

Edinburgh Research Explorer

Conditional functional dependencies for capturing data
inconsistencies

Citation for published version:
Fan, W, Geerts, F, Jia, X & Kementsietsidis, A 2008, 'Conditional functional dependencies for capturing
data inconsistencies', ACM Transactions on Database Systems, vol. 33, no. 2, 6, pp. 1-48.
https://doi.org/10.1145/1366102.1366103

Digital Object Identifier (DOI):
10.1145/1366102.1366103

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
ACM Transactions on Database Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 27. Apr. 2024

https://doi.org/10.1145/1366102.1366103
https://doi.org/10.1145/1366102.1366103
https://www.research.ed.ac.uk/en/publications/7ead4173-1d9b-4919-83d7-d4aa66950db0

Conditional Functional Dependencies for Capturing

Data Inconsistencies

WENFEI FAN

University of Edinburgh & Bell Laboratories

and

FLORIS GEERTS and XIBEI JIA

University of Edinburgh

and

ANASTASIOS KEMENTSIETSIDIS

IBM Watson

We propose a class of integrity constraints for relational databases, referred to as conditional

functional dependencies (cfds), and study their applications in data cleaning. In contrast to

traditional functional dependencies (fds) that were developed mainly for schema design, cfds

aim at capturing the consistency of data by enforcing bindings of semantically related values. For
static analysis of cfds we investigate the consistency problem, which is to determine whether or

not there exists a nonempty database satisfying a given set of cfds, and the implication problem,
which is to decide whether or not a set of cfds entails another cfd. We show that while any set of

transitional fds is trivially consistent, the consistency problem is np-complete for cfds, but it is
in ptime when either the database schema is predefined or no attributes involved in the cfds have

a finite domain. For the implication analysis of cfds, we provide an inference system analogous

to Armstrong’s axioms for fds, and show that the implication problem is conp-complete for cfds
in contrast to the linear-time complexity for their traditional counterpart. We also present an

algorithm for computing a minimal cover of a set of cfds. Since cfds allow data bindings, in some
cases cfds may be physically large, complicating detection of constraint violations. We develop

techniques for detecting cfd violations in sql as well as novel techniques for checking multiple
constraints in a single query. We also provide incremental methods for checking cfds in response

to changes to the database. We experimentally verify the effectiveness of our cfd-based methods

for inconsistency detection. This work not only yields a constraint theory for cfds but is also a
step toward a practical constraint-based method for improving data quality.

Categories and Subject Descriptors: H.2.m [Database Management]: Miscellaneous—Data

cleaning; H.2.1 [Database Management]: Logical Design—Schema and subschema

General Terms: Algorithms, Experimentation, Performance, Theory

Additional Key Words and Phrases: Data cleaning, Functional dependency, SQL

2 · Conditional Functional Dependencies for Capturing Data Inconsistencies

1. INTRODUCTION

Recent statistics reveal that dirty data costs us businesses billions of dollars annu-
ally (cf. [Eckerson 2002]). It is also estimated that data cleaning, a labor-intensive
and complex process, accounts for 30%-80% of the development time in a typical
data warehouse project (cf. [Shilakes and Tylman 1998]). These highlight the need
for data-cleaning tools to automatically detect and effectively remove inconsisten-
cies and errors in the data.

One of the most important questions in connection with data cleaning is how to
model the consistency of the data, i.e., how to specify and determine that the data
is clean? This calls for appropriate application-specific integrity constraints [Rahm
and Do 2000] to model the fundamental semantics of the data. However, little
previous work has studied this issue. Commercial etl (extraction, transformation,
loading) tools have little built-in data cleaning capability, and a significant portion
of the cleaning work has still to be done manually or by low-level programs that are
difficult to write and maintain [Rahm and Do 2000]. A bulk of prior research has
focused on the merge-purge problem for the elimination of approximate duplicates
(e.g., [Winkler 1994; Hernandez and Stolfo 1998; Galhardas et al. 2000; Monge
2000]), or on detecting domain discrepancies and structural conflicts (e.g., [Raman
and Hellerstein 2001]).

There has also been recent work on constraint repair [Arenas et al. 2003; Fran-
coni et al. 2001; Bravo and Bertossi 2003; Cali et al. 2003a; 2003b; Chomicki
and Marcinkowski 2005a; Greco et al. 2003; Wijsen 2005], which specifies the con-
sistency of data in terms of constraints, and detects inconsistencies in the data
as violations of the constraints. However, previous work on constraint repair is
mostly based on traditional dependencies (e.g., functional and full dependencies,
etc), which were developed mainly for schema design, but are often insufficient to
capture the semantics of the data, as illustrated by the example below.

Example 1.1. Consider a relation schema cust(CC,AC,PN,NM,STR,CT,ZIP),
which specifies a customer in terms of the customer’s phone (country code (CC),
area code (AC), phone number (PN)), name (NM), and address (street (STR), city
(CT), zip code (ZIP)). An instance of cust is shown in Fig. 1.

Traditional functional dependencies (fds) on a cust relation may include:

f1: [CC, AC, PN] → [STR, CT, ZIP]
f2: [CC, AC] → [CT]

Recall the semantics of an fd: f1 requires that customer records with the same
country code, area code and phone number also have the same street, city and zip
code. Similarly, f2 requires that two customer records with the same country- and
area codes also have the same city name. Traditional fds are to hold on all the
tuples in the relation (indeed they do on Fig. 1).

In contrast, the following constraint is supposed to hold only when the country
code is 44. That is, for customers in the uk, ZIP determines STR:

φ0: [CC = 44, ZIP] → [STR]

In other words, φ0 is an fd that is to hold on the subset of tuples that satisfies
the pattern “CC = 44”, rather than on the entire cust relation. It is generally not

Conditional Functional Dependencies for Capturing Data Inconsistencies · 3

CC AC PN NM STR CT ZIP

t1: 01 908 1111111 Mike Tree Ave. NYC 07974

t2: 01 908 1111111 Rick Tree Ave. NYC 07974

t3: 01 212 2222222 Joe Elm Str. NYC 01202

t4: 01 212 2222222 Jim Elm Str. NYC 02404

t5: 01 215 3333333 Ben Oak Ave. PHI 02394
t6: 44 131 4444444 Ian High St. EDI EH4 1DT

Fig. 1. An instance of the cust relation

considered an fd in the standard definition since φ0 includes a pattern with data
values in its specification.

The following constraints are again not considered fds:

φ1: [CC = 01, AC = 908, PN] → [STR, CT = mh, ZIP]
φ2: [CC = 01, AC = 212, PN] → [STR, CT = nyc, ZIP]
φ3: [CC = 01, AC = 215] → [CT =phi]

Constraint φ1 assures that only in the us (country code 01) and for area code
908, if two tuples have the same PN, then they must have the same STR and ZIP

and moreover, the city must be mh. Similarly, φ2 assures that if the area code is
212 then the city must be nyc; and φ3 specifies that for all tuples in the us and
with area code 215, their city must be phi (irrespective of the values of the other
attributes). Observe that φ1 and φ2 refine the standard fd f1 given above, while
φ3 refines the fd f2. These refinements essentially enforce bindings of semantically
related data values. Indeed, while tuples t1 and t2 in Fig. 1 do not violate f1, they
violate its refinement φ1, since the city cannot be nyc if the area code is 908.

In this example, the constraints φ0, φ1, φ2 and φ3 capture a fundamental part
of the semantics of the data. However, they cannot be expressed as standard fds.
Indeed, in contrast to fds that express knowledge only at the intensional (schema)
level, these constraints combine intensional and extensional (data-level) expressions
by incorporating constants into fds and enforcing patterns of semantically related
data values. Further, they hold conditionally, i.e., only on the subset of a relation
that satisfies certain patterns, rather than on the entire relation.

Constraints that hold conditionally may arise in a number of domains. For exam-
ple, an employee’s title may determine her pay grade in some parts of an organiza-
tion but not in others; an individual’s address may determine his tax rate in some
countries while in others it may depend on his salary, etc. Further, dependencies
that apply conditionally appear to be particularly needed when integrating data,
since dependencies that hold only in a subset of sources will hold only conditionally
in the integrated data. Indeed, in the authors’ direct experience with telecommu-
nication service providers, errors and inconsistencies commonly found in real-life
data often emerge as violations of conditional dependencies; they routinely lead
to problems like failure to bill for provisioned services, delay in repairing network
problems, unnecessary leasing of equipment, and so on, but cannot be detected by
schema-level constraints alone. These call for the study of conditional dependen-
cies, which aim to capture data inconsistencies at the intentional level (as done
in prior work on data cleaning) and extensional level in a uniform framework. A
recent study [Cong et al. 2007] also demonstrates that conditional dependencies are

4 · Conditional Functional Dependencies for Capturing Data Inconsistencies

more effective than standard fds in repairing inconsistent data in practice.

There has been work on extending traditional equality-generating and tuple-
generating dependencies (egds and tgds, which subsume functional and inclusion
dependencies, respectively) by incorporating constants, i.e., combining intensional
and extensional expressions [Bra and Paredaens 1983; Maher and Srivastava 1996;
Maher 1997; Baudinet et al. 1999]. These extensions were proposed for constraint
logic programming languages and constraint databases, but have not been consid-
ered in previous work on data cleaning. As will be seen in Section 7, some of these
extensions cannot express φ0–φ3 given above, and those that can express condi-
tional dependencies incur a higher complexity. For data cleaning, one typically
needs a simple extension of traditional fds that suffices to capture data inconsis-
tencies commonly found in practice, without incurring unnecessary complexity.

In response to the practical need, this paper introduces a novel extension of
traditional fds, referred to as conditional functional dependencies (cfds), that are
capable of capturing the notion of “correct data” in these situations. A cfd extends
an fd by incorporating a pattern tableau that enforces binding of semantically re-
lated values. Unlike its traditional counterpart, the cfd is required to hold only on
tuples that satisfy a pattern in the pattern tableau, rather than on the entire rela-
tion. For example, all the constraints we have encountered so far can be expressed
as cfds. A formal framework for modeling cfds is our first contribution.

Since cfds are an extension of standard fds, it is natural to ask whether or
not we can still effectively reason about cfds along the same lines as their fd

counterpart. Does a set Σ of cfds make sense, i.e., are the cfds consistent (is there
a nonempty database that satisfies Σ)? Is there an inference system, analogous to
Armstrong’s Axioms for fds, to effectively determine whether or not a set of cfds

implies (entails) another cfd? These are the classical consistency and implication
problems typically associated with integrity constraints. These problems are not
only fundamental to cfds, but are also important for data cleaning. Indeed, if an
input set Σ of cfds is found inconsistent, then there is no need to check (validate)
the cfds against the data at all. Further, it helps the user discover errors in cfd

specification. When Σ is consistent, an effective implication analysis would allow us
to find a minimal cover Σmc of Σ that is equivalent to Σ but contains no redundant
cfds, patterns or attributes; it is typically more efficient to use Σmc instead of Σ
when detecting and removing inconsistencies from the data.

Our second contribution consists of techniques for the consistency analysis of
cfds. We show that the static analysis of cfds introduces new challenges. Indeed,
a set of cfds may be inconsistent, i.e., there may not exist a nonempty database
satisfying the cfds, a problem not encountered when dealing with traditional fds.
We show that the consistency problem for cfds is np-complete in general, but it is
in ptime when either the database schema is predefined or no attributes involved
in the cfds have a finite domain. To cope with the intractability we provide an
approximation factor preserving reduction to the well-studied maxgsat problem.
This allows us to leverage existing approximation algorithms for maxgsat to check
the consistency of cfds (see, e.g., [Papadimitriou 1994; Vazirani 2003] for approx-
imation factor preserving reductions and approximation algorithms for maxgsat).

Our third contribution is a sound and complete inference system for the implica-

Conditional Functional Dependencies for Capturing Data Inconsistencies · 5

tion analysis of cfds, which is analogous to but is more involved than Armstrong’s
Axioms for fds (see, e.g., [Abiteboul et al. 1995]). We show that as opposed to
standard fds for which the implication problem is in linear-time, the implication
analysis for cfds is conp-complete. We also identify a special case when the impli-
cation problem is in ptime. Based on these we present a technique for computing
a minimal cover of a set of cfds. These results are not only useful for data cleaning
as an optimization technique by minimizing the input cfds, but also yield a cfd

theory analogous to the theory of fds.
Our fourth contribution is the development of sql techniques for detecting cfd

violations. Since cfds incorporate data values, they may in some cases be physically
large, and straightforward techniques may lead to a very large number of detection
queries. We develop nontrivial techniques to merge and efficiently check a set
of cfds even with a very large number of conditions. These guarantee: (a) a
single pair of sql queries is generated, with a bounded size independent of the
pattern tableaux in the cfds, and (b) only two passes of the database are needed.
Furthermore, we develop techniques to incrementally detect cfd violations, as the
underlying instance changes due to the insertions or deletions of tuples.

Our fifth and final contribution is an experimental study of the performance of
our detection techniques as data size and constraint complexity vary. We find that
our techniques allow violations of cfds with even a large number of conditions to
be detected efficiently on large data sets. However, we also find that care must
be taken to present the complicated where clauses generated by our technique to
the optimizer in a way that can be easily optimized. We illustrate that certain
rewritings of our detection queries are more prone to optimizations than others, by
comparing their performance under various settings. More importantly, in situa-
tions where the optimizer is unable to cope with the complexity of the detection
queries, we offer alternative relational representations of our solutions, and we il-
lustrate that these alternatives result in detection queries that are simpler, easier
to optimize, and faster to execute. In addition, we demonstrate that our incremen-
tal techniques vastly outperform, in terms of time, batch algorithms that detect
violations starting from scratch in response to changes to the underlying database.

Our conclusion is that cfds are a promising tool for improving data quality.
While a facility to detect inconsistencies emerged as cfd violations will logically
become part of the cleaning process supported by data cleaning systems, we are
not aware of analogous functionality in any of the existing systems.

Organization. The remainder of the paper is organized as follows. Section 2 for-
mally defines cfds. This is followed by the static analysis of cfds: Section 3 studies
the consistency analysis of cfds, and Section 4 provides the inference system for
cfd implication. Section 5 presents our sql techniques for detecting and incre-
mentally detecting cfd violations, followed by the experimental study in Section 6.
Section 7 discusses related work, followed by topics for future work in Section 8.

2. CONDITIONAL FUNCTIONAL DEPENDENCIES

In this section we define conditional functional dependencies (cfds). Consider a
relation schema R defined over a fixed set of attributes, denoted by attr(R). For
each attribute A ∈ attr(R), its domain is specified in R, denoted as dom(A).

6 · Conditional Functional Dependencies for Capturing Data Inconsistencies

(a) Tableau T1 of ϕ1 = ([CC, ZIP] → [STR], T1)

CC ZIP STR

44

(b) Tableau T2 of ϕ2 = ([CC, AC, PN] → [STR, CT, ZIP], T2)

CC AC PN STR CT ZIP

01 908 MH

01 212 NYC

(c) Tableau T3 of ϕ3 = ([CC, AC] → [CT], T3)

CC AC CT

01 215 PHI

44 141 GLA

Fig. 2. Example CFDs

Syntax. A cfd ϕ on R is a pair (R : X → Y, Tp), where (1) X,Y are sets of
attributes in attr(R), (2) X → Y is a standard fd, referred to as the fd embedded
in ϕ; and (3) Tp is a tableau with attributes in X and Y , referred to as the pattern
tableau of ϕ, where for each A in X ∪ Y and each tuple t ∈ Tp, t[A] is either a
constant ‘a’ in dom(A), or an unnamed variable ‘ ’ that draws values from dom(A).

If A occurs in both X and Y , we use t[AL] and t[AR] to indicate the occurrence
of A in X and Y , respectively, and separate the X and Y attributes in a pattern
tuple with ‘‖’. We write ϕ as (X → Y, Tp) when R is clear from the context, and
denote X as lhs(ϕ) and Y as rhs(ϕ).

Example 2.1. The constraints φ0, f1, φ1, φ2, f2, φ3 on the cust table given in Ex-
ample 1.1 can be expressed as cfds ϕ1 (for φ0), ϕ2 (for f1, φ1 and φ2, one per line,
respectively) and ϕ3 (for f2, φ3 and an additional [CC = 44, AC = 141] → [CT =
gla] to be used in Section 5), as shown in Fig. 2.

If we represent both data and constraints in a uniform tableau format, then at
one end of the spectrum are relational tables which consist of data values without
logic variables, and at the other end are traditional constraints which are defined
in terms of logic variables but without data values, while cfds are in the between.

Semantics. For a pattern tuple tp in Tp, we define an instantiation ρ to be a
mapping from tp to a data tuple with no variables, such that for each attribute A in
X∪Y , if tp[A] is ‘ ’, ρ maps tp[A] to a constant in dom(A), and if tp[A] is a constant
‘a’, ρ maps tp[A] to the same value ‘a’. For example, for tp[A,B] = (a,), one can
define an instantiation ρ such that ρ(tp[A,B]) = (a, b), which maps tp[A] to itself
and tp[B] to a value ‘b’ in dom(B). Obviously, for an attribute A occurring in both
X and Y , we require that ρ(tp[AL]) = ρ(tp[AR]). Note that an instantiation ρ may
map different occurrences of ‘ ’ in tp to different constants; e.g., if tp[A,B] = (,),
then ρ(tp[A,B]) = (a, b) is well-defined if a ∈ dom(A) and b ∈ dom(B).

A data tuple t is said to match a pattern tuple tp, denoted by t ≍ tp, if there is an
instantiation ρ such that ρ(tp) = t. For example, t[A,B] = (a, b) ≍ tp[A,B] = (a,).

An instance I of R satisfies the cfd ϕ, denoted by I |= ϕ, if for each pair of
tuples t1, t2 in the instance I, and for each tuple tp in the pattern tableau Tp of ϕ,

Conditional Functional Dependencies for Capturing Data Inconsistencies · 7

if t1[X] = t2[X] ≍ tp[X], then t1[Y] = t2[Y] ≍ tp[Y]. That is, if t1[X] and t2[X]
are equal and in addition, they both match the pattern tp[X], then t1[Y] and t2[Y]
must also be equal to each other and both match the pattern tp[Y].

Intuitively, each tuple tp in the pattern tableau Tp of ϕ is a constraint defined
on the set I(ϕ,tp) = {t | t ∈ I, t[X] ≍ tp[X]} such that for any t1, t2 ∈ I(ϕ,tp), if
t1[X] = t2[X], then (a) t1[Y] = t2[Y], and (b) t1[Y] ≍ tp[Y]. Here (a) enforces
the semantics of the embedded fd, and (b) assures the binding between constants
in tp[Y] and constants in t1[Y]. Note that this constraint is defined on the subset
I(ϕ,tp) of I identified by tp[X], rather than on the entire instance I.

If Σ is a set of cfds, we write I |= Σ if I |= ϕ for each cfd ϕ ∈ Σ. If a relation
I |= Σ, then we say that I is clean with respect to Σ.

Example 2.2. The cust relation in Fig. 1 satisfies ϕ1 and ϕ3 of Fig. 2. However,
it does not satisfy ϕ2. Indeed, tuple t1 violates the pattern tuple tp = (01, 908, ‖ ,

mh,) in tableau T2 of ϕ2: t1[CC,AC,PN] = t1[CC,AC,PN] ≍ (01, 908,), but
t1[STR,CT,ZIP] 6≍ (, mh,) since t1[CT] is nyc instead of mh; similarly for t2.

This example tells us that while violations of standard fds require two tuples, a
single tuple may violate a cfd.

Observe that a standard fd X → Y can be expressed as a cfd (X → Y, Tp)
in which Tp contains a single tuple consisting of ‘ ’ only, without constants. For
example, if we let T3 of ϕ3 in Fig. 2 contain only (, ‖), then it is the cfd

representation of the fd f2 given in Example 1.1.
To conclude this section we introduce a normal from for cfds. A cfd ϕ is in the

normal form if ϕ = (R : X → A, {tp}), written as (R : X → A, tp), where A is a
single attribute and the pattern tableau consists of a single pattern tuple tp only.

We say that two sets Σ1 and Σ2 of cfds are equivalent, denoted by Σ1 ≡ Σ2, if
for any instance I of R, I |= Σ1 if and only if I |= Σ2.

Proposition 2.3. For any set Σ of cfds, there exists a set Σnf of cfds such
that each ϕ in Σnf is in the normal form, and Σ ≡ Σnf. Moreover, Σnf consists of
at most |attr(R)|‖Σ‖ many cfds, where ‖Σ‖ denotes the total number of pattern
tuples in cfds in Σ.

Proof. Given Σ we compute Σnf as follows. First, for each cfd ϕ = (R : X →
Y, Tp) in Σ, we associate with ϕ a set Σϕ consisting of |Tp| many cfds of the form
(R : X → Y, tp) for each tp ∈ Tp. Next, for each cfd ψ ∈ Σϕ, assuming w.l.o.g. that
ψ = (R : Y → [B1, . . . , Bk], tp), we define ψBi

= (R : Y → Bi, tp[Y ∪{Bi}]) for each
i ∈ [1, k]. Define Σnf to be

⋃
ϕ∈Σ

⋃
ψ∈Σϕ,Bi∈rhs(ψ) ψB , which is a set of cfds in the

normal form. From the semantics of cfds it is clear that {ψ} ≡
⋃
Bi∈rhs(ψ) ψBi

,

{ϕ} ≡ Σϕ, Σ ≡
⋃
ϕ∈Σ Σϕ, and hence Σ ≡ Σnf.

In the sequel we consider cfds in the normal form, unless stated otherwise.

3. CONSISTENCY ANALYSIS OF CONDITIONAL FUNCTIONAL DEPENDENCIES

We now investigate classical decision problems associated with cfds. We focus on
consistency analysis in this section, and study implication analysis in Section 4.

8 · Conditional Functional Dependencies for Capturing Data Inconsistencies

3.1 Reasoning about the Consistency of Conditional Functional Dependencies

One can specify any set of standard fds, without worrying about consistency. This
is no longer the case for cfds, as illustrated by the example below.

Example 3.1. Consider cfd ψ1 = (R : [A] → [B], T1), where T1 consists of two
pattern tuples (‖ b) and (‖ c). No nonempty instance I of R can possibly satisfy
ψ1. Indeed, for any tuple t in I, while the first pattern tuple says that t[B] must
be b no matter what value t[A] has, the second pattern requires t[B] to be c.

Now assume that dom(A) is bool. Consider two cfds ψ2 = (R : [A] → [B], T2)
and ψ3 = (R : [B] → [A], T3), where T2 has two patterns (true ‖ b1), (false ‖ b2),
and T3 contains (b1 ‖ false) and (b2 ‖ true). While ψ2 and ψ3 can be separately
satisfied by a nonempty instance, there exists no nonempty instance I such that
I |= {ψ2, ψ3}. Indeed, for any tuple t in I, no matter what Boolean value t[A] has,
ψ2 and ψ3 together force t[A] to take the other value from the finite domain bool.
This tells us that attributes with a finite domain may complicate the consistency
analysis. Note that if dom(A) contains one extra value, say maybe, then the instance
I = {(maybe, b3)}, for b3 distinct from both b1 and b2, satisfies both ψ2 and ψ3.

Consistency. A set Σ of cfds on a schema R is said to be consistent if there exists
a nonempty instance I of R such that I |= Σ. The consistency problem for cfds is
to determine, given a set Σ of cfds on a schema R, whether or not Σ is consistent.

Intuitively, the consistency analysis is to determine whether a given set Σ makes
sense or not. One might be tempted to adopt a stronger notion of consistency, as
suggested by the following example. Consider a cfd ψ4 = (R : [A] → [B], T4),
where T4 consists of pattern tuples (a ‖ b) and (a ‖ c) and b 6= c. There is obviously
a nonempty instance I of R that satisfy ψ4. However, the conflict between the
pattern tuples in ψ4 becomes evident if I contains a tuple t with t[A] = a. Indeed,
the first pattern tuple forces t[B] to be b while the second pattern tuple requires
t[B] to be c. In light of this one might want to ensure that every cfd in Σ does
not conflict with the rest of Σ no matter over what instances of R. This can be
guaranteed by requiring for each cfd ϕ = (R : X → A, (tp ‖ a)) ∈ Σ the existence
of an instance Iϕ |= Σ such that Iϕ contains a tuple t with t[X] ≍ tp. However, this
stronger notion of consistency is equivalent to the “classical” notion of consistency.
To see this, we first introduce the notions of total cfds and constant attributes.

A total cfd is of the form (R : X → A, (tp ‖ a)), where tp consists of ‘ ’ only. It
assures that all tuples in a relation must take the same value ‘a’ in the A attribute.

The constant attributes of a cfd ϕ = (R : X → A, (tp ‖ a)) is the set X(c,ϕ) of
all those attributes in X such that for any B ∈ X(c,ϕ), tp[B] is a constant.

One can check the strong consistency of a set Σ of cfds as follows. For each
φ ∈ Σ, define a set Σ ∪ {(R : [C] → [C], (‖ tp[C])) | C ∈ X(c,φ)}. It is easy to
verify that Σ is strongly consistent iff all these sets are consistent. For example, for
Σ = {ψ4}, since Σ ∪ {(R : [A] → [A], (‖ a))} is not consistent it follows that Σ is
not strongly consistent. It is thus sufficient to consider the consistency of cfds.

Intractability. As opposed to the fact that any set of standard fds is consistent,
the consistency analysis of cfds is nontrivial, as shown below.

Theorem 3.2. The consistency problem for cfds is np-complete.

Conditional Functional Dependencies for Capturing Data Inconsistencies · 9

Proof. We first show that the problem is in np. Consider a set Σ of cfds

defined on a schema R. The consistency problem has the following small model
property: if there exists a nonempty instance I of R such that I |= Σ, then for
any tuple t ∈ I, It = {t} is an instance of R and It |= Σ. Thus it suffices to
consider single-tuple instances I = {t} for deciding whether Σ is consistent. Assume
w.l.o.g. that attr(R) = {A1, . . . , An}. Moreover, for each i ∈ [1, n], let the active
domain adom(Ai) of A consist of all constants of tp[Ai] for all pattern tuples tp
in Σ, plus at most an extra distinct value from dom(Ai); then it is easy to verify
that Σ is consistent iff there exists a mapping ν from t[Ai] to adom(Ai) such that
I ′ = {(ν(t[A1]), . . . , ν(t[An]))} and I ′ |= Σ. Based on these, we give a np algorithm
for checking the consistency of Σ as follows: (a) Guess a single tuple t of R such
that t[Ai] ∈ adom(Ai). (b) Check whether or not I = {t} satisfies Σ. Obviously
step (b) can be done in ptime in the size |Σ| of Σ, and thus this algorithm is in np.

We next show that the problem is np-hard by reduction from the non-tautology
problem. An instance of the non-tautology problem is a well-formed Boolean for-
mula φ = C1 ∨ · · · ∨ Cn, where all the variables in φ are x1, . . . , xm, Cj is of the
form ℓj1 ∧ ℓj2 ∧ ℓj3 , and ℓij is either xs or x̄s, for s ∈ [1,m]. The problem is to
determine whether there is a truth assignment such that φ is false, i.e., φ is not
valid. This problem is known to be np-complete (cf. [Garey and Johnson 1979]).

Given an instance φ of the non-tautology problem, we define an instance of the
consistency problem for cfds, namely, a relation schema R and a set Σ of cfds on
R, such that φ is not a tautology if and only if Σ is consistent. We define R to be
(X1, . . . ,Xm, C), in which all the attributes are Boolean. Intuitively, for each tuple
t in an instance I of R, t[X1, . . . ,Xm] encodes a truth assignment of the variables
x1, . . . , xm. We next define a set Σ of cfds, and illustrate the C attribute.

(a) (R : [X1, . . . ,Xm] → C, Tp), where for each clause Cj , for j ∈ [1, n], Tp contains
a tuple tj such that tj [C] = 1, and moreover, for each i ∈ [1,m], tj [Xi] = 1 if xi
appears in Cj , tj [Xi] = 0 if x̄i appears in Cj , and tj [Xi] = otherwise. Hence, any
tuple t in an instance I of R that satisfies this cfd must have t[C] = 1 in case the
truth assignment corresponding to t makes at least one of the clause in φ true.

(b) (R : C → C, {(1 ‖ 0)}). This is to assure that none of the clauses is satis-
fied, i.e., φ is not a tautology. Indeed, this cfd prevents any tuple t (i.e., truth
assignment) in an instance I of R that satisfies this cfd from having t[C] = 1.

We now show the correctness of this reduction. Clearly, any instance I of R that
satisfies both cfds provides us with truth assignments of the variables in φ that
make φ false. Thus, φ is not a tautology. Conversely, if φ is not a tautology, then
there is a truth assignment ν such that φ is false. We construct an instance I of
R consisting of a single tuple t such that t[C] = 0, and t[Xi] = 1 if ν(xi) = 1 and
t[Xi] = 0 otherwise. It is easy to verify that I satisfies Σ.

Putting these together, we have that the consistency problem is np-complete.

Tractable cases and a consistency checking algorithm. In light of the in-
tractability, we identify several tractable special cases of the consistency problem.
We first present two subclasses of cfds which are always consistent (Propositions 3.3
and 3.4). These simple syntactic restrictions on cfds provide sufficient conditions
for retaining the trivial consistency analysis of their standard counterpart. We

10 · Conditional Functional Dependencies for Capturing Data Inconsistencies

then show, by giving a consistency checking algorithm, that when all attributes in-
volved in a set of cfds have an infinite domain, the consistency analysis is in ptime

(Proposition 3.5). These reveal certain insight of the intractability: the presence of
finite-domain attributes complicates the consistency analysis. Finally, we extend
the checking algorithm to arbitrary cfds, with finite-domain attributes or not, and
identify a ptime case in the presence of finite-domain attributes (Proposition 3.6).

We first observe that inconsistencies can only be caused by the presence of cfds

that have a constant in their rhs. Indeed, let Σ be a set of cfds and denote by
Σc the set of cfds in Σ of the form (R : X → A, (tp ‖ a)) for some constant
a ∈ dom(A). Then Σ is consistent iff Σc is consistent. Indeed, the consistency of
Σ implies the consistency of Σc. For the other direction, let I be an instance of R
such that I |= Σc. Select a single tuple t ∈ I and define J = {t}. Clearly, J |= Σc.
Let Σv be the subset of cfds in Σ of the form (R : Y → B, (sp ‖)). It suffices
to observe that any ψ ∈ Σv is trivially satisfied on single-tuple instances. Hence,
J |= Σv and therefore J |= Σ. From this it follows:

Proposition 3.3. For any set Σ of cfds that contain no cfds with a constant
rhs, Σ is always consistent.

Due to this in the sequel we only consider Σ that solely consists of cfds with a
constant rhs, i.e., cfds of the form (R : X → A, (tp ‖ a)) with a ∈ dom(A).

Let attr(Σ) be the set of attributes in attr(R) that appear in some cfds in Σ.
Clearly |attr(Σ)| ≤ |attr(R)|. We first consider the setting in which attr(Σ) does
not contain any finite domain attributes and Σ does not contain any total cfds.

Proposition 3.4. For any set Σ of cfds defined on a schema R, if no cfd in Σ
is total and all attributes in attr(Σ) have an infinite domain, then Σ is consistent.

Proof. By the small property observed in the proof of Theorem 3.2, it suffices
to consider single-tuple relations when checking the consistency of Σ. For any
instance I = {t} of R, if for each attribute A ∈ attr(R), t[A] is a constant not
appearing in any pattern tuple in Σ, then I |= Σ. Indeed, any cfd in Σ is of the
form ϕ = (R : X → A, (tp ‖ a)) with tp a pattern tuple that contains at least one
constant, since Σ does not contain total cfds. Thus by the choice of constants in
t, I does not match the lhs(ϕ) and hence trivially satisfies ϕ, for any ϕ in Σ.

The result below shows that the presence of total cfds makes our lives harder.

Proposition 3.5. For any set Σ of cfds defined on a schema R (possibly con-
taining total cfds), the consistency of Σ can be determined in O(|Σ|2|attr(Σ)|) time
if all attributes in attr(Σ) have an infinite domain.

Proof. Again due to the small model property given in the proof of Theo-
rem 3.2, it suffices to consider single-tuple instances I = {t} of R when checking
the consistency of Σ. In contrast to the proof of Proposition 3.4, the presence of
total cfds in Σ does not allow us to choose the constants in t arbitrarily. Moreover,
the presence of certain constants in some attributes of t might induce constants in
other attributes as enforced by the cfds in Σ. The key observation for consistency
checking is that Σ is consistent if and only if there exists no attribute A in attr(R)
for which two different constants for t[A] are enforced by Σ.

Conditional Functional Dependencies for Capturing Data Inconsistencies · 11

We now give an algorithm, called Consistency, that checks whether this situ-
ation arises. The algorithm starts with a set S0 of the attribute-value pairs found
in the total cfds in Σ, i.e., S0 = {(A, a) | ϕ = (R : X → A, (, . . . , ‖ a)), ϕ ∈ Σ}.
Then, at step i, the algorithm expands the current set Si−1 of attribute-value pairs
to Si as follows: for any φ = (R : X → B, (tp ‖ b)) ∈ Σ, if for each Aj ∈ X(c,φ),
(Aj , tp[Aj]) is already in Si−1, then add (B, b) to Si, where X(c,φ) is the set of con-
stant attributes of φ. After Si is constructed, Consistency checks whether there
exist two pairs (A, a1) and (A, a2) in Si with a1 6= a2. If so, the algorithm stops and
concludes that Σ is inconsistent. Otherwise, it proceeds with step (i + 1). If after
some step Si+1 = Si, then the algorithm stops and concludes that Σ is consistent.

The worst-case time complexity of the algorithm is O(|Σ|2|attr(Σ)|). Indeed, the
number of steps is bounded by |Σ|, since in each step at least one cfd in Σ can
be used to induce some new attribute-value pair. Moreover, at each step |Σ| many
cfds are checked. Further, checking whether a cfd induces an attribute-value pair
takes at most O(|attr(Σ)|) time. From this follows the complexity.

To show the correctness of algorithm Consistency, first assume that the algo-
rithm concludes that Σ is consistent. Denote by S the final set of attribute-value
pairs computed by Consistency. Then we define I = {t} with t[Ai] = ai for
(Ai, ai) ∈ S, and for all other attributes B we set t[B] to a constant that does
not appear in any pattern tuple of cfds in Σ (this is doable since attr(Σ) contains
infinite-domain attributes only). We show that I |= Σ, i.e., Σ is indeed consistent.
Assume by contradiction that there exists a cfd ϕ = (R : X → A, (tp ‖ a)) ∈ Σ
such that I 6|= ϕ. This necessarily implies that (Ai, tp[Ai]) ∈ S for all Ai ∈ X(c,ϕ)

and tp[Ai] = for all other attributes. Indeed, tp[Ai] cannot be a constant not in
S, since otherwise by the choice of the constants in t, t does not match the lhs of
ϕ and thus I |= ϕ. However, given the form of ϕ and the rule of the algorithm for
adding attribute-value pairs, Consistency would have added (A, a) to S and thus
t[A] = a. Hence I |= ϕ, contradicting the assumption.

For the other direction, suppose that Σ is consistent but that the algorithm
decides otherwise. Let I = {t} such that I |= Σ. Suppose that the algorithm
detects inconsistency at step i. It is easy to see that t[Aj] = aj for all (Aj , aj) ∈
Si−1. Further, there must exist two cfds ϕ1 = (R : X → A, (tp ‖ a1)) and
ϕ2 = (R : Y → A, (sp ‖ a2)) in Σ such that both (A, a1) and (A, a2) are added to
Si but a1 6= a2. Then, in order for I to satisfy Σ it must be the case that t[A] = a1

and t[A] = a2, which is clearly impossible. Thus the algorithm could not have
detected an inconsistency and hence will return that Σ is consistent, as desired.

Finally, we consider the case when attr(Σ) contains finite-domain attributes. De-
note by finattr(R) the set of attributes in attr(R) that have a finite domain. For
ease of exposition we assume w.l.o.g. that all attributes in finattr(R) have the same
finite domain fdom.

Proposition 3.6. For any set Σ of cfds defined on a schema R, determining
whether Σ is consistent can be done in O(|fdom||finattr(R)||Σ|2|attr(Σ)|) time. If the
schema R is fixed, then the complexity reduces to O(|Σ|2).

Proof. For each tuple c ∈ fdomfinattr(R) of possible finite-domain values over the
attributes in finattr(R), we define Σ(c) to be the union of Σ with the set of total

12 · Conditional Functional Dependencies for Capturing Data Inconsistencies

cfds {ϕcA = (R : A→ A, (‖ c)) | A ∈ finattr(R)}. Clearly, for any instance I = {t}
of R, I |= Σ(c) iff I |= Σ and t[finattr(R)] = c. Note that the inclusion of these total
cfds allows us to assume that all attributes have an infinite domain. More precisely,
we give a consistency checking algorithm as follows. For each c ∈ fdomfinattr(R) it
applies algorithm Consistency given in the proof of Proposition 3.5 to the set
Σ(c) of cfds. If for some c, Consistency establishes the consistency of Σ(c), then
the algorithm concludes that Σ is consistent. If for all possible c, Consistency

decides that Σ(c) is inconsistent, then it concludes that Σ is inconsistent. From the
correctness of Consistency it is easy to show that this algorithm is correct.

The algorithm takes at most O(|fdom||finattr(R)||Σ|2|attr(Σ)|) time, no larger than
O(|fdom||finattr(R)||Σ|2|attr(R)|) by |attr(Σ)| ≤ |attr(R)|. If R is fixed, |fdom||finattr(R)|

and |attr(R)| are constants, and the time complexity reduces to O(|Σ|2).

3.2 Approximation Factor Preserving Reduction to maxgsat

The intractability of Theorem 3.2 highlights the need for an approximation algo-
rithm that, given a set Σ of cfds, finds a maximum subset of Σ that is consistent.
Specifically, given Σ, the algorithm is to find a consistent subset Σm of Σ such that
card(Σm) ≥ (1 − ǫ) · card(OPTmaxsc(Σ)), where OPTmaxsc(Σ) denotes a maximum
consistent subset of Σ, and ǫ is a constant referred to as the approximation fac-
tor. The algorithm is referred to as an ǫ-approximation algorithm. We refer to the
problem of finding a maximal consistent subset of Σ as maxsc.

To develop an approximation algorithm for maxsc, we capitalize on existing ap-
proximation algorithms for a well-studied np-complete problem, namely, the Maxi-
mum Generalized Satisfiability (maxgsat) problem. Given a set Φ = {φ1, . . . , φn}
of Boolean expressions, the maxgsat problem is to find a truth assignment that
satisfies the maximum number of expressions in Φ. Approximation algorithms
have been developed for maxgsat, especially for m-maxgsat, namely, when each
φi involves at most m Boolean variables (see, e.g., [Papadimitriou 1994]). Thus
it suffices to provide an approximation factor preserving reduction from maxsc to
maxgsat (see, e.g., [Vazirani 2003] for approximation factor preserving reductions).
To this end we provide two ptime functions f and g such that for any set Σ of
cfds, (a) f(Σ) is an instance ΦΣ of maxgsat, and g(Φm) is a consistent subset
of Σ if Φm is the set of satisfied expressions in ΦΣ; (b) card(OPTmaxgsat(f(Σ))) ≥
card(OPTmaxsc(Σ)); and (c) card(g(Φm)) ≥ card(Φm), where OPTmaxgsat(f(Σ))
denotes the maximum set of satisfied expressions in ΦΣ. That is, g is guaran-
teed to return a feasible maxsc solution for Σ. Such a reduction ensures that if
maxgsat has an ǫ-factor approximation algorithm, then so does maxsc. Indeed, if
card(Φm) ≥ (1−ǫ)·card(OPTmaxgsat(f(Σ))), then from (b) and (c) above, it follows
that card(g(Φm)) ≥ (1− ǫ) · card(OPTmaxsc(Σ)). In particular, if Φm is the optimal
solution of maxgsat for f(Σ), then g(Φm) is the optimal solution of maxsc for Σ.

Reduction. To give the reduction, we first revise the notation of active domain
introduced in the proof of Theorem 3.2. Assume that Σ is defined on a relation
schema R, where attr(R) = {A1, . . . , An}. For each i ∈ [1, n], we define adom(Ai)
to be the set consisting of (a) all the data values appearing in some tp[Ai] for tp in
Σ; (b) a value in dom(Ai) that is not yet in the set, if there exists any; note that
if dom(Ai) is a finite domain, there may not exist such a value. Let k denote the

Conditional Functional Dependencies for Capturing Data Inconsistencies · 13

number of constraints in Σ. Then adom(Ai) has at most k + 1 values.
The function f is defined as follows. For each i ∈ [1, n] and a ∈ adom(Ai), we

introduce a Boolean variable x(i, a) such that x(i, a) = true if and only if t[Ai] = a.
That is, these Boolean variables define a tuple t. In addition, for each (R : X →
A, tp) ∈ Σ, we define a Boolean expression φ(tp):

φ(tp) = (
_

B∈X

(t[B] 6≍ tp[B]) ∨ (t[A] ≍ tp[A])) ∧ ΨR,

where t[B] ≍ tp[B] can be written as x(i, a) if B = Ai and tp[B] = a, and as true if

tp[B] = ‘ ’; similarly, t[B] 6≍ tp[B] can be written as x(i, a) if B = Ai and tp[B] = a,
and as false if tp[B] = ‘ ’. The expression ΨR is defined as follows, which is to assure
that for each i ∈ [1, n], t[Ai] has a unique value:

ΨR =
^

i∈[1,n]

^

a∈adom(Ai)

((x(i, a) →
^

b∈adom(Ai) ∧ b 6=a

x(i, b)) ∧ (x(i, a) →
_

b∈adom(Ai) ∧ b 6=a

x(i, b))).

We define f(Σ) = ΦΣ = {φ(tp) | tp ∈ Σ}. Note that each expression in ΦΣ has
at most n · (k + 1) Boolean variables.

We define the function g as follows. For a truth assignment ρ for ΦΣ, let Φm be
the set of satisfied expressions in ΦΣ by ρ. We instantiate t based on ρ as follows:
t[Ai] = a if and only if ρ(x(i, a)) = true. Then g(Φm) is defined to be the set of
cfds satisfied by t. It is easy to verify that card(Φm) = card(g(Φm)).

Verification. We next show that the reduction is approximation factor preserv-
ing. First observe that functions f and g can be computed in ptime in |Σ| and
n. Second, from the discussion above it follows that card(OPTmaxgsat(f(Σ))) =
card(OPTmaxsc(Σ)). Third, for any truth assignment ρ for ΦΣ, if Φm is the set of
satisfied expressions in ΦΣ by ρ, then card(Φm) = card(g(Φm)), for the same reason
given above. Taken together, the reduction is indeed approximation factor preserv-
ing. This allows us to derive approximation algorithms for maxsc from existing
approximation algorithms for maxgsat.

4. IMPLICATION ANALYSIS OF CONDITIONAL FUNCTIONAL DEPENDENCIES

In this section, we study the implication problem for cfds. The implication problem
for cfds is to determine, given a set Σ of cfds and a single cfd ϕ on a relation
schema R, whether or not Σ entails ϕ, denoted by Σ |= ϕ, i.e., whether or not for
all instances I of R, if I |= Σ then I |= ϕ. We consider consistent Σ only.

We show that the richer semantics of cfds complicates the implication analysis:
as opposed to standard fds, the implication problem for cfds is conp-complete in
general. We provide a sound and complete inference system for the implication
analysis of cfds, as a nontrivial extension of Armstrong’s Axioms for fds. Based
on these we present an algorithm for computing a minimal cover of a set of cfds.

4.1 An Inference System for Conditional Functional Dependencies

Armstrong’s Axioms for fds are found in almost every database textbook, and are
fundamental to the implication analysis of fds. Analogous to Armstrong’s Axioms,
we provide an inference system for cfds, denoted by I, in Fig. 3. Given a finite set
Σ ∪ {ϕ} of cfds, we use Σ ⊢I ϕ to denote that ϕ is provable from Σ using I.

14 · Conditional Functional Dependencies for Capturing Data Inconsistencies

FD1: If A ∈ X, then (R : X → A, tp), where tp[AL] = tp[AR] = ‘a’ for some ‘a’

∈ dom(A), or both are equal to a ‘ ’.

FD2: If (1) (R : X → Ai, ti) such that ti[X] = tj [X] for all i, j ∈ [1, k], (2) (R :

[A1, . . . , Ak] → B, tp) and moreover, (3) (t1[A1], . . . , tk[Ak]) � tp[A1, . . . , Ak],
then (R : X → B, t′p), where t′p[X] = t1[X] and t′p[B] = tp[B].

FD3: If (R : [B, X] → A, tp), tp[B] =‘ ’, and tp[A] is a constant, then (R : X →

A, t′p), where t′p[X ∪ {A}] = tp[X ∪ {A}].

FD4: If (1) Σ ⊢I (R : [X, B] → A, ti) for i ∈ [1, k], (2) dom(B) =

{b1, . . . , bk, bk+1, . . . , bm}, and (Σ, B = bl) is not consistent except for l ∈ [1, k],

and (3) for i, j ∈ [1, k], ti[X] = tj [X], and ti[B] = bi, then Σ ⊢I (R : [X, B] →
A, tp) where tp[B] =‘ ’ and tp[X] = t1[X].

Fig. 3. Inference Rules for CFDs

Example 4.1. Consider the set Σ of cfds consisting of ψ1 = (R : [A,B] →
C, (a, b1 ‖ c)), ψ2 = (R : [A,B] → C, (a, b2 ‖ c)), ψ3 = (R : [C,D] → E, (, ‖))
and ψ4 = (R : B → B, (b3 ‖ b2)), where dom(B) = {b1, b2, b3}. Let ϕ = (R :
[A,D] → E, (a, ‖)). Then Σ ⊢I ϕ can be proved as follows (the notion that
(Σ, B = b3) is not consistent will be elaborated shortly):

(1) (R : [A,B] → C, (a, b1 ‖ c)) ψ1

(2) (R : [A,B] → C, (a, b2 ‖ c)) ψ2

(3) (R : [A,B] → C, (a, ‖ c)) (1), (2) and FD4; ((Σ, B = b3) is not consistent)
(4) (R : A→ C, (a ‖ c)) (3) and FD3

(5) (R : [A,D] → A, (a, ‖ a)) FD1

(6) (R : [A,D] → D, (a, ‖)) FD1

(7) (R : [A,D] → C, (a, ‖ c)) (4), (5) and FD2

(8) (R : [C,D] → E, (, ‖)) ψ3

(9) (R : [A,D] → E, (a, ‖)) (6), (7), (8) and FD2

While the rules FD1 and FD2 in I are extensions of Armstrong’s Axioms for fds,
FD3 and FD4 do not find a counterpart in Armstrong’s Axioms. We next illustrate
the inference rules in I and show their soundness. That is, if Σ ⊢I ϕ then Σ |= ϕ.

FD1 and FD2 extend Armstrong’s Axioms of reflexivity and transitivity, respectively.
The rule FD1 is self-explanatory and is illustrated on lines 5 and 6 in Example 4.1.

In contrast, in order for FD2 to cope with pattern tuples which are not found in
fds, it employs an order relation �, defined as follows. For a pair η1, η2 of constants
or ‘ ’, we say that η1 � η2 if either η1 = η2 = a where a is a constant, or η2 =
‘ ’. The � relation naturally extends to pattern tuples. For instance, (a, b) � (, b).
Intuitively, the use of � in FD2 assures that (t1[A1], . . . , tk[Ak]) is in the “scope”
of tp[A1, . . . , Ak], i.e., the pattern tp[A1, . . . , Ak] is applicable. In Example 4.1,
FD2 can be applied on line 9 because the pattern tuple t1[C,D] = (c,) obtained
from lines 6 and 7, and the pattern tuple t2[C,D] = (,) on the lhs of ψ3 (line
8), satisfy t1[C,D] � t2[C,D]. To see that FD2 is sound, note that any tuple t
that matches a pattern tuple tp also matches any pattern tuple t′p if tp � t′p. More
specifically, assume that conditions (1), (2) and (3) of the rule hold. Let Σ consist of
ϕi = (R : X → Ai, ti), φ = (R : [A1, . . . , Ak] → B, tp) and ψ = (R : X → B, t′p), for
i ∈ [1, k]. Assume that Σ ⊢I ψ by FD2. We need to show that for any instance I of
R, if I |= Σ, then I |= ψ. Indeed, for any two tuples s, t ∈ I, if s[X] = t[X] ≍ t′p[X],
then from condition (1) and the assumption that t′p[X] = t1[X] it follows that

Conditional Functional Dependencies for Capturing Data Inconsistencies · 15

s[X] = t[X] ≍ ti[X] and s[Ai] = t[Ai] ≍ ti[Ai] for i ∈ [1, k]. By condition (3), we
have that s[A1, . . . , Ak] = t[A1, . . . , Ak] ≍ tp[A1, . . . , Ak]. Thus from condition (2)
(i.e., I |= φ) it follows that s[B] = t[B] ≍ tp[B] = t′p[B]. Hence I |= ψ, as desired.

FD3 tells us that for a cfd ϕ = (R : [B,X] → A, tp), if tp[B] = ‘ ’ and tp[A] is a
constant ‘a’, then ϕ can be simplified by dropping the B attribute from the lhs of
the embedded fd. To see this, consider an instance I of R such that I |= ϕ, and any
tuple t in I. Note that since tp[B] = ‘ ’, if t[X] ≍ tp[X] then t[B,X] ≍ tp[B,X] and
t[A] has to be ‘a’ regardless of what value t[B] has. Thus ϕ entails (R : X → A, tp),
and I |= (R : X → A, tp). This rule is illustrated on line 4 in Example 4.1.

FD4 deals with attributes of finite domains, which are not an issue for standard
fds since fds have no pattern tuples. They are given w.r.t. a set Σ of cfds. More
specifically, to use this rule one needs to determine, given Σ on a relation schema R,
an attribute B in attr(R) with a finite domain and a constant b ∈ dom(B), whether
or not there exists an instance I of R such that I |= Σ and moreover, there is a
tuple t in I such that t[B] = b. We say that (Σ, B = b) is consistent if and only if
such an instance I exists. That is, since the values of B have finitely many choices,
we need to find out for which b ∈ dom(B), Σ and B = b make sense when put
together. For example, consider the set Σ = {ψ2, ψ3} given in Example 3.1, and
the bool attribute A. Then neither (Σ, A = true) nor (Σ, A = false) is consistent.
FD4 says that for an attribute B of a finite domain and w.r.t. a given set Σ of
cfds, if Σ ⊢I (R : [X,B] → A, ti) when ti[B] ranges over all b ∈ dom(B) such
that (Σ, B = b) is consistent, then ti[B] can be “upgraded” to ‘ ’. That is, for any
instance I, if I |= Σ, then I |= (R : [X,B] → A, tp), where tp[B] = ‘ ’. Indeed,
suppose that I |= Σ but I 6|= (R : [X,B] → A, tp). Suppose that tp[A] = (similarly
for the case tp[A] = a ∈ dom(A)). Then there exist s, t ∈ I such that {s, t} |= Σ,
s[X,B] = t[X,B] ≍ tp[X,B] but s[A] 6= t[A]. Let b = s[B] (and hence b = t[B]).
Then {s, t} 6|= (R : [X,B] → A, ti) where ti[B] = b. This contradicts the assump-
tion that Σ ⊢I (R : [X,B] → A, ti) for ti[B] ranging over all such b ∈ dom(B) that
(Σ, B = b) is consistent. Thus I |= (R : [X,B] → A, tp), where tp[B] = ‘ ’.

One might wonder why I has no rule analogous to the augmentation rule in Arm-
strong’s Axioms. The reason is that we assume that all our cfds are in the normal
form and therefore only have a single attribute in their rhs. As a result, there is
no need for augmenting the rhs with attributes. However, if one would lift this
assumption then (four) additional rules need to be added to I that allow to trans-
form any cfd into its normal form and back. These rules are straightforward (they
basically simulate the construction from Σ to Σnf and back as indicated in the proof
of Proposition 2.3) and do not provide any more insight in the intricacies involved
in the implication problem for cfds. Since it suffices to show the completeness of
I for cfds in the normal form, we omit a detailed description of these additional
rules and assume, as usual, that all cfds in Σ are in the normal form.

From the discussion above it follows that if Σ ⊢I ϕ then Σ |= ϕ, or in other words
the set of inference rules I is sound. The theorem below tells us that, analogous to
Armstrong’s Axioms for fds, the set of inference rules of I is also complete, i.e., if
Σ |= ϕ then Σ ⊢I ϕ. Hence, I characterizes the implication analysis for cfds.

Theorem 4.2. The inference system I is sound and complete for implication of

16 · Conditional Functional Dependencies for Capturing Data Inconsistencies

cfds.

Proof. The soundness of the rules follows from the discussion given above. We
focus on their completeness. For a set Σ of cfds, let Σc be the set of cfds in Σ of
the form (R : X → A, (tp ‖ a)) for some constant a ∈ dom(A), and Σv be the set
of cfds in Σ of the form (R : X → A, (tp ‖)). We denote by finattr(R) the set
of attributes in attr(R) that have a finite domain fdom, and by attr(Σ) the set of
attributes in attr(R) that appear in some cfds in Σ.

We show the completeness of I in the following steps: (1.a) first, we show that if
Σ |= ϕ then Σ ⊢I ϕ when ϕ = (R : X → A, (tp ‖ a)) for some constant a ∈ dom(A)
and when attr(Σ) does not contain any finite domain attributes; (1.b) next, while
we still assume that ϕ has a constant rhs, we allow finite domain attributes in
attr(Σ); (2.a) we then show that Σ |= ϕ implies Σ ⊢I ϕ when ϕ = (R : X →
A, (tp ‖)) and when attr(Σ) does not contain any finite domain attributes; and
finally (2.b) we still assume that ϕ has a variable rhs but allow finite domain
attributes in attr(Σ). All four steps are proven by extending the standard proof of
the completeness of Armstrong’s Axioms for fds (see, e.g., [Abiteboul et al. 1995]).
That is, we first provide an algorithm that computes a so-called closure set which
characterizes when a set of cfds implies a given cfd; and then we show that the
computation of the closure set can be simulated using rules in I.

(1.a) Let ϕ = (R : X → A, (tp ‖ a)) for some a ∈ dom(A) and assume that attr(Σ)
does not have any finite domain attributes. We first observe that Σ |= ϕ iff Σc |= ϕ.
Clearly, since Σc ⊆ Σ, Σc |= ϕ implies Σ |= ϕ. Conversely, assume that Σ |= ϕ

but that Σc 6|= ϕ. Then there must exist a single-tuple instance I = {t} such that
I |= Σc but I 6|= ϕ. However, since single-tuple instances trivially satisfy any cfd in
Σv, I |= Σv as well. Therefore, I |= Σ but I 6|= ϕ. This contradicts the assumption
that Σ |= ϕ. Hence, Σc |= ϕ implies Σ |= ϕ. As a result, it suffices to only consider
Σc instead of Σ for the implication problem for cfds ϕ with a constant rhs.

Next, we provide an algorithm, called c-Closure, that takes as input Σc, X and
tp, and outputs a set of attribute-value pairs, denoted by Σ∗

c(X, tp). Analogous to
the closure set of standard fds, the set Σ∗

c(X, tp) satisfies the following property:
(A, a) ∈ Σ∗

c(X, tp) iff Σ |= (R : X → A, (tp ‖ a)). As shown in Fig. 4, c-Closure

is similar to the algorithm for computing the closure of fds except that (i) it takes
into account the pattern tuple tp over X; (ii) it returns a set of attribute-value
pairs instead of attributes only; (iii) result is initialized using the attributes in X

for which tp is a constant; and (iv) it uses a different “transitivity” rule (lines 4-5).
Before we show that Σ |= ϕ implies Σ ⊢I ϕ we establish the key property of

Σ∗
c(X, tp). That is, (A, a) ∈ Σ∗

c(X, tp) iff Σ |= (R : X → A, (tp ‖ a)).
First, suppose that Σ |= ϕ but (A, a) 6∈ Σ∗

c(X, tp). Consider the single-tuple
instance I = {t} such that t[Ai] = ai for all (Ai, ai) ∈ Σ∗

c(X, tp) and all other
attributes in t are instantiated with constants not appearing in the attributes of
any pattern tuple in Σ ∪ {ϕ}. Note that this is possible since Σ is consistent and
all attributes in attr(Σ) are assumed to have an infinite domain. We now show that
I |= Σ but I 6|= ϕ. We clearly have that I |= Σv since I is a single-tuple instance.
Moreover, for any ψ = (R : Y → B, (sp ‖ b)) ∈ Σc such that for all Bi ∈ Y either
(Bi, sp[Bi]) ∈ Σ∗

c(X, tp) or sp[Bi] = , we have that (B, b) ∈ Σ∗
c(X, tp), and thus

I |= ψ for any such ψ. For cfds ψ′ that are not of the above form, it suffices to

Conditional Functional Dependencies for Capturing Data Inconsistencies · 17

Input: A set Σc of cfds, a set of attributes X and pattern tp.
Output: The closure set Σ∗

c(X, tp).

1. unused := Σc;
2. result := {(Ai, tp[Ai]) | Ai ∈ X, tp[Ai] ∈ dom(Ai)};
3. repeat until no further change
4. if (R : Y → B, (sp ‖ b)) ∈ unused and (for each Bi ∈ Y ,
5. either (Bi, sp[Bi]) ∈ result or sp[Bi] =) then do

6. (i) unused := unused \ {(R : Y → B, (sp ‖ b))};
7. (ii) result := result ∪ {(B, b)};
8. output result

Fig. 4. Algorithm c-Closure

observe that I does not match lhs(ψ′) and therefore trivially satisfies ψ′. Hence,
we may conclude that I |= Σ. However, since t[A] 6= a we have indeed that I 6|= ϕ

which contradicts the assumption that Σ |= ϕ.
Conversely, assume that (A, a) ∈ Σ∗

c(X, tp) but Σ 6|= ϕ. Then there must exist a
single-tuple instance I = {t} such that I |= Σ, t[X] ≍ tp but t[A] 6= a. However,
from I |= Σ and t[X] ≍ tp it follows that t[Ai] = ai for all (Ai, ai) ∈ Σ∗

c(X, tp). In
particular, t[A] must be ‘a’, contradicting the assumption that I 6|= ϕ. Thus Σ |= ϕ.

We are now ready to show that if Σ |= ϕ then Σ ⊢I ϕ. Again, the proof is similar
to its standard fd counterpart. That is, we show that Σ ⊢I (R : X → Ai, tp ‖ ai))
for all (Ai, ai) ∈ Σ∗

c(X, tp). Intuitively, we “verify” algorithm c-Closure using
the inference rules in I. Denote by resulti the content of result after i iterations
of c-Closure on input Σ, X and tp. More specifically, we denote by A(i) the set
of attributes in resulti and by a(i) the corresponding tuple of constants associated
with these attributes. The set result0 is initialized by line 2 in Figure 4.

We show by induction on i that for each (Aj , aj) ∈ resulti, Σ ⊢I (R : X → Aj , tp ‖
aj)). For each (Aj , aj) ∈ result0, we have that Σ ⊢I (R : X → Aj , (tp ‖ aj)) by

FD1. Suppose inductively that we have proofs σj1, . . . , σ
j
ki

of (R : X → Aj , (tp ‖ aj))
for all (Aj , aj) ∈ resulti. Suppose that (R : Y → B, (sp ‖ b)) ∈ Σ is chosen for the
(i+1)th iteration and that it passes the condition stated on lines 4-5. In other words,
either (Bi, sp[Bi]) ∈ resulti or sp[Bi] = . As a result, resulti+1 = resulti ∪ {(B, b)}.
We therefore extend the proof by adding the following steps:

(1) (R : Y → B, (sp ‖ b)) in Σ;
(2) (R : Y ′ → B, (sp[Y

′] ‖ b)) by FD3; sp[Y
′] consists of constants only;

(3) (R : A(i) → Bj , (a
(i) ‖ sp[Bj])) by FD1; for each Bj ∈ Y ′;

(4) (R : A(i) → B, (a(i) ‖ b)) by (2), (3) and FD2;
(5) (R : X → Aj , (tp ‖ a

(i)[Aj])) induction hypothesis; for each Aj ∈ A(i);
(6) (R : X → B, (tp ‖ b)) by (4), (5) and FD2.

From this, we may conclude that we have a proof for (R : X → Aj , (tp ‖ aj))
for all (Aj , aj) ∈ resulti+1. Proceed in this way until the completion of result,
we indeed have a proof for (R : X → Ai, (tp ‖ ai)) for all (Ai, ai) ∈ Σ∗

c(X, tp).
In particular, since Σ |= ϕ and therefore (A, a) ∈ Σ∗

c(X, tp), we have a proof for
(R : X → A, (tp ‖ a)), as desired. We remark that only rules FD1, FD2 and FD3

are needed in this case. Moreover, it is easy to verify that c-Closure provides an

18 · Conditional Functional Dependencies for Capturing Data Inconsistencies

algorithm for deciding Σ |= ϕ that runs in O(|Σ|2|attr(Σ)|) time.

(1.b) Let ϕ = (R : X → A, (tp ‖ a)) for some a ∈ dom(A) and assume that attr(Σ)
contains finite domain attributes. We first show how c-Closure can be used to
decide Σ |= ϕ in this case. For a given set X of attributes, let X ′ be X ∪finattr(R).
For a pattern tuple tp over X, let cp be a tuple of constants over finattr(R), i.e.,

cp ∈ fdomfinattr(R), such that (i) cp and tp have the same constants on the attributes
in finattr(R), and (ii) cp and Σ are consistent. Denote by cp ⊲⊳ tp the pattern tuple
over X ′ that is the same as tp on X and has the same constants as cp on finattr(R).

We can see that (A, a) ∈
⋂
cp

Σ∗
c(X

′, cp ⊲⊳ tp) iff Σ |= ϕ. Here cp ranges over all

constant tuples as described above and Σ∗
c(X

′, cp ⊲⊳ tp) is the result of c-Closure

on input Σ, X ′ and cp ⊲⊳ tp. Intuitively, the enumeration of constant tuples of
attributes in finattr(R) allows us to reduce case (1.b) to (1.a). The intersection
filters out any attribute-value pair inferred due to the presence of specific constants
in finattr(R). Clearly, the “if”-direction follows from the fact that if Σ |= (R :
X → A, (tp ‖ a)) then Σ |= (R : X ′ → A, (cp ⊲⊳ tp ‖ a)) for all cp. For the “only
if”-direction, suppose that (A, a) is in the intersection but Σ 6|= ϕ. Then there
must exist a single-tuple instance I = {t} such that I |= Σ but I 6|= ϕ. Let cp =
t[finattr(R)] (note that cp and Σ are consistent). Then, I serves as a counterexample
for Σ |= (R : X ′ → A, (cp ⊲⊳ tp ‖ a)) and thus (A, a) 6∈ Σ∗

c(X
′, cp ⊲⊳ tp). Hence,

(A, a) cannot be in
⋂
cp

Σ∗
c(X

′, cp ⊲⊳ tp) either, contradicting our assumption.

We use the following algorithm to compute
⋂
cp

Σ∗
c(X

′, cp ⊲⊳ tp): (i) for each cp,

execute c-Closure on input Σ, X ′ and cp ⊲⊳ tp; and (ii) take the intersection of
all result sets computed in (i). Given the complexity of c-Closure, this algorithm
runs in O(|fdom||finattr(R)||Σ|2|attr(Σ)|) time.

For the completeness of I, we construct proofs for (R : X → Ai, (tp ‖ ai)) for all
(Ai, ai) ∈

⋂
cp

Σ∗
c(X

′, cp ⊲⊳ tp). That is, for each (Ai, ai) ∈
⋂
cp

Σ∗
c(X

′, cp ⊲⊳ tp), we

extend the inductive I-proofs given in case (1.a) as follows:

(1) (R : X ′ → Ai, (cp ⊲⊳ tp ‖ ai)) for each cp consistent with Σ; and
by inductive proofs as in case (1.a);

(2) (R : X ′ → Ai, (, . . . , , tp ‖ ai)) by (1) and FD4;
(3) (R : X → Ai, (tp ‖ ai)) by (2) and FD3.

In particular, this shows that Σ ⊢I (R : X → A, (tp ‖ a)) since Σ |= (R : X →
A, (tp ‖ a)) implies (A, a) ∈

⋂
cp

Σ∗
c(X

′, cp ⊲⊳ tp).

(2.a) Let ϕ = (R : X → A, (tp ‖)) and assume that attr(Σ) does not have finite
domain attributes. In this case we separate the treatment of cfds in Σc and the
treatment of Σv, as follows. First, we compute Σ∗

c(X, tp) as described in case (1.a).
Note that the attribute-value pairs induced in this phase are bindings necessarily
enforced by Σc. Second, leveraging Σ∗

c(X, tp), we simplify the treatment of Σv.
More specifically, we expand X and tp to X and tp by incorporating attributes and
constants induced from Σ∗

c(X, tp), as follows. Initially, let X be X and tp be tp.
For each (Ai, ai) ∈ Σ∗

c(X, tp), we add Ai to X and extend tp by letting tp[Ai] = ai.
As will be shown shortly, Σ |= (R : X → A, (tp ‖)) iff Σv |= (R : X → A, (tp ‖)).
Therefore, w.l.o.g. we may assume ϕ = (R : X → A, (tp ‖)) and consider Σv only.

We now show that Σ |= (R : X → A, (tp ‖)) iff Σv |= (R : X → A, (tp ‖)).

Conditional Functional Dependencies for Capturing Data Inconsistencies · 19

First assume that Σ |= (R : X → A, (tp ‖)) but there exists an instance I of R
such that I |= Σv but there exist two tuples s, t ∈ I such that s[X] = t[X] ≍ tp[X],
while s[A] 6= t[A]. We then construct an instance I ′ = {s′, t′} such that I ′ |= Σ
but I ′ 6|= (R : X → A, (tp ‖)), and show that it leads to a contradiction to the
assumption. To do this, we transform s and t into s′ and t′, respectively, as follows.
First, we let s′[X] = s[X] and t′[X] = t[X]. All other attributes in s′ and t′ are
instantiated with constants not appearing in the attributes of any pattern tuple in
Σ ∪ ϕ. Moreover, for any attribute B ∈ attr(R) we guarantee that s′[B] = t′[B]
iff s[B] = t[B]. Clearly, I ′ 6|= (R : X → A, (tp ‖)). We now show that I ′ |= Σ,
contradicting the assumption that Σ |= (R : X → A, (tp ‖)). First, consider
ψ = (R : Y → B, (sp ‖ b)) ∈ Σc. From the definition of X and tp we know
that if for all Bi ∈ Y either (Bi, sp[Bi]) ∈ Σ∗

c(X, tp) or sp[Bi] = , then B ∈ X and
tp[B] = b. Therefore, I ′ |= ψ for any such ψ in Σc. Moreover, for any other cfd ψ in
Σc it follows from the choice of constants in s′ and t′ that I ′ does not satisfy lhs(ψ)
and ψ is therefore trivially satisfied by I ′. Hence, I ′ |= Σc. It remains to show that
I ′ |= Σv. However, this follows immediately from (i) the choice of constants in s′

and t′; (ii) the fact that s′[B] = t′[B] iff s[B] = t[B] for all B ∈ attr(R); and (iii)
I |= Σv. Hence, we have that I ′ |= Σv and therefore I ′ |= Σ, as desired.

Conversely, assume that Σv |= (R : X → A, (tp ‖)) but that there exists an
instance I = {s, t} such that I |= Σ, s[X] = t[X] ≍ tp[X], while s[A] 6= t[A].
However, this implies that I |= (R : X → Ai, (tp ‖ ai)) for all (Ai, ai) ∈ Σ∗

c(X, tp).
In other words, s[X] = t[X] ≍ tp and hence I serves as a counterexample for Σv |=
(R : X → A, (tp ‖)). We may therefore conclude that Σ |= (R : X → A, (tp ‖)).

Given this, we present an algorithm, referred to as v-Closure, to compute a
set Σ∗

v(X, tp) of attributes, such that A ∈ Σ∗
v(X, tp) iff Σ |= (R : X → A, (tp ‖)).

Algorithm v-Closure is the same as c-Closure, except the following: (i) it returns
a set of attributes instead of attribute-value pairs; (ii) it takes Σv, X and tp as
input; (iii) result is initialized with all attributes in X; and (iv) the “transitivity”
rule requires all attributes Bi ∈ Y to be in result and that tp � sp[Y]. It is
easy to verify, in exactly the same way as in the standard fd counterpart, that
A ∈ Σ∗

v(X, tp) iff Σ |= (R : X → A, (tp ‖)). Moreover, the induction proof for the
completeness of I given for case (1.a) can be extended in exactly the same way as
in the standard fd case. In fact, only FD1 and FD2 are needed. We remark that v-
Closure provides a decision algorithm for Σ |= ϕ that runs in O(|Σ|2|attr(Σ)|)
time.

(2.b) Finally, let ϕ = (R : X → A, (tp ‖)) and assume that attr(Σ) has finite
domain attributes. As in case (2.a) we expand X and tp to X and tp, respectively,
but by using the attribute-value pairs in

⋂
cp

Σ∗
c(X

′, cp ⊲⊳ tp). As in the proof above,

one can verify that Σ |= (R : X → A, (tp ‖)) iff Σv |= (R : X → A, (tp ‖)).

Along the same lines as the proof of case (1.b), we reduce case (2.b) to (2.a).
That is, we provide an algorithm for deciding Σv |= (R : X → A, (tp ‖)) using the
algorithm v-Closure described in case (2.a). However, in contrast to the proof

of case (1.b), just taking the intersection of Σ∗
v(X

′
, cp ⊲⊳ tp) over all cp no longer

works here. To cope with this, we inductively define the following sets of attributes.
First, we introduce some additional notation. For a set Y of attributes in attr(R),

20 · Conditional Functional Dependencies for Capturing Data Inconsistencies

we denote by Yf the set of attributes Y ∩finattr(R). We then define X
(0)

= X, and

X
(i)

=
⋂
cp

Σ∗
v(X ∪X

(i−1)

f , cp[X
(i−1)

f] ⊲⊳ tp) for i > 0. As before cp ranges over all

tuples of constants over finattr(R) that are consistent with Σ and match tp.

We now establish the following two key properties. First, one can verify that

there exists n ≤ |finattr(R)| such that X
(n+1)

= X
(n)

. Second, A ∈ X
(n)

iff
Σ |= (R : X → A, (tp ‖)).

The first property is shown as follows. First observe that X
(i)

⊆ X
(i+1)

for each

i ≥ 0. Moreover, X
(i+1)

= X
(i)

if X
(i+1)

f = X
(i)

f . Assume that X(i+1) 6= X(i).

Then, in the worst case, X(i+1) \ X(i) contains at most a single finite-domain
attribute. Since there are only |finattr(R)| finite-domain attributes, it takes at

most |finattr(R)| steps in order to get X
(i+1)

f = X
(i)

f . Hence, we know for sure that

X
(n+1)

= X
(n)

for some n ≤ |finattr(R)|

The second property, i.e., A ∈ X
(n)

iff Σ |= (R : X → A, (tp ‖)) is shown

as follows. Since Σ |= (R : X → A, (tp ‖)) implies Σ |= (R : [X,X
(n)

f] →

A, (cp[X
(n)

f] ⊲⊳ tp ‖)) for each cp, the “if”-direction is immediate. For the “only

if”-direction, we show by induction on i that if A ∈ X
(i)

then Σ |= (R : X →

A, (tp ‖)). For i = 0, this trivially holds. Let i > 0 and let A ∈ X
(i)

\ X
(i−1)

.
Assume by contradiction that Σ 6|= (R : X → A, (tp ‖)). Then there must be an
instance I of R such that I = {s, t}, I |= Σ but I 6|= (R : X → A, (tp ‖)). From

the induction hypothesis we know that s[X
(i−1)

] = t[X
(i−1)

]. Let cp be a tuple of

constants such that cp is equal to s (and hence also to t) on X
(i−1)

f . This implies

that I is a counterexample to (R : [X,X
(i−1)

f] → A, (cp[X
(i−1)

f] ⊲⊳ tp ‖)) and

therefore A 6∈ Σ∗
v(X ∪X

(i−1)

f , cp[X
(i−1)

f] ⊲⊳ tp). Hence, A cannot be in X
(i)

either,
contradicting our assumption.

We use the following algorithm to compute X
(n)

. For each i, (i) execute v-

Closure on input Σv, X ∪ X
(i−1)

f and cp[X
(i−1)

f] ⊲⊳ tp, for all cp’s that are
consistent with Σ and tp; and (ii) take the intersection of the result sets. The

algorithm stops when it reaches X
(n)

= X
(n+1)

. It is clear that the algorithm runs
in O(|finattr(R)||fdom||finattr(R)||Σ|2|attr(Σ)|) time.

Based on the algorithm above, we extend the inductive proof given in cases (1.b)

and (2.a) for the completeness of I. That is, for all A ∈ X
(n)

, we construct a proof
for (R : X → A, (tp ‖)). First, in view of the completeness established in case

(2.a) and the computation of X
(i)

in terms of calls to v-Closure, we have for
each i ≥ 0 and each cp, an I-proof for the following:

(1) (R : [X,X
(i)

f] → Aj , (cp[X
(i+1)

f] ⊲⊳ tp ‖)) for each Aj ∈ X
(i+1)

;

Conditional Functional Dependencies for Capturing Data Inconsistencies · 21

Similar to case (1.b) we eliminate the dependency on cp using FD4:

(2) (R : X → Aj , (tp ‖)) for Aj ∈ X
(1)

; by (1) and FD4;

(3) (R : [X,X
(1)

f] → Aj , (, . . . , , tp ‖)) for Aj ∈ X
(2)

; by (1) and FD4;
.

(n+ 1) (R : [X,X
(n−1)

f] → Aj , (, . . . , , tp ‖)) for Aj ∈ X
(n)

; by (1) and FD4;

Finally, we repeatedly apply the transitivity rule FD2:

(n+ 2) (R : X → Aj , (tp ‖)) for each Aj ∈ X
(n)

; and
by (2), . . . ,(n+1) and FD2.

In particular, given that Σ |= (R : X → A, (tp ‖)) and hence A ∈ X
(n)

, we have
that Σ ⊢I (R : X → A, (tp ‖)), as desired.

From these one can see that due to the richer semantics of cfds, I is more
complicated than Armstrong’s Axioms. It is thus not surprising that the implication
analysis of cfds is more intriguing than their standard fd counterpart. Indeed, the
theorem below shows that the implication problem for cfds is intractable.

Theorem 4.3. The implication problem for cfds is conp-complete.

Proof. Consider a set Σ of cfds and another cfd ϕ on a relation schema R,
where Σ is consistent. The problem for determining whether or not Σ |= ϕ is
equivalent to the complement of the problem for determining whether or not there
exists a nonempty instance I of R such that I |= Σ and I |= ¬ϕ. Thus it suffices
to show that the satisfiability problem for Σ ∪ {¬ϕ} is np-complete. Note that in
contrast to the proof of Theorem 3.2, here we need to deal with ¬ϕ.

We first show that the satisfiability problem is in np. Assume that ϕ = (R : X →
Y, tp). Similar to the upper bound proof of Theorem 3.2, it is easy to verify that
if Σ ∪ {¬ϕ} is satisfiable, then there exists an instance I consisting of two tuples
s, t, such that I |= Σ, s[X] = t[X] ≍ tp[X], but either s[Y] 6= t[Y], or s[Y] 6≍ tp[Y]
(resp. t[Y] 6≍ tp[Y]); note that here for each attribute A ∈ X ∪ Y , s[A] ∈ adom(A)
and t[A] ∈ adom(A). Then an np algorithm similar to the one given in the proof
of Theorem 3.2 suffices to check whether not Σ ∪ {¬ϕ} is satisfiable.

We next show that the satisfiability analysis of Σ∪{¬ϕ} is np-hard by reduction
from the non-tautology problem. The proof is similar to the lower bound proof of
Theorem 3.2. Recall the statement of the non-tautology problem from that proof.
Given an instance φ of the non-tautology problem, we define the same relation
schema R and the same set Σ of cfds on R as given in that proof. Furthermore,
we define a single cfd ϕ = (C → C, (0 ‖ 1)), which encodes that φ is false.

To show that the encoding is indeed a reduction, note that if φ is not a tautology,
then it is already shown by the proof of Theorem 3.2 that there exists a nonempty
instance I of R that satisfies Σ. Moreover, by the definition of Σ for any tuple t
in I, t[C] = 0. Thus I 6|= ϕ, i.e., I |= ¬ϕ. Conversely, suppose that there exists
an instance I that satisfies Σ but I |= ¬ϕ. Then by I |= Σ alone, the proof of
Theorem 3.2 already shows that φ is not a tautology.

Putting this together, we have that the satisfiability problem is np-complete and
as a result, that its complement, the implication problem, is conp-complete.

22 · Conditional Functional Dependencies for Capturing Data Inconsistencies

Input: A set Σ of cfds.
Output: A minimal cover of Σ.

1. if Σ is not consistent
2. then return ∅;
3. for each cfd ϕ = (R : X → A, tp) ∈ Σ
4. for each attribute B ∈ X

5. if Σ |= (R : X \ {B} → A, (tp[X \ {B}] ‖ tp[A]))
6. then Σ := Σ \ {ϕ} ∪ {(R : X \ {B} → A, (tp[X \ {B}] ‖ tp[A]))};
7. mincover := Σ;
8. for each cfd ϕ = (R : X → A, tp) ∈ Σ
9. if Σ \ {ϕ} |= ϕ

10. then remove ϕ from mincover;
11.return mincover;

Fig. 5. Algorithm MinCover

The good news is that when the relation schema is predefined as commonly found
in data cleaning applications, the implication analysis of cfds can be conducted
efficiently, as stated by the next result.

Corollary 4.4. Given a set Σ of cfds and a single cfd ϕ defined on a schema
R, whether or not Σ |= ϕ can be decided in O(|Σ|2|attr(Σ)|) time if no attributes in
attr(Σ) have a finite domain; and it is in O(|Σ|2) time if the schema is fixed.

Proof. This follows immediately from the complexity analyses of the algorithms
for deciding Σ |= ϕ given in the proof of Theorem 4.2.

4.2 Computing Minimal Covers of CFDs

As an application of consistency and implication analyses of cfds, we present an
algorithm for computing a minimal cover Σmc of a set Σ of cfds. The cover Σmc is
equivalent to Σ but does not contain redundancies, and thus is often smaller than
Σ. Since the costs of checking and repairing cfds are dominated by the size of the
cfds to be checked along with the size of the relational data, a non-redundant and
smaller Σmc typically leads to less validating and repairing costs. Thus finding a
minimal cover of input cfds serves as an optimization strategy for data cleaning.

Following its traditional-fd counterpart (see, e.g., [Abiteboul et al. 1995]), we
define a minimal cover Σmc of a set Σ of cfds to be a set of cfds such that
(1) Σmc ≡ Σ, i.e., Σmc and Σ are equivalent; (2) no proper subset of Σmc implies
Σmc, i.e., Σmc is nonredundant; and (3) each cfd in Σmc is of the form (R : X →
A, tp) as mentioned earlier, and moreover, for each (R : X → A, tp) in Σmc, there
exists no (R : X ′ → A, tp[X

′∪A]) in Σmc such that X ⊂ X ′, i.e., Σmc is canonical.
Intuitively, conditions (1) and (2) assure that Σmc contains no redundant cfds, and
condition (3) ensures that Σmc does not have redundant attributes or patterns.

Example 4.5. Let Σ consist of ψ1 = (R : A → B, (‖ b)), ψ2 = (R : B →
C, (‖ c)) and ϕ = (R : A → C, (a ‖)). A minimal cover Σmc of Σ consists of
ψ′

1 = (∅ → B, (b)) and ψ′
2 = (∅ → C, (c)). This is because (1) {ψ1, ψ2} |= ϕ, which

can be easily verified; (2) ψ1 can be simplified to ψ′
1 by removing the redundant

attribute A (by the rule FD3 in I), and (3) similarly, ψ2 can be simplified to ψ′
2.

Conditional Functional Dependencies for Capturing Data Inconsistencies · 23

QC
ϕ2

select * from cust t, T2 tp
where t[CC] ≍ tp[CC] and t[AC] ≍ tp[AC] and t[PN] ≍ tp[PN] and

(t[STR] 6≍ tp[STR] or t[CT] 6≍ tp[CT] or t[ZIP] 6≍ tp[ZIP])

QV
ϕ2

select distinct CC, AC, PN from cust t, T2 tp
where t[CC] ≍ tp[CC] and t[AC] ≍ tp[AC] and t[PN] ≍ tp[PN] and

(tp[STR] = ‘ ’ or tp[CT] = ‘ ’ or tp[ZIP] = ‘ ’)
group by CC, AC, PN having count (distinct STR, CT, ZIP)> 1

Fig. 6. SQL queries for checking CFD ϕ2

We give an algorithm, MinCover, for computing a minimal cover in Fig. 5. It
is an extension of its standard fd counterpart [Maier 1980]. First, MinCover

checks whether or not Σ is consistent (lines 1-2). If Σ is consistent, it proceeds to
remove redundant attributes in the cfds of Σ (lines 3–6). We use (tp[X \ {B}] ‖
tp[A]) to denote the pattern tuple t′p such that t′p[A] = tp[A] and t′p[C] = tp[C] for
each C ∈ X \ {B}. Next, it removes redundant cfds from Σ (lines 8–10). From
Proposition 3.5 and Corollary 4.4 it follows that MinCover is able to compute a
minimal cover efficiently when the schema is predefined, in O(|Σ|3) time.

5. DETECTING CFD VIOLATIONS

A first step for data cleaning is the efficient detection of constraint violations in the
data. In this section we develop techniques to detect violations of cfds. Given an
instance I of a relation schema R and a set Σ of cfds on R, it is to find all the
violating tuples in I, i.e., the tuples that (perhaps together with other tuples in I)
violate some cfd in Σ. We first provide an sql technique for finding violations of
a single cfd, and then generalize it to validate multiple cfds. Finally we present
an incremental technique for validating cfds. It is desirable to use just sql to find
violations: this makes detection feasible in any standard relational DBMS without
requiring any additional functionality on its behalf.

5.1 Checking a Single CFD with SQL

Consider a cfd ϕ = (R : X → A, Tp). For simplicity, we assume that the right-
hand side of a cfd consists of a single attribute only. Our solutions can be trivially
extended to multiple attributes, as illustrated by examples. Given the cfd ϕ, the
following two sql queries suffice to find the tuples violating ϕ:

QC
ϕ select * from R t, Tp tp

where t[X] ≍ tp[X] and t[A] 6≍ tp[A]

QV
ϕ select distinct X from R t, Tp tp

where t[X] ≍ tp[X] and tp[A] = ‘ ’
group by X having count (distinct A)> 1

where for an attribute B ∈ (X ∪ A), t[B] ≍ tp[B] is a short-hand for the sql

expression (t[B] = tp[B] or tp[B] = ‘ ’), while t[B] 6≍ tp[B] is a short-hand for
(t[B] 6= tp[B] and tp[B] 6= ‘ ’).

Intuitively, detection is a two-step process, each conducted by a query. Initially,
query QCϕ detects single-tuple violations, i.e., the tuples t in I that match some
pattern tuple tp ∈ Tp on the X attributes, but t does not match tp in A since the
constant value tp[A] is different from t[A]. That is, QCϕ finds violating tuples based
on differences in the constants in the tuples and Tp patterns.

24 · Conditional Functional Dependencies for Capturing Data Inconsistencies

On the other hand, query QVϕ finds multi-tuple violations, i.e., tuples t in I for
which there exists a tuple t′ in I such that t[X] = t′[X] and moreover, both t and t′

match a pattern tp on the X attributes, value tp[A] is a variable, but t[A] 6= t′[A].
Query QVϕ uses the group by clause to group tuples with the same value on X and
it counts the number of distinct instantiations in tp[A]. If there is more than one
instantiation, then there is a violation. Note that QVϕ returns only the X attributes
of violating tuples, to make the output more concise, since the complete tuples can
be easily obtained using an additional sql query.

Example 5.1. Recall cfd ϕ2 given in Fig. 2. Over a cust instance I, the sql

queries QCϕ2
and QVϕ2

shown in Fig. 6 determine whether or not I satisfies ϕ2.
Executing these queries over the instance of Fig. 1, it returns tuples t1, t2 (due to
QCϕ2

), and t3 and t4 (due to QVϕ2
).

A salient feature of our sql translation is that tableau Tp is treated an ordinary
data table. Therefore, each query is bounded by the size of the embedded fdX → A

in the cfd, and is independent of the (possibly large) tableau Tp.

5.2 Validating Multiple CFDs

A naive way to validate a set Σ of cfds is to use one query pair for each cfd ϕ in Σ.
This approach requires 2 × |Σ| passes of the underlying relation. We next present
an alternative approach that only requires two passes. The key idea is to generate
a single query pair to check all the constrains in Σ. The proposed solution works in
two phases. In its first phase, it performs a linear scan of all the pattern tableaux
belonging to cfds in Σ and merges them, generating a single tableau called TΣ.
Intuitively, tableau TΣ is such that it captures the constraints expressed by all the
tableaux of the cfds in Σ. Then in its second phase, it generates a query pair that
finds tuples violating cfds in Σ.

5.2.1 Merging Multiple CFDs. Consider a set Σ which, w.l.o.g., contains just
two cfds ϕ and ϕ′ on R, where ϕ = (R : X → A, T) and ϕ′ = (R : X ′ → A′, T ′).
For now, assume that neither A nor A′ belong toX∪X ′. We remove this assumption
later. There are two main challenges for the generation of the merged tableau
TΣ. The first challenge is that tableaux T and T ′ may not be union-compatible,
i.e., X 6= X ′ or A 6= A′. We thus need to extend tableau T (resp. T ′) with all
the attributes in (X ∪A) − (X ′ ∪A′) (resp. (X ′ ∪A′) − (X ∪A) for T ′). For each
attribute B in (X∪A)−(X ′∪A′) and each tuple tp in the original tableau T , we set
the value of tp[B] to be a special symbol denoted by ‘@’, which denotes intuitively a
don’t care value. After this extension, the resulted tableaux are union-compatible.
Then tableau TΣ is defined to be their union. Figure 7 shows how the cfds ϕ2 and
ϕ3 of Fig. 2 can be made union-compatible.

Given the presence of ‘@’, we need to reformulate cfd satisfaction. Let Z =
X∪X ′ and W = A∪A′. Consider a tuple tp[Z,W] in tableau TΣ which includes ‘@’.

We use Zfreetp
andW free

tp
to denote the subset of Z andW attributes of tp that is ‘@’-

free, i.e., it has no ‘@’ symbol. A relation I of R satisfies the cfd ϕΣ whose tableau
is TΣ, denoted by I |= ϕΣ, if for each pair of tuples t1, t2 in the relation I, and for

each tuple tp in the pattern tableau TΣ of ϕΣ, if t1[Z
free
tp

] = t2[Z
free
tp

] ≍ tp[Z
free
tp

]

then t1[W
free
tp

] = t2[W
free
tp

] ≍ tp[W
free
tp

].

Conditional Functional Dependencies for Capturing Data Inconsistencies · 25

ϕ4 = ([CC, AC, PN] → [STR, CT, ZIP], T4), where T4 is

CC AC PN STR CT ZIP

01 908 MH

01 212 NYC
@ @ @

01 215 @ @ PHI @

Fig. 7. Merging of cfds ϕ2 and ϕ3

id CC AC CT

1 @

2 01 215 @

3 44 131 @
4 @ @

(a) Tableau T Z
Σ

id CT AC

1 @

2 PHI @

3 GLA @
4 @

(b) Tableau T W
Σ

Fig. 8. TΣ for cfds ϕ3 and ϕ5

For the second challenge, consider the detection of violations of a single cfd

using sql. Note that when writing the sql queries, we assume implicit knowledge
of whether an attribute is part of the left-hand or right-hand side of the cfd. Now
consider two simple cfds on R: ϕ = (R : A → B, T) and ϕ′ = (R : B → A, T ′).
Suppose that we have made the tableaux of the cfds union-compatible. One might
want to take the union of these two tableaux to generate TΣ. Note that we cannot
directly use the method given in the previous section. Attribute A is in the left-
hand side, for tuples coming from ϕ, while it is part of the right-hand side, for
tuples coming from ϕ′. Thus it seems that we need to distinguish the two sets of
tuples and treat each set separately, something that counters the benefits of cfd

merging.
We address this by splitting the tableau T of each cfd ϕ = (R : X → A, T) into

two parts, namely, TX and TA, one tableau for X and one for A attributes of ϕ.
Then tableau TZΣ (and similarly TWΣ) is generated by making all the TX tableaux
in Σ union-compatible (similarly for the TA tableau). Note that an attribute can
appear in both TZΣ and TWΣ . To be able to restore pattern tuples from TZΣ and TWΣ ,
we create a distinct tuple id tp[id] for each pattern tuple tp, and associates it with
the corresponding tuples in TZΣ and TWΣ . For example, consider cfd ϕ3 shown in
Fig. 2 and ϕ5 = (R : [CT] → [AC], T5), where T5 consists of a single tuple (‖).
Figure 8 shows their merged TZΣ and TWΣ tableaux. Note that attributes CT and
AC appear in both tableaux.

5.2.2 Query Generation. During the second phase of our approach, we generate
a single pair of sql queries for TΣ. This query generation, however, introduces new
challenges. Recall that query QVϕ for some cfd ϕ = (R : X → A, T) requires a

group by clause over all the X attributes. Now consider tableau TZΣ in Fig. 8. It
is not hard to see that if we use the group by clause over all the attributes in TZΣ ,
we are not going to detect all (if any) violations since, for example, for the first three
tuples in TZΣ the ‘@’ in attribute CT indicates that, while detecting violations, we
should only group by the first two attributes and ignore the value of attribute CT.
Similarly for the last tuple in TZΣ , the ‘@’ in attributes CC and AC indicates that

26 · Conditional Functional Dependencies for Capturing Data Inconsistencies

we should only consider the value of CT. The example suggests that our sql query
should change the set of group by attributes, based on the contents of each tuple.
We next show how this can be achieved while still keeping the query size bounded
by the size of the embedded fd Z → W in the merged tableau, and independent
of the size of the merged tableau. Central to our approach is the use of the case
clause of sql (supported by popular dbms like DB2, Oracle, MySQL).

Consider the merged tableaux TZΣ and TWΣ from a set Σ of cfds over a relation
schema R and let I be an instance of R. Then the following two sql queries can
be used to detect tuples of I violating ϕ:

QC
Σ select * from R t, TZ

Σ tZp , T
W
Σ tWp

where tZp [id] = tWp [id] and t[Z] ≍ tZp [Z] and t[W] 6≍ tWp [W]

QV
Σ select distinct Z from Macro tM

group by Z having count (distinct W)> 1

where Macro is:

select (case tZp [Bi] when ‘@’ then ‘@’ else t[Bi] end) as Bi · · ·
(case tWp [Cj] when ‘@’ then ‘@’ else t[Cj] end) as Cj · · ·

from R t, TZ
Σ tZp , T

W
Σ tWp

where tZp [id] = tWp [id] and t[Z] ≍ tZp [Z] and (tWp [C1] = ‘ ’ or · · · or tWp [Cn] = ‘ ’)

Here for each attribute Bi ∈ Z, t[B] ≍ tp[B] now accounts for ‘@’ and is a short-
hand for (t[Bi] = tp[Bi] or tp[Bi] = ‘ ’ or tp[Bi] = ‘@’), and for each Cj ∈ W ,
t[Cj] 6≍ tp[Cj] stands for (t[Cj] 6= tp[Cj] and tp[Cj] 6= ‘ ’ and tp[Cj] 6= ‘@’).

Note that query QCΣ is similar in spirit to the sql query that checks for violations
of constants between the relation and the tableau, for a single cfd. The only
difference is that now the query has to account for the presence of the ‘@’ symbol
in the tableau. Now consider relation Macro which is of the same sort as TZΣ and
TWΣ (we rename attributes that appear in both tableaux so as not to appear twice).
Relation Macro is essentially the join on Z of relation I with the result of the join
on tuple id tp[id] of the two tableaux. The value of each attribute, for each tuple
tM in Macro, is determined by the case clause. Indeed, for each attribute B ∈ Z,
tM [B] is set to be ‘@’ if tZp [B] is ‘@’, and is t[B] otherwise; similarly for each C ∈W

and tM [C]. Note that relation I is not joined on W with the tableaux. Thus if for
some tuple t with t[Z] ≍ tZp [Z], there exists an attribute C with tWp [C] a constant

and t[C] 6= tWp [C] (i.e., t violates the merged tableau) then tM [C] is set to be t[C].

This creates no problems since this violating tuple is already detected by QCΣ .
Intuitively, Macro considers each tuple in the tableau, and uses it as a mask

over the tuples of the relation. If the tableau tuple indicates a don’t care value
for an attribute, all the (possibly different) attribute values in the relation tuples
are masked and replaced by an ‘@’ in Macro. Figure 9 shows the result of joining
the fourth tuple of tableaux TZΣ and TWΣ in Fig. 8 with the cust relation of Fig. 1.
Note that the query masks the attributes values of CC and AC. This masking
allows the subsequent group by over X to essentially consider, for each tuple,
only the subset of Z that does not have any don’t care values. Note that although
Z = {CC,AC,CT}, the group by by query QVΣ essentially performs a group by
over only attribute CT. The query returns the nyc tuples which violate ϕ5.

In this way we generate a single pair of sql queries to validate a set Σ of cfds,

Conditional Functional Dependencies for Capturing Data Inconsistencies · 27

CC AC CT CT′ AC′

@ @ NYC @ 908

@ @ NYC @ 212

@ @ PHI @ 215
@ @ EDI @ 131

Fig. 9. Macro relation instance

while guaranteeing that the queries are bounded by the size of the embedded fds

in Σ, independent of the size of the tableaux in Σ. Furthermore, to validate Σ only
two passes of the database is required.

5.3 Incremental CFD Detection

Consider an instance I of a relation schema R. For simplicity, consider a single
cfd ϕ = (R : X → A, Tp) (the incremental technique presented below can be
extended to deal with multiple cfds, along the same lines as Section 5.2). Given
the methodology presented thus far, we can check for violations of ϕ by issuing the
pair of queries QCϕ and QVϕ over I. An interesting questions is then what happens
if the instance I changes? As tuples are inserted into or deleted from I, resulting a
new instance Inew, a naive solution would be a batch approach that re-issues queries
QCϕ and QVϕ over Inew, starting from scratch in response to updates, something that
requires two passes of the entire instance each time the queries are re-issued.

Intuitively, however, one expects that a tuple insertion leaves a large portion of
instance I unaffected when cfd violations are concerned. An inserted tuple t might
introduce new violations, but only with tuples that are already in the instance and
which match t in the X attributes. Therefore, it makes sense to only access these
tuples and only detect the possible newly introduced violations due to the inserted
tuple. Thus, incremental detection can potentially save a large number of disk
accesses, since instead of performing two passes of the underlying data on each
tuple insertion (naive method), we only need to access the tuples that match the
inserted tuple t in the X attributes. Similarly in the case of deletion, by deleting
a tuple t we might inadvertibly repair some of the violations in I that the deleted
tuple was causing (again with tuples matching t in the X attributes). Therefore, it
makes sense to only detect which of the existing violations concerning the deleted
tuple are affected. The following example better illustrates the above.

Example 5.2. Recall from Example 5.1 that tuples t1 to t4 in Fig. 1 violate cfd

ϕ2. Now consider inserting the tuple t7 : (01, 215, 3333333, Bill, Main Rd. PHI,
02394) in the relation of the figure. It is easy to check that tuples t5 and t7 violate
ϕ2 (due to QVϕ2

). Still, the newly inserted tuple does not affect the violations
detected between the first four tuples. Note that an incremental detection would
require that we only access tuple t5, instead of the whole relation.

Now consider again the instance in Fig. 1 and assume that we delete tuple t4
from it. Then tuple t3 no longer violates ϕ2 since the deletion of t4 inadvertibly
repaired the violation caused by tuples t3 and t4. Such a deletion only requires
accessing tuple t3 and does not affect the violation caused by tuples t1 and t2.

We next present a method to incrementally detect cfd violations, given a set of
insertions and deletions to an instance I. Although the incremental method has

28 · Conditional Functional Dependencies for Capturing Data Inconsistencies

CC AC PN NM STR CT ZIP βC
ϕ2

βV
ϕ2

t1: 01 908 1111111 Mike Tree Ave. NYC 07974 1 0

t2: 01 908 1111111 Rick Tree Ave. NYC 07974 1 0

t3: 01 212 2222222 Joe Elm Str. NYC 01202 0 1
t4: 01 212 2222222 Jim Elm Str. NYC 02404 0 1

t5: 01 215 3333333 Ben Oak Ave. PHI 02394 0 0

t6: 44 131 4444444 Ian High St. EDI EH4 1DT 0 0

Fig. 10. The cust relation instance with logging information

the same worst-case performance as the naive method (two passes of the underly-
ing instance), its expected performance is that only a small number of tuples are
accessed, which will be verified in the next section by our experiments.

5.3.1 Logging of violations. The incremental detection requires us to extend the
schema R of an instance relation I to record which tuples violate which cfds in a
given set Σ. In more detail, for each cfd ϕ ∈ Σ we add two Boolean attributes βCϕ
and βVϕ to the schema of R. We use Rlog to denote the new schema. For each tuple

t ∈ I, we create a tuple t′ in Rlog such that t′[attr(R)] = t[attr(R)]. Furthermore, in
attribute t′[βCϕ] (resp. t′[βVϕ]) we record whether or not t violates cfd ϕ due to QCϕ
(resp. QVϕ). Note that our logging mechanism imposes minimum overhead since for
each tuple and each cfd only two additional bits are required.

We assume that, initially, we execute queries QCϕ and QVϕ and we use the result

of the two queries to initialize the values of attributes βCϕ and βVϕ , through a simple

sql update statement of the following form for βCϕ (similarly for βVϕ):

UC
ϕ update Rlog t′ set t′[βC

ϕ] = 1
where t′[attr(R)] in (QC

ϕ)

One needs only to select all those tuples with both βCϕ and βVϕ equal to false, for

each ϕ ∈ Σ, and then project on attr(R), in order to retrieve from Rlog the tuples
that do not violate any of the cfds. Figure 10 shows the instance of Fig. 1 after
its schema has been extended appropriately to log violations for cfd ϕ2.

5.3.2 Handling tuple deletions. Consider a cfd ϕ = (R : X → A, Tp) and an
instance I log whose schema Rlog includes attributes βCϕ and βVϕ . In response to

deletion of tuple t from I log, the incremental detection of violations has two steps.

Step 1: delete from Rlog t′ where t′ = t

Step 2: update Rlog t′ set t′[βV
ϕ] = 0

where t′[βV
ϕ] = 1 and t′[X] = t[X] and

1 = (select count (distinct A) from Rlog t′′

where t′′[X] = t[X])

In more detail, the sql query in the first step simply deletes from Rlog the tuple
corresponding to t. The second step checks for tuples that (a) violate ϕ (t′[βVϕ] = 1),
(b) have the same values on the X attributes with t, and (c) all these identified
tuples have the same A attribute value. It is easy to see that if a set of tuples
satisfies the above three conditions, then each of the tuples in the set violated ϕ

only due to t. Since we delete t, each of the tuples now satisfies ϕ. Therefore, we
set t′[βVϕ] to false. Note that a tuple deletion only affects violations that are caused

Conditional Functional Dependencies for Capturing Data Inconsistencies · 29

by the presence of ‘ ’ in the tableau, hence we focus only on the βVϕ attribute. Also
note that the above procedure need not access the pattern tableau Tp of ϕ, resulting
in additional savings in terms of execution time.

Example 5.3. Consider the instance in Fig. 10 and assume that we delete tuple
t4. Then the second step of our incremental detection will select tuple t3 and set
t3[β

V
ϕ2

] to false since there is no other tuple in the instance that has the same values
on the CC, AC and PN attributes as t3 but differs from t3 in STR, CT or ZIP.
Hence tuple t3 no longer violates ϕ2. Note that our incremental detection, using
appropriate indexes, only accesses tuple t3. Contrast this with the non-incremental
detection which requires to access the whole relation twice.

A question is what happens when we want to do batch deletion, i.e., delete a set
of tuples. Obviously, we could execute the above two steps once for each tuple in
the set. We can actually do better than that since it suffices to execute the above
steps once for each distinct value of X attributes that is deleted. So, if for example
we delete both tuples t3 and t4 from the instance in Fig. 10, we only need to execute
the two steps once since the two tuples have the same value on the X attributes.

5.3.3 Handling tuple insertions. Assume that we want to insert a tuple t into
I log. Then the incremental detection of violations has the following three steps.

Step 1: insert into Rlog values t

Step 2: update Rlog t′ set t′[βC
ϕ] = 1

where t′ = t and

exists (select * from Tp

where tp[X] ≍ t′[X] and tp[A] 6≍ t′[A])

Step 3: update Rlog t′ set t[βV
ϕ] = 1, t′[βV

ϕ] = 1
where t′[X] = t[X] and t′[A] 6= t[A] and

exists (select * from Tp tp
where tp[X] ≍ t[X] and tp[A] = ‘ ’)

The first step simply inserts the tuple t into relation Rlog, where we assume
that both the βCϕ and βVϕ attributes are set to false, for each newly inserted tuple.

Similar to QCϕ , the second step checks for violations in the constants between the
newly inserted tuple and the pattern tableau Tp. If such violations exist, it sets the
value of βCϕ in the inserted tuple to true. Similar to QVϕ , the final step checks for
tuples that (a) have the same values on the X attributes with t, (b) differ from t on
the A attribute, and (c) the inserted tuple t satisfies ϕ by itself. If these conditions
are satisfied, each identified tuple and t, when put together, violate ϕ, and we set
the value of the βVϕ attribute of each such tuple to true. We slightly abuse notation

in the last step to also set, with the same statement, the βVϕ attribute of t to true.
We now consider batch insertions involving a set of tuples, say ∆I log. Obviously,

one might consider executing the above steps once for each tuple in ∆I log. An
alternative strategy is to treat ∆I log as an independent instance whose tuples we
need to merge with the ones in I log. We distinguish five different steps here:

Step 1: update ∆Rlog t′ set t′[βC
ϕ] = 1

where t′[attr(R)] in (QC
ϕ)

Step 2: update Rlog t′ set t′[βV
ϕ] = 1

30 · Conditional Functional Dependencies for Capturing Data Inconsistencies

CC AC PN NM STR CT ZIP βC
ϕ2

βV
ϕ2

t7: 01 212 5555555 Tim Main Str. CHI 01202 0 0

t8: 01 212 2222222 Sam Elm Str. NYC 01202 0 0

t9: 44 131 4444444 Al King St. EDI EH4 1DT 0 0

Fig. 11. An instance ∆Ilog used for batch insertion

where t′[βC
ϕ] = 0 and t′[βV

ϕ] = 0 and

exists (select * from Tp tp
where tp[X] ≍ t[X] and tp[A] = ‘ ’) and

exists (select * from ∆Rlog t′′

where t′′[X] = t′[X] and t′′[A] 6= t′[A]) and

Step 3: update ∆Rlog t′ set t′[βV
ϕ] = 1

where exists (select * from Rlog t′′

where t′′[X] = t′[X] and t′′[βV
ϕ] = 1)

Step 4: update ∆Rlog t′ set t′[βV
ϕ] = 1

where t′[βC
ϕ] = 0 and t′[βV

ϕ] = 0 and

t′[X] in (select X from ∆Rlog t′′, Tp tp
where t′′[βC

ϕ] = 0 and t′′[βV
ϕ] = 0 and t′′[X] ≍ tp[X]

tp[A] = ‘ ’
group by X

having count (distinct A)> 1)

Step 5: insert into Rlog values (select * from ∆Rlog)

where ∆Rlog denotes the schema of ∆I log, which is identical to Rlog. During
the first step, we focus on the newly inserted tuples and we identify which tuples
independently violate ϕ due to QCϕ . This is an unavoidable step whose cost cannot
be reduced since we have to consider each inserted tuple in isolation. However, by
executing QCϕ only over ∆Rlog, we avoid re-detecting such violations over Rlog.

The second step looks for tuples in Rlog that were clean before the insertion but
will now violate ϕ, once the tuples in ∆Rlog are inserted. The tuples in Rlog that
are affected by the insertion are such that they have the same values on the X
attributes with some tuple in ∆Rlog but their values differ on the A attribute.

The third step attempts to leverage the knowledge of violations in Rlog in order
to detect violations in ∆Rlog. If a tuple t′ in ∆Rlog has the same values on the X
attributes with some tuple t′′ in Rlog whose βVϕ is true, then t′ must also have βVϕ
set to true. This is because we already know for the tuples in Rlog with specific
values on the X attributes whether more than one values on the A attribute exist.

Finally, there is only one more case to consider, namely, whether there are any
clean tuples in ∆Rlog (with both βCϕ and βVϕ equal to false) that together with some

other clean tuples in ∆Rlog violate ϕ. The last step detects such tuples by checking
whether any tuples have the same values on the X attributes but different values
on the A attribute. For all the detected tuples, the value of βVϕ is set to true.

In last step, we simply insert the tuples in ∆Rlog into Rlog.

Example 5.4. Consider the instance in Fig. 11 and assume that we want to insert
its tuples into the instance in Fig. 10. Then the first step above will set t7[β

C
ϕ2

] to
true, since the value of t7[CT] is “CHI” instead of “NYC”. The second step will set
t6[β

V
ϕ2

] to true, since tuples t6 and t9 violate ϕ2. The third step will set t9[β
V
ϕ2

] also

Conditional Functional Dependencies for Capturing Data Inconsistencies · 31

to true, while none of the remaining steps will alter any tuples.

6. EXPERIMENTAL STUDY

In this section we present our findings about the performance of our techniques for
(incrementally) detecting cfd violations over a variety of data sizes, and number
and complexity of cfds. We distinguish four sets of experiments. After identifying
a number of parameters that influence the detection of violations, in the first set of
experiments we vary these parameters, and investigate the effects of each parameter
combination on the execution time of the sql detection queries. In the second
experiments, we focus on the detection of multiple cfds and study the benefits of
merging multiple cfds in a single tableau. In the first two sets of experiments we
only report the time to execute the sql detection queries and omit the time to
report (or mark) the violating tuples. This omission does not affect the validity
of our results since, for the first two experiments, marking the violating tuples
only adds a constant to each reported time of each figure. In the third set of
experiments we compare the effectiveness of cfds in detecting dirty tuples versus
its fd counterpart, as well as their running time. In the fourth set of experiments
we focus on incremental detection and its benefits w.r.t. the non-incremental one.
In the last two sets of experiments we report the sum of the time to execute the
sql detection query plus the time to mark the violating tuples.

6.1 Experimental setup

− Hardware: For the experiments, we used DB2 on an Apple Xserve with 2.3ghz
PowerPC dual CPU and 4gb of RAM.

− Data: Our experiments used an extension of the relation in Fig. 1. Specifically,
the relation models individual’s tax-records and includes 8 additional attributes,
namely, the state ST where a person resides, her marital status MR, whether she
has dependents CH, her salary SA, tax rate TX on her salary, and 3 attributes
recording tax exemptions, based on marital status and the existence of dependents.

To populate the relation we collected real-life data: the zip and area codes for
major cities and towns for all US states. Further, we collected the tax rates, tax
and income brackets, and exemptions for each state. Using these data, we wrote a
program that generates synthetic tax records.

We vary two parameters of the data instance in our experiments, denoted by sz

and noise. sz determines the tuple number in the tax-records relation and noise

the percentage of dirty tuples. As the data is generated, with probability noise, an
attribute on the rhs of a cfd is changed from a correct to incorrect value (e.g., a
tax record for a nyc resident with a Chicago area code).

− CFDs: We used cfds to model real-world semantics such as (a) zip codes deter-
mine states, (b) zip and cities determine states, and (c) states and salary brackets
determine tax rates (a tax rate depends on both the state and employee salary), etc.
We varied our cfds using the following parameters: numcfds determines the num-
ber of cfds considered in an experimental setup, numattrs the (max) attribute
number in the cfds, tabsz the (max) tuple number in the cfds, and numconsts

the percentage of tuples with constants vs. tuples with variables in each cfd.

32 · Conditional Functional Dependencies for Capturing Data Inconsistencies

1 0 K 2 0 K 3 0 K 4 0 K 5 0 K 6 0 K 7 0 K 8 0 K 9 0 K 1 0 0 kN u m b e r o f t u p l e s i n r e l a t i o n (S Z)012
3Ti me(secs) C N FD N F

(a) CNF vs DNF (numconsts = 100%)

1 0 K 2 0 K 3 0 K 4 0 K 5 0 K 6 0 K 7 0 K 8 0 K 9 0 K 1 0 0 kN u m b e r o f t u p l e s i n r e l a t i o n (S Z)012
34Ti me(secs) C N FD N F

(b) CNF vs DNF (numconsts = 50%)

1 0 K 2 0 K 3 0 K 4 0 K 5 0 K 6 0 K 7 0 K 8 0 K 9 0 K 1 0 0 KN u m b e r o f t u p l e s i n r e l a t i o n (S Z)00 . 0 50 . 10 . 1 50 . 2
Ti me(secs) Q ^ VQ ^ C

(c) QC
ϕ vs. QV

ϕ

1 K 2 K 3 K 4 K 5 K 6 K 7 K 8 K 9 K 1 0 KN u m b e r o f t u p l e s i n C F D (T A B S Z)0123456
7891 0

Ti me(secs) N u m A t t r s = 4N u m A t t r s = 3
(d) Scalability in tabsz

1 0 0 % 9 0 % 8 0 % 7 0 % 6 0 % 5 0 % 4 0 % 3 0 % 2 0 % 1 0 %N U M C O N S T s00 . 10 . 20 . 30 . 40 . 50 . 6Ti me(secs)
(e) Scalability in numconsts

0 % 1 % 2 % 3 % 4 % 5 % 6 % 7 % 8 % 9 %N O I S E00 . 10 . 20 . 30 . 40 . 50 . 60 . 7Ti me(secs)
(f) Scalability in noise

Fig. 12. Experimental results

6.2 Detecting cfd violations

There are two alternative evaluation strategies for the sql detection queries of
Section 5. Key distinction between these two strategies is how we evaluate the
where clause in each detection query. Specifically, note that the where clause of
our sql detection queries is in the conjunctive normal form (cnf). It is known that
database systems do not efficiently execute queries in cnf since the presence of the
or operator leads the optimizer to select inefficient plans that do not leverage the
available indexes. A solution to this problem is to convert conditions in the where
clause into the disjunctive normal form (dnf). This conversion might cause an
exponential blow-up in the number of conjuncts, but in this case, the blow-up is
w.r.t. the number of attributes in the cfd, which is usually very small.

− cnf vs. dnf: In this experiment, we considered both evaluation strategies, under
various settings, to determine the most efficient one. In more detail, we considered

Conditional Functional Dependencies for Capturing Data Inconsistencies · 33

relations with sz from 10K to 100K tuples in 10K increments, and 5% noise. We
considered two representative cfds, each with numattrs 3, where the first cfd had
numconsts 100% (tuples with only constant) while the second had numconsts

50% (half the tuples had variables). In terms of cfd size, we set tabsz to 1K (note
that each tuple in the cfds is a constraint itself). Figures 12(a) and 12(b) show the
evaluation times for both evaluation strategies, for each of the two cfds. As both
graphs show, irrespective of data size and the presence of constants or variables, the
dnf strategy clearly out-performs the cnf one. Furthermore, the figures illustrate
the scalability of our detection queries sz.

− QCϕ vs. QVϕ : We investigated how the detection time is split between the QCϕ
and QVϕ queries. We considered relations with sz from 10K to 100K tuples in 10K
increments, and 5% noise. For the cfd, we consider one with numattrs equal to
3, tabsz to 1K and numconsts 100% (we had similar results for other values of
numconsts). Figure 12(c) shows the evaluation times for each query in isolation
and shows that both queries have similar loads and follow the same execution trend.

− Scalability in tabsz: We studied the scalability of the detection queries with
respect to tabsz. In more detail, we fixed sz to 500K with 5% noise. We considered
two cfds whose sizes varied from 1K to 10K, in 1K increments. The numattrs was
3 for the first, and 4 for the second cfd considered. For all cfds, numconsts was
50%. Figure 12(d) shows the detection times for the 2 cfds. As is obvious from the
figure, tabsz has little impact on the detection times and dominant factors here
are (a) the size of the relation, which is much larger than the tableaux, and (b)
the number of attributes in the tableau, since these result in more complicated join
conditions in the detection queries.

− Scalability in numconsts: We studied the impact of variables on the detection
times. Fixing a relation with sz 100K and noise 5% and a cfds with tabsz 1K, and
numattrs = 3, we varied numconsts between 100% (all constants) and 10% and
measured the detection times over the relation. Figure 12(e) shows that variables do
affect detection times and (not shown in the figure) moreover, as we increased both
the percentage of variables and the number of attributes with variables, detection
times increased noticeably. This is apparent, given that variables restrict the use
of indexes while joining the relation with the tableau.

− Scalability in noise: We varied noise between 0% and 9% in a relation with
sz 100K, and considered a cfd with tabsz 30K (we used all possible zip to state
pairs, so as not to miss a violation), numattrs 2, and numconsts 100%. As shown
in Fig. 12(f), the level of noise has negligible effects on detection times.

− On the representation of variables: One practical consideration was the
representation of the unnamed variables ‘ ’. Initially, we experimented by actually
using the character ‘ ’ as an attribute value, to code variables. The performance of
the sql detection queries was satisfactory but we noticed that as the number of vari-
ables in a cfd increased, there was a corresponding increase in the detection times
(as was already shown in Fig. 12(e)). As an alternative, we considered using the
null value in a cfd to represent variables. Our sql detection queries were affected
since the term (tp[Xi] = ‘ ’) was now changed to (tp[Xi] is null). Performance-wise,
there was a 10%-20% improvement on detection times. Although an increase on

34 · Conditional Functional Dependencies for Capturing Data Inconsistencies

 0

 1000

 2000

 3000

 4000

 5000

 6000

10K 20K 30K 40K 50K 60K 70K 80K 90K100K

V
io

la
tio

ns
 (

of

 tu
pl

es
)

Number of tuples in relation (SZ)

by both (true dirty data)
by CFDs only (true dirty data)

(a) The violations detected by cfds

 0

 5000

 10000

 15000

 20000

 25000

 30000

10K 20K 30K 40K 50K 60K 70K 80K 90K100K

V
io

la
tio

ns
 (

of

 tu
pl

es
)

Number of tuples in relation (SZ)

by both (true dirty data)
by FDs only (false dirty data)

(b) The violations detected by fds

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

100K90K80K70K60K50K40K30K20K10K

T
im

e(
se

cs
)

Number of tuples in relation (SZ)

CFD
FD

(c) Performance

Fig. 13. cfds versus fds

the number of variables in a cfd still resulted in an increase on times, detection
times scaled much more gracefully with null than when the ‘ ’ character was used.

6.3 Comparing cfds and fds

We now compare the effectiveness and efficiency of cfds in inconsistency detection,
versus their fd counterpart, in terms of both detection time and the quality of
dirty data that they detect. In this set of experiments, we used cfds with all
constant pattern tuples (numconsts = 100%) while for the fds numconsts = 0%.
In terms of the relation, we varied sz from 10K to 100K tuples while noise was
fixed at 5%. We set numattrs to 2 and tabsz to 33K. We kept a copy of clean
data before adding any noise. In this way we can tell whether a tuple detected by
cfds (resp. fds) is a true dirty tuple or a false dirty tuple.

Figure 13(a) shows the number of true dirty tuples detected by both cfds and
fds vs. the number of those detected by cfds alone. Clearly fds missed a number
of true dirty tuples that were caught by cfds because a single true dirty tuple does
not violate an fd while it may violate a cfd. From Fig. 13(a) it is clear that when
the dataset gets larger, the chance is higher that a dirty tuple may incur conflict
with some other tuples, and as a result, can be caught by fds.

Figure 13(b) gives the number of tuples that fds detected as dirty vs. the number
of those detected by both cfds and fds. Clearly fds marked a large number of
false dirty tuples, because given a pair of tuples that violate an fd, the fd cannot
distinguish which of the two tuples is dirty and which is clean. Therefore, the fd

Conditional Functional Dependencies for Capturing Data Inconsistencies · 35

 0

 0.5

 1

 1.5

 2

100k90k80k70k60k50k40k30k20k10k
R

un
tim

e(
Se

c.
)

of tuples in relation

Merge
Non-merge

Fig. 14. Merging cfds

returns both tuples as dirty. On the other hand, a cfd with constants at rhs is able
to distinguish between the two. The figure shows that rate of false tuples caught
by fds grows with the data size.

Finally, Fig. 13(c) reports the detection time of using fds vs. cfds. As expected,
since the size of the pattern tableaux in the cfds is larger than that of fds (all
pattern tuples are wildcards), the cfd detection is slower on small-sized instances.
However, when the instance size grows, the higher selectivity of the pattern tableaux
in the cfds makes cfd detection faster than fd detection. Moreover, for smaller
tabsz, our experiments (not shown) demonstrated an earlier crossing point (less
than 20K tuples) and bigger performance gain (half time for 100K tuples).

6.4 Detecting Multiple cfd violations

In general, the performance of the merged scheme is hampered by the difficulty
faced by optimizers when handling where clauses in cnf. The conversion to dnf

is not an option here, because each disjunct in cnf consists of 3 terms, and thus
the translation of cnf to dnf results in a where clause with 3k conjuncts, where
k is the number of attributes in the cfd. In practice this is much worse than the
2k increase that results from translating QCϕ or QVϕ into dnf.

Given the blowup, and lacking an efficient optimizer for cnf queries, we devised
with an implementation strategy for the merged scheme. In more detail, we reduced
the number of disjuncts in the representation of t[Bi] ≍ tp[Bi] from three to just
two. This was done by replacing in TZΣ (and similarly in TWΣ) all occurrences of
the ‘ ’ and “@” with the null symbol. Given a null value for some attribute tZp [Bi]

in TZΣ , we needed to distinguish whether the null stands for a ‘ ’ or “@”. To this
end, we introduced an additional Boolean column βNi for each attribute Bi in TZΣ .
The value of tZp [βNi] was set to true if the null stands for a ‘ ’, and to false if the
null stands for a “@”. Given this encoding, t[Bi] ≍ tp[Bi] now accounts for (t[Bi]
= tp[Bi] or tp[Bi] is null), i.e., it only has two terms. We also had to change the
case statement in Macro, to account for the new Boolean attribute βNi , as follows:

(case tZp [βNi] when 0 then “@” else t[Bi] end) as Bi

Figure 14 shows the sum of detection times for two cfds: ϕ = (R : [AC,CT] →
[ST], Tp) and ϕ′ = (R : [AC] → [ST], T ′

p), with tabsz 500 and 200, respectively.
The underlying relation has sz that ranges from 10K to 100K, in 10K increments,

36 · Conditional Functional Dependencies for Capturing Data Inconsistencies

and noise 5%. The merged cfd has tabsz 700 and its detection time is plotted.
The benefit of merged cfd is noticeable versus the two individual cfds. Our
experiments indicate that cfd merging is mainly beneficial for highly-related cfds,
i.e., cfds for which there is a substantial overlap on the attributes they involve.

6.5 Incremental detection

For our third set of experiments, we used a relation with sz 100K, and noise 5%.
In terms of the cfd, tabsz was 500 and numattrs was 3.

− Single tuple deletions: In this experiment, we consider sets of tuples ranging
from 10 to 100 tuples, in 10 tuple increments. For each set, we delete its tuples one-
by-one, and after each deletion we use incremental detection to discover violations.
So, for the set of 10 tuples, we call incremental detection 10 times, once for each
deleted tuple. In Fig. 15(a), we report the cumulative time of incremental detection,
after all the tuples in the set have been deleted, i.e., the reported time is the sum
of running 10 times the incremental detection. At the same tine, we also report
the time for full (non-incremental) detection, where full detection is performed
only once, after all the tuples in the set have been deleted. So, while incremental
detection is called after each tuple deletion, full detection is only called at the end
of deleting all tuples. Note in the figure that the line for incremental detection falls
on the x-axis and is not visible. On the other hand, full detection is an order of a
magnitude slower, proving clearly the gains of the former method over the latter.

− Batch tuple deletions: We now consider deleting sets of tuples ranging from
1,000 to 10,000 tuples, in 1,000 increments. For each set, we perform batch deletion,
use incremental detection, and measure its running time. Similarly, after each batch
deletion we also use full detection, and measure its running time also. In Fig. 15(b),
we report the measured times, for each set. As expected, the more tuples we
delete, the faster full detection becomes since it has to consider less tuples after
the deletion. At the same time, the larger the batch of tuples we delete, the more
time incremental detection takes. This is because in Step 2 of the incremental
detection during deletion, we have to consider an increasing number of tuples to
incrementally detect. The crossing point is around 9,000 tuples. Given our initial
relation of 100K tuples, even if we delete around 10% of this relation, a considerable
portion by any standard, incremental detection is still a better choice than doing a
full detection. In general one can achieve optimal detection times through a simple
algorithm that considers the size of the base relation and the number of tuples to
be deleted and it chooses between executing an incremental or a full detection.

− Single tuple insertions: Similar to single tuple deletions, we consider inserting
sets of tuples ranging from 10 to 100 tuples, in 10 tuple increments. We also used the
same experimental strategy as single tuple deletions by measuring the cumulative
incremental detection time, for all the tuples in the set, versus the full detection time
after all the tuples have been deleted. Figure 15(c) shows that for any reasonable
number of insertions, incremental detection does better than periodically doing full
detection. In the worst case, incremental detection is twice as fast as full detection,
while for a few tuples it is almost an order of magnitude faster.

− Batch tuple insertions: Similar to batch tuple deletions, we consider batch

Conditional Functional Dependencies for Capturing Data Inconsistencies · 37

 0

 2

 4

 6

 8

 10

 12

 10 20 30 40 50 60 70 80 90 100

R
un

tim
e(

Se
c.

)

of tuples deleted

Incremental
Full

(a) Deleting from 10 to 100 tuples

 0

 2

 4

 6

 8

 10

 12

10k9k8k7k6k5k4k3k2k1k

R
un

tim
e(

Se
c.

)

of tuples deleted

Incremental
Full

(b) Deleting from 1,000 to 10,000 tuples

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40 50 60 70 80 90 100

R
un

tim
e(

Se
c.

)

of tuples inserted

Incremental
Full

(c) Inserting from 10 to 100 tuples

 0

 1

 2

 3

 4

 5

 6

 7

 8

10k9k8k7k6k5k4k3k2k1k

R
un

tim
e(

Se
c.

)

of tuples inserted

Incremental
Full

(d) Inserting from 1,000 to 10,000 tuples

Fig. 15. Experimental results

tuple insertions. As expected, Fig. 15(d) shows that as the number of tuples in-
serted increases, so does the time to execute a full detection. A similar increase is
noticed in the multi-step incremental detection and unlike batch deletions, there is
no crossing point here even when a considerable number of new tuples are inserted.
So, incremental detection is a clear winner, for batch tuple insertions.

7. RELATED WORK

The authors introduced cfds in earlier work [Bohannon et al. 2007]. This paper
extends [Bohannon et al. 2007] by including (a) proofs for all the theorems; some
of the proofs are nontrivial and the techniques are interesting in their own right;
(b) an algorithm for checking the consistency of a set of cfds, which is in ptime

when either the database schema is predefined or no attributes involved in the cfds

have a finite domain (Section 3.1); (c) an approximation factor preserving reduction
to maxgsat (Section 3.2); (d) a more concise sound and complete inference system
with less axioms (Section 4); (e) incremental techniques for detecting cfd violations
in response to changes to the underlying database (Section 5.3); and (f) an extensive
experimental study compared to the preliminary study of [Bohannon et al. 2007]
(Section 6).

We next discuss previous work on data cleaning and compare the study of cfds

38 · Conditional Functional Dependencies for Capturing Data Inconsistencies

with related work on various extensions of fds.

Related work on data cleaning. Prior work on constraint-based data cleaning
has mostly focused on two topics, both introduced in [Arenas et al. 2003]: repairing
is to find another database that is consistent and minimally differs from the original
database (e.g., [Arenas et al. 2003; Chomicki and Marcinkowski 2005a; Franconi
et al. 2001]); and consistent query answering is to find an answer to a given query
in every repair of the original database (e.g., [Arenas et al. 2003; Wijsen 2005]).

Most earlier work (except [Franconi et al. 2001; Wijsen 2005]) considers tradi-
tional full (subsuming functional) dependencies and denial constraints. In these
settings, complexity results [Arenas et al. 2003; Cali et al. 2003a; Chomicki and
Marcinkowski 2005a; Greco et al. 2003; Wijsen 2005], algorithms [Arenas et al.
2003; Cali et al. 2003a; 2003b; Chomicki and Marcinkowski 2005a; Wijsen 2005],
constraint rewriting techniques [Greco et al. 2003], representations of all repairs with
logic programming [Bravo and Bertossi 2003; Franconi et al. 2001] or tableau [Wi-
jsen 2005], and constraint repair based on techniques from model-based diagno-
sis [Gertz and Lipeck 1995] were developed, for single databases [Arenas et al.
2003; Cali et al. 2003a; Chomicki and Marcinkowski 2005a; Franconi et al. 2001;
Greco et al. 2003; Wijsen 2005] and integration systems [Bravo and Bertossi 2003;
Cali et al. 2003b; Greco et al. 2003] (see recent surveys on consistent query an-
swering [Bertossi and Chomicki 2003] and on constraint repair [Chomicki and
Marcinkowski 2005b]). As remarked earlier, full and denial constraints differ from
cfds in that they do not allow patterns with data values and cannot detect incon-
sistencies in semantically related data values that cfds aim to capture.

Closer to cfds is the tableau representation of dependencies [Wijsen 2005]. This
work represents full dependencies by tableaux that also allow data values. It differs
from this work in that it focuses on condensed representations of repairs and con-
sistent query answers. It does not address the issues of context patterns, inference
system, or effective techniques for detecting inconsistencies.

Beyond dependencies, error detection has been studied for cleaning census/survey
data [Fellegi and Holt 1976; Garfinkel et al. 1986; Winkler 2004; 1997; Bruni and
Sassano 2001]. In that setting, data inconsistencies are specified in terms of a
set of editing rules. As opposed to fds and cfds, the editing rules do not detect
inconsistencies among different tuples; instead, they aim to catch discrepancies and
errors in a single tuple. The intractability of the editing-based census data repair
problem is established in [Fellegi and Holt 1976], which also provides a heuristic
repairing algorithm. Various improved algorithms have been developed [Garfinkel
et al. 1986; Winkler 2004; 1997; Bruni and Sassano 2001], which adopt, among
other things, a technique analogous to computing minimal cover of cfds that is to
“localize” errors. Statistical and mining methods have also been used for detecting
inconsistencies, e.g., outlier detection (see [Maletic and Marcus 2000] for a survey).

A host of work on data cleaning has focused on the merge/purge problem, also
known as record linkage, entity reconciliation or duplicate removal [Fellegi and
Sunter 1969; Galhardas et al. 2000; Hernandez and Stolfo 1998; Monge 2000; Win-
kler 1994]. That is the problem of linking pairs of records that refer to the same
real-world entity in different data sets. It is commonly applied to household infor-
mation in census data, mailing lists or medical records as well as many other uses.

Conditional Functional Dependencies for Capturing Data Inconsistencies · 39

Most work in this line of research has focused on clustering methods for grouping
similar records, and is different from this work. On the other hand, there are in
fact connections between record linkage and cfds. Indeed, duplicate records are
typically identified by a set of equational axioms. An example axiom is that in the
us, two people with the same ssn but different names should be identified as the
same person and thus should be assigned the same “key”. Certain equational ax-
ioms can actually be expressed as cfds; e.g., the cfd (person: country, ssn → key,
(01, ‖)) specifies the example axiom given above. An interesting topic for future
research is to extend cfds to express equational axioms across different relations,
and to explore applications of such cfds to record linkage.

Data cleaning systems reported in the research literature include the AJAX sys-
tem [Galhardas et al. 2001], which provides users with a declarative language for
specifying data cleaning programs, and the Potter’s Wheel system [Raman and
Hellerstein 2001] that extracts structure for attribute values and uses these to flag
discrepancies in the data. Most commercial ETL tools for data warehouses have
little built-in data cleaning capabilities, covering mainly data transformation needs
such as data type conversions, string functions, etc. [Rahm and Do 2000] presents
a comprehensive survey of commercial data cleaning tools, as well as a taxonomy of
current approaches to data cleaning. While a constraint repair facility will logically
become part of the cleaning process supported by these systems, we are not aware
of analogous functionality currently in any of the systems mentioned.

The work in [Bohannon et al. 2005] is complimentary to ours: it focuses on repair-
ing inconsistencies based on standard fds and inclusion dependencies, i.e., to edit
the instance via minimal value modification such that the updated instance satisfies
the constraints, while our work focuses on static analyses of cfds and techniques
for detecting inconsistencies. Since cfds are more expressive than fds, not all of
the detected cfd violations can be repaired by the algorithm of [Bohannon et al.
2005]. A recent extension of [Bohannon et al. 2005] studies repairing inconsistent
databases based on cfds [Cong et al. 2007]. Compared to the results of [Bohan-
non et al. 2005], it has been demonstrated in [Cong et al. 2007] that cfds are
more effective than traditional fds in identifying and repairing real-life inconsistent
data.

Related work on extensions of FDs. Functional dependencies were first intro-
duced by Codd [Codd 1972] while their axiomatization is due to Armstrong [Arm-
strong 1974]. The implication of functional dependencies is studied both in [Beeri
and Bernstein 1979] and [Maier 1980] where in the latter it is shown that the mini-
mal cover for a set of functional dependencies can be computed in polynomial time.
Table I compares the main results for static analyses of cfds with their fd counter-
parts, namely, the consistency and implication analyses in general, with a predefined
schema (fixed R) and without attributes with a finite domain (|finattr(R)| = 0), as
well as finite axiomatizability. Here R is a relation schema, Σ is a set of cfds

(resp. fds), and ϕ is a single cfd (resp. fd) in its normal form (R : X → A, tp)
(resp. R : X → A), where X is a set of attributes and A is a single attribute.

A variety of extensions to fds have been proposed for specifying constraint
databases and constraint logic programs [Baudinet et al. 1999; Bra and Paredaens
1983; Maher 1997; Maher and Srivastava 1996]. Constraints of [Bra and Paredaens

40 · Conditional Functional Dependencies for Capturing Data Inconsistencies

Problem cfds fds

Consistency np-complete (Th. 3.2) O(1)

Consistency (fixed R) O(|Σ|2) (Prop. 3.6) O(1)

Consistency (|finattr(R)| = 0) O(|Σ|2|attr(Σ)|) (Prop. 3.5) O(1)

Implication conp-complete (Th. 4.3) O(|Σ|)
Implication (fixed R) O(|Σ|2) (Cor. 4.4) O(|Σ|)
Implication (|finattr(R)| = 0) O(|Σ|2|attr(Σ)|) (Cor. 4.4) O(|Σ|)
Finite Axiomatizability yes (Th. 4.2) yes

Table I. Complexity bounds for static analyses of cfds vs. their fd counterparts

1983], also referred to as conditional functional dependencies, are of the form
(X → Y) → (Z → W), where X → Y and Z → W are standard fds. Con-
strained dependencies of [Maher 1997] extend [Bra and Paredaens 1983] by allowing
ξ → (Z → W), where ξ is an arbitrary constraint that is not necessarily an fd.
In a nutshell, these dependencies are “conditional” since they are to apply the fd

Z → W only to the subset of a relation that satisfies X → Y or ξ. These depen-
dencies cannot express cfds since Z → W does not allow patterns with constants
as found in cfds. As a result, consistency is not an issue for such constraints, as
indicated in Section 3. For constrained dependencies with the independence of neg-
ative constraints property (i.e., when for any ξ and ξi’s, ξ → ξ1 ∨ . . .∨ ξk ≡ ξ → ξi
for some i), a sound and complete inference system is developed for their impli-
cation analysis; in addition, the implication problem is shown to be in ptime for
constrained dependencies with this property, and conp-hard for those without this
property. The results of [Bra and Paredaens 1983; Maher 1997] are not applicable to
cfds and the proofs presented there are quite different from their cfd counterparts.

More expressive are constraint-generating dependencies (cgds) of [Baudinet et al.
1999] and constrained tuple-generating dependencies (ctgds) of [Maher and Sri-
vastava 1996], both subsuming cfds. A cgd is of the form ∀x̄(R1(x̄)∧ . . .∧Rk(x̄)∧
ξ(x̄) → ξ′(x̄)), where Ri’s are relation symbols, and ξ, ξ′ are arbitrary constraints
that may allow constants. As noted in [Baudinet et al. 1999], it is necessary to
study the consistency problem for cgds. When ξ and ξ′ are conjunctions or dis-
junctions of atomic formulas defined in terms of ‘=, 6=’ or ‘<,≤’, it is shown that the
implication problem for cgds is already conp-complete even when all involved at-
tributes have an infinite domain, and that the consistency problem is np-complete.
Compared to this work, [Baudinet et al. 1999] presents stronger results for the
upper bounds for the implication and consistency analyses, while this work gives
stronger lower bounds. Indeed, the proofs for the lower bounds of [Baudinet et al.
1999] make use of disjunctions of atomic formulas and inequality, and thus do not
work for cfds. Finite axiomatizability and techniques for (incrementally) detecting
inconsistencies are not studied in [Baudinet et al. 1999]. A ctgd is of the form
∀x̄(R1(x̄) ∧ . . . Rk(x̄) ∧ ξ → ∃ȳ(R′

1(x̄, ȳ) ∧ . . . ∧ R′
s(x̄, ȳ) ∧ ξ′(x̄, ȳ)). Since ctgds

subsume full-fledged tgds, their implication analysis is already undecidable even in
the absence of constants and ξ, ξ′. Chase procedures are presented in [Maher and
Srivastava 1996] for the implication analysis of ctgds, but the consistency problem,
inference rules, inconsistency detection techniques are not considered there. While
cgds and ctgds can express cfds, the increased expressive power comes with the
price of a higher complexity. Moreover, we are not aware of any applications of

Conditional Functional Dependencies for Capturing Data Inconsistencies · 41

these constraints in data cleaning.

A class of instance-level fds (ilfds) is studied in [Lim et al. 1996]. ilfds are
a special case of cfds of the form (X → Y, Tp), where Tp contains a single tuple
consisting of only constants. ilfds are used in entity identification: given an entity
(tuple) E in a relation R, a set of ilfds is used to compute the values of an extended
key (identifier) for E. Extended keys are also computed, through ilfds, for each
entity E′ in a second relation S. If the extended keys of E and E′ are equivalent,
then E is considered identical to E′. Analyses of consistency and implication and
inconsistency detection are not considered for ilfds [Lim et al. 1996].

Tableau representations of dependencies. Pattern tableaux are used in tem-
plate dependencies (tds) [Sadri and Ullman 1982], their generalization of tuple-
generating dependencies (tgds) [Beeri and Vardi 1984], and equality-generating
dependencies (egds) [Sadri 1980; Beeri and Vardi 1984] (See also [Maier 1983] for
an historical account of these formalisms). A td is of the form (T,w), where all
pattern tuples in T and w consist of named variables only. An instance I satis-
fies (T,w) if for all valuations ρ such that ρ(T) ⊆ I, ρ can be extended such that
ρ(w) ∈ I. When w is a tableau T ′ itself, one gets tgds. Again neither T nor T ′

contains constants. It is clear that tgds (and therefore also tds) cannot express
fds. Moreover, the absence of constants prevents it also from expressing cfds with
a constant rhs. Conversely, tds and tgds cannot be expressed by cfds. On the
other hand, an egd is of the form (T, x = y) where, as before, T consists of a
pattern tuples consisting of named variables only. An instance I satisfies (T, x = y)
if for every valuation ρ such that ρ(T) ⊆ I it is the case that ρ(x) = ρ(y). Although
fds can be expressed by egds, the absence of constants in the pattern tuples pre-
vents it form expressing cfds. Conversely, not all generalized fds can be expressed
by cfds either. More recently [Wijsen 2005] studied egds and full tgds that allow
constants in the pattern tuples. As a consequence, these extensions can express
cfds with a variable and constant rhs, respectively. However, as mentioned above,
the focus of [Wijsen 2005] is different from ours.

In the context of incomplete information [Imieliński and Lipski Jr 1984; Grahne
1991] one finds pattern tableaux in the form of Codd tables, v-tables and conditional
(c-) tables. The most expressive formalism is that of c-tables. A c-table is of the
form (T,ΦT , {ϕt | t ∈ T}), where T is a set of pattern tuples consisting of named
variables and constants, ΦT is a global condition defined as a conjunction of atomic
equality and inequality constraints on the variables and constants, and ϕt is a
condition that only applies to individual pattern tuple t in T . Now, every valuation
of T that satisfies the conditions results in a different relation instance. That is,
every pattern tuple is mapped onto a single instance tuple, and the cardinality
of the instance is bounded by the number of pattern tuples in T . In short, each
of these table formalisms is used as a representation of a (possibly infinite) set of
relation instances, one instance for each valuation of the variables in the table. No
instance represented by these table formalisms can include two tuples that result
from two different valuations of the same pattern tuple. In contrast, all pattern
tuples in the pattern tableau in a cfd are constraints on a single relation instance.
This single instance can contain any number of tuples that are all instantiations of
the same pattern tuple. Hence, the use of tableaux in the context of incomplete

42 · Conditional Functional Dependencies for Capturing Data Inconsistencies

information entirely differs from pattern tableaux in cfds.

8. CONCLUSIONS

We have introduced cfds as an extension of fds, and shown that cfds are capable
of capturing inconsistencies beyond what traditional fds can detect. We have pro-
vided complexity results and techniques for reasoning about cfds. More specifically,
we have shown that the consistency problem for cfds is np-complete, as opposed
to the trivial consistency analysis of traditional fds, and that the implication prob-
lem for cfds is conp-complete, in contrast to the linear-time complexity of their
traditional counterpart. In practical data-cleaning settings, the relational schema
is often predefined, and these problems become decidable in low ptime. Further-
more, we have developed an approximation-factor preserving reduction from the
consistency problem for cfds to maxgsat, and a sound and complete inference
system for the implication analysis of cfds. For applications of cfds in data clean-
ing, we have proposed (incremental) sql-based techniques for detecting violations
of cfds. We have also experimentally evaluated our detection techniques. These
results establish a constraint theory for cfds and are also promising in developing
a practical constraint-based tool for data cleaning.

There is naturally much more to be done. First, to clean data, constraints beyond
cfds are certainly needed. There has been recent work on conditional inclusion de-
pendencies, denoted by cinds, which are defined along the same lines as cfds and
are demonstrated useful in data cleaning and schema matching [Bravo et al. 2007].
The static analysis of these conditional dependencies becomes, however, more in-
triguing. In particular, the consistency and implication problems for cfds and
cinds together become undecidable. To cope with this it is necessary to find effec-
tive and efficient heuristic algorithms for the consistency and implication analyses
of these conditional constraints. Second, automated methods for discovering cfds

and cinds are certainly an interesting topic. It is nontrivial to identify all sensible
pattern tuples without over-populating pattern tableaux. Third, another important
issue concerns how to effectively remove inconsistencies from data after inconsis-
tencies are detected in a database I based on a set Σ of conditional constraints.
This, referred to as constraint repair [Arenas et al. 2003], aims to find a database
that satisfies Σ and minimally differs from I. While there has been recent prelimi-
nary work on this issue based on cfds alone [Cong et al. 2007], it deserves further
investigation in the presence of both cfds and cinds.

REFERENCES

Abiteboul, S., Hull, R., and Vianu, V. 1995. Foundations of Databases. Addison-Wesley.

Arenas, M., Bertossi, L. E., and Chomicki, J. 2003. Consistent query answers in inconsistent

databases. Theory and Practice of Logic Programming 3, 4-5, 393–424.

Armstrong, W. W. 1974. Dependency structures of data base relationships. In Proc. IFIP
World Computer Congress. 580–583.

Baudinet, M., Chomicki, J., and Wolper, P. 1999. Constraint-Generating Dependencies.

J. Comput. Syst. Sci. (JCSS) 59, 1, 94–115.

Beeri, C. and Bernstein, P. A. 1979. Computational problems related to the design of normal

form relational schemas. ACM Trans. on Database Systems 4, 1, 30–59.

Beeri, C. and Vardi, M. 1984. A proof procedure for data dependencies. J. ACM 31, 4, 718–741.

Conditional Functional Dependencies for Capturing Data Inconsistencies · 43

Bertossi, L. and Chomicki, J. 2003. Query answering in inconsistent databases. In Logics for

Emerging Applications of Databases. 43–83.

Bohannon, P., Fan, W., Flaster, M., and Rastogi, R. 2005. A cost-based model and effective

heuristic for repairing constraints by value modification. In Proc. Int’l Conf. on Management

of Data (SIGMOD). 143–154.

Bohannon, P., Fan, W., Geerts, F., Jia, X., and Kementsietsidis, A. 2007. Conditional
functional dependencies for data cleaning. In Proc. Int’l Conf. on Data Engineering (ICDE).

746–755.

Bra, P. D. and Paredaens, J. 1983. Conditional dependencies for horizontal decompositions.

In Colloquium on Automata, Languages and Programming. 67–82.

Bravo, L. and Bertossi, L. 2003. Logic programs for consistently querying data integration

systems. In Proc. Int’l Joint Conf. on Artificial Intelligence. 10–15.

Bravo, L., Fan, W., and Ma, S. 2007. Extending dependencies with conditions. In Proc. Int’l

Conf. on Very Large Databases (VLDB). 243–254.

Bruni, R. and Sassano, A. 2001. Errors detection and correction in large scale data collecting.
In Proc. Int’l Conf. on Advances in Intelligent Data Analysis (IDA). 84–94.

Cali, A., Lembo, D., and Rosati, R. 2003a. On the decidability and complexity of query an-

swering over inconsistent and incomplete databases. In Proc. Symp. on Principles of Database

Systems (PODS). 260–271.

Cali, A., Lembo, D., and Rosati, R. 2003b. Query rewriting and answering under constraints

in data integration systems. In Proc. Int’l Joint Conf. on Artificial Intelligence. 16–21.

Chomicki, J. and Marcinkowski, J. 2005a. Minimal-change integrity maintenance using tuple

deletions. Information and Computation 197, 1-2, 90–121.

Chomicki, J. and Marcinkowski, J. 2005b. On the computational complexity of minimal-change

integrity maintenance in relational databases. In Inconsistency Tolerance. 119–150.

Codd, E. F. 1972. Relational completeness of data base sublanguages. In Data Base Systems:

Courant Computer Science Symposia Series 6. Prentice-Hall, 65–98.

Cong, G., Fan, W., Geerts, F., Jia, X., and Ma, S. 2007. Improving data quality: Consistency

and accuracy. In Proc. Int’l Conf. on Very Large Databases (VLDB). 315–326.

Eckerson, W. W. 2002. Data Quality and the Bottom Line: Achieving Business Success

through a Commitment to High Quality Data. Tech. rep., The Data Warehousing Institute.
http://www.tdwi.org/research/display.aspx?ID=6064.

Fellegi, I. and Holt, D. 1976. A systematic approach to automatic edit and imputation. J. of

the American Statistical Association 71, 353, 17–35.

Fellegi, I. P. and Sunter, A. B. 1969. A theory for record linkage. J. of the American Statistical

Association 64, 328, 1183–1210.

Franconi, E., Palma, A. L., Leone, N., Perri, S., and Scarcello, F. 2001. Census data repair:

a challenging application of disjunctive logic programming. In Proc. Artificial Intelligence on
Logic for Programming (LPAR). 561–578.

Galhardas, H., Florescu, D., Shasha, D., and Simon, E. 2000. AJAX: An extensible data
cleaning tool. In Proc. Int’l Conf. on Management of Data (SIGMOD). 590.

Galhardas, H., Florescu, D., Shasha, D., Simon, E., and Saita, C.-A. 2001. Declarative

data cleaning: Language, model and algorithms. In Proc. Int’l Conf. on Very Large Databases

(VLDB). 371–380.

Garey, M. and Johnson, D. 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company.

Garfinkel, R. S., Kunnathur, A. S., and Liepins, G. E. 1986. Optimal imputation of erroneous

data: Categorical data, general edits. Operational Research 34, 5, 744–751.

Gertz, M. and Lipeck, U. 1995. A diagnostic approach to repairing constraint violations in

databases. In Int’l Workshop on Principles of Diagnosis (DX). 65–72.

Grahne, G. 1991. The Problem of Incomplete Information in Relational Databases. Springer.

Greco, G., Greco, S., and Zumpano, E. 2003. A logical framework for querying and repairing
inconsistent databases. IEEE Trans. Knowl. Data Eng 15, 6, 1389–1408.

44 · Conditional Functional Dependencies for Capturing Data Inconsistencies

Hernandez, M. A. and Stolfo, S. 1998. “Real-World Data is Dirty: Data Cleansing and the

Merge/Purge Problem”. Data Mining and Knowledge Discovery 2, 1, 9–37.

Imieliński, T. and Lipski Jr, W. 1984. Incomplete information in relational databases. J. of the

ACM 31, 4, 761–791.

Lim, E.-P., Srivastava, J., Prabhakar, S., and Richardson, J. 1996. Entity identification in

database integration. Inf. Sci. 89, 1-2, 1–38.

Maher, M. J. 1997. Constrained dependencies. Theoretical Computer Science 173, 1, 113–149.

Maher, M. J. and Srivastava, D. 1996. Chasing Constrained Tuple-Generating Dependencies.

In Proc. Symp. on Principles of Database Systems (PODS). 128–138.

Maier, D. 1980. Minimum covers in relational database model. J. of the ACM 27, 4, 664–674.

Maier, D. 1983. The Theory of Relational Databases. Computer Science Press.

Maletic, J. I. and Marcus, A. 2000. Data cleansing: Beyond integrity analysis. In Proc. Conf.

on Information Quality (IQ). 200–209.

Monge, A. E. 2000. Matching algorithms within a duplicate detection system. IEEE Data Eng.

Bull. 23, 4, 14–20.

Papadimitriou, C. H. 1994. Computational Complexity. Addison Wesley.

Rahm, E. and Do, H. H. 2000. Data cleaning: Problems and current approaches. IEEE Data

Eng. Bull. 23, 4, 3–13.

Raman, V. and Hellerstein, J. M. 2001. Potter’s wheel: An interactive data cleaning system.

In Proc. Int’l Conf. on Very Large Databases (VLDB). 381–390.

Sadri, F. 1980. Data dependencies in the relational model of data: A generalization. PhD thesis,

Princeton University.

Sadri, F. and Ullman, J. 1982. Template dependencies: A large class of dependencies in rela-

tional databases and its complete axiomatization. J. ACM 29, 2, 363–372.

Shilakes, C. C. and Tylman, J. 1998. Enterprise information portals. Tech. rep., Merrill Lynch,

Inc., New York, NY. Nov.

Vazirani, V. V. 2003. Approximation Algorithms. Springer.

Wijsen, J. 2005. Database repairing using updates. ACM Trans. on Database Systems 30, 3,
722–768.

Winkler, W. E. 1994. Advanced methods for record linkage. Tech. rep., Statistical Research
Division, U.S. Bureau of the Census.

Winkler, W. E. 1997. Set-covering and editing discrete data. In Proc. of the Section on survey
research methods, American statistical association. 564–569.

Winkler, W. E. 2004. Methods for evaluating and creating data quality. Information Sys-

tems 29, 7, 531–550.

