
ing neighborhoods that meet this criterion. First, let ungethe
1-ring neighbor face®f a vertex to be the triangles incident on it.
We define thel-ring neighborhoodf a vertex to be the vertices of
its 1-ring neighbor faces, and define th&-ring neighborhoods
the vertices of all the faces that share an edge with a 1-@nghn
bor face. This definition of 1-ring neighborhood is convendl,
but our definition of 1.5-ring neighborhood appears to be. raw-
thermore, fork > 1, we define thgk + 1)-ring neighborhoodof

a vertex to be the vertices of thiering neighborhood along with
their 1-ring neighbors, and define ttie+ 1.5)-ring neighborhood
to be the vertices of the-ring neighborhood along with their 1.5-
ring neighbors. Figurgl1 illustrates these neighborhodihitiens
up t02.5 rings.

Observe that a typicaf%-ring neighborhood has about the ideal
number of points for theith degree fittings at least up to degree
six, which is evident from Tablel 1. Therefore, we use thishas t
general guideline for selecting the points. Note that docedly
(such as for the points near boundary) ﬂsg.i-ring neighborhood
may not have enough points. If the number of points is less tha
1.5n, we increase the ring level liy5 up to3.5. Note that we do
not attempt to filter out the points that are far away from ttigio

at this stage, because such a filtering is done more systzihati
through the weighting matrix if (24).

4.3.2 QR Factorization with Safeguard

1ring

\/\/\/\/ 1.5ring
2.5ring 2 ring

Figure 1: Schematics of 1-ring, 1.5-ring, 2-ring, and 2.5-ring
neighbor vertices of center vertex (black) in each illusoa.

Table 1: Numbers of coefficients ifth degree fittings versus num-
bers of points in typicali;—1 rings.

degree ¢) |1] 2] 3]4]5]6
#coeffs. 3/ 6 |10]15]| 21| 28
#pointsinlring [ 7 | 13| 19| 31| 37| 55

[Golub and Van Loan 1996, p. 270]. When appliedid (27), tie fo
mer approach would seek a solution that minimizes the 2-rafrm
the solution vectol|d||. among all the feasible solutions, and the
latter provides an efficient but less robust approximatthé for-
mer. Neither of these approaches seems appropriate irothiext,
because they do not give higher priorities to the lower d¢ites,
which are the solutions of interest.

Instead, we propose a safeguard for QR factorization fotcba!

fittings. Let the columns oV (and in turn ofA) be sorted in in-
creasing order of the derivatives (i.e., in increasing oade + k).

Let the reduced QR factorization &S be

AS = QR,

where Q is m x n with orthonormal column vectors anR is
ann x n upper-triangular matrix. The 2-norm condition num-
ber of AS is the same as that d®. To determine whetheA S

is nearly rank deficient, we estimate the condition numbeRof
in 1-norm (instead of 2-norm, for better efficiency), whichnc
be done efficiently for triangular matrices and is readilyibv
able in linear algebra libraries (such as DGECON in LAPACK
[Anderson et al. 1999]). If the condition number Bfis too large
(e.g.,> 10°), we decrease the degree of the fitting by removing the
last few columns ofA S that correspond to the highest derivatives.
Note that QR factorization need not be recomputed afteredser
ing the degree of fitting, because it can be obtained by remgovi
the corresponding columns i@ and removing the corresponding
rows and columns itR. If the condition number is still large, we

Our discussions about the point selection was based on a prob would further reduce the degree of fitting until the condlitimum-

ability argument. Therefore, ill-conditioning may stiltcur es-
pecially near the boundary of a surface mesh.
approaches for addressing ill-conditioned rectangulzedi sys-
tems include SVD or QR factorization with column pivotingeés

ber is small or the fitting becomes linear. l@tand R denote the

The standard"€duced matrices af and R, and the final solution of is given

by
(28)



whereR ™" denotes a back substitution step. Compared to SVD or optional, because we found it to be beneficial only for odgrele

QR with partial pivoting, the above procedure is more adeufar
derivative estimation, as it gives higher priorities to tavderiva-
tives, and at the same time it is more efficient than SVD.

4.4 lterative Fitting of Derivatives

The polynomial fitting above uses only the coordinates ofjitien
points. If accurate normals are known, it can be beneficithie
advantage of them. If the normals are not given a priori, wg ma
estimate them first by using the polynomial fitting describedier.
We refer to this approach @srative fitting

First, we convert the vertex normals into the gradients @& th
height function within the localww frame at a point. Lefy; =
[ai,ﬁi,%]T denote the unit normal at thith point in theuvw
coordinate system, and then the gradient of the height ifumds
—Qy i .
{ —Biﬂi } Letajr = c(j+1)x andbjr = c;k+1). By plugging
us, vi, and fy, (us, v;) & —a; /~; into (2), we obtain an equation
for the coefficientsus; similarly for f, andbs. For example, for
cubic fittings we obtain the equations

2
U;
apo + aloui + ao1vi + az0— + a11uivi+

2
a ﬁ—l—a 3—I—a u%i—l—a —iv22+a U—?N & (29)
027 8075 2175 1275 035" A o
2
boo + brow; + borvi + 17201%Z + briusvi+
2 3 w2v 3
Vi u; vy Bi
boo — + bzg— + b b1 bos ~——. (30
022+306+212+12+ 3 %_()

If we enforcea; r+1 = bj+1,, explicitly, we would obtain a sin-
gle linear system for all theas andbs with a reduced number of
unknowns. Alternativelyq;;, andb;;, can be solved separately us-
ing the same coefficient matrix 4s123) and the same weighted |
squares formulation, but two different right-hand sidetees; and
thena; r+1 andb;41,, must be averaged. The latter approach com-
promises the optimality of the solution without compromgsithe
symmetry and the order of convergence. We choose the Igtter a
proach for simplicity.

After obtaining the coefficientss andbs, we then obtain the Hes-
sian of the height function at, as

(ao1 + b10)/2
bo1

aio
Ho =1 (401 + buo) /2
From the gradient and Hessian, the second-order diffedeqian-
tities are then obtained using the formulas in Sedfion 3. Wve-s
marize the overall iterative fitting algorithm as follows:

1) Obtain initial estimation of vertex normals by averadiace nor-
mals for the construction of local coordinate systems atoes;

2) For each vertex, determirfet-ring neighbor vertices and up-
grade neighborhood if necessary;

3) For each vertex, transform its neighbor points into ital@oor-
dinate frame, solve for the coefficients using QR factorzatvith
safeguard, and convert gradients into vertex normals;

4) If iterative fitting is desired, for each vertex, transfonormals
of its neighbor vertices to the gradient of the height funetin its
local coordinate system to solve for Hessian;

5) For each vertex, convert Hessian into symmetric shapetipe
to compute curvatures, principal directions, or curvatareor.

In the algorithm, some steps (such as the collection of fxeigh
points) may be merged into the loops in later steps, with detra
off between memory and computation. Note that iterativanfjtis

fittings, as discussed in more detail in the next subsectiith-
out iterative fitting, the Hessian of the height function wllobe
obtained at step 3. Finally, note that we can also apply tbe af
iterative fitting to convert the curvature tensor to the hassf the
height function and then construct a fitting of the Hessiaoktimin
higher derivatives. However, since the focus of this papenifirst-
and second-order differential quantities, we do not puthisidea
further.

4.5 Error Analysis

To complete the discussion of our framework, we must addhess
fundamental question of whether the computed differenfiainti-

ties converge as the mesh gets refined, and if so, what is the co
vergence rate. While it has been previously shown that pohyal
fittings produce accurate normal and curvature estimationsise-
free contexts [[Cazals and Pouget 2005:; Meek and Walton/ 2000]
our framework is more general and uses different formulasdm-
puting curvatures, so it requires a more general analysith de-
note the average edge length of the mesh. We consider ths &rro
terms ofh. Our theoretical results have two parts, as summarized
by the following two theorems.

Theorem 4 Given a set of points imvw coordinate frame that
interpolate a smooth height functighor approximatef with an
error of O(h®*!) along thew direction. Assume the point distri-
bution and the weighing matrix are independent of the mesb-re
lution, and the scaled matri¥.S in (27) has a bounded condition
number. The degreé-vvelghted least squares fitting approximates
cjk t0O(h4™I7k T,

PROOEF Let ¢ denote the vector composed(gfc the exact partial

derivatives off. Let b denoteAc. Letr = b — b, which we
consider as a perturbation in the right- hand side of

Ac~b+r.

Because the Taylor polynomial approximaget O(h?*!), and f

is approximated t@ (h*!) by the given points, each component
of f — Vein @3)isO(h*t). Sincer = W(f — Ve) and the
entries inW are©(1), each component of is O(h%™).

The error inc;; and inr are connected by the scaled matds.
Since the point distribution are independent of the mestiugen,
u; = ©(h) andv; = ©(h). The entries in the column od cor-
responding ta:;; are then®(h’**), so are the-norm of the col-
umn. After column scaling, the entries S are ther®(1), so are
the entries in its pseudo-inveréd S)*. The error ofd in (23) is
thensd = (AS)Tr. Because each componentiofs O(h?T!),
each component did is O(xh**'), wherex is the condition num-
ber of AS and is bounded by a constant by assumption. The er-
ror in ¢ is thenSdd, where the scaling factor associated with
is ©(1/h7*F). Therefore, the coefficient; is approximated to
O(h4=i=k+1), [

Note that our weights given i (26) appear to depend on théames
resolution. However, we can rescale it by multiplyit§ 2 to make

it ©(1) without changing the solution, so TheorEn 4 applies to our
weighting scheme. Under the assumptions of Thedrem 4, eegre
d fitting approximates the gradient ©9(h?) and the Hessian to
O(R*~1) at the origin of the local frame, respectively. Using the
gradient and Hessian estimated from our polynomial fittihg,es-
timated differential quantities have the following prager

Theorem 5 Given the position, gradient, and Hessian of a height
function that are approximated ©(h%™), O(h%) andO(h%™1),



respectively. a) The angle between the computed and exanais
is O(h?); b) the components of the shape operator and curvature

tensor are approximate®(h?~") by (I2) and[IB); c) the Gaus-
sian and mean curvatures are approximatedtch? ) by (18).

PROOF a) Let f, and f, denote the estimated derivatives jf
which approximate the true derivative’s and f, to O(h?). Let

¢ and denotel|[— fu, — o, 1]]| and||[— fu, —f., 1]||, respectively.
Let 72 denote the computed unit normig f.,, — f,, 1]7 /¢ andn
the exact unit normdl f.., — f., 1]* /¢. Therefore,

é[_.ﬁu _fv: 1]T _ Z[_.ﬁu _fv: 1]T
o

n—n= ,

where the numerator i9(h?) and the denominator i9(1). Letd
denotearccos i’ n. Becausdn — a3 = 2 — 2"Th = 6% +
0O(#"), it then follows tha® is O(h?).

b) In @), if f. = f, = 0, thenW = H, which is approximated
to O(h?~!). Otherwise,H is approximated t@(h~") while ¢,
¢, ands are approximated t®(h?), so the error it is O(h*™1).
Similarly, in equations[(13) anf[{IL4), the dominating eteym is
the O(h?~1) error in H, while J© andJ " are approximated to
O(h%) by their explicit formulas, s&C andC, are approximated
to O(h?™1).

c) In {I8),¢ andV f are approximated t®(h?) and H is approxi-
mated toO(h?~'). Thereforexe andxy are both approximated
to O(h?™1). [

The above analysis did not consider iterative fitting. Reifg the
same argument, if the vertex positions and normals are hwth a
proximated toO(h?*1)) and the scaled coefficient matrix has full
rank, then the coefficients;, andb;, are approximated to order
O(h?=7=k+1) by our iterative fitting. The error in the Hessian
would then beO(hd), so are the estimated curvatures. Therefore,
iterative fitting is potentially advantageous, given aatemnormals.
Note that none of our analyses requires any symmetry of the in
put data points to achieve convergence. For even-degramsitt
the leading term in the remainder of the Taylor series is ogld d
gree. If the input points are perfectly symmetric, then thsid-
ual would also exhibit some degree of symmetry, and the hepdi
order error term may cancel out as in the centered-finiferdifice
scheme. Therefore, superconvergence may be expectedefior ev
degree polynomial fittings, and iterative fitting may not lisdeato
further improve their accuracies. Regarding to the prialcgirec-
tions, they are inherently unstable at the points where @rdmum
and minimum curvatures have similar magnitude. Howevehef
magnitudes of the principal curvatures are well separdkeah the
principal directions would also have similar convergenates as
the curvatures.

5 Experimental Results

In this section, we present some experimental results ofraare-
work. We focus on the demonstration of accuracy and stabil-
ity as well as the advantages of iterative fitting, the werght
scheme, and the safeguarded numerical solver. We do notpitte
a thorough comparison with other methods; readers arereeféo
[Gatzke and Grimm 2006] for such a comparison of earlier meth
ods. We primarily compare our method against the baselitiegfit
methods in[[Cazals and Pouget 2005: Meek and Walton|2008], an
assess them for both closed and open surfaces.
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Figure 2: Sample unstructured meshes of sphere and torus.

5.1 Experiments with Closed Surfaces

We first consider two simple closed surfaces: a sphere with un
radius, and a torus with inner radiws7 and outer radiudl.3.

We generated the meshes using GAMBIT, a commercial software
from Fluent Inc. Our focuses here are the convergence rdths w
and without iterative fitting as well as the effects of the giei

ing scheme. For convergence test, we generated four meshes f
each surface independently of each other by setting theediesiige
lengths t00.1, 0.05, 0.025, and 0.0125, respectively. Figur&l2
shows two meshes that are coarser but have similar unstedctu
connectivities as our test meshes.

We first assess the computations of normals using fittinge@ifeses
between one and six. Figuré 3 shows the errors in the computed
normals versus the “mesh refinement level.” We label thesggt

the degrees of fittings. Letdenote the total number of vertices, and
letn; andn; denote the exact and computed unit vertex normals at
theith vertex. We measure the relatifg errors in normals as

I .
> > s — a3,
1

We compute the convergence rates as

1 error of level T
convergence rate 3 log,

error of level 4/’

and show them at the right ends of the curves. In our tests, the
convergence rates for normals were equal to or higher treadeh
grees of fittings. For spheres, the convergence rates ofdagree
fittings were about one order higher than predicted, likalg tb
nearly perfect symmetry and error cancellation.

L, error of normals

e S —
i 1.1

10‘*;‘\5’\5\E
{13.3

5.2

D7.2

L, error of normals

1 2 3 4

Figure3: L, errors in computed normals for sphere (left) and torus
(right).

Second, we consider the computations of curvatures. Itdvbal
excessive to show all the combinations, so we only show seme r
resentative results. Figuré 4 shows the errors in the mimiraod



maximum curvatures for the sphere. Figlite 5 shows the eimors
the mean and Gaussian curvatures for the torus. In the |dkéls
indicates the use of iterative fitting. L&t andk; denote the exact
and computed quantities at thih vertex, we measure the relative
errors inLy norm as

Ik = kllz _
l[%[l2

i=1

Let d denote the degree of a fitting. In these tests, the conveegenc
rates werel — 1 or higher as predicted by theory. In addition, even-
degree fittings converged up to one order faster due to eararat-
lation. The converge rates for odd-degree polynomials \aborit

d — 1 but were also boosted to approximatélyvhen iterative fit-
ting is used. Therefore, iterative fitting is effective ingroving
odd-degree fittings. In our experiments, iterative fitting) ot im-
prove even-degree fittings.

L, error of minimum curvature

L, error of maximum curvature

Figure 4: L, errors in computed minimum and maximum curva-
tures for sphere.

L2 error of mean curvature L2 error of Gaussian curvature
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Figure5: L. errors in computed mean and Gaussian curvatures
for torus.

The preceding computations used the weighting schemeibledcr
in Sectiori 4.1, which tries to balance conditioning andrecemcel-
lation. This weighting scheme improved the results in lall
of our tests. Figurgl6 shows a representative comparisdnamid
without weighting (as labeled byriw” and “w”, respectively) for
the maximum curvatures of the sphere and torus.

5.2 Experiments with Open Surfaces

We now consider open surfaces, i.e. surfaces with boundaly.
focus on the study of stabilities and the effects of boundarg
irregular connectivities. We use two surfaces defined bydhew-
ing functions adopted fronm [Xu 2004]:

125 4+ cos(5.4y)

Z:Fl(l’,y) 7m, (32)
z = Fa(x,y) =exp (—% ((:c — 0.5)2 +(y— 0.5)2)> , (33)

L, error of maximum curvatures

L, error of maximum curvatures
1o'zjt\¢_\_‘t;\“
0.8

N }2.2

-10 %5.9

1 2 3 4 1 2 3 4

Figure 6: Comparisons of curvature computations with and with-
out weighting for sphere (left) and torus (right).

where(z,y) € [0,1] x [0, 1]. FigurelT(a-b) shows these surfaces,
color-coded by the mean curvatures. We use two types of regshe
including irregular and semi-regular meshes (see Fifibced))(
For convergence study, we refine the irregular meshes ubimg t
standard one-to-four subdivision [Gallier 2000, p. 283 aefine
the semi-regular meshes by replicating the pattern. We atedp
the “exact” differential quantities using the formulas iacBon[3

in the global coordinate system, but performed all other ata-
tions in local coordinate systems. For rigorousness ofdahtstwe
consider bothl, and L., errors. In addition, border vertices are
included in all the error measures, posting additionallehgkes to
the tests. Note that the results for vertices far away fragrbthund-
ary would be qualitatively similar to those of closed suefscWe
primarily consider fittings of up to degree four, since higbenver-
gence rates may require larger neighborhoods for bordeicesr
(more tharB.5-ring neighbors). To limit the length of presentation,
we report only some representative results to cover theafen-
tioned different aspects.
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(c) Irregular mesh. (d) Semi-regular mesh.

Figure7: Test surfaces (a-b) and meshes (c-d). Surfaces are color-
coded by mean curvatures.

We first assess the errors in the computed normals for opéatssr
Figure[8 shows the results fdf; over irregular meshes. We label



all the plots and convergence rates in the same way as faedtlos
surfaces. Letl denote the degree of a fitting. All these fittings de-
livered convergence rate dfor higher inL errors. InL errors,
computed asaax; ||2; — 1;||2, the convergence rates wete- 0.5

or higher, close to theoretical predictions.

L, error of normals L error of normals

Figure8: L, (left) and L, (right) errors in computed normals for
Fy over irregular meshes.

Second, we assess the errors in the curvatures. Hijure & shew
errors in mean curvatures fdr; over irregular meshes, and Fig-
ure[10 shows the errors in Gaussian curvaturesFfoover semi-
regular meshes. Let and& denote the exact and computed quan-
tities. We computed thé&» error using[(31l) and computed tlig,
errors as

max |’%L - Ki' /max{|’€i| 76}7 (34)

7

wheree = 0.01 max; |«;| was introduced to avoid division by too
small numbers. The convergence rates for curvatures werexp
imately equal tad — 1 or higher for even-degree fittings and odd-
degree iterative fittings.

L2 error of mean curvature |.m7 error of mean curvature
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Figure 9: L, (left) and L., (right) in computed mean curvatures
for F1 over irregular meshes.

L, error of Gaussian curvature L, error of Gaussian curvature

2 3 4

Figure 10: L (left) and L~ (right) in computed Gaussian curva-
tures for F; over semi-regular meshes.

As noted earlier, the principal directions are inherenthstable
when the principal curvatures are roughly equal to eachr ¢tueh
as at umbilic points). In Figufel1, we show the and L., errors
of principal directions forF; over semi-regular meshes, where the
errors are measured similarly as for normals. This surfaéeé of

umbilic points, and the principal directions converged@npara-
ble rates as curvatures for iterative cubic fitting and daditting.

L, error of principal directions

L, error of principal directions

B 0.0

Figure 11: L. (left) and L (right) in computed principal direc-
tions for F; over semi-regular meshes.

Finally, to demonstrate the importance and effectivenésarmcon-
ditioning procedure, Figufe12 shows comparison of contboie-
mals and mean curvatures with and without conditioning éas |
beled by “nc” and “c”, respectively) for fittings of degrees three,
five, and six. Here, the conditioning refers to requiring temof
points to bel.5 or more times of the number of unknowns as well
as the checking of condition numbers. Without conditionitige
results exhibited large errors for normals and catastmfaiiures
for curvatures, due to numerical instabilities. With cdiwiing,
our framework is stable for all the tests, although it did achieve
the optimal convergence rate for the sixth-degree fittingstd too
small neighborhoods for the vertices near boundary.

L2 error of mean curvatures

L, error of normals
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2 - 3+nc o
—H—3+c
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—©—6¢c 2.5
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2 3 4

Figure 12: Comparisons of errors in computed normals (left) and
mean curvatures (right) with and without conditioning 8 over
irregular meshes.

6 Discussions

In this paper, we presented a computational framework fonped-

ing the first- and second-order differential quantities afuaface
mesh. This framework is based on the computation of the first-
second-order derivatives of a height function, which aenttians-
formed into differential quantities of a surface in a simai®l con-
sistent manner. We proposed an iterative fitting method topzde
the derivatives of the height function starting from thepeiwvith or
without the surface normals, solved by weighted least ssuap-
proximations. We improve the numerical stability by a sgsiéic

point-selection strategy and QR factorization with sagedu By
achieving both accuracy and stability, our method delidezen-

verging estimations of the derivatives of the height fumttand in
turn the differential quantities of the surfaces.

The main focus of this paper has been on the consistent ard con
verging computations of differential quantities. We did address

the robustness issues for input surface meshes with laige and
singularities (such as sharp ridges and corners). We hadicted
some preliminary comparisons with other methods, which wie w



report elsewhere. One of the major motivating applicatibthis
work is provably accurate and stable solutions of geométries
for geometric modeling and physics-based simulations. \/euar-
rently investigating the stability of our proposed methémtssuch
problems. Another future direction is to generalize ourhmdtto
compute higher-order differential quantities.
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