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ABSTRACT 
Statistical static timing analysis (SSTA) plays a key role in 
determining performance of the VLSI circuits implemented in 
state-of-the-art CMOS technology. A pre-requisite for employing 
SSTA is the characterization of the setup and hold times of the 
latches and flip-flops in the cell library. This paper presents a 
methodology to exploit the statistical codependence of the setup 
and hold times. The approach comprises of three steps. In the first 
step, probability mass function (pmf) of codependent setup and 
hold time (CSHT) contours are approximated with piecewise 
linear curves by considering the probability density functions of 
sources of variability. In the second step, pmf of the required setup 
and hold times for each flip-flop in the design are computed. 
Finally, these pmf values are used to compute the probability of 
individual flip-flops in the design passing the timing constraints 
and to report the overall pass probability of the flip-flops in the 
design as a histogram.  We applied the proposed method to true 
single phase clocking flip-flops to generate the piecewise linear 
curves for CSHT. The characterized flip-flops were instantiated in 
an example design, on which timing verification was successfully 
performed. 

Categories and Subject Descriptors 
B.8.2 [Performance and Reliability]: Performance Analysis and 
Design Aids  

General Terms 
Algorithms, Performance, Design, Reliability 

Keywords 
Probability, process variations, statistical static timing analysis 
(SSTA), setup time, hold time, codependency, piecewise linear. 

1. INTRODUCTION 
As we move towards the 45nm and lower minimum feature sizes 
for the devices, process variations are becoming an ever increasing 
concern for the design of high performance integrated circuits [1]. 

The process variations can cause excessive uncertainty in timing 
calculation, which in turn calls for sophisticated analysis 
techniques to reduce the uncertainty. As the number of sources of 
variations increases, corner-based static timing analysis (STA) 
techniques computationally become very expensive. Moreover, 
with decreasing size of transistors and interconnect width, the 
variation of electrical characteristics is getting proportionally 
higher.  
The process corner approach, which used to work well, may thus 
result in inaccurate estimates and over-constrained designs. 
Statistical static timing analysis (SSTA) has been developed to 
address the above-mentioned shortcomings of the STA [2] [3].  
Operating frequencies of up to 1 GHz are common in modern 
integrated circuits. As the clock period decreases, inaccuracy in 
setup/hold times caused by corner-based STA tools becomes less 
acceptable. Optimism in setup/hold time calculation can result in 
circuit failure, while pessimism leads to inferior performance [4].1  
Therefore, accurate characterization of the setup and hold times of 
latches and registers is critically important for timing analysis of 
digital circuits [5]. 
Typically in today’s circuit design, setup and hold times are 
characterized independently since these quantities are assumed 
independent. However, setup and hold times are not independent 
[4]. In the other words, there are multiple pairs of setup and hold 
times that result in the same clock-to-q delay. Salman et al. in [4] 
presented a methodology to co-dependently characterize the setup 
and hold times of sequential circuit elements and use the resulting 
multiple pairs in STA. An Euler-Newton curve tracing procedure 
was used in [5] to efficiently characterize the setup and hold times 
co-dependently. The set of all codependent setup/hold time pairs 
which yield the same clock-to-q delay define a contour of the 
clock-to-q surface. The setup/hold time contours are utilized to 
evaluate the setup and hold slack2. In a conventional static timing 
analysis, the STA tool reports the percentage of flip-flops which 
fail the timing constraints in a circuit based on the number of flip-
flops which have negative slack. This information is then used by 
the circuit designer to determine the clock frequency of circuit. 
With statistical parameter variations becoming more visible in 
VLSI circuits,  delay of every combinational path in the circuit as 
well as the setup and hold times of flip-flops (which serve as the 
start and end points of the combinational paths) become non-
deterministic parameters, therefore, values of setup and hold slacks 
themselves become random variables. The existing statistical STA 
(SSTA) algorithms consider only the impact of process variation 
only on the delay of combinational paths in the circuit to estimate 

                                                                 
1 See subsection 2.1 for an explanation of setup and hold times, clock-to-q. 
2 See subsection 2.3 for an explanation of setup and hold slacks. 
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the slack of circuit [6]-[7].  However, to perform accurate timing 
verification and to precisely determine timing violations, the 
impact of process variations on the clock-to-output delay and co-
dependent setup/hold times must be considered.  
This paper presents a statistical CSHT characterization approach 
by taking into account the impact of process variations. It proposes 
to efficiently approximate a setup/hold time contour by using a 
three-point piecewise linear curve. Moreover, this paper proposes 
a backward Euler based search (BEBS) method to obtain 
setup/hold times contours. A probability mass function (pmf) is 
derived for positions of the contours in the setup/hold time plane. 
Another probability mass function (pmf) is obtained for the 
random variable defined on the required setup time (RST) and the 
required hold time (RHT) of the flip-flop in the circuit.  These two 
pmf’s are utilized to obtain the probability that the slack of a flip-
flop is negative and hence violates the timing constraints. The 
proposed algorithm enables SSTA to report a set of probability 
values which accurately represent the percentage of time that the 
flip-flop fails.  In contrast, a STA tool reports a deterministic 
percentage of flip-flops which fail the setup and hold time 
constraints, and this value may be optimistic or pessimistic for a 
circuit whose process and circuit parameters are subject to random 
change.  
The remainder of the paper is organized as follows. Section 2 
provides needed terminology and present BEBS algorithm for 
CSHT characterization. The statistical CSHT characterization 
methodology and algorithm is described in Section 3.  Section 4 
explains how to use results of the CSHT characterization in a 
SSTA tool. Simulation results are presented in Section 5. The 
paper is concluded in Section 6. 

2. STATIC CSHT  
This section provide some terminology, propose a backward Euler 
based search for characterizing codependent setup-hold time 
contour for a given clock-to-q delay, and explains how to utilize 
this contour in a STA tool for timing verification. 

2.1 Terminology 
Latches and flip-flops are the sequential circuit elements used in 
synchronous designs. The setup time is the minimum time before 
the active edge of the clock that the input data line must be valid 
for reliable latching. Similarly, the hold time represents the 
minimum time that the data input must be held stable after the 
active clock edge. The active clock edge is the transition edge 
(either low-to-high or high-to-low) at which data transfer/latching 
occurs. The clock-to-q delay is the delay from the 50% transition 
of the active clock edge to the 50% transition of the output, q, of 
the latch/register. The setup skew refers to the delay from the 
latest 50% transition edge of the data signal to the 50% active 
clock transition edge; similarly, the hold skew denotes the delay 
from the 50% active clock transition edge to the earliest 50% 
transition edge of the data signal. Figure 1 illustrates the setup and 
hold skews, which are denoted by τsw and τhw, respectively.  
A common technique for setup/hold time characterization is to plot 
the clock-to-q delay, tc2q, for various setup and hold skews via a 
series of transient simulations. This process in turn produces a 
clock-to-q delay surface. The setup (hold) time is then taken as a 
particular setup (hold) skew point on the plot, for which the 
characteristic clock-to-q delay1, tcc2q, increases by say 10%.  

                                                                 
1 In a flip-flop, if the setup and hold skews are larger than certain values 

then the clock-to-q delay will become independent of these skew; this 

As already mentioned, the setup and hold times are not 
independent quantities, but depend strongly on one another. 
Typically, the hold time reduces as the setup skew moves up. 
Similarly, the setup time decreases as the hold skew increases. The 
tradeoff between setup and hold skews and the hold and setup 
times is a strong function of the circuit design of the flip-flop [5]. 

 
Figure 1. An illustration of the setup and hold skews. 

2.2 CSHT Characterization 
A general method to extract codependent pairs of setup/hold times 
is to first obtain the clock-to-q delay, tc2q, as a function of the 
setup/hold skews. This is followed by extraction of a contour of 
the setup/hold times corresponding to all points on the tc2q surface 
that result in a given increase (e.g., 10%) in the characteristic 
clock-to-q delay, tcc2q [5]. Figure 2 depicts an example setup/hold 
time contour. 
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Figure 2. A codependent setup and hold time contour, 

( )h sτ τ= Ζ  for given clock-to-q delay.  

Definition 1: Let’s denote the set of all setup/hold time points 
which are located on the contour associated with 10% increase in 
tcc2q as { }( , )  for 1,...,c s h c nτ τ τΓ = = =

r  where n denotes the number 
of the data points on the contour. Alternatively, we write this 
contour as ( )shτ τ= Ζ . 

Definition 2: The slope, ( )h s

s s

d d Z
d d
τ τα
τ τ

= = , of contour Γ at point 

( , )A A
s hA τ τ= is approximated as: 

B A
h h

s

τ τα
τ
−

=
Δ

where point B is a 

previously calculated point on  Γ such that B A
s s sτ τ τΔ = − . 

In Definition 2, we may want to use a point B as the reference 
point for slope calculation where , 1A B

s s sk kτ τ τ− = Δ > . In our 
experience k = 3 is a good value. In the proposed algorithm (see 
below), we search through the setup/hold pairs starting from the 
largest setup time and ending with the smallest one. Furthermore, 
                                                                                                            

constant clock-to-q delay which corresponds to large setup and hold 
skews is called the “characteristic clock-to-output delay” of the flip-flop. 



we assume that the slope of Γ  changes smoothly. This is true 
since the setup time step is chosen to be small enough so that there 
are no singular values on Γ . Consequently, we can use the slope 
at point A to guess the next point ( , )G G

s hG τ τ= on Γ as follows:  

,G A G A
s s s h h sτ τ τ τ τ α τ= − Δ = − Δ . This may be compared with the 

approach in [5] where the authors use a nonlinear circuit model to 
construct the contour. Our approach is clearly simpler while 
producing excellent results. 

We next describe a backward Euler based search (BEBS) 
algorithm to efficiently construct the setup/hold time contour. Let 

sτΔ  denote the setup time step resolution that the user intends to 
have for the CSHT characterization. The BEBS algorithm is as 
follows: 
1) Find tcc2q for the flip-flop by doing a transient simulation with 

large setup and hold skews. Initialize 1i =  and i
sτ  to the largest 

setup time for which we want to calculate the corresponding 
hold time. A good guess for the largest value of setup time is 
half of the clock period. Next sweep the hold skew values and 
determine the hold time, i

hτ . 

2) Calculate slope iα  at ( , )i i
s hτ τ from Definition 2. Notice 

1 0α = because Γ is asymptotic to a constant hold time value 
when τs → ∞. 

3) Set 1i i
s s sτ τ τ+ = − Δ  and calculate the first guess for the hold time 

by using backward Euler (BE) method as follows (see Figure 2):   
1

,
i i i
h init h sτ τ α τ+ = − Δ  (1) 

    Sweep the hold skew values in the range of 1
,

i i
h init sτ α τ+ ± Δ  with 

time step hτΔ (hold time step resolution) and find the hold time 
1i

hτ +  i.e., the value of hold skew which results in a clock-to-q 
delay equal to 1.1×tcc2q.  

4) Repeat steps 2-3 for i=2 to n to compute the desired n setup/hold 
pairs on the contour.  

2.3 Application of CSHT in STA  
In general, a STA tool reads in a circuit netlist, a cell library, and a 
clock period T [4]. The tool reports whether the circuit performs as 
intended. This analysis is accomplished by computing the worst 
setup slack (SS) and worst hold slack (HS) for each flip-flop. 
Referring to Figure 3, these slacks are computed as follows: 
SS = min (τsw)−τs =T + min(Dp2) − max(Dp1 + Dc + tc2q) −τs (2) 
HS = min (τhw)−τh = min(Dp1 + Dc + tc2q)− max(Dp2 ) − τh (3) 
where Dp1, Dp2, and Dc stand for the delays of local clock signals 
compared to the global clock, and delay of the combinational logic 
encased between the input and output flip-flops, respectively, as 
illustrated in Figure 3.  
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Figure 3. Definition of SS and HS in a synchronous data path. 

Definition 3: The required setup time (RST) for a given flip-flop is 
defined as the minimum value of τsw for that flip-flop which results 
in a non-negative setup slack (i.e., the minimum setup skew 

needed to eliminate setup time violations for the flip-flop). The 
required hold time (RHT) is defined similarly. 
If a slack is negative, it is said to be “violated”. If a setup slack SS 
is violated, then the circuit can operate correctly only by 
increasing T. If a hold time HS is negative, then the circuit will not 
function correctly unless delay elements are inserted on the short 
paths in the combinational logic.  

3. STATISTICAL CSHT 
As mentioned before, process variations greatly affect the timing 
characteristics of the flip-flop. In SSTA, a key objective is to 
calculate the probability of satisfying the setup and hold times by 
each flip-flop in the circuit subject to process variations. To do 
this, we must derive the probability distribution of the CSHT 
contour for a flip-flip (given its clock-to-q delay) as well as the 
probability distribution of the required setup and hold times in the 
setup-hold time plane. This section first shows how variations in 
the process parameters are translated into pdf’s that describe 
variations in the flip-flop parameters. Next it describes an 
approach to quantify the impact of process variations on the CSHT 
contour of the flip-flops as well as the required setup and hold 
times for each individual flip-flop in the design. Finally by using 
these probability distributions, the probability of timing violations 
in any flip-flop in the design is calculated. 

3.1 Problem Formulation  
Let Q

r
 denote the set of circuit random independent variables, 

where iq Q∈
r

 (i=1,2,…, M ) refer to a random variable with a 
normal distribution given by ( , )

i iq qN μ σ . If these circuit variables 
are not independent, by applying the Principle Component 
Analysis, an independent variable set may be generated [2]. In this 
work, two process parameters are considered [8]-[9] as random 
variables: transistor length Leff and transistor threshold voltage Vth. 
In order to have simple equations to work with, a new set of 
random variables, P

r
, are created from Q

r
 where 

ii i qp q μ= − . In 
this way, the distribution of random variable 

ip P∈
r

becomes (0, )
ipN σ .  

The goal is to estimate the distribution of pairsτ
r on the setup/hold 

plane corresponding to a particular clock-to-q delay. In order to 
carry out this, the contour of setup/hold times is modeled with a 
three-point piecewise linear curve. To find these points, we 
consider three different slopes α1, α2 and α3 on the contours. 
Intuitively α1, α2 and α3 corresponds to the points with lower 
dependency of the contour to the setup time, equal dependency of 
the contour on both setup time and hold time, and lower 
dependency of the contour to the hold time, respectively.  
Practically, typical values of α1, α2 and α3 are around –8, –1 and 
0. The loci of these three points (critical points) when the flip-flop 
parameters change randomly are approximated by three lines, 1d

r
, 

2d
r

 and 3d
r

 as shown in Figure 4.  

The problem of finding the pdf of position of a setup/hold time 
contour is simplified to that of finding the pdf of τr ’s in the 
directions of these three lines. When the flip-flop parameters 
change, the perturbation of τr is approximated as a linear function 
of deviations of all parameters. To drive the linear function, the 
sensitivities of τr  with respect to any flip-flop parameter are 
assessed. The sensitivity list is exploited to compute the variance 



of τr  in the direction of the three aforementioned lines. To find the 
variance, the sensitivity of τ

r
 respect to each pi is needed. 
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Figure 4.  Partitioning setup/hold time plane into 7 parts, each 

with a fixed total probability (red lines denote 1d
r

, 2d
r

, 3d
r

).  

Definition 4: We define sensitivity of τr  respect to pi in the 

direction jd
r

is 
j

ji
i d

s
p
τ∂

=
∂ r

r

. 

Definition 5: We define three new random variables
1drr , 

2drr and 

3drr associated with the variation of τr  in directions 1d
r

, 2d
r

 and 3d
r

, 

respectively. We call them critical line random variables (CLRVs). 
A first order Taylor expansion is used to approximate

1drr , 
2drr and 

3drr  in terms of process random variables ip P∈
r

as follows: 

1
j

M

ji idj d
i

r s pτ
=

= + ∑r r
r  (4) 

where 
jdτr denotes the expected value of 

jdrr  

Since we have assumed that random variables in P
r

 have normal 
distribution and are independent, random variables

1drr , 
2drr and 

3drr  

are also normal. From (4), variances of 
1drr , 

2drr and 
3drr are 

computed as 2 2 2

1
j

M

ji jid
i

sσ σ
=

= ∑r . For j=1, 2 and 3. Since the mean of 

each pi is zero, the expected value of 
1drr , 

2drr and 
3drr are 

1dτr , 
2dτr  

and 
3dτr . 

3.2 Defining a pmf for the Setup/Hold Plane   
To efficiently calculate the probability value of negative or 
positive slacks, we use a probability mass function (pmf ) to 
specify the probability of setup/hold time CLRV’s as explained 
below. 
Recall that a probability mass function (pmf) is a function that 
gives the probability that a discrete random variable is exactly 
equal to some value. A probability mass function differs from a 
pdf in that the values of a pdf are defined only for continuous 
random variables. Note that a probability distribution is called 
discrete if it is characterized by a probability mass function. Thus, 
the distribution of a random variable X is discrete, and X is then 
called a discrete random variable, if Pr( ) 1

u

x u= =∑ as u runs 

through the set of all possible values of X. 

To explain the approach for partitioning the setup/hold plane into 
regions using a pmf, consider Figure 4. We would like to partition 
the plane into Nsh contiguous regions with equal total probability 
Psh=1/Nsh (that is, for a 1-D pdf, the area under the pdf in each of 
these Nsh parts is equal to 1/Nsh ). By using the standard deviations 
of

1drr , 
2drr and 

3drr , the critical lines 1d
r

, 2d
r

 and 3d
r

are divided into 

Nsh segments, each with a discrete probability Psh.  
Definition 5: Statistical required setup time (SRST) is a random 
variable defined on the RST of some specific flip-flop in the 
design when the preceding combinational logic gates and flip-flops 
are subjected to random process variations. For the right flip-flop 
shown in Figure 3, the SRST is computed as follows: 

 SRST = T+min(Dp2) − max(Dp1 + Dc + tc2q) (5) 
Definition 6: Statistical required setup time (SRST) is a random 
variable defined on the RHT of some specific flip-flop in the 
design when preceding combinational logic gates and flip-flops are 
exposed to random process variations. For the right flip-flop 
shown in Figure 3, the SRHT is computed as follows: 

SRHT = min(Dp1 + Dc + tc2q) − max(Dp2) (6) 
Consider random variables Dp1, Dp2 and Dc with normal 
distribution as follows:   

Dp1 ~ N(μp1, σp1), Dp2 ~ N(μp2, σp2), Dc ~ N(μc, σc) (7) 
Assume Dp1, Dp2 and Dc are independent variables, then by using 
min-max operation, SRST and SRHT are approximated by two 
normal variables whose variance and mean are computed from μp1, 
μp2, μc, σp1, σp2, and σc, [2]. Equations (8) show an archetypal 
distribution for SRST and SRHT: 

SRST ~ N(μs, σs), SRHT ~ N(μh, σh) (8) 
Based on (8), the setup/hold time plane is partitioned into Nrsh 
regions, each with a probability Prsh. The partitioning procedure is 
similar to the one described in subsection 3.2. Figure 5 shows a 
typical partitioning of the setup/hold time plane based on the 
required setup and hold times. 
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Figure 5. Partitioning the setup/hold time plane into five parts, 

with a fixed total probability based on SRST and SRHT.  
Definition 7: Statistical pass value (SPV) is defined as the 
probability that some specific flip-flop in the design satisfies the 
required setup and hold time constraint.  
SPV is computed from the joint probability distribution of the parts 
obtained from statistical CSHT partitioning (SCP) and those 
obtained from statistical required setup/hold time partitioning 
(SRP).  Details are provided next. 



Let the number of the borderlines between adjacent parts in SRP 
and SCP solutions range from 1 to Nrsh and Nsh, respectively (the 
last borderline for each partitioning solution is at infinity.) The 
numerations are increasing from origin of the setup-hold plane to 
infinity. Let’s denote each border line of SCP by Bcu and each 
border line of SRP by Brv. We make an array Acr of Nsh by Nrsh. An 
element xu,v in the uth row and the vth column of this array is one if 
Bcu and Brv have an intersection; otherwise it is zero. Obviously, 
the last column of this 0-1 matrix is all 1’s while the last row is all 
0’s (except for its very last column entry which is 1). Since 
random variables in both SCP and SRP are independent, the value 
of SPV may be computed as follows: 

,
1 1

Prob(Pass Timing Check)
sh rshN N

sh rsh u v
u v

SPV P P x
= =

= = ∑∑  (9) 

As an example consider the setup-hold time plane displayed in 
Figure 6. In this example Nsh and Nrsh are 7 and 5, respectively. 
The parts in SCP are separated by black lines while the parts in 
SRP are separated by red lines. We have: 

0 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

crA

⎡ ⎤
⎢ ⎥
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⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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The blue rectangles in Figure 6 correspond to the ‘one’ values of 
the array. As an example, the second column of the array states 
that the second borderline in the SRP solution has intersections 
with the first and second borderlines of the SCP solution, and thus, 
the SPV value is increased by 2 sh rshP P .   

 
Figure 6. Example to illustrate SPV calculation (borderlines at 

infinity are not shown).  
In this way for each flip-flop in the design, there is an SPV which 
is computed in SSTA. More precisely, SSTA gives distribution of 
meeting the setup-hold time constraints for all flip-flops in the 
design as a “Pass probability” histogram instead of a percentage of 
the number of flip-flops that meet the timing constraints. The 
designer uses this histogram to analyze the circuit and decide to 
lower the clock frequency, resize any flip-flop, or resize any 
combinational logic gate if the histogram is heavier on the left side 
(the expected Pass probability per flip-flop is lower than ½). In 
contrast, frequency may be increased if this histogram is heavier 
on the right side (the expected Pass probability is higher than ½).  

4. SIMULATION RESULTS 
All experiments were done on a Linux server with a 1.5-GHz CPU 
and a 14-GB memory. Process and electrical parameters of a 
typical 130 nm CMOS technology were used. In this work, for 
transistors, the following process parameters are considered [8]-[9] 
as random variables: transistor length Leff, and transistor threshold 
voltage Vth. The 3σ variation for Leff and Vth are 45 nm and 50 mv, 
respectively. We first show that the proposed BEBS algorithm 
works correctly and efficiently to extract CSHT characteristics.  
Next the SPV is calculated and compared for TSPC flip-flop by 
using proposed method and Monte-Carlo. 

4.1 BEBS validation   
At first we characterized CSHT for true single phase clocking 
(TSPC) flip-flop by producing the clock-to-q delay surface. Figure 
7 depicts the surface and constant clock-to-q plane used for 
characterization. Next the BEBS algorithm was applied to the 
TSPC flip-flop and the CSHT was characterized. Figure 8 
compares the resulting setup/hold time contour obtained by BEBS 
vs. that produced by the conventional method. As seen they match 
each other very closely. The speedup of BEBS over the 
conventional method is between a factor of 10x to 20x. 

4.2 Statistical CSHT Characterization 
In order to calculate the SPV value for a flip-flop in a circuit, 
critical points and sensitivity values are calculated. Figure 9 and 
Figure 10 show the critical points for normally distributed random 
variables Leff and Vth for a TSPC flip-flop. Table 1 reports the 
sensitivity values of the TSPC flip-flop. The standard deviation of 

1drr , 
2drr and 

3drr are calculated and reported in  

Table 2 . The values of Nrsh and Nsh are set to 3. For SRST and 
SRHT with distribution N(55ps, 27.5ps) and N(60ps, 25ps), SPV is 
2/3 by using  the proposed technique. Indeed the Monte-Carlo 
simulation estimated SPV  to be very close to 2/3.   
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Figure 7. CSHT characterization done by generating the clock-

to-q delay surface.  

5. CONCLUSION 
This paper proposes a methodology to exploit the statistical 
codependence of the setup and hold times. The approach 
comprises of two phases. pmf of codependent setup and hold time 
(CSHT) contours are determined by considering the probability 
density functions (pdf) of sources of variability in the first phase. 
A numerical backwards Euler based search is proposed to 
characterize CSHT efficiently and accurately. Validity of these 
numerical algorithm for extracting the contours, critical points and 
sensitivity values are verified by applying them to the TSPC flip-



flop to generate the piecewise linear contours for CSHT. In the 
second phase the piecewise linear curves are used to estimate the 
timing pass rates in terms of probability values. The characterized 
flip-flops are instantiated in an example design, on which timing 
verification is performed. The accuracy of algorithm is compared 
with Monte-Carlo simulation.  
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Figure 8. Comparison of setup/hold time contour characterization 
for BEBS (solid line) and the conventional (dashed line) methods.  
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Figure 9. Impact of Leff variation on CSHT, α1 = -7,  α2 = -1 and 

α3= 0.  
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Figure 10. Impact of Vth variation on CSHT, α1 = -10,  α2 = -1 

and α3= 0. 

Table 1. Sensitivity values for a TSPC flip-flop (index j in Sj,- 
refers to direction jd

r
) 

Parameter Sensitivity (ps/mv) Parameter Sensitivity (ps/nm) 

S1,Vth -0.1122 S1,Leff 0.1770 
S2,Vth -0.1171 S2,Leff 0.2227 
S3,Vth -0.0495 S3,Leff 0.1493 

 
Table 2. Standard deviation CLRVs 
Parameter standard deviation (ps) 

σ1,Leff 3.3 
σ2,Leff 3.9 
σ3,Leff 2.4 
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